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THE SPECIAL CLOSURE OF POLYNOMIAL MAPS AND

GLOBAL NON-DEGENERACY

CARLES BIVIÀ-AUSINA AND JORGE A.C. HUARCAYA

Abstract. Let F : Cn → Cn be a polynomial map such that F−1(0) is finite. We analyze

the connections between the multiplicity of F , the Newton polyhedron of F and the set of

special monomials with respect to F , which is a notion motivated by the integral closure of

ideals in the ring of analytic function germs (Cn, 0) → C. In particular, we characterize the

polynomial maps whose set of special monomials is maximal.

1. Introduction

The effective computation of numerical invariants attached to functions, maps or ideals of

A(Kn) or K[x1, . . . , xn] is a fundamental problem in singularity theory, where A(Kn) denotes

the ring of analytic function germs (Kn, 0) → K and K = R or C. One paradigmatic example

in this direction is the article of Kouchnirenko [13], where the computation of the Milnor

number of an analytic germ g : (Cn, 0) → (C, 0) with an isolated singularity at 0 is carried

out in terms of the Newton polyhedron of g. By considering global Newton polyhedra (see

Definition 2.4), in [13, Théorème II] an analogous expression is obtained for the total Milnor

number of a polynomial function f ∈ C[x1, . . . , xn] with a finite number of singularities. This

number is defined as

µ∞(f) = dimC
C[x1, . . . , xn]

⟨ ∂f
∂x1

, . . . , ∂f
∂xn

⟩
.

It is known that µ∞(f) equals the sum of the Milnor numbers of the respective germs of f

at each singular point of f (see for instance [6] or [7, p. 150]). This is an example where the

computation of the colength µ(I) = dimC C[x1, . . . , xn]/I of a given ideal I ⊆ C[x1, . . . , xn]

generated by n elements plays a special role in singularity theory (see also [11]). In prac-

tice, µ(I) is computed by using Gröbner basis (see for instance [7, 11]). If I is an ideal of

C[x1, . . . , xn] generated by the polynomials F1, . . . , Fn, then µ(I) is interpreted as the number

of roots, counting multiplicities, of the system F1 = · · · = Fn = 0. This point of view is fun-

damental for the application of techniques coming from combinatorial convexity and algebraic

geometry to the computation of the colength of an ideal. There are two essential results in

this direction. One is the bound of Bernstein-Khovanskii-Kouchnirenko about the number of

roots in (C r {0})n of a system F1 = · · · = Fn = 0, where each Fi is a Laurent polynomial
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(see for instance [7, p. 346]). This bound is given by the mixed volume of the set of Newton

polyhedra of these Laurent polynomials. The other result is the bound given by Li-Wang [17]

where a similar result is established for the number of roots in Cn of polynomial systems.

There is another result that has been also part of the motivation of our work. This is the

article of Saia [22] where there is proven a characterization of the class of ideals I of A(Kn)

whose integral closure I is generated by monomials, where K = R or C (we refer to [21] for a

different approach to this problem). These ideals can be expressed in terms of non-degeneracy

conditions with respect to the the local Newton polyhedron of I and gives rise to the definition

of Newton non-degenerate ideal (see [3, 4, 22]).

Let us denote the ring A(Cn) by On. Let us fix a polynomial map F : Kn → Kp. Inspired by

the characterization of integral elements over an ideal of On by means of analytic inequalities

proven by Lejeune and Teissier [16] (see Remark 3.2), in this article we study the set of

polynomials h ∈ K[x1, . . . , xn] such that there exist constants C,M > 0 for which |h(x)| 6
C∥F (x)∥ for all x ∈ Kn such that ∥x∥ > M . When h satisfies this condition then we say that

h is special with respect to F and we refer to the set of such polynomials as the special closure

of F (see Definition 3.1), which we denote by Sp(F ). We prove that these polynomials satisfy

a fundamental condition of preservation of multiplicity with respect to F (see Theorem 3.8)

that reminds the Rees’ Multiplicity Theorem in the context of local algebra (see for instance

[15, p. 222]). In view of this, the set Sp(F ) can be considered as a counterpart in K[x1, . . . , xn]

of the notion of integral closure of ideals in a local ring.

Once we fix coordinates in Kn, we can consider the set S(F ) formed by the exponents

k ∈ Zn
>0 such that the monomial xk is special with respect to F . In [5] we gave some techniques

for the estimation of the region S(F ) that lead to lower estimates to the  Lojasiewicz exponent

at infinity of polynomial maps. We recall that the positivity of this exponent is related with

the injectivity of polynomial maps (see [5, 14]). If Γ̃+(F ) is the global Newton polyhedron

of F , then S(F ) ⊆ Γ̃+(F ) ∩ Zn
>0, and we characterize when equality holds. We observe

that, once S(F ) is computed, then any polynomial h ∈ C[x1, . . . , xn] whose monomials have

the exponents contained in S(F ) automatically belongs to Sp(F ). Therefore, in this article

we study fundamental aspects relating three basic objects attached to a given polynomial

map F : Kn → Kp: the global Newton polyhedron Γ̃+(F ), the special closure of F and the

multiplicity of F (when K = C).

The article is organized as follows. Section 2 is dedicated to expose some preliminary

definitions. In Section 3 we introduce the set Sp(F ) (see Definition 3.1) and we study some

of its fundamental properties, specially its influence in the computation of the multiplicity

of a complex analytic map Cn → Cn. In Section 4 we address the problem of determining

when S(F ) fills the whole global Newton polyhedron Γ̃+(F ). In Corollary 4.10 we show that,

if F is convenient (that is, if Γ̃+(F ) has non-empty intersection with each coordinate axis

in a point different from the origin), then S(F ) = Γ̃+(F ) ∩ Zn
>0 if and only if F is Newton

non-degenerate at infinity (see Definition 2.5). As we remark in Examples 4.1 and 4.2, the

hypothesis of Γ̃+(F ) being convenient can not be removed. Corollary 4.10 is preceded by
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a more general result about the characterization of Newton non-degeneracy at infinity of

polynomial maps Kn → Kp (Theorem 4.9).

2. Preliminary definitions

In this section we show some preliminary concepts that we need in order to expose our

results.

Definition 2.1. Let Γ̃+ ⊆ Rn
>0. We say that Γ̃+ is a global Newton polyhedron, or a Newton

polyhedron at infinity, if there exists some finite subset A ⊆ Zn
>0 such that Γ̃+ is equal to the

convex hull in Rn of A ∪ {0}. In this case we also write Γ̃+ = Γ̃+(A) and we say that Γ̃+ is

the global Newton polyhedron determined by A.

Let us denote by ⟨ , ⟩ the standard scalar product in Rn. Given a non-empty compact subset

P ⊆ Rn and a vector v ∈ Rn, we define

ℓ(v, P ) = min{⟨v, k⟩ : k ∈ P}
m(v, P ) = max{⟨v, k⟩ : k ∈ P}
∆(v, P ) = {k ∈ P : ⟨v, k⟩ = ℓ(v, P )}.

Any set ∆(v, P ), for some v ∈ Rn, v ̸= 0, is called a face of P . We will also say that ∆(v, P ) is

the face of P supported by v. Let us remark that m(v, P ) = −ℓ(−v, P ), for all v ∈ Rn, v ̸= 0.

Definition 2.2. Let us fix a global Newton polyhedron Γ̃+ in Rn. The dimension of a face

∆ of Γ̃+, denoted by dim(∆), is defined as the minimum among the dimensions of the affine

subspaces of Rn containing ∆. The faces of Γ̃+ of dimension 0 are called vertices of Γ̃+ and

the faces of Γ̃+ of dimension n − 1 are called facets of Γ̃+. We denote by Γ̃ the union of the

faces ∆ of Γ̃+ with 0 /∈ ∆ and we will refer to Γ̃ as the global boundary of Γ̃+. We define the

dimension of Γ̃+, denoted by dim(Γ̃+), as the maximum of dim(∆), where ∆ varies in the set

of faces of Γ̃+ not containing the origin.

Let v ∈ Zn. We say that v is primitive when v ̸= 0 and v is the vector of smallest length

of the set of vectors of Zn of the form λv, for some λ > 0. We denote by F(Γ̃+) the family of

primitive vectors v ∈ Zn such that dim ∆(v, Γ̃+) = n− 1 and we denote by F0(Γ̃+) the set of

vectors v ∈ F(Γ̃+) such that 0 /∈ ∆(v, Γ̃+). Then dim(Γ̃+) = n− 1 if and only if F0(Γ̃+) ̸= ∅.

Let us suppose that dim(Γ̃+) = n− 1. Since Γ̃+ is the convex hull of a finite subset of Rn,

then F(Γ̃+) is finite and non-empty and any face of Γ̃+ can be expressed as an intersection

∩v∈J∆(v, Γ̃+), for some subset J ⊆ F(Γ̃+) (see [9, p. 33]).

We say that Γ̃+ is convenient if, for any i ∈ {1, . . . , n}, there exists some r > 0 such that

rei ∈ Γ̃+, where {e1, . . . , en} denotes the canonical basis in Rn. If Γ̃+ is convenient, then it is

immediate to see that F(Γ̃+) = F0(Γ̃+) ∪ {e1, . . . , en}.

Lemma 2.3. Let Γ̃+ ⊆ Rn
>0 be a global Newton polyhedron. Let w = (w1, . . . , wn) ∈ Zn,

w ̸= 0. Then the following conditions are equivalent:
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(a) 0 /∈ ∆(w, Γ̃+)

(b) ℓ(w, Γ̃+) < 0.

If we assume that Γ̃+ is convenient, then the above conditions are equivalent to

(c) miniwi < 0.

Proof. It follows easily by using the corresponding definitions. �

Let us fix coordinates (x1, . . . , xn) in Kn. If k = (k1, . . . , kn) ∈ Zn
>0 then we denote the

monomial xk1
1 · · ·xkn

n by xk .

Definition 2.4. Let f ∈ K[x1, . . . , xn], f ̸= 0. Let us suppose that f is written as f =∑
k akx

k. The support of f , denoted by supp(f), is defined as supp(f) = {k ∈ Zn
>0 : ak ̸= 0}.

If A denotes any subset of Rn
>0, then we denote by fA the sum of all terms akx

k such that

k ∈ A ∩ supp(f). If supp(f) ∩ A = ∅, then we set fA = 0. We define the global Newton

polyhedron of f as Γ̃+(f) = Γ̃+(supp(f)). If f = 0, then we set supp(f) = Γ̃+(f) = ∅.

Let F = (F1, . . . , Fp) : Kn → Kp be a polynomial map. The support of F is defined as

supp(F ) = supp(F1)∪· · ·∪ supp(Fp). We write Γ̃+(F1, . . . , Fp) or Γ̃+(F ) to denote the convex

hull of Γ̃+(F1) ∪ · · · ∪ Γ̃+(Fp). We refer to Γ̃+(F ) as the global Newton polyhedron of F . We

say that F is convenient when Γ̃+(F ) is convenient.

We also set FA = ((F1)A, . . . , (Fp)A), for any subset A ⊆ Rn. If S is any finite subset of

K[x1, . . . , xn], then supp(S) and Γ̃+(S) are defined analogously.

Definition 2.5. Let F = (F1, . . . , Fs) : Kn → Kp be a polynomial map. We say that F is

Newton non-degenerate at infinity, or globally non-degenerate, when

(1)
{
x ∈ Kn : (F1)∆(x) = · · · = (Fp)∆(x) = 0

}
⊆ {x ∈ Kn : x1 · · ·xn = 0}

for all faces ∆ of Γ̃+(F ) not containing the origin.

Our motivation to introduce the above notion comes from the articles of Kouchninreko [13],

Saia [22] and Yoshinaga [24]. In Section 4 we will characterize this property.

3. Special monomials with respect to a polynomial map

Let us fix K = R or C. Let K∗ = Kr {0}. In this section we explore the concept of special

polynomial with respect to a polynomial map Kn → Kp. This notion was introduced in [5]

and is directly related with the notion of  Lojasiewicz exponent at infinity of a polynomial map

(see Lemma 3.5). If x = (x1, . . . , xn) ∈ Cn, then we write ∥x∥ =
√

|x1|2 + · · · + |xn|2.
Let us suppose that (Px) denotes a condition depending on x ∈ Kn. We say that the

condition (Px) holds for all ∥x∥ ≫ 1 when there exists a constant M > 0 such that (Px) holds

for all x ∈ Kn for which ∥x∥ > M . Analogously, we say that (Px) holds for all ∥x∥ ≪ 1 when

there exists some open neighbourhood of 0 ∈ Kn such that (Px) holds for all x ∈ U .

Along this section we fix coordinates (x1, . . . , xn) in Kn.
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Definition 3.1. [5] Let F = (F1, . . . , Fp) : Kn → Kp be a polynomial map. An element

h ∈ K[x1, . . . , xn] is said to be special with respect to F when there exists some constant C > 0

such that

(2) |h(x)| 6 C∥F (x)∥

for all ∥x∥ ≫ 1. We denote by Sp(F ), or by Sp(F1, . . . , Fp), the set of all polynomials

h ∈ K[x1, . . . , xn] such that h is special with respect to F . We will refer to Sp(F ) as the

special closure of F .

If F−1(0) is compact and h ∈ K[x1, . . . , xn], then it follows from the above definition that

h ∈ Sp(F ) if and only if the function |h(x)|
∥F (x)∥ is bounded near infinity.

Remark 3.2. The above definition is motivated by the fundamental results of Lejeune and

Teissier in [16] characterizing the integral closure of ideals. In our context we consider an

analytic inequality in a neighbourhood of infinity instead of a neighbourhood of the origin.

We recall that if I denotes an ideal of a ring R, then an element h ∈ I is said to be integral

over I when h satisfies a relation of the form hr + a1h
r−1 + · · · + ar−1h + ar = 0, for some

integer r > 1, where ai ∈ I i, for all i = 1, . . . , r. The set of integral elements over I forms an

ideal of R, denoted by I, and is called the integral closure of I (see [10, 12, 15, 23]). In [16],

Lejeune and Teissier proved that, if R = On and I = ⟨g1, . . . , gs⟩ is any ideal of R, then I is

formed by those function germs h ∈ On such that there exists some constant C > 0 such that

(3) |h(x)| 6 C sup
i

|gi(x)|

for all ∥x∥ ≪ 1. As remarked by Gaffney in [10, p. 317], the algebraic definition of the

integral closure of an ideal gives a theory sensitive to complex phenomena. Motivated by [10,

Proposition 4.2] and the mentioned result of Lejeune and Teissier, if I = ⟨g1, . . . , gs⟩ is an

ideal of A(Rn), then we define the integral closure of I, which we denote by I, as the set of

those function germs h ∈ A(Rn) such that relation (3) holds in some neighbourhood of 0 in

Rn.

Lemma 3.3. Let F = (F1, . . . , Fp) : Kn → Kp be a polynomial map and let φ : K∗ → Kn be a

continuous map such that limt→0 ∥φ(t)∥ = +∞. Let h ∈ Sp(F ) such that h(φ(t)) ̸= 0, for all

|t| ≪ 1, t ̸= 0. Then

lim
t→0

∥F (φ(t))∥
|h(φ(t))|

> 0.

Proof. This follows as an immediate application of the definition of Sp(F ). �

Let F = (F1, . . . , Fp) : Kn → Kp be a polynomial map. We remark that F1, . . . , Fp ∈ Sp(F )

and that Sp(F ) is a subgroup of K[x1, . . . , xn] with respect to addition. It is immediate to see

that h ∈ Sp(F ) if and only if Sp(F ) = Sp(F, h).

We denote by S(F ), or by S(F1, . . . , Fp), the set of those k = (k1, . . . , kn) ∈ Zn
>0 such that

the monomial xk1
1 · · ·xkn

n is special with respect to F . We remark that the set S(F ) depends
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on the fixed coordinate system. If S(F ) ̸= ∅, then it is obvious that there exists some M > 0

such that

(4) F−1(0) ∩ {x ∈ Kn : ∥x∥ > M} ⊆ {x ∈ Kn : x1 · · ·xn = 0}.

If w = (w1, . . . , wn) ∈ Rn then we denote miniwi by w0. Hence we define Rn
0 = {w ∈ Rn :

w0 < 0}. If A ⊆ Rn, then we denote by Conv(A) the convex hull of A.

If ϕ : (K∗, 0) → Kn is an analytic map germ, then we denote by ord(ϕ) the least exponent

appearing in the Laurent expansion of ϕ around 0. The next result is a first step towards the

study of the relations between the sets Sp(F ) and Γ̃+(F ).

Lemma 3.4. Let F : Kn → Kp be a polynomial map. Then S(F ) = Conv(S(F )) ∩ Zn
>0 and

supp(h) ⊆ Γ̃+(F ), for all h ∈ Sp(F ). In particular S(F ) ⊆ Γ̃+(F ).

Proof. Let k1, k2 ∈ S(F ) and let λ ∈ [0, 1] such that λk1 + (1 − λ)k2 ∈ Zn
>0. Then, applying

the definition of S(F ), we obtain that

|xλk1+(1−λ)k2 | = |(xk1)λ(xk2)(1−λ)| 6 C∥F (x)∥λ∥F (x)∥1−λ = C∥F (x)∥,

for some constant C > 0 and all ∥x∥ ≫ 1. Hence λk1 + (1 − λ)k2 ∈ S(F ). In particular

S(F ) = Conv(S(F )) ∩ Zn
>0.

Let h ∈ Sp(F ). Then there exist constants C,M > 0 such that

(5) |h(x)| 6 C∥F (x)∥

for all x ∈ Kn such that ∥x∥ > M . Let us fix a vector w ∈ Rn
0 . Let us consider the analytic path

φw : K∗ → Kn given by φw(t) = (tw1 , . . . , twn). Since w0 < 0, we have limt→0 ∥φw(t)∥ = +∞.

Composing both sides of (5) with φw we obtain that

(6) |h(φw(t))| 6 C∥F (φw(t))∥

for all |t| ≪ 1. Therefore ord(h◦φw) > ord(F ◦φw). Let us observe that ord(h◦φw) = ℓ(w, h)

and ord(F ◦φw) = ℓ(w, supp(F )) > ℓ(w, Γ̃+(F )). Then ℓ(w, h) > ℓ(w, Γ̃+(F )), for all w ∈ Rn
0 .

Thus supp(h) ⊆ Γ̃+(F ). �

In Section 4 we will study the problem of characterizing the equality S(F ) = Γ̃+(F ) ∩ Zn
>0.

If F : Kn → Kp is a polynomial map, the  Lojasiewicz exponent at infinity of F is defined as

the supremum of those α ∈ R such that there exists a positive constant C > 0 such that

∥x∥α 6 C∥F (x)∥

for all ∥x∥ ≫ 1 (we refer to the article of Krasiński [14] for a detailed survey about  Lojasiewicz

exponents at infinity). It is known that L∞(F ) exists when F−1(0) is compact and that L∞(F )

is a rational number in this case. Moreover L∞(F ) > 0 if and only if F is a proper map (see

[14]). Let r, s ∈ Z>0, s ̸= 0. Given a polynomial map F = (F1, . . . , Fp) : Kn → Kp and an

integer s ∈ Z>0, then we denote by F s the polynomial map given by (F s
1 , . . . , F

s
p ).
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Lemma 3.5. Let F : Kn → Kp be a polynomial map such that L∞(F ) > 0. Then

L∞(F ) = sup
{r
s

: r, s ∈ Z>0, s ̸= 0, xr
i ∈ Sp(F s), for all i = 1, . . . , n

}
.

Proof. Given a point x ∈ Kn, we have

∥F (x)∥s 6 ps/2 max
i

|Fi(x)|s = ps/2 max
i

|F s
i (x)| 6 ps/2∥F s(x)∥.

By using this fact, it is straightforward to see that the condition ∥x∥r/s 6 C∥F (x)∥, for some

constant C > 0 and all ∥x∥ ≫ 1, is equivalent to saying that xr
i ∈ Sp(F s), for all i = 1, . . . , n.

Hence the result follows. �

Let F : Kn → Kp be a polynomial map. If r, s ∈ Z>1, we define

(7) Sp(F s/r) = {h ∈ K[x1, . . . , xn] : hr ∈ Sp(F s)}.

It is immediate to check that the above definition only depends on the fraction s/r. Therefore

we obtain that, if L∞(F ) > 0, then

L∞(F ) =
1

inf
{

s
r

: r, s ∈ Z>1, x1, . . . , xn ∈ Sp(F s/r)
} .

In [5] we obtained some results about the estimation of the region S(F ) with the objective

of determining lower bounds for the  Lojasiewicz exponent at infinity of a given polynomial

map. Let S, S ′ ⊆ K[x1, . . . xn]. We define SS ′ = {fg : f ∈ S, g ∈ S ′}. If r ∈ Z>0, then we

denote by Sr the set {h1 · · ·hr : hi ∈ S, for all i = 1, . . . , r}.

Lemma 3.6. Let F : Kn → Kp be a polynomial map. Then

(a) Sp(F r)s ⊆ Sp(F rs), for all r, s ∈ Z>0

(b) If θ, θ′ ∈ Q>0, then Sp(F θ) Sp(F θ′) ⊆ Sp(F θ+θ′).

Proof. The result follows easily using the corresponding definitions. �

Given a point z ∈ Cn and r > 0, we denote by B(z; r) the open ball in Cn of center z and

radius r.

Lemma 3.7. Let F : Kn → Kn be a polynomial map such that F−1(0) is compact and let

h ∈ K[x1, . . . , xn], h ̸= 0. Then there exist M, δ > 0, such that

(a) ∥F (x)∥ ̸= 0, for all x ∈ Kn with ∥x∥ > M .

(b) ∥(F + hα)(x)∥ ̸= 0, for all x ∈ Kn such that ∥x∥ = M and for all α ∈ B(0; δ).

Proof. Given a non-negative real number M , we define CM = sup{|h(x)| : ∥x∥ = M}. Since

F−1(0) is compact and h ̸= 0, there exists some M > 0 such that CM > 0 and ∥F (x)∥ ≠ 0,

for all x ∈ Kn with ∥x∥ > M . Let us consider δ1 = min{∥F (x)∥ : ∥x∥ = M}. Let δ = δ1
2CM

.

Then, if α ∈ Kn verifies that ∥α∥ < δ, then

∥(F + hα)(x)∥ > ∥F (x)∥ − ∥α∥|h(x)| > δ1 − δCM = δ1 −
δ1
2

=
δ1
2

> 0,

for all x ∈ Kn such that ∥x∥ = M , and hence the result follows. �
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If F : Cn → Cn is a polynomial map, then we denote by I(F ) the ideal of C[x1, . . . , xn]

generated by the component functions of F . Let us suppose that F−1(0) is finite. We define

the multiplicity of F , denoted by µ(F ), as

µ(F ) = dimC
C[x1, . . . , xn]

I(F )
.

It is well known (see for instance [7, p. 150]) that

(8) dimC
C[x1, . . . , xn]

I(F )
=

∑
x∈F−1(0)

dimC
On,x

Ix(F )
,

where On,x denotes the ring of analytic function germs (Cn, x) → C and Ix(F ) is the ideal

of On,x generated by the germs at x of the elements of I(F ), that is, Ix(F ) = I(F )On,x. If

x ∈ F−1(0), then we denote by µx(F ) the dimension as a complex vector space of On,x/Ix(F ).

Let f : U → Rn be a continuous function, where U ⊆ Rn is a connected open set. Let us

suppose that y ∈ U is an isolated zero of f . Then we denote by indy(f) the topological index

of f at y (see for instance [8, 19]). If G : Rn → Rn denotes a polynomial map such that G−1(0)

is finite, then we denote by ind(G) the sum of the indices indy(G), where y varies in G−1(0).

Let us consider the bijection σ : Cn → R2n given by the map σ(a1 + ib1, . . . , an + ibn) =

(a1, b1, . . . , an, bn), for all a1, b1, . . . , an, bn ∈ R. If F : Cn → Cn is a polynomial map, then we

denote by FR the underlying map R2n → R2n obtained from F under the identification σ. We

recall that, by a result of Palamodov [20], if x denotes an isolated zero of F and y = σ(x),

then

(9) µx(F ) = indy(FR)

(see for instance [1, Section 5] or [8, Section 2]). Applying (9) and relation (8), we conclude

that, if F−1(0) is finite, then

(10) µ(F ) = ind(FR).

If F : Kn → Kp is a polynomial map, then we say that F is finite when the zero set of F is

finite.

Theorem 3.8. Let F : Cn → Cn be a finite polynomial map and let h ∈ C[x1, . . . , xn], h ̸= 0.

Then the following conditions are equivalent:

(a) h is special with respect to F ;

(b) there exists some δ > 0 such that for all α ∈ B(0; δ), the map F + hα is a finite

polynomial map and µ(F ) = µ(F + hα).

Proof. Let us prove (a) ⇒ (b). Let us suppose that h is special with respect to F . Since

F−1(0) is finite, there exist positive constants C and M such that

(11) |h(x)| 6 C∥F (x)∥ and ∥F (x)∥ ̸= 0, for all ∥x∥ > M.
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Let us fix a vector α ∈ Cn. Then we define the homotopy Hα : [0, 1] × Cn → Cn given by

Hα(t, x) = F (x) + th(x)α, for all (t, x) ∈ [0, 1] × Cn. If t ∈ [0, 1], then we consider the map

Hα,t : Cn → Cn given by Hα,t(x) = Hα(t, x), for all x ∈ Cn.

Let t ∈ [0, 1] and let x ∈ Cn such that ∥x∥ > M . Then

∥Hα(t, x)∥ > ∥F (x)∥ − t∥α∥|h(x)| > ∥F (x)∥(1 − t∥α∥C),

for all α ∈ Cn. Moreover 1 − t∥α∥C = 0 if and only if t = 1
∥α∥C . Therefore, if we assume that

∥α∥ < 1
C

, then ∥Hα(t, x)∥ > 0, for all t ∈ [0, 1] and for all x ∈ Cn such that |x∥ > M . In

particular, the zero set of F + thα is finite and

ind(FR) = ind
(
(F + thα)R

)
for all t ∈ [0, 1] and all α ∈ B(0; 1

C
), by the invariance of the index by homotopies (see for

instance [6, p. 220], [18, Theorem 2.1.2] or [19, p. 144]). In particular ind(FR) = ind((F +hα)R)

and hence µ(F ) = µ(F + hα), by (10).

Let us prove (b) ⇒ (a) by contradiction. Let us fix a δ > 0 such that F + hα is a finite

polynomial map and µ(F ) = µ(F + hα), for all α ∈ B(0; δ), and let us suppose that h is not

special with respect to F . It follows from Definition 3.1 that there exists a sequence {xm}m>1

in Cn such that

(12) ∥xm∥ > m and |h(xm)| > m∥F (xm)∥

for all m > 1. In particular h(xm) ̸= 0, for all m > 1, and

(13) lim
m→∞

F (xm)

h(xm)
= 0.

Since F is a finite polynomial map, by Lemma 3.7 we can choose positive constants M and δ1
such that ∥F (x)∥ ≠ 0 for all ∥x∥ > M and

(14) ∥(F + hα)(x)∥ ̸= 0

for all x ∈ Cn with ∥x∥ = M and all α ∈ B(0; δ1).

By (12) and (13) there exists an m0 ∈ Z>1 such that ∥xm0∥ > M and ∥F (xm0)∥/|h(xm0)| <
min{δ, δ1}. Let us consider the point

α0 = −F (xm0)

h(xm0)
.

Since ∥α0∥ < δ, the map F + hα0 has finite zero set and µ(F ) = µ(F + hα0), by hypothesis.

Let us consider the homotopy H : [0, 1]×Cn → Cn, defined by H(t, x) = (F +htα0)(x), for

all (t, x) ∈ [0, 1] × Cn. The map H satisfies the following conditions:

(i) H(0, x) = F (x) and H(1, x) = (F + hα0)(x), for all x ∈ Cn;

(ii) H(t, x) ̸= 0, for all ∥x∥ = M and for all t ∈ [0, 1], by (14).
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Let U denote the open ball B(0;M) in Cn. We observe that F−1(0) ⊆ U . Then, applying the

invariance of the index by homotopies ([19, p. 144]) we obtain that

(15) µ(F ) =
∑

y∈(F+hα0)−1(0)∩U

µy(F + hα0).

By the definition of α0 we have (F +hα0)(xm0) = 0. Then µxm0
(F +hα0) is a positive number.

Moreover xm0 /∈ U . Therefore, by (15), we deduce the following:

µ(F ) <
∑

y∈(F+hα0)−1(0)∩U

µy(F + hα0) + µxm0
(F + hα0) 6 µ(F + hα0),

which is a contradiction. �

Remark 3.9. Let I be an ideal of On and let h ∈ On. Let us suppose that I has finite

colength. By the Rees’ Multiplicity Theorem [15, p. 222], h is integral over I if and only if

e(I) = e(I + ⟨h⟩), where e(I) denotes the Samuel multiplicity of I. If we assume that I is

generated by n elements, say g1, . . . , gn, then e(I+⟨h⟩) = e(g1+α1h, . . . , gn+αnh), for generic

α1, . . . , αn ∈ C (see [15, Theorem 8.6.6 and Proposition 11.2.1]). Therefore, we can consider

Theorem 3.8 as a version for finite polynomial maps of the Rees’ Multiplicity Theorem.

4. Newton non-degeneracy at infinity

Our work in this section is motivated by the following observation. If F : Kn → Kp is a

polynomial map, where K = R or C, even if we assume that F is Newton non-degenerate

at infinity, then S(F ) can be empty and, if it is non-empty, then it is not true in general

that S(F ) = Γ̃+(F ) ∩ Zn
>0, as Examples 4.1 and 4.2 show (see also Example 4.14). This

section is devoted to characterizing the Newton non-degeneracy property of polynomial maps

F : Kn → Kp by means of the set of special monomials of F .

If F : Kn → Kp is a polynomial map, then we denote by S′(F ) the set S(F, 1). That is, S′(F )

is the set of those k ∈ Zn
>0 such that xk is special with respect to the map (F, 1) : Kn → Kp+1.

Obviously we have S(F ) ⊆ S′(F ) and this inclusion is strict in general, as is shown in Example

4.2. By Lemma 3.4 we have that

(16) S(F ) ⊆ S′(F ) ⊆ Γ̃+(F, 1) ∩ Zn
>0 = Γ̃+(F ) ∩ Zn

>0.

If h ∈ Sp(F, 1), then we will say that h is quasi-special with respect to F .

Example 4.1. Let F : C2 → C be the polynomial defined by F (x, y) = xy − 1. The global

boundary of Γ̃+(F ) is given by Γ̃(F ) = {(1, 1)}. By Lemma 3.4, we have that S(F ) ⊆ Γ̃+(F ).

It is obvious that neither 1 nor xy are special monomials with respect to F . Then S(F ) = ∅.

We also point out that F does not satisfy relation (4). However F is Newton non-degenerate

at infinity.

Example 4.2. Let F : C2 → C be the polynomial map given by F (x, y) = x2y2. Then, F is

Newton non-degenerate at infinity. We have that S(F ) ̸= ∅, since x2y2 ∈ Sp(F ). We observe

that Γ̃+(F ) is the segment joining the origin and the point (2, 2). Then (1, 1) ∈ Γ̃+(F ).
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We claim that xy /∈ Sp(F ). Indeed, let us consider the curve φ : C∗ → C2 defined as

φ(t) = (t−1, t2). It immediate to check that limt→0 ∥φ(t)∥ = +∞ and

lim
t→0

∥F (φ(t))∥
|xy ◦ φ(t)|

= lim
t→0

|t2|
|t|

= 0.

Therefore xy /∈ Sp(F ), by Lemma 3.3. On the other hand, it is immediate to check that

xy ∈ Sp(F, 1). Therefore S(F ) ( S′(F ).

Definition 4.3. Let F = (F1, . . . , Fp) : Kn → Kp be a polynomial map and let d denote

the maximum of the degrees of the component functions of F , which we will also denote by

deg(F ). Let us introduce a new variable xn+1. If h ∈ K[x1, . . . , xn], deg(h) 6 d, then we

denote by h∗ the homogenization of h of degree d by means of the extra variable xn+1. That

is, h∗ is the polynomial of K[x1, . . . , xn+1] such that

(17) h∗(x1, . . . , xn+1) = xd
n+1h

(
x1

xn+1

, . . . ,
xn

xn+1

)
,

for all (x1, . . . , xn+1) ∈ Kn+1 such that xn+1 ̸= 0. Thus we denote by F̃ the polynomial map

Kn+1 → Kp+1 given by F̃ = (F ∗
1 , . . . , F

∗
p , x

d
n+1).

Although F̃ is again a polynomial map, we will regard it as a germ of analytic function

(Kn+1, 0) → (Kp+1, 0). We recall the counterpart of Definition 2.4 in the context of germs of

analytic functions (Kn, 0) → K.

Definition 4.4. Let A(Kn) denote the ring of analytic function germs (Kn, 0) → K. Let

f ∈ A(Kn), f ̸= 0. Let us suppose that the Taylor expansion of f around the origin is

given by f =
∑

k akx
k. The support of f , which we will denote by supp(f), is defined as

supp(f) = {k ∈ Zn
>0 : ak ̸= 0}. If ∆ is a compact subset of Rn

>0, then we define f∆ as the sum

of all terms akx
k such that k ∈ ∆. If ∆ ∩ supp(f) = ∅, then we set f∆ = 0.

The Newton polyhedron of f , denoted by Γ+(f), is defined as the convex hull in Rn of

{k + v : k ∈ supp(f), v ∈ Rn
>0}. If f = 0, then we set supp(f) = Γ+(f) = ∅.

Let g = (g1, . . . , gp) : (Kn, 0) → Kp be an analytic map germ. We denote the map

((g1)∆, . . . , (gp)∆) by g∆. The support of g is defined as supp(g) = supp(g1) ∪ · · · ∪ supp(gp).

The Newton polyhedron of g, denoted by Γ+(g), is the convex hull of Γ+(g1) ∪ · · · ∪ Γ+(gp).

Analogously to Definition 2.5, we say that g is Newton non-degenerate, when g−1
∆ (0) ⊆ {x ∈

Kn : x1 = · · · = xn = 0}, for all compact faces ∆ of Γ+(g).

Let I be an ideal of A(Kn) and let g = (g1, . . . , gp) : (Kn, 0) → (Kp, 0) be an analytic map

whose components generate I. Then the Newton polyhedron of I is defined as Γ+(I) = Γ+(g).

We say that I is Newton non-degenerate when g is Newton non-degenerate. It is immediate

to see that these notions do not depend on the given generating system of I.

Let π denote the projection Rn+1 → Rn onto the first n coordinates. Let c′ = (1, . . . , 1) ∈
Rn+1 and let c = π(c′). Under the conditions of Definition 4.3, we easily observe that, since

each component function of F̃ is homogeneous of degree d, then any compact face of Γ+(F̃ )

is contained in the n-dimensional compact face ∆(c′,Γ+(F̃ )).
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We recall that if w = (w1, . . . , wn) ∈ Rn then we denote miniwi by w0 and we defined

Rn
0 = {w ∈ Rn : w0 < 0}. Let us define

Rn+1
∗ =

{
(v1, . . . , vn, vn+1) ∈ Rn+1

>0 : vn+1 = 2v0
}
.

Let us consider the map w : Rn+1 → Rn given by

(18) w(v) = (v1 − vn+1, . . . , vn − vn+1) = (v1, . . . , vn) − vn+1c,

for all v = (v1, . . . , vn, vn+1) ∈ Rn+1. We observe that if v ∈ Rn+1
∗ , then the minimum of the

coordinates of w(v) is equal to −v0, since vn+1 = 2v0. Therefore w(Rn+1
∗ ) ⊆ Rn

0 .

Given a vector w = (w1, . . . , wn) ∈ Rn
0 , we define

(19) v(w) = (w1 − 2w0, . . . , wn − 2w0,−2w0) = (w, 0) − 2w0c
′.

We observe that v(w) ∈ Rn+1
∗ , for all w ∈ Rn

0 . Then we have constructed a map v : Rn
0 →

Rn+1
∗ . It is an easy exercise to check that v : Rn

0 → Rn+1
∗ is a bijection and v−1 = w|Rn+1

∗
.

Then, from (18), we have that π(v) = w(v) + vn+1c, for all v ∈ Rn+1
>0 .

If k = (k1, . . . , kn) ∈ Zn
>0, then we denote by |k| the sum k1 + · · · + kn.

Lemma 4.5. Let F : Kn → Kp be a polynomial map and let d = deg(F ). Let us suppose that

v = (v1, . . . , vn, vn+1) ∈ Rn+1
>0 . Then

(20) ℓ(v,Γ+(F̃ )) = dvn+1 + ℓ(w(v), Γ̃+(F )).

Proof. By the construction of F̃ , we see that any element of supp(F̃ )r{den+1} can be written

as (k, d− |k|), where k belongs to supp(F ). Then we obtain

ℓ(v,Γ+(F̃ )) = min
{
⟨(k, kn+1), v⟩ : (k, kn+1) ∈ Γ+(F̃ )

}
= min

{
⟨(k, kn+1), (π(v), vn+1)⟩ : (k, kn+1) ∈ supp(F̃ ) ∪ {den+1}

}
= min

{
⟨(k, d− |k|), (w(v) + vn+1c, vn+1)⟩ : k ∈ supp(F ) ∪ {0}

}
= min

{
⟨k,w(v) + vn+1c⟩ + (d− |k|)vn+1 : k ∈ supp(F ) ∪ {0}

}
= min

{
⟨k,w(v)⟩ + vn+1⟨k, c⟩ + (d− |k|)vn+1 : k ∈ supp(F ) ∪ {0}

}
= dvn+1 + min

{
⟨k,w(v)⟩ : k ∈ supp(F ) ∪ {0}

}
= dvn+1 + ℓ(w(v), Γ̃+(F )).

�

As a consequence the above lemma, we obtain the following relation between the set of faces

of Γ̃+(F ) and the set of faces of Γ+(F̃ ).

Corollary 4.6. Let F : Kn → Kp be a polynomial map and let d = deg(F ). Let v ∈ Rn
>0.

Then

(21) ∆(v,Γ+(F̃ )) =
{

(k, d− |k|) : k ∈ ∆(w(v), Γ̃+(F ))
}
.

In particular, we have that den+1 /∈ ∆(v,Γ+(F ∗)) if and only if 0 /∈ ∆(w(v), Γ̃+(F )).
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Proof. Let us fix a vector v ∈ Rn+1
>0 and let (k, kn+1) ∈ Γ+(F̃ ). We have that (k, kn+1) ∈

∆(v,Γ+(F̃ )) if and only if ⟨(k, kn+1), v)⟩ = ℓ(v,Γ+(F̃ )). By Lemma 4.5, this is equivalent to

0 = ⟨k, π(v)⟩ + (kn+1 − d)vn+1 − ℓ(w(v), Γ̃+(F ))

= ⟨k,w(v) + vn+1c⟩ + (kn+1 − d)vn+1 − ℓ(w(v), Γ̃+(F ))

= ⟨k,w(v)⟩ − ℓ(w(v), Γ̃+(F )) + (k1 + · · · + kn+1 − d)vn+1.(22)

Let us observe that equality (22) holds if and only if k1 + · · · + kn + kn+1 = d and k ∈
∆(w(v), Γ̃+(F )), since k1 + · · · + kn + kn+1 > d and ⟨k,w(v)⟩ − ℓ(w(v), Γ̃+(F )) > 0, for all

(k, kn+1) ∈ Γ+(F̃ ). Hence equality (21) follows. �

Remark 4.7. Let F : Kn → Kp be a polynomial map and let d = deg(F ). Corollary 4.6

shows that the projection π : Rn+1 → Rn induces a bijection between the set of compact

faces of Γ+(F̃ ) not containing the point den+1 ∈ Rn+1 and the faces of Γ̃+(F ) not containing

the origin. We also observe that, if ∆ is a compact face of Γ+(F̃ ) not containing the point

den+1 ∈ Rn+1, then

(23) (Fi
∗)∆ =

(
(Fi)π(∆)

)∗
for all i = 1, 2, . . . , p, where the superscript ∗ denotes the homogenization of degree d defined

in (17).

In the next result we show a relation between the notions of special closure of polynomial

maps and the integral closure of ideals.

Proposition 4.8. Let F = (F1, . . . , Fp) : Kn → Kp be a polynomial map and let d =

deg(F ). Let I denote the ideal of A(Kn) generated by the component functions of F̃ . Let

h ∈ K[x1, . . . , xn] such that deg(h) 6 d and let h∗ denote the homogenization of h defined in

(17). Then h ∈ Sp(F, 1) if and only if h∗ ∈ I.

Proof. Let us see first the only if part. Let us suppose that h ∈ Sp(F, 1). Then there exist

constants C,M > 0 such that

(24) |h(x)| 6 C∥(F (x), 1)∥

for all x ∈ Kn such that ∥x∥ > M . Let us consider the following subsets

V = {(z1, . . . , zn+1) ∈ Kn : |zi| < 1, for all i = 1, . . . , n}
Vi = {(z1, . . . , zn+1) ∈ V ∩ (K∗)n : |zi| > M |zn+1|}, i = 1, . . . , n

W = {(z1, . . . , zn+1) ∈ V ∩ (K∗)n : |zi| < M |zn+1|, for all i = 1, . . . , n}.

We have that V ∩ (K∗)n = V1∪· · ·∪Vn∪W . Let us see that there exists some constant D > 0

such that |h∗(z)| 6 D∥F̃ (z)∥, for all z ∈ V .
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Let us fix an index i ∈ {1, . . . , n} and let (z1, . . . , zn+1) ∈ Vi. Let us consider the point

x = ( z1
zn+1

, . . . , zn
zn+1

). We observe that

∥x∥ > max
j

|zj|
|zn+1|

> |zi|
|zn+1|

> M.

Therefore, by (24), we obtain∣∣∣∣h( z1
zn+1

, . . . ,
zn
zn+1

)∣∣∣∣ 6 C

∥∥∥∥(F ( z1
zn+1

, . . . ,
zn
zn+1

)
, 1
)∥∥∥∥

Multiplying both sides of the above relation by |zn+1|d we conclude that

|h∗(z1, . . . , zn+1)| 6 C∥F̃ (z1, . . . , zn+1)∥.

Now, let us suppose that z ∈ W and that h is written as h =
∑

k akx
k. Therefore

|h∗(z1, . . . , zn+1)| =

∣∣∣∣zdn+1h

(
z1
zn+1

, . . . ,
zn
zn+1

)∣∣∣∣ =

∣∣∣∣∣∑
k

akz
k1
1 · · · zknn z

d−|k|
n+1

∣∣∣∣∣
6
∑
k

|ak|Mk1 |zn+1|k1 · · ·Mkn|zn+1|knzd−|k|
n+1

=

(∑
k

|ak|M |k|

)
|zn+1|d 6 C ′∥(F ∗

1 (z), . . . , F ∗
p (z), zdn+1)∥ = C ′∥F̃ (z)∥

where C ′ =
∑

k |ak|M |k|.

Let D = max{C,C ′}. Then we have proven that |h∗(z)| 6 D∥F̃ (z)∥, for all z ∈ V ∩ (K∗)n.

Hence, the same inequality holds for all z ∈ V , by the continuity of the functions involved in

this inequality.

Let us see the if part. Let us suppose that h∗ ∈ I. Then, there exists a constant C > 0 and

an open neighbourhood U of 0 in Kn+1 such that

(25) |h∗(z)| 6 C∥F̃ (z)∥

for all z ∈ U . Let M > 0 such that (e−∥x∥x1, . . . , e
−∥x∥xn, e

−∥x∥) ∈ U whenever x ∈ Kn and

∥x∥ > M . In particular, from relation (25), we obtain that

(26) |h∗(e−∥x∥x1, . . . , e
−∥x∥xn, e

−∥x∥)| 6 C∥F̃ (e−∥x∥x1, . . . , e
−∥x∥xn, e

−∥x∥)∥,

for all x ∈ Kn such that ∥x∥ > M .

Since F̃ is a homogeneous polynomial map of degree d, we have:

F̃ (e−∥x∥x1, . . . , e
−∥x∥xn, e

−∥x∥) = e−∥x∥dF̃ (x1, . . . , xn, 1)

for all x ∈ Kn. Hence, relation (26) implies that

(27) e−∥x∥d|h(x1, . . . , xn)| 6 Ce−∥x∥d∥F̃ (x1, . . . , xn, 1)∥ = Ce−∥x∥d∥(F1(x), . . . , Fn(x), 1)∥

for all x ∈ Kn such that ∥x∥ > M . In particular, canceling e−∥x∥d in all members of (27) we

obtain that h ∈ Sp(F, 1).

�
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Theorem 4.9. Let F = (F1, . . . , Fp) : Kn → Kp be a polynomial map and let d = deg(F ).

Then the following conditions are equivalent:

(a) F is Newton non-degenerate at infinity;

(b) F̃ = (F ∗
1 , . . . , F

∗
p , x

d
n+1) : (Kn+1, 0) → (Kp+1, 0) is Newton non-degenerate;

(c) S′(F ) = Γ̃+(F ) ∩ Zn
>0.

Proof. Let d = deg(F ). Let us prove (a) ⇒ (b). Let ∆ be a compact face of Γ+(F̃ ) and let

p = (0, . . . , 0, d) ∈ Rn+1. If p ∈ ∆, then (xd
n+1)∆ = xd

n+1 and thus (F̃∆)−1(0) ⊆ {x ∈ Kn+1 :

x1 · · ·xn+1 = 0}. Let us suppose that p /∈ ∆. Then π(∆) is a face of Γ̃+(F ) not containing

the origin, by Corollary 4.6. Let y = (y1, . . . , yn+1) ∈ (K∗)n+1 be a point such that

(F ∗
1 )∆(y) = · · · = (F ∗

p )∆(y) = 0.

Let us fix an index i ∈ {1, . . . , p}. By (23) and the definition of homogenization of degree d,

we have

(Fi
∗)∆(y) =

(
(Fi)π(∆)

)∗
(y) = ydn+1(Fi)π(∆)

(
y1
yn+1

, . . . ,
yn
yn+1

)
= 0.

In particular, we find that the point 1
yn+1

(y1, . . . , yn) is solution of the system of equations

(F1)π(∆)(x) = · · · = (Fp)π(∆)(x) = 0,

which is a contradiction, since we assume that F is Newton non-degenerate at infinity.

Let us prove (b) ⇒ (c). By Lemma 3.4, we have that S′(F ) is contained in Γ̃+(F, 1), which

is equal to Γ̃+(F ). Then it suffices to see that Γ̃+(F ) ∩ Zn
>0 ⊆ S′(F ).

Let us fix a point k = (k1, . . . , kn) ∈ Γ̃+(F )∩Zn
>0. Let I denote the ideal of A(Kn+1) gener-

ated by the component functions of F̃ . Since F̃ is Newton non-degenerate, the integral closure

I of I is generated by all monomials xν1
1 · · ·xνn+1

n+1 of K[x1, . . . , xn+1] such that (ν1, . . . , νn+1)

belongs to Γ+(F̃ ), by the main result of [22] (see also [2]). Since (k1, . . . , kn, d− |k|) ∈ Γ+(F̃ ),

then xk1
1 · · ·xkn

n x
d−|k|
n+1 belongs to I, which is to say that xk ∈ Sp(F, 1), by Proposition 4.8.

Let us prove the implication (c) ⇒ (a). Let us suppose that S′(F ) = Γ̃+(F ) ∩ Zn
>0. Let ∆

be a face of Γ̃+(F ) not containing the origin. In particular, ∆ is supported by a vector w ∈ Zn

such that w0 < 0 and ℓ(w, Γ̃+(F )) < 0. We remark that ℓ(w, Γ̃+(F )) 6 ℓ(w, supp(F )) and

equality holds when 0 /∈ ∆(w, Γ̃+(F )). Let us suppose that the system

(F1)∆(x) = · · · = (Fp)∆(x) = 0

has a solution q = (q1, . . . , qn) ∈ (K∗)n. Let us consider the curve φ : K∗ → Kn given by

φ(t) = (q1t
w1 , . . . , qnt

wn), for all t ∈ K∗. Since w0 < 0, we have limt→0 ∥φ(t)∥ = +∞. For all

i ∈ {1, . . . , n}, let Gi = Fi − (Fi)∆. Let r = ℓ(w, Γ̃+(F )). Then

Fi(φ(t)) = (Fi)∆(q1t
w1 , . . . , qnt

wn) + Gi(q1t
w1 , . . . , qnt

wn)

= tr(Fi)∆(q1, . . . , qn) + Gi(q1t
w1 , . . . , qnt

wn)

for all i = 1, . . . , n. Given an index i ∈ {1, . . . , n}, if supp(Fi) ∩ ∆ ̸= ∅, then we have

that ℓ(w,Gi) > ℓ(w, (Fi)∆) = ℓ(w,Fi) = ℓ(w, Γ̃+(F )). Otherwise, Gi = Fi and ℓ(w,Fi) >
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ℓ(w, Γ̃+(F )). In any case ℓ(w,Gi) > r, for all i ∈ {1, . . . , p}. Let G = (G1, . . . , Gp) and let

s = (s1, . . . , sn) denote a vertex of the face ∆. Then

lim
t→0

∥(F (φ(t), 1)∥
|xs ◦ φ(t)|

= lim
t→0

∥(trF∆(q) + G(φ(t)), 1)∥
|qs11 · · · qsnn t⟨s,w⟩|

= lim
t→0

∥(G(φ(t)), 1)∥
|qs11 · · · qsnn ||t|r

=
1

|qs11 · · · qsnn |
lim
t→0

∥(G(φ(t)), 1)∥
|t|r

= 0

where the last equality follows from the fact that r < 0 and ℓ(w,Gi) > r, for all i ∈ {1, . . . , p}.

Hence we have a contradiction, by Lemma 3.3. �

By Example 4.1 (see also Example 4.14), in the above theorem we can not replace the

condition S′(F ) = Γ̃+(F )∩Zn
>0 by S(F ) = Γ̃+(F )∩Zn

>0 unless we assume that F is convenient,

as we will see in the next result.

Corollary 4.10. Let F : Kn → Kp be a convenient polynomial map. Then the following

conditions are equivalent:

(a) F is Newton non-degenerate at infinity.

(b) S(F ) = Γ̃+(F ) ∩ Zn
>0.

(c) Sp(F ) =
{
h ∈ K[x1, . . . , xn] : supp(h) ⊆ Γ̃+(F )

}
.

Proof. Let us prove (a) ⇒ (b). Let us assume that the map F is Newton non-degenerate at

infinity. Since F is convenient, for each i ∈ {1, . . . , n}, there exists some positive integer ri
such that xri

i ∈ Sp(F, 1), by Theorem 4.9. Let r0 = min{r1, . . . , rn}. Then, there exists a

constant C > 0 such that

(28) ∥x∥r0 6 C max {∥F (x)∥, 1} .

for all ∥x∥ ≫ 1. Obviously we can assume that C > 1. Let us suppose that x ∈ Kn is such

that ∥x∥ > C and relation (28) holds. If ∥F (x)∥ < 1, then

Cr0 < ∥x∥r0 6 C max {∥F (x)∥, 1} 6 C,

which is a contradiction. Then we have that ∥F (x)∥ > 1, for all |x| ≫ 1. This implies that

Sp(F ) = Sp(F, 1) and thus the result follows, by Theorem 4.9.

The implication (b) ⇒ (a) is an immediate consequence of relation (16) and Theorem 4.9.

Let us prove (b) ⇒ (c). By the definition of S(F ) and Lemma 3.4, we have

(29)
{
xk : k ∈ S(F )

}
⊆ Sp(F ) ⊆

{
h ∈ K[x1, . . . , xn] : supp(h) ⊆ Γ̃+(F )

}
.

If we assume condition (b), then (c) follows as a direct consequence of (29).

By Lemma 3.4 we have the inclusion S(F ) ⊆ Γ̃+(F )∩Zn
>0. Hence, the implication (c) ⇒ (b)

is immediate. �
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Under the conditions of Corollary 4.10, we conclude that L∞(F ) = min{α1, . . . , αn}, where

αiei is the point of intersection of the global boundary of Γ̃+(F ) with the xi-axis, for all

i = 1, . . . , n.

Let F = (F1, . . . , Fp) : Kn → Kp be a polynomial map. Let us define αi = min{ki : k ∈
supp(F )}, for all i = 1, . . . , n, and αF = (α1, . . . , αn) ∈ Zn

>0. Given an index i ∈ {1, . . . , n}, we

observe that αi > 0 if and only if Fj is divisible by xαi
i , for all j = 1, . . . , p. Moreover, αF = 0

if F is convenient. We can always express F univocally as F = xαFG, for some polynomial

map G : Kn → Kp.

If α = (α1, . . . , αn) ∈ Zn, then we define Zn
>α = {(k1, . . . , kn) ∈ Zn : ki > αi, for all

i = 1, . . . , n}. Given a subset S ⊆ Rn, we also define α + S = {α + k : k ∈ S}.

Lemma 4.11. Let us consider a polynomial map F : Kn → Kp, let α = αF and let G be the

polynomial map Kn → Kp such that F = xαG. Then

(30) S(F ) = α + S(G).

Proof. If k ∈ S(G), then |xk| 6 C∥G(x)∥, for some constant C > 0 and all |x∥ ≫ 1. If we

multiply both sides of this inequality by |xα|, then we immediately obtain that xα+k ∈ Sp(F )

and hence the inclusion (⊆) of (30) follows.

Let us prove the inclusion (⊇). If k = (k1, . . . , kn) ∈ S(F ), we will prove first that ki > αi,

for all i = 1, . . . , n. Let M > 0 and C ′ > 0 such that

(31) |xk| 6 C ′∥F (x)∥

for all x ∈ Kn such that ∥x∥ > M . Let us fix an index i ∈ {1, . . . , n}. If e1, . . . , en denote the

canonical basis in Kn, then we consider the curve γ : K → Kn by γ(t) = M
∑

j ̸=i ej + tei, for

all t ∈ K. We observe that ∥γ(t)∥ > M , for all t ∈ K. Then, composing both sides of (31) by

γ(t) we obtain that

|M |k|−kitki| 6 C ′|M |α|−αitαi|∥G(γ(t))∥
for all t ∈ K. This is equivalent to saying that

|t|ki−αi 6 C ′|M |α|−αi−|k|+ki|∥G(γ(t))∥

for all t ∈ K. Since the composition G(γ(t)) is a polynomial in t, taking limits when t → 0

in both sides of the above inequality, we deduce that ki − αi > 0, that is, ki > αi. Hence

S(F ) ⊆ Zn
α.

If x ∈ Kn, verifies that ∥x∥ > M and x1 · · · xn ̸= 0, then we can divide each member of (31)

by |xα| and we obtain that

(32) |xk−α| 6 C ′∥G(x)∥.

Since both sides of (32) are continuous functions of x, we obtain that relation (32) holds for all

x ∈ Kn such that ∥x∥ > M . This means that k−α ∈ S(G). Then equality (30) is proven. �

To end the article, in Corollary 4.13 we show a consequence of the previous lemma that is

particularly useful when n = 2. First we will introduce a new definition.
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Definition 4.12. Let F = (F1, . . . , Fp) : Kn → Kp be a polynomial. We denote by C(F )

the convex hull of supp(F ). Obviously we have C(F ) ⊆ Γ̃+(F ). We say that F is globally

non-degenerate if and only if (F∆)−1(0) ⊆ {x ∈ Kn : x1 · · ·xn = 0}, for all face ∆ of C(F )

supported by some w ∈ Rn such that w0 < 0.

Let F = (F1, . . . , Fp) : Kn → Kp be a polynomial map, then from the above definition,

we observe that if F is globally non-degenerate then F is Newton non-degenerate at infinity.

Clearly the converse is not true, but both conditions are equivalent if we assume that F is

convenient (see Lemma 2.3).

Corollary 4.13. Let us consider a polynomial map F : Kn → Kp, let α = αF and let

G : Kn → Kp be the polynomial map such that F = xαG. Let us suppose that G is convenient.

Then the following conditions are equivalent:

(a) F is globally non-degenerate;

(b) G is Newton non-degenerate at infinity;

(c) S(F ) = αF +
(

Γ̃+(G) ∩ Zn
>0

)
.

Proof. Since G is convenient, then ℓ(w, supp(G)) = ℓ(w, Γ̃+(G)), for all w ∈ Rn
0 . Therefore

ℓ(w,F ) = ⟨w, α⟩ + ℓ(w, Γ̃+(G)), for all w ∈ Rn
0 . This shows that if ∆ is a face of Γ̃+(G) such

that 0 /∈ ∆ and we write ∆ = ∆(w, Γ̃+(G)), for some w ∈ Rn
0 , then

(33) F∆(w,Γ̃+(F )) = xαG∆.

By Lemma 2.3, the hypothesis of G being convenient implies that the set of faces of Γ̃+(G)

not passing through the origin is equal to {∆(w, Γ̃+(G)) : w ∈ Rn
0}. In particular (33) shows

the equivalence between (a) and (b).

By Corollary 4.10, we have that (b) is equivalent to saying that S(G) = Γ̃+(G)∩Zn
>0. Using

this and Lemma 4.11, the equivalence between (b) and (c) follows. �

Example 4.14. Let us consider the map F : C2 → C2 given by F (x, y) = (xy3, x3y2). Since

(xy3, x3y2) = xy2(y, x2), we have αF = (1, 2) and GF = (y, x2). Therefore, by Corollary

4.13, we obtain that S(F ) = {xk1yk2 : (k1, k2) ∈ Γ̃+(F ), k1 > 1, k2 > 2}, that is S(F ) =

{(1, 2), (1, 3), (3, 2)}. In particular, xy is a monomial whose support belongs to Γ̃+(F )rS(F ).

We can also check that xy /∈ Sp(F ) explicitly: if we consider the curve φ : C∗ → C2 given by

φ(t) = (t−1, t3), then we observe that

lim
t→0

∥F (φ(t))∥
|h(φ(t))|

= lim
t→0

∥(t8, t3)∥
|t2|

= 0.

However we have that xy ∈ S′(F ), by Theorem 4.9.
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