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Abstract. Norway spruce is a native European coniferous species distributed from the Carpathian 18 

Mountains and the Alps to northern Scandinavia. In the coming decades, spruce forests will need to 19 

cope with increasing climate changes which are already threatening their natural habitats. European 20 

forest policy should adapt to the changing climate by deploying drought-tolerant genotypes in 21 

regions expected to experience increased stress in the future. To identify reliable water stress 22 

biomarkers in this species, which may be eventually used to select populations responding better to 23 

forecasted drought events, we studied the physiological responses to severe water stress treatments 24 

of spruce seedlings originating from several locations in the Romanian Carpathian Mountains. One-25 

year old seedlings were denied irrigation for six weeks in order to generate severe water stress in 26 

controlled conditions. Variations in the levels of the studied photosynthetic pigments, osmolytes, 27 

and non-enzymatic antioxidants were detected across the spruce populations. Several of the 28 

determined parameters in seedling needles, such as the decrease in water content (nearly 40% 29 

decrement in the most sensitive studied populations), the degradation of chlorophylls, or a low 30 

increase of proline levels (up to seven-fold increment in the most sensitive populations in 31 

comparison to no change in the most tolerant ones), could be employed as biomarkers for an early 32 

assessment of water stress at this stage. Furthermore, seedlings from two of the populations under 33 

study (Sudrigiu and Gioristea-Calimanut) apparently responded better to water stress than the other 34 

populations, as shown by their lower reduction in needle water content, no degradation of 35 

chlorophyll a and carotenoids, and less proline accumulation, suggesting a relatively higher 36 



2 

 

resistance to drought. These populations also seemed to be the least affected by osmotic stress at the 37 

seed germination stage. Therefore, we consider that the use of biochemical markers of stress at 38 

early seedling stages could represent a useful tool for the initial screening of populations that have 39 

relatively high tolerance to drought, warranting further research for potential use in reforestation. 40 

 41 

Keywords: Biomarkers, drought, Norway spruce, reforestation, seedlings. 42 

 43 

Key Message: Norway spruce seedlings apparently showing a relatively higher tolerance to drought 44 

can be easily selected using a battery of biomarkers such as water content, chlorophyll and proline 45 

levels in the needles, and could be eventually used as initial screening method in reforestation 46 

programmes. 47 
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1. Introduction 70 

Norway spruce is a native European coniferous species growing in large areas across north Scandinavia, the 71 

Alps, and the Balkan and Carpathian Mountains (Mitchell 1972). It has an estimated geographical range of 72 

approximately 30 million hectares, while at least 7 million hectares of pure spruce are located outside its 73 

natural range (Jansson et al. 2013; Kazda 2005).  74 

In the coming decades, the world's forest trees will need to cope with the increasing climate changes 75 

which are already threatening their natural habitats (Allen et al. 2010; Dale et al. 2001; Gilliam 2016). 76 

Consequently, new strategies and measures should be designed and implemented to minimise wood and 77 

environmental losses in the future. Europe's spruce reforestation policies should be based on the so-called 78 

‘adaptive forest management’, a relatively recent concept regarding species survival and evolution (Lindner 79 

2000). Active adaptation would be a suitable management strategy for stand conversion, based on replacing 80 

sensitive populations or tree species with others which could potentially respond better to the forecasted 81 

climate changes during their life cycle (Bolte et al. 2009). 82 

 The distribution of Norway spruce has varied in time due to climate influence (Bradshaw et al. 83 

2000). The deleterious effects of environmental stresses, especially drought, on growth rates and tree 84 

mortality have often been underestimated in the past (Spiecker 2000). The occurrence of previous drought 85 

periods has damaged spruce stand in terms of radial growth, particularly in areas outside its natural range, 86 

which are affected by lower precipitation levels (Kahle et al. 2005).  87 

 The Intergovernmental Panel on Climate Change (IPCC) climate predictions up to 2080 show that 88 

mean temperatures will increase on the continent by 1.4-4.5 °C, with the largest differences occurring in the 89 

southern countries (EEA 2004). According to Cuculeanu et al. (2002), who analysed climate change in 90 

Romania until 2075 using different GCMs (General Circulation Models), air temperature in Romania will 91 

increase by 2.8-4.9 °C, depending on the model used, while precipitation will decrease by 20 %. As reported 92 

by Lévesque (2013), Norway spruce populations from Central Europe are more vulnerable to soil water 93 

deficit than other conifers. The species will likely migrate to higher altitudes and to the north of Europe, with 94 

great area losses in the central part of the continent (Hanewinkel et al. 2013). Other studies confirm that 95 

spruce evaporative requirements are strongly related to the water supply of the stand, while drought 96 

sensitivity seems to be higher in altitudes below 1000 m (Maaten-Theunissen et al. 2013). 97 

 Spruce stands across Europe, including those in Romania, are likely to be affected by drought stress 98 

in the near future, with negative effects on growth rate and timber quality. Additional damage to the forest 99 

could involve lower rates of natural regeneration and reduced natural productivity, and possibly the disruption 100 

of its ecological balance and composition. The risk of infestation by insects and fungal diseases, such as 101 

spruce bark beetle or Armillaria spp., may weaken stand stability, causing more wind breakage events (Green 102 

and Ray 2009; Hart et al. 2014; Kolström et al. 2011).  103 
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 The most common drought effects include inhibition of photosynthesis due to reduction of 104 

photosynthetic pigment contents, stomatal oscillations, respiration and oxidative damage (Farooq et al. 2009; 105 

Jaleel et al. 2009). Genetic approaches have shown that drought tolerance of plants relies on their capability 106 

of activating adaptive mechanisms to counteract these deleterious effects, at physiological, biochemical and 107 

molecular levels (Kantar et al. 2011).  108 

 Spruce trees affected by drought show parallel biochemical and physiological changes leading to 109 

reductions in sap flow, in the rate of stem circumference increase, and in needle water potential (Ditmarová 110 

et al. 2010; Ježík et al. 2014). At the cytological level, it has been observed that xylem cells have smaller 111 

lumen and thicker walls, while the number of underdeveloped sclerenchyma cells increases (Kivimäenpää et 112 

al. 2003; Montwe et al. 2014). Protective mechanisms in the first days of seedling exposure to drought 113 

consist of an adjustment to low osmotic potential correlated with a decline in transpiration and activation of 114 

nitrogen metabolism (Grossnickle 2000; Modrzynski 2007). Long term drought leads to hydraulic failure and 115 

carbon starvation, and eventually to tree mortality (McDowell et al. 2008). 116 

 As a response to the forecasted effects of climate change, the ‘European Information System on 117 

Forest Genetic Resources’ has established 363 gene conservation units and 202 seed stands across 14 118 

European countries (EUFGIS 2011). Romania ranks in the second position, with 84 seed units which are used 119 

in the country's reforestation programmes. These seed stands should be suitable for the specific local 120 

environmental conditions. However, large areas of the country's Norway spruce stands have been affected by 121 

drought, and it is necessary to consider an adaptive management approach for spruce reforestation. 122 

Reforestation programmes in Europe are using spruce seedlings with origin in the certified seed stand 123 

mentioned above. Yet forestry practices should take into consideration alternative solutions to minimise stand 124 

losses and environmental damage. A selection of European spruce populations with higher drought tolerance 125 

would provide a better chance for future stand development in regions projected to experience greater climatic 126 

stress.  127 

 The effects of abiotic stress, including drought, are generally assessed by measuring the degree of 128 

inhibition of plant growth. Faced with a situation of stress, plants divert resources (energy, metabolic 129 

precursors) from normal metabolism and biomass accumulation, to the activation of defence mechanisms, 130 

which causes the arrest or drastic reduction of growth (Munns and Termaat 1986; Zhu 2001). However, in 131 

species of slow growth, like spruce and most forest tress, very long treatments would be required to observe 132 

significant stress-induced changes in growth parameters. The definition of specific, easy to quantify, 133 

physiological and biochemical markers associated with drought, should allow an initial,  rapid analysis of the 134 

responses of the plants to the stress treatment. Appropriate biomarkers are likely to include those involved in 135 

conserved responses to water stress: a decrease in leaf water content, degradation of photosynthetic pigments, 136 

the accumulation of specific osmolytes, or the activation of antioxidant systems, changes that have been 137 

associated to abiotic stress-induced inhibition of growth in many different woody species (e.g., Jiménez et al. 138 

2013; Popović et al. 2016; Zrig et al. 2015), including conifers (Guo et al. 2010; Schiop et al. 2015; 139 

Sudachkova et al. 2002). 140 

http://www.ncbi.nlm.nih.gov/pubmed?term=Ditmarov%C3%A1%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20038503
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 The major aim of this work was to identify suitable biochemical markers associated with drought in 141 

Picea abies seedlings, which could be used for the rapid analysis of responses to controlled water stress 142 

treatments. Several Norway spruce populations, located at different altitudes along the Romanian Carpathian 143 

Mountains, were selected for these experiments. Seedlings, obtained by germination of seeds with an 144 

established origin, were grown in the greenhouse before being subjected to water stress treatments. In 145 

complementary experiments, seeds from the same stocks were independently germinated in vitro under 146 

conditions of osmotic stress – to mimic the drought treatment. By performing a comparative analysis of the 147 

responses of different spruce populations, the study also aimed at developing a tool based on combination of 148 

several biochemical markers that could be used for a preliminary e selection of the populations that better 149 

respond to water stress at early seedling stage.  150 

 151 

2. Materials and Methods 152 

 153 

Seedling origin, growth conditions and water stress treatments 154 

 155 

 Descendants from seven Romanian spruce populations, included in the National Catalogues of Forest 156 

Genetic Resources and Seed Reservations, were grown in a greenhouse located in Albac, Romania, during 157 

one complete vegetation season (the origins of the genetic resources and climatic data are indicated in Tab. 1). 158 

The seeds were sown during April under appropriate conditions of temperature and high humidity of air and 159 

soil. Prior to sowing, the seeds were subjected to a pre-germination treatment, keeping them in cold water for 160 

48 hours, as described by Radu et al. (1994). The seedlings were grown on peat substrate collected from a site 161 

in the Vladeasa Mountains, Romania, near the place known as Padis (46.60415 N, 22.69618 E).  162 

 163 

Tab. 1 Climatic data in the regions of origin of the seven studied P. abies populations, according to the 164 
National Meteorological Administration (NMA), Romania (Schiop et al. 2015) 165 
 166 

Identification Population 
Geographic 

coordinates 

Altitude 

(m.a.s.l.) 

Mean annual 

Temperature 

(ºC) 

Mean annual 

Precipitation 

(mm) 

Mean 

potential 

PET (mm) 

GC 
Gioristea-

Calimanut 

46°45' N / 

25°20' E 
840-1200 6.4 642.0 558.5 

VM Valea Mare 
46° 28' N / 

23°09' E 
1200-1450 5.6 893.0 517.3 

SD Sudrigiu 
46° 36' N / 

22° 25' E 
230 10.4 751.9 672.6 

BM Basca Mica 
45°45' N / 

26°20' E 
1250-1500 1.9 800.7 428.6 

AB Albac 
46°45' N / 

22°97' E 
770 7.8 837.6 594.0 

PT ParaulTurculet 
47°44' N / 

25°24' E 
850-930 7.2 707.8 607.3 
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JP Jepi 
45°15' N / 

24°45' E 
1350-1650 0.9 1303.2 360.4 

 167 

 One-year-old seedlings were transplanted into pots with peat substrate during vegetative phase 168 

(blossom buds) and were transported to the greenhouse of the Institute of Plant Molecular and Cellular 169 

Biology (IBMCP), Polytechnic University of Valencia, Spain. Daily mean temperature during the 42 day-long 170 

experiment was 20 
o
C, photoperiod 16 hours of light, humidity ranged between 60-70 % and CO2 level was 171 

approximately 300 ppm. Control plants were watered twice a week using Hoagland’s nutritive solution while 172 

drought treatment was performed by completely ceasing irrigation. After 42 days of treatment, water-stressed 173 

and control seedlings were harvested and several physiological and biochemical traits were determined in the 174 

needles. 175 

 176 

Osmotic stress treatments at the seed germination stage 177 

 178 

Seeds from the same seven stocks used to grow the spruce seedlings, were germinated in vitro, in the 179 

presence of increasing concentrations of polyethylene glycol 6000 (PEG-6000). Petri dishes (diameter: 9 cm) 180 

were prepared with a sterile cotton base below a double layer of sterile filter paper, and 40 mL of water (for 181 

the control seeds) or 40 mL of aqueous PEG-6000 solutions generating osmotic pressures of -0.13 MPa 182 

(17.58 g/L), -0.26 MPa (30.12 g/L), or -0.52 MPa (49.37 g/L) were added to each dish. These osmotic 183 

pressures are the same produced by 30, 60 and 120 mM NaCl solutions, respectively, and were calculated 184 

based on the Van't Hoff's equation (Ben-Gal et al. 2009).  185 

Seeds were surface-sterilised in 15% (v/v) hydrogen peroxide for one hour, then thoroughly rinsed 186 

with sterile water, and dried at room temperature. Sterilised seeds were placed on the surface of the filter 187 

paper in the Petri dishes, 30 seeds per dish, and the plates were sealed with parafilm. Three replicated Petri 188 

dishes (90 seeds in total) were used per spruce population and per treatment. Over a period of 21 days of 189 

germination, the plates were checked regularly (twice per week) and the number of germinated seeds was 190 

registered. At the end of the treatment, the seeds were scanned and the radicle, hypocotyl, and cotyledon 191 

lengths were measured using ImageJ software (Rasband 1997-2012). ‘Mean germination time’ (MGT) was 192 

calculated according to the formula: MGT= ΣDn/Σn, where n represents the number of seeds germinated at 193 

day D, while D is the number of days from the beginning of germination (Ellis and Roberts 1981). Seedling 194 

vigour index (SVI) was calculated as: Germination percentage x [Mean root length (mm) + Mean hypocotyl 195 

length (mm)], as indicated by Abdul-Baki and Anderson (1973).  196 

 197 

Water content percentage 198 

 199 
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Water content percentage (WC%) in needles was obtained by measuring their initial fresh weight 200 

(FW), and their dry weight (DW) – after drying the needles in an oven for 4 days at 65°C until constant 201 

weight – using the formula:                                202 

  203 

Osmolyte levels 204 

 205 

 Free proline (Pro) in fresh needles was quantified according to the ninhydrin-acetic acid method of 206 

Bates et al. (1973). Pro was extracted in 2 mL of 3% aqueous sulfosalicylic acid; 1 mL of the extract was 207 

mixed with one volume of acid ninhydrin and one volume of glacial acetic acid, and incubated at 95 °C for 1 208 

h. The sample was extracted with two volumes of toluene and absorbance of the organic phase was 209 

determined at 520 nm, with toluene as a blank.  210 

 Total soluble sugars (TSS) in needles were measured according to the method of Dubois et al. 211 

(1956): ground dry material was suspended in 80 % methanol and the sample was mixed in a shaker 212 

overnight. Concentrated sulphuric acid and 5 % phenol was added and the absorbance of the solution at 490 213 

nm was measured. 214 

 215 

Non-enzymatic anti-oxidants  216 

 217 

 Total phenolic compounds (TPC) and ‘total flavonoids’ (TF) were measured in the same methanol 218 

extracts used for TSS determination. TPC were quantified by measuring the absorbance at 765 nm after 219 

reaction with the Folin-Ciocalteu reagent, according to Blainski et al. (2013), and expressed as equivalents of 220 

gallic acid (mg eq GA g
-1 

DW), used to obtain the standard curve. TF were measured following the procedure 221 

described by Zhishen et al. (1999), based on the nitration of aromatic rings bearing a catechol group and their 222 

reaction with AlCl3; this method detects antioxidant flavonoids but also other phenolics containing a catechol 223 

group. After the reaction, the absorbance of the sample was measured at 510 nm, and the amount of 224 

flavonoids was expressed in catechin equivalents (mg eq. Catec. g
-1 

DW). 225 

 226 

Photosynthetic pigments 227 

 228 

 Photosynthetic pigments (chlorophyll a, chlorophyll b and total carotenoids) were measured 229 

according to the method of Lichtenthaler and Welburn (1983). The extraction was carried out in 80 % cold 230 

acetone and optical density was read at 663 nm, 646 nm and 470 nm. The values were expressed in µg/ml and 231 

then transformed to µg/g DW using the following formulas: 232 

http://onlinelibrary.wiley.com/doi/10.1111/jac.12047/full#jac12047-bib-0012
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 233 

  Chlorophyll a (µg/ml) = 12.21(A663)- 2.81 (A646)        234 

  Chlorophyll b (µg/ml) = 20.13 (A646) - 5.03 (A663)        235 

  Carotenoids (µg/ml) = (1000 A470 - 3.27 [chl a] – 104 [chl b])/227 236 

 237 

Statistical analysis 238 

 239 

 Statistical analysis of the data was performed using Statgraphics Centurion XVI software (Statpoint 240 

Technologies, Inc.; Warrenton, Virginia, USA). The assumption of normality was checked by Shapiro-Wilk 241 

W test and the homogeneity of variance by the Levene test. One-way ANOVA was performed to compare the 242 

statistical significance of the difference among treatments at confidence level of 95%. When the ANOVA null 243 

hypothesis was rejected, post-hoc comparisons were performed using the t-test (for seedling experiments) and 244 

the Tukey HSD test (for in vitro germination assays). All means throughout the text include the standard 245 

deviation (SD) 246 

 247 

3. Results 248 

 249 

Seed germination assays 250 

 251 

 Osmotic stress caused a general reduction in the percentage of seeds germinated after three weeks of 252 

treatment, but with clear quantitative differences between the different populations (Fig. 1). Concerning 253 

germination (in water) of control seeds, spruce populations could be divided in two groups: the first one 254 

(Valea Mare, Albac, and Paraul Turculet) showed high germination percentages, over 85 %, while in the 255 

second one, including the remaining populations, seed germination ranged between 40 % and 50 %. The 256 

relative resistance to PEG-6000 of seeds from the different populations did not correspond to germination 257 

rates in the control. Under the strongest osmotic stress tested (-0.52 MPa), seeds from the Gioristea-Calimanut 258 

and Sudrigiu populations showed the smallest relative inhibition of germination; in GC seeds, in fact, 259 

differences in germination percentages were not statistically significant. On the other hand, seeds from Valea 260 

Mare and Paraul Turculet were the most affected by PEG-induced osmotic stress (Fig. 1). 261 

  262 

Fig. 1 Germination rates of seeds from the seven analysed Picea abies populations (identification codes as in 263 
Tab. 1), after three weeks of osmotic stress treatments; the indicated osmotic pressures were generated by 264 
increasing PEG-6000 concentrations. Values are means with SD (n = 3). Different lowercase letters in a 265 
column indicate significant differences in germination rates between treatments, for each population. 266 
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Different capital letters in a row indicate significant differences in germination rates between populations for 267 
each treatment according to the Tukey test (α=0.05) 268 
 269 
 270 
 Osmotic stress also affected germination time in seeds from most populations, albeit only slightly. 271 

Considering the calculated average values, mean germination time (MGT) generally increased with increasing 272 

osmotic stress, but the differences between control and osmotic-stressed seeds were not statistically 273 

significant for populations Gioristea-Calimanut, Paraul Turculet and Jepi (Fig. 2).  274 

 275 

Fig. 2 ‘Mean germination time’ (MGT) of seeds from the seven analysed Picea abies populations 276 
(identification codes as in Tab. 1), after three weeks of osmotic stress treatments; the indicated osmotic 277 
pressures were generated by increasing PEG-6000 concentrations. Values are means with SD (n = 3). 278 
Different lowercase letters in a column indicate significant differences in MGT between treatments, for each 279 
population. Different capital letters in a row indicate significant differences in MGT between populations for 280 
each treatment according to the Tukey test (α=0.05) 281 
 282 

 283 

 Finally, the ‘seedling vigour index’ was calculated for all populations and treatments (Fig. 3). Large 284 

differences between populations were found for control seeds germinating in water, but in all cases a decrease 285 

in SVI values was observed in the presence of PEG-6000, except for the Sudrigiu population, where the SVI 286 

remained practically constant. The populations most affected by osmotic stress during seed germination, 287 

according to the relative decrease of SVI values, were Valea Mare and Basca Mica (Fig. 3). 288 

 Summarising, seeds from the Sudrigiu and Gioristea-Calimanut populations showed the smallest 289 

decrease of germination percentages and were amongst those with no or only a small increase in MGT. On the 290 

other hand, seeds from Valea Mare and Paraul Turculet seemed to be the most affected by PEG-6000. It is 291 

interesting to note that the Sudrigiu seeds, apparently the most resistant to osmotic stress, are also those 292 

showing the lowest germination rate (40%) and SVI (845), and the highest MGT (14.8 days) of all tested 293 

populations (Figs. 1, 2 and 3), in the control; that is, under non-stress conditions.  294 

 295 

Fig. 3 ‘Seedling vigour index’ (SVI) of seeds from the seven analysed Picea abies populations (identification 296 
codes as in Tab. 1), after three weeks of osmotic stress treatments; the indicated osmotic pressures were 297 
generated by increasing PEG-6000 concentrations 298 
 299 

 300 

Water content percentage in water-stressed Picea abies seedlings 301 

 302 

 Water content in the needles of control seedlings ranged between 63 and 72%, without significant 303 

differences among the analysed spruce populations, except when comparing those from Jepi and Gioristea-304 

Calimanut, which showed the highest and lowest values, respectively (Fig. 4).Water stress caused a 305 

significant decrease in water content in all populations, but seedling dehydration was not uniform. The largest 306 

differences within single populations were recorded in the Albac (3.7-fold), Jepi (3.5-fold) and Paraul 307 
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Turculet (2.7-fold) samples, while the smallest were observed in the populations from Sudrigiu (1.3-fold) and 308 

Gioristea- Calimanut (1.4-fold). Therefore, the spruce seedlings from Sudrigiu appeared to be the most 309 

resistant to drought-induced dehydration, followed by GC.  310 

 311 

Fig. 4 Water content (%) in needles of Picea abies seedlings of the seven studied populations after 42 days of 312 
water stress treatments. Population identification codes are those defined in Tab. 1. Values shown are means 313 
with SD (n=3). Significant differences between populations are indicated by different lowercase Latin letters 314 
(for non-stressed control plants) or by different Greek letters (for drought-stressed plants) over the bars, while 315 
an asterisk (*) shows significant differences in needle water content between control and water-stressed 316 
seedlings within each population, according to the t-test (α=0.05) 317 
 318 

 319 

Chlorophyll a, chlorophyll b and total carotenoids contents 320 

 321 

 Needle contents of chlorophyll a, chlorophyll b, and total carotenoids were determined in seedlings 322 

of all P. abies populations, in control and drought-stressed plants. In control plants, mean chlorophyll a levels 323 

in the Basca Mica and Albac populations were significantly lower than those measured in seedlings from 324 

Sudrigiu and Paraul Turculet, and intermediate values were determined in the other populations. Water stress 325 

treatments induced significant reductions of chlorophyll a contents in the Valea Mare, Albac, Paraul Turculet 326 

and Jepi populations – the latter showing the largest decrease, by more than 40% relative to the control. Non-327 

significant changes were observed in the Basca Mica population, and small, but significant, increases in 328 

chlorophyll a levels were determined in the remaining two provenances, Gioristea-Calimanut and Sudrigiu 329 

(Fig. 5a).  330 

 Absolute chlorophyll b contents were lower, about half of those of chlorophyll a, but the general 331 

patterns of variation between populations and the changes induced by water stress within each population, 332 

were similar, except that Jepi seedlings showed a smaller reduction, of 23% relative to the control, as 333 

compared to that observed for chlorophyll a (Fig. 5b). 334 

 Total carotenoids did not differ significantly between populations in control seedlings. However, 335 

drought-induced changes in the concentration of these pigments varied in the different spruce populations; 336 

significant increases were measured in Gioristea-Calimanut and Sudrigiu, significant decreases in Albac and 337 

Jepi, and no significant variation in the other three populations (Fig. 5c). 338 

 339 

Fig. 5 Chlorophyll a, chlorophyll b and total carotenoids contents in needles of Picea abies populations after 340 
42 days of water stress treatments. Population identification codes as defined in Tab. 1. Values shown are 341 
means with SD (n=3). Significant differences between populations are indicated by different lowercase Latin 342 
letters (for non-stressed control plants) or by Greek letters (for drought-stressed plants) over the bars, while an 343 
asterisk (*) shows significant differences in needle pigment content between control and water-stressed 344 
seedlings within each population, according to the t-test (α=0.05) 345 
 346 
 347 
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Proline and total soluble sugars 348 

 349 

 Proline levels in control seedlings varied significantly between populations, in the range of 8 to 30 350 

μmol g
-1

 DW, and increased in all cases in response to the drought treatment (Fig. 6a). The largest relative Pro 351 

accumulation in relation to the control (8-fold) was observed in Valea Mare seedlings. Spruce plants with 352 

origin in Basca Mica, Jepi, Albac and Paraul Turculet showed drought-dependent increases in Pro contents 353 

between 3- and 4-fold, while Pro concentration changed very little in Gioristea-Calimanut and Sudrigiu 354 

populations (Fig. 6a).  355 

 Total soluble sugars did not vary between populations, as compared to Pro levels. According to TSS 356 

contents in control seedlings, the seven studied populations could be separated in two groups without 357 

significant differences within each group: Albac, Paraul Turculet and Jepi, with TSS ranging between 45 and 358 

47 mg eq. glucose g
-1

 DW, on the one hand; and Gioristea-Calimanut, Valea Mare, Sudrigiu and Basca Mica 359 

(60-65 mg eq. glucose g
-1

 DW), on the other. TSS levels increased in all populations in response to water 360 

stress, but only slightly, not even doubling. The largest differences were measured in Paraul Turculet (65% 361 

increase) and Jepi (45%) populations, while in Gioristea-Calimanut and Albac seedlings the differences were 362 

not statistically significant; TSS increases of 10% to 30% were observed for the remaining provenances (Fig. 363 

6b). It should be noted that there was no correlation between the relative changes in Pro and TSS 364 

concentrations. 365 

 366 

Fig. 6 Changes in proline (Pro) and total soluble sugars (TSS) contents in needles of Picea abies seedlings 367 
after 42 days of water stress treatments. Population identification codes as defined in Tab. 1. Values shown 368 
are means with SD (n=3). Significant differences between populations are indicated by different lowercase 369 
Latin letters (for non-stressed control plants) or by Greek letters (for drought-stressed plants) over the bars, 370 
while an asterisk (*) shows significant differences in needle osmolyte content between control and water-371 
stressed seedlings within each population, according to the t-test (α=0.05) 372 
 373 

 374 

Total phenolic compounds and flavonoids 375 

 Total phenolic compounds and total flavonoid levels were relatively uniform in control seedlings of 376 

most populations, ranging between 10 and 15 mg eq. GA g
-1

 DW, approximately, for TPC (Fig. 7a) or 377 

between 8 and 12 mg eq. C g
-1

 DW for TF (Fig. 7b). The exception was the Jepi population for which lower 378 

contents of TPC (ca. 7 mg eq. GA g
-1

 DW) and TF (4.4 mg eq. C g
-1

 DW) were determined. These values 379 

generally increased in needles of water-stressed spruce seedlings, but quantitative differences varied between 380 

populations (Fig.7). The highest relative increases in TPC and TF were observed in Jepi seedlings (2.3-fold 381 

and 3.5-fold, respectively), followed by Paraul Turculet and Albac, and also Valea Mare in the case of TF 382 

(between 1.4 and 1.7-fold increases). Smaller stress-induced accumulation of antioxidant phenolics, or no 383 

significant changes were detected in the other populations (Fig.7). Within each population, the observed 384 
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patterns of variation of TPC and TF were similar, as should be expected since flavonoids represent the largest 385 

subgroup of phenolic compounds. 386 

 387 

Fig. 7 Changes in total phenolic compounds (TPC) and total flavonoids (TF) in needles of Picea abies 388 
populations after 42 days of water stress treatments. Population identification codes as defined in Tab. 1. 389 
Values shown are means with SD (n=3). Significant differences between populations are indicated by 390 
different lowercase Latin letters (for non-stressed control plants) or by Greek letters (for drought-stressed 391 
plants) over the bars, while an asterisk (*) shows significant differences in needle TPC or TF content between 392 
control and water-stressed seedlings within each population, according to the t-test (α=0.05) 393 
  394 

 395 

4. Discussion  396 

 Drought is a major abiotic stress, with complex effects on plants, inducing a wide range of 397 

physiological and biochemical responses which can lead to growth inhibition and, eventually, plant death 398 

(Farooq et al. 2009; Harb et al. 2010). Early diagnosis of drought in plants is of critical importance to 399 

minimise deleterious effects, as morphological responses to different types of abiotic stress are similar and 400 

symptoms specific for water stress are often not easily recognised. In addition, in species of slow growth, 401 

such as forest trees, measurable inhibition of growth – which is generally the easiest to detect effect of 402 

drought and other abiotic stresses – requires long treatment periods. 403 

 Climate change scenarios predicted for the next decades will cause a higher exposure of spruce 404 

stands to adverse drought conditions, leading to increasing forest stress and mortality (Walker et al. 2015). In 405 

the present study drought-induced changes in the levels of several metabolites – which could be employed as 406 

biochemical stress markers – have been quantified in needles of spruce seedlings of seven different 407 

provenances, subjected to a short, but severe water stress treatment in the greenhouse. As it is well established 408 

in many other plant species (Bartels and Sunkar 2005), the general responses to water stress in spruce 409 

seedlings included, among others, a decrease in the needles water content, a decrease in chlorophyll a and b 410 

levels, accumulation of osmolytes such as proline and soluble sugars, and an increase in the contents of some 411 

non-enzymatic antioxidants, namely total phenolic compounds and flavonoids. The identification of suitable 412 

drought stress markers in this species would help in the initial screening of more tolerant populations, but 413 

further longer –time experiments are still when extrapolating such results to forest management programmes. 414 

Another aspect that should be taken into consideration is that greenhouse conditions do not overlap with 415 

natural conditions of forest stands. For instance in this study CO2 concentration is around 100 ppm under the 416 

present conditions (Earth's CO2 Home Page) and therefore such results obtained should be reinforced with 417 

outdoor experiments in order to guide adaptive management and tree improvement. 418 

 Drought causes cellular dehydration in plants (Hoekstra et al. 2001; Morgan 1984; Toldi et al. 2009), 419 

and there are many publications reporting the loss of water in the leaves of different species, in response to 420 

water stress (e.g., Munné-Bosch and Peñuelas 2004; Saura-Mas and Lloret 2007; Yang et al. 2010). Changes 421 
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in spruce water content have been previously investigated in trees of different ages and in different tissues, 422 

showing large variations in phloem water content but not so big differences in heartwood water (Gall et al. 423 

2002; Kravka et al. 1999). Drought damages are observed mostly in spruce seedlings and young trees; the 424 

physiological processes triggered by water stress include a drop in tissue water and stomata closure, with the 425 

subsequent inhibition of photosynthesis, changes that become irreversible above a water deficit of 33% 426 

(Mejnartowicz and Lewandowski 2007). The response of white spruce [Picea glauca (Moench) Voss] or 427 

black spruce [Picea mariana (Mill) B.S.P.] seedlings to water stress treatments indicated a significant 428 

reduction in water content, even after a drought period shorter than that used in the present study (Marshall et 429 

al. 2000); this suggests that water content or, more specifically, the decrease in water content, can be 430 

considered as a suitable physiological water stress marker in this genus. Yet, while a drop of water content in 431 

the needles of P. abies seedlings was observed in all analysed populations, some of them were clearly less 432 

affected, such as those from Gioristea-Calimanut and, especially, from Sudrigiu. The capacity to reduce 433 

drought-induced needle dehydration could provide an indication of the relative degree of drought tolerance of 434 

the investigated populations, at least at the seedling stage. 435 

 A decrease in the levels of photosynthetic pigments due to drought is a common physiological 436 

response in many plant species (Al Hassan et al. 2017; Lei et al. 2006), including conifers (Alonso et al. 2001; 437 

Miron and Sumalan 2015) The observed effects of water stress on spruce seedlings pointed to a slight 438 

reduction in photosynthetic activity in stressed seedlings, due to a general degradation of chlorophyll a and 439 

chlorophyll b. Yet some populations appeared to be less affected than the rest to degradation of 440 

photosynthetic pigments under drought conditions including, here again, spruce seedlings derived from 441 

Gioristea-Calimanut and Sudrigiu.  442 

 Proline (Pro) accumulation in plants in response to water deficit is a quite general phenomenon, 443 

which has been previously reported in many taxa, including conifers; in some species, the relative increase in 444 

Pro levels in relation to the non-stressed control can reach 100-fold or even more (Al Hassan et al. 2016a, d; 445 

Cyr et al. 1990; Heuer 2010; Pardo-Domènech et al. 2015; Patel and Vora 1985;). As in other studies, a 446 

significant increase of Pro in Norway spruce seedlings was reported after a short time of severe water stress 447 

treatments (Ditmarová et al. 2010), highlighting the potential of measuring drought-induced changes in Pro 448 

contents well before any growth inhibition can be detected in this slow-growing species. Yet there is not a 449 

clear, general correlation of Pro levels with the degree of stress tolerance, which varies widely in different 450 

taxa. Previous comparative studies have established a positive correlation between drought tolerance and Pro 451 

accumulation in some species (Jiménez et al. 2013; Lei et al. 2006), whereas in others this correlation is 452 

negative (Al Hassan et al. 2016c; Silvente et al. 2012) or no correlation could be found (e.g. Bhaskaran et al. 453 

1985). This means that Pro can either be directly involved in the mechanisms of drought tolerance or simply 454 

act as an indicator of the level of stress affecting the plants. In P. abies, the latter possibility seems to apply, 455 

since the lowest Pro accumulation under water stress conditions was observed in seedlings from the Sudrigiu 456 

population, which according to other biomarkers appears to be the less affected by drought, as discussed 457 

above. 458 
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 Soluble sugars are also common omolytes in plants, and it is known that they can also accumulate in 459 

needles, sapwood or inner bark as a response to the drought-induced lowering of the osmotic potential 460 

(Clancy et al. 1995). Moreover, numerous greenhouse studies in which plants are subjected to water stress 461 

treatments have revealed a significant increase of soluble sugars contents in leaves (Al Hassan et al. 2016b, c; 462 

Jiménez et al. 2013; Sudachkova et al. 2002; Tan et al. 1992). The same pattern has been observed in the 463 

present study, although the drought-induced increases in soluble sugars are relatively small. In addition, due 464 

to their multiple biological roles as direct products of photosynthesis, components of primary metabolism, 465 

precursors of other compounds and even signalling molecules, it is very difficult to assess the specific 466 

functions of soluble carbohydrates in the mechanisms of stress tolerance (see Gil et al. 2013, for a more 467 

extensive discussion on this topic). Therefore, total soluble sugars may not be reliable biochemical markers of 468 

drought stress in Norway spruce.  469 

 The activation of antioxidant systems, both enzymatic and non-enzymatic, is also a general response 470 

to drought and other abiotic stresses, which cause oxidative stress in plants as a secondary effect. Phenolic 471 

compounds and, within them, the subgroup of flavonoids contain strong antioxidant molecules; there is 472 

overwhelming evidence that these ‘secondary metabolites’ play a major role in the mechanisms of defence of 473 

plants against environmental stresses, including drought (Ramakrishna and Ravishanka 2011). In some 474 

populations of P. abies seedlings, total phenolics and antioxidant flavonoids increased significantly in 475 

response to water stress, as has been reported for many other species (e.g., Al Hassan et al. 2016a; Bautista et 476 

al. 2016; Hernández et al. 2004). However, this pattern was not uniform as some spruce populations – 477 

including Gioristea-Calimanut and Sudrigiu – showed very small increases or non-significant changes in TPC 478 

and TF levels, suggesting that they could be relatively less affected by drought-induced oxidative stress. 479 

 Despite the variability in the patterns of physiological and biochemical parameters detected in the 480 

different P. abies populations, in response to water stress, the simultaneous assessment of several of these 481 

putative biomarkers could provide relevant information on the deleterious effects of drought on spruce 482 

seedlings, well before growth inhibition can be observed. In practice, the most reliable drought stress 483 

biomarkers in P. abies appear to be the water content, chlorophylls and proline levels in the needles. These 484 

parameters can be easily and rapidly determined, using simple methods that require small amounts of plant 485 

material.  486 

 The use of this battery of biomarkers clearly points to the spruce seedlings with origin in Sudrigiu, 487 

followed by those from Gioristea-Calimanut, as the most resistant to drought: lowest reduction in water 488 

content (i.e, highest resistance to drought-induced dehydration), no significant degradation of chlorophylls, 489 

and lowest proline accumulation. This conclusion is strongly supported by the results of complementary 490 

experiments in which seeds of the same stocks were germinated in vitro in the presence of PEG-6000. 491 

According to different parameters of germination, such as germination rates, mean germination time (MGT) 492 

and ‘seedling vigour index’ (SVI), these assays revealed that the same populations, Sudrigiu and Gioristea-493 

Calimanut, are also the most tolerant to osmotic stress during seed germination. 494 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ramakrishna%20A%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ravishankar%20GA%5Bauth%5D


16 

 

 The climatic characteristics of the geographical locations of these two spruce populations may 495 

explain a relatively higher drought tolerance. Sudrigiu is located at the lowest altitude of all selected 496 

provenances (230 m), which correlated with the highest mean annual temperature and highest potential 497 

evapotranspiration. Gioristea-Calimanut is located at higher altitude, and consequently has a lower mean 498 

annual temperature, but is the population affected by the lowest mean annual precipitation. Therefore, the 499 

slightly different responses to water stress of the Sudrigiu and Gioristea-Calimanut seedlings, as compared to 500 

the rest, could be due to adaptation of the original trees to somewhat drier natural environments.  501 

 As mentioned above, the short water stress treatments applied did not allow detecting inhibition of 502 

seedling growth, and the association of the selected biomarkers with plant performance under stress has not 503 

been directly demonstrated – although it is clearly established for many other species. Therefore, the results 504 

presented here should be confirmed and extended in future studies involving longer drought treatments and 505 

determination of their effect on growth parameters. Moreover, we do not know yet whether these biomarkers 506 

are also suitable to assess drought responses in older trees; this is likely, considering that seed germination 507 

and early seedling growth are generally more sensitive to stress than later developmental stages, but 508 

additional experiments will be required to confirm it. Suitable biochemical markers could be used for a rapid 509 

initial screening of a large number of individuals from different populations, but other functional traits, such 510 

as rate of growth or productivity should be taken also in consideration in the selection of the optimal 511 

genotypes in reforestation programmes.  512 

  513 
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