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Abstract 

We report on dye-based photonic sensing systems that are fabricated and packaged at 

wafer-scale. The realized dye-based photonic sensors include an environmental NO2 sensor 

and a sunlight ultraviolet light (UV) A+B sensor. For the first time luminescent organic 

nanocomposite thin-films deposited by plasma technology are integrated as active sensing 

elements. The luminescent signal from the thin-films responds to the changes in the 

environment and is selectively filtered by a photonic structure consisting of a Fabry-Perot 

cavity. The sensors are fabricated and packaged at wafer-scale, which makes the technology 

viable for volume manufacturing. Prototype photonic sensor systems have been tested in 

real scenarios. 
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1. Introduction 

New and improved optical sensors for environmental monitoring and gas sensing offer a 

number of attractive features including good sensing capabilities, interference immunity 

and safety [1]. Fiber optical sensors specifically may be used in environments in which the 

use of electrical sensors is not allowed (e.g. for explosives) [2]. They also allow distributed 

sensing, but their manufacturing often presents challenges because of its serial nature. 

Wafer-scale processing and packaging of optical sensor chips offers better economy. In this 

context, optical dye-based sensing principles present an interesting alternative. However, 

the methods used for synthesis of active dye thin-films containing a chromophore 

molecule have previously not been well developed [3]. In general, the methods for 

preparation of organic nanostructured dye thin-films and other related nanostructured 

organic or hybrid materials with photonic functionalities are based on wet chemical 

methods. They are not always straightforward and environmentally friendly. In addition, 

the integration of optically active dye thin-films with photonic sensing structures is 

challenging because of the optical coupling requirements and the need for interaction with 

the environment. These shortcomings have restricted the development of dye-based 

optical sensors and limited their viability for high-volume applications. 

In this work, new types of luminescent thin-films have been prepared by remote plasma 

assisted vacuum deposition (RPAVD); a new plasma deposition technique that combines 

plasma polymerization processes with the remote vacuum sublimation of organic dyes. 

Very flat thin-films with a high concentration of fluorescent dye molecules can hereby be 

obtained [3–6]. The resulting hybrid thin-films are characterized by well-defined n and k 

values and the preservation of the photonic properties such as the luminescence of the dye 

molecules. This is in strong contrast to the properties of films deposited using 

conventional plasma enhanced CVD or polymerization methods, in which the all the 

precursor molecules are fragmented, and the obtained thin films do not preserve the 

structure and functionalities of the starting precursor molecules. 

In the sensor systems presented in this work, the dye thin-films are integrated on top of the 

photonic structures, consisting of vertical resonant cavities (VCs), tuned to the 

characteristic fluorescence wavelength of the dye thin-films. Sensing transduction results 

from the changes in the luminescence intensity at this wavelength due to the dye thin-film 

interaction with the medium.  

For accurate detection, it is essential to achieve good coupling of the dye thin-film to the 

photonic structure. At the same time, the active parts of the sensor system have to be 

accessible to the sensing medium (e.g. the gas or UV light), while simultaneously be 

protected against potential harsh environmental influences (e.g. dust, contamination, 

corrosion, mechanical damage, etc.). Achieving this in an economical way requires wafer 

scale fabrication and system integration, including a versatile and robust packaging 

procedure. Sensor packaging is a costly stage of the manufacturing process and is crucial 

for reliability, yet often the package is part most likely to fail or negatively influence the 

system response [7]. Implementing wafer-level packaging can reduce the cost and allow 

very high integration densities for the complete system. Currently, low temperature wafer-

level packaging methods predominately use polymer adhesives such as UV curable resins 

[8], BCB [9] and underfills [10–12]. However, dye thin-films can be affected when they get 

into contact with polymers or solvents that are typically used for wafer-level packaging. 



Additionally, polymers may absorb or react with the analyte gas, thus making them 

unsuitable for use inside the sensor compartment where the supply of the analyte may be 

restricted and analyte scavenging reactions could locally reduce the analyte concentrations. 

This problem can be overcome by exclusively using non-reactive materials, such as metals, 

inside the sensor cavities [11–14]. For the photonic sensors realized here, a room-

temperature wafer-scale packaging approach is utilized [15]. The sensor cavity is sealed by a 

plastically deformable metal gasket in combination with a room-temperature curable epoxy 

outside the sensor cavity to provide the permanent bond between the parts of the package. 

The optical sensing systems for environmental NO2 sensing and for sunlight ultraviolet 

light (UV) A+B sensing used here are the first sensing systems that integrate luminescent 

thin-film active sensor elements which are formed by dye molecules embedded in a solid 

plasma polymeric matrix matrix, together with photonic structures. The measurement 

principle of the sensors is demonstrated by laboratory experiments, and experiments in a 

real world setting illustrate the practical utility of the sensing systems. 

2. Concept of the dye-based sensor system 

2.1. Transduction principle of the dye-based photonic sensors 
The design of the dye-based photonic sensors relies on vertical resonant cavities acting as 

selective transducers of the fluorescent emission that is generated by the dye thin-film 

upon excitation. The working principle is schematically described in Fig. 1. The vertical 

resonant cavity covers the whole wafer surface, whereas the sensing areas are defined by 

the selective deposition of dye thin-film on parts of the resonant cavity surface. 

 

Fig. 1. The principle for the dye-based sensors: a) In UV detection, the detector is behind the chip, b) 

For NO2 sensing, the dye thin-film is supported on the VC and the luminesence is detected at the edge of 

the chip. The substrate is then used as waveguide for the fluorescence signal. 

In the case of UV radiation sensing, the radiation excites the dye thin-film and causes 

fluorescent emission. The fluorescence is selectively transmitted by the vertical resonant 

cavity, which is tuned to the luminescence wavelength. The sensor read-out takes place at 

the backside of the chip. 

For the NO2 sensor, an external light source (e.g. a LED) excites the dye thin-film, which 

then generates an emission that is correlated to the NO2 level because of the fluorescence 

quenching of the dye emission. The glass substrate acts as a waveguide, guiding the 

emission to the chip edges, where it is detected. The sensor response of the final device can 

optionally be further enhanced by covering the back-side of the glass substrate with a thin 

reflective layer. 



The vertical resonant cavity designs in the sensing systems shown in Fig. 1, consist in a 

Fabry-Perot resonant cavities adapted to the fluorescence of the dye thin-film materials. 

The resonant structure incorporates an optical defect in a periodic 1-D photonic crystal 

creating a photonic bandgap. The defect is equivalent to the cavity in a conventional Fabry-

Perot resonator. The cavities are defined by a 1-D periodic distribution of stacked thin 

layers of SiO2 and Si3N4 with different refractive indices forming distributed Bragg 

reflectors (DBRs). The defect is formed by a cavity layer with a larger thickness than that 

of the distributed Bragg reflector layers. This resulting resonant peak in the transmission 

can be chosen to the wavelength where the dye emission is strong and well correlated to 

the quantity to be sensed. Also the number and thickness of the stacked layers can be 

selected to result in the targeted Q-factor. 

The dye molecules selected in this work for the dye thin-films are Perylene (PE) for NO2 

detection and Hydroxyflavone (3-HF) for UV detection. The excitation wavelength of PE 

is between 400 and 480 nm, resulting in a broad emission with maximums at about 490 and 

510 nm. The excitation wavelength of (3-HF) is between 300 and 380 nm and the emission 

wavelength is also around 500 nm.  As the thickness of the dye thin-films is in the range of 

100 nm, the layers do not show interferences in the visible range, giving a spectrum of the 

emitted light accurately reflecting the light emitted by the dye molecules. 

2.2. Sensor arrangement for NO2 detection in polluted air 
The sensor design for the environmental NO2 sensor system is according to Fig. 1b and 

the excitation and detection setup is shown in Fig. 2. As illustrated in the figure, this 

portable sensing platform incorporates a top-side surface illumination source, consisting of 

a UV LED. The electronic read-out is a 4–20 mA current loop, compatible with industrial 

control instruments used for tunnel safety management. A filter suppresses excitation 

wavelengths close to the dye fluorescence emission. To increase the signal to noise ratio, a 

9 mm diameter aperture lens with 12 mm focal length is used to focus the excitation light 

on the centre of the chip, containing the sensing dye thin-film. This leaves a shadowed area 

at the edges where the detection takes place. 

a) b) 

  

Fig. 2. a) Platform demonstrator for NO2 detection showing the gas inlet at the left side panel and 

various signal outputs (including 4-20 mA) on the front panel. b) Optical setup inside the measurement 

platform. 

2.3. Sensor arrangement for UV detection of sunlight 
The design for the UV sensor system is according to Fig. 1a. To detect UV radiation, the 

top panel of the platform demonstrator is replaced by a panel with an aperture and two UV 



band-pass filters (Edmund #46-048 and Spectrogon SP-0400) above the sensing chip to 

remove the strong visible components of sunlight. The vertical resonant cavity chip with 

the dye thin-film is mounted directly under the UV filters and the fluorescence is detected 

on the backside of the chip. 

3. Design, fabrication, and integration of the dye-based sensor 

systems 

3.1. Dye thin-film deposition 
The thin-films for NO2 sensing are deposited by a RPAVD deposition of PE dye and 

Adamantane precursor molecules. This technique allows a high concentration of dye 

molecules to remain intact within a matrix formed by molecular fragments of the same dye 

and Adamantane generated by interaction with a remote microwave plasma discharge. A 

cross-linked organic thin-film results, where the PE dye is homogeneously distributed 

without forming dye aggregates [5].  

The UV-sensing thin films are synthetized from 3-HF and Adamantante by the RPAVD 

technique. The thin-films show an intense green light emission when excited in the UV 

A+B region, and they are completely transparent in the visible region [16]. All dye-

containing polymer thin-films were deposited at room temperature conditions and at wafer 

scale, using shadow masking for pattering. More details about the synthesis and optical 

properties of the sensing dye thin-films can be found in the references [3–6,17,18] 

3.2. Design of the vertical resonant cavities 
The characteristic emission wavelengths of the dye thin-films (PE and 3-HF) are around 

500 nm, as described in section 2.1. The resonant peak of the vertical resonant cavities 

must be tuned to permit selective transmission of the emitted light at the correct 

wavelengths, and the Q-factor of the cavities should be selected to achieve a good 

compromise between the sensitivity and the specificity of the sensor systems. To find the 

best compromise, the optical response was simulated and compared with the luminescence 

spectra of the dye thin-films. To illustrate this process, measured transmission spectra of 

two different structures, intended to couple with the NO2 and UV signals, respectively, are 

presented. The two vertical resonant cavities consist of 18 pairs of oxide-nitride layers 

(SiO2 thickness = 100 nm and Si3N4 thickness = 65 nm) on both sides of a Si3N4 defect 

layer; whose thickness is selected to match the resonant mode of the the structure with 

center of the emission band of the dye film. 

The transmission spectra of the structures conceived for UV (a) and NO2 (b) sensing are 

shown in Fig. 3 in comparison with the emission spectra of the respective bare luminescent 

films. The plots show that the resonant peaks of the vertical resonant cavities are tuned to 

the position of the corresponding luminescence maxima. Following this design principle, a 

set of vertical cavities were fabricated and tested. The incorporation of a backside reflector 

was also implemented as an option for some of the structures. 



 

Fig. 3. Measured transmission spectra of vertical resonant cavity (VC) designed for a) UV sensing and b) 

NO2 sensing. The fluorescence spectra of the dye thin-films are included in the figures for comparison. 

3.3. Fabrication and packaging of the sensor chips 
For the applications targeted in the present work, the sensor packaging must fulfill the 

following requirements: (1) The packaging process must be conducted at near room 

temperature to avoid damage to the dye thin-films. (2) The package has to be UV-

transparent to allow excitation of the dyes. (3) The package for the NO2 gas sensor 

application must allow gas diffusion to the dye thin-films. (4) The package for the NO2 

sensor must not have any polymer surfaces exposed to the inside of the package cavity to 

prevent contamination of the dye thin film or NO2 scavenging. (5) The dye thin-film 

surfaces must be protected against dust. 

The overall wafer-scale integration and packaging of the sensor chips is outlined in Fig. 4, 

and the sensor package is schematically shown in Fig. 5. The sensor package consists of a 

glass cap with a plastically deformable gold gasket that encloses and seals a cavity. The dye 

thin-film is located on the device wafer inside the cavity. An epoxy underfill is used to 

provide a permanent bond between the two substrates. When the epoxy cures, it shrinks 

and creates a compressive force on the gold gaskets, thereby completing the seal. 



 

Fig. 4. Outline of the integration and packaging process: The cap wafer (a) to (c) and the device wafer 

(d) to (f) are processed separately and thereafter aligned, sealed by compression (g) and bonded using 

an underfill epoxy (h). 

a) 

 

b) 

 

c) 

 

Fig. 5. (a) Computer generated illustration of the package with holes for the NO2 sensor chip. The 

package consists of two glass pieces bonded together with epoxy, which is separated from the cavity by 

gold gaskets. (b) Layout of the underfill distribution channels (black) on the wafer. Through holes in 

dark blue (dark gray in print) for the filling process, and dye material in light blue (light gray in print). 

(c) Close-up of a chip, illustrating that the epoxy (green) is first distributed in the channel (black) and 

then onto the chip. The gold gasket (orange), the optional gold stud filter (dashed orange) and the 

cavity ventilation are also visible. 

For the NO2 gas sensors, the glass lid is perforated to enable the analyte gas to access the 

dye thin-film. In the UV sensor, the glass lid does not contain perforations and thus the 

cavity is sealed to eliminate any gas interaction. An epoxy underfill surrounds the cavity 

enclosed by the gold gasket and bonds the two substrates together. This design allows 

efficient room-temperature bonding and sealing of the cavities and at the same time 

prevents any bonding polymer from getting in contact with the dye thin-films. To allow gas 

sensing in environments with particle contaminations, the package design of the NO2 

sensor comprises a three-stage filter. The first stage is formed by the 0.5 x 1 mm gas inlet 



perforation of the lid. The small distance between the sensing chip and the glass cap chip, 

which is defined by the gold gasket height, acts as a 1-dimensional particle filter, which is 

the second stage. A third filter, consisting of closely spaced gold studs, filters smaller 

particles. Full 3D simulations conducted using Comsol Multiphysics support that the 

analyte diffusion into the packaged chip closely follows Fick’s first law of diffusion.  For 

the dimensions and specific topology of the sensor chips, this means that reaching 90 % of 

the outside NO2 concentration at the center of the sensing cavity takes less than 2 s. This is 

one order of magnitude faster than the expected response time of the dye thin-films [5]. 

For integration and packaging of the sensors, 500 µm thick and 100 mm diameter 

borofloat glass-cap substrates were sandblasted (Little Things Factory GmbH, Germany) 

to form wafer through-holes the wafer for the underfill stoppers, and to a depth of 100 µm 

for the underfill channel structures, as shown in Fig. 4a. A 150 nm thick layer of Ti/Au was 

evaporated for a conductive electroplating base on the wafer surface that contains the 

channels. To form an electroplating mold, a 5 µm thick AZ 9260 photo resist (Clariant) 

was spray coated and patterned, as illustrated in Fig. 4b. The mold for the 2 µm wide gold 

gaskets and filter studs was then filled by electroplating 99.9 % pure gold 

(EnthoneMicrofab Au 660). The resist mold and the plating base were finally removed by 

oxygen plasma and wet etching in KI (aq.) and H2O2, as shown in Fig. 4c. 

The device wafers, also 500 µm thick and 100 mm diameter borofloat glass, were first 

cleaned in a boiling piranha solution and rinsed in deionized water. The Fabry-Perot 

resonator consisting of a multilayer silicon oxide and nitride thin-film stack was deposited 

using plasma enhanced CVD in an Oxford Plasmalab 80+ reactor (Fig. 4d). The entire 

deposition process was completed in one vacuum cycle at a chuck temperature of 300 °C. 

To avoid wafer bending due to the thermal expansion mismatch of silicon dioxide and the 

glass substrate, a SiO2 layer with the same thickness as the total thickness of the front side 

stack, was deposited on the backside of the glass wafer, as schematically depicted in Fig. 

4d. For patterning the subsequently deposited dye thin-film, a 25 µm thick polyimide 

adhesive tape that had been patterned in a cutting plotter, was attached to the wafer, as 

shown in Fig. 4e. As indicated in Fig. 4f, the UV or NO2 sensing dye thin-films were 

deposited directly onto the wafers using room-temperature remote plasma deposition. The 

targeted thickness of the resulting dye layers was 100 nm, which was controlled by using a 

quartz crystal monitor that is placed in the deposition chamber [3,4,18]. 

After completing the fabrication of the device and the cap wafers, the wafers were 

manually aligned under a stereomicroscope, according to the layout in Fig. 5b allowing 

access to the epoxy underfill reservoir after the wafer stack was clamped together. The 

stack was mounted in a Süss Microtec CB8 wafer bonder that applied a tool force to the 

wafer stack to compress the gold gaskets, as depicted in Fig. 4g. With the wafers still under 

tool pressure, 3 ml of low viscous epoxy underfill (Epotek 301, Epoxy Technology) was 

dispensed in the reservoir. The epoxy was cured for 16 hours at room temperature. To 

increase the underfill rate and to achieve a complete coverage of the low viscosity underfill 

epoxy over the whole wafer with a single injection point, a microfluidic network was 

implemented [12,19]. This underfill process was designed to occur in two phases. First, a 

network of 100 µm high microfluidic channels was filled by capillary forces. As shown in 

Fig. 5b, this network is connected to a single reservoir and surrounds all the zones of the 

wafer covered with the dye thin-films. Simultaneously, the gap between the two wafers, 



which is on the order of 3 µm, defines the second phase of capillary driven filling, as 

shown in Fig. 5c. The epoxy spreads from the channels towards the wafer gap, stopping on 

the through-etched glass sections, which act as fluidic barriers. These through-etched 

sections also allow air to escape, facilitating a void-free underfill process. After this second 

and slower filling phase is finalized, all the chips are completely bonded and sealed at 

wafer-scale. After the sensor system packaging is completed, a reflective layer of 50 nm 

aluminum is optionally sputtered on the backside of the bonded device wafer. The sensors 

were finally diced upside down using a wafer saw. Fig. 6 shows a picture with a finalized 

UV sensor chip and a finalized NO2 sensor chip after the dicing. At this point it is 

important to stress that all the different fabrication stages are carried out at wafer level 

allowing for the mass production of inexpensive and even disposable photonic sensor 

chips. 

 

Fig. 6. Packaged devices after wafer scale fabrication and dicing: (a) UV and (b) NO2 sensing chips. 

4. Experiments and characterization of the dye-based sensor 

systems 

4.1. Characterization of the dye-based sensing structures and 

coupling of the luminescence signal 
The photonic properties of the vertical cavities were specifically adapted to the luminescent 

characteristics of the two types of sensors films. Thus, by assembly of these two 

components we fabricated luminescent photonic chips with tailored luminescent properties 

and enhanced sensing performances. Fig. 7 compares the emission spectra of reference dye 

thin-films, deposited on fused silica, with the luminescent output signal of the sensor chips 

detected through vertical cavities as shown in Fig. 1. The graphs show that the broad 

emission band of the dye thin-film is converted into narrow peaks at the resonant modes 

of the vertical resonant cavity. These narrow peaks are used to evaluate the sensing 

response. With this approach, a rather monochromatic (FWHM < 5 nm) luminescent 

signal is obtained that can be much easier handled in the detection system. The inherently 

filtered lateral emission detected at the chip edges is illustrated in Fig. 7b. The graph shows 

that the analyzed signal corresponds to the out-of-normal fluorescence emission modulated 

by the photonic structure and laterally guided through the waveguiding glass substrate. 

Since the excitation beam impinges normal to the surface, this detection configuration 

filters the excitation beam and improves the signal to noise ratio. In addition, this 

configuration enables independent monitoring of the excitation beam with a second photo-

detector placed behind the sensor. 



 

Fig. 7. Luminescent responses of the dye thin-films deposited on the vertical cavity structures. The 

reference emission spectra of the corresponding luminescent thin-films deposited on glass are included 

in the figures. These measurements were carried out as indicated in the insets: (a) Emission spectra 

acquired at the backside of the photonic substrates of a 3-HF thin-film. (b) Lateral emission at the chip 

edge of the 3-HF thin-film. (c) Emission spectra through the photonic structure of the NO2 sensing thin-

film. 

4.2. Measurement results from the dye-based sensor systems 
NO2 and UV detection experiments were carried out both in the laboratory and in real-

world scenarios. For the latter, the packaged sensor chips together with the measurement 

platforms described in sections 2.2 and 2.3 were used. The sensors were evaluated for NO2 

detection in car traffic tunnels and for sunlight UVA+B intensity monitoring. 

4.2.1 NO2 gas detection in polluted air 

Experiments were carried out with bare PE dye thin-films to qualitatively assess the 

evolution of the fluorerscence properties upon exposing them to NO2 concentrations in a 

car traffic tunnel. For these assessments, several PE thin-films were placed in perforated 

metallic boxes and exposed to the environment in the car traffic tunnel for a time range 



between one and seven days. Before the exposure to the tunnel environment, all the 

samples had identical luminescent properties. Fig. 8 compares the emission spectra of the 

exposed samples with that of a reference sample stored in the laboratory under NO2-free 

conditions. The results clearly show the gradual quenching of the fluorescence emissions 

with prolonged exposure to the polluted environment. The result is in line with previous 

studies showing that this type of PE thin-films act as accumulative sensors during NO2 

detection [4,5]. 

 

Fig. 8. Emission spectra of the PE thin-films after their exposure between one and seven days to the NO2 

in the environment of a traffic tunnel with respect to a reference sample stored in the laboratory. 

To test the functionality of the NO2 sensor in the portable measurement platform, a set of 

experiments were carried out in the laboratory. Fig. 9a shows the results of one of these 

experiments, corresponding to the detection of 10 ppm NO2 in air. The relatively high 

concentration was chosen to speed up the characterization time in the experiments. The 

plot clearly shows that the output signal progressively decreases with the exposure time, 

which is due to the quenching of the fluorescence emission of the active layer by reaction 

with the NO2. This type of integral curves can be used to derive differential response 

curves to estimate the actual average NO2 concentration during defined periods of time. 

The NO2 gas sensing systems were finally tested in a car traffic tunnel in Valencia, Spain. 

The measurements were carried out after calibrating the measurement system with the 

reference data acquired under controlled conditions in the laboratory. The measurement 

platform, containing the sensor chip, was placed next to an existing commercial NO2 

sensor (Model DF-9200 from MSA) for these experiments. Although the comparative 

study presented here corresponds to periods of only 2–3 hours, the measurements are 

consistent with the data registered in a longer experiment that was lasting for 30 days. Fig. 

9b shows the measurement data of the dye-based photonic sensor and the existing 

commercial sensor during rush hours, when the NO2 concentration reaches maximum 

values. The measurement data of the photonic platform is reasonably stable and in line 

with the data provided by the commercial sensor. Agreement between the demonstrator 

and commercial sensor readings is also observed for low NO2 concentrations shown in Fig. 

9c, thus indicating that the system is sufficiently sensitive for these low analyte levels. For a 

dynamic NO2 signal, the response of both detectors in a situation of increasing traffic is 



compared. Particularly, Fig. 9 shows the data registered early in the morning just before 

rush hour, when the NO2 concentration increases from 1.5 ppm to 2 ppm. From this 

figure it is apparent that the concentration values provided by the photonic dye-based 

sensor gradually increase, as do the registered concentrations of the commercial sensor and 

that the photonic system has a similar reaction time. Despite the discrepancies observed in 

the absolute values, the almost parallel responses of our prototype and the commercial 

device validate the detection principle proposed in the present work. 

 

Fig. 9. (a) Measurement of a 10 ppm NO2 flow in a laboratory experiment. (b)-(d) Measurements of NO2 

concentrations in a traffic tunnel. The graphs compare the measurement data of the dye-based photonic 

sensor system and a commercial sensor system during time periods with various traffic conditions: (b) 

High and stable NO2 concentration. (c) Low and stable NO2 concentration. (d) Gradually increasing NO2 

concentration. 

4.2.2. Sunlight UV detection 

Previous research showed that the 3-HF thin-films emit an intense green luminescence 

when exposed to UV A+B radiation. The emission intensity is linear with the UV intensity 

[16–18]. Thus, the green emission can be used to determine the level of UV light irradiating 

a sample. The UV measurement platform was used to measure UV sun intensity over 

several time periods. As an example, Fig. 10 shows the output signal recorded on the 25th 

of June 2010 in Mons, Belgium. For comparison, the UV index values recorded 

simultaneously by a meteorology station in Soumagne, around 120 km east of Mons [20] is 

also shown. Note that both data sets depict a similar overall evolution during the 6 hour 

measurement period, except for some variations due to clouds. The comparable evolution 

of the two kinds of measurements sustains that the room temperature reversible 



fluorescence detection of UV light based on the presented measurement principle is 

reliable, and can be used for monitoring of UV light under real conditions. 

 

Fig. 10. Output from the measurement platform working with the 3-HF sensor chip for UV radiation 

detection. The blue dots correspond to the sunlight UV index measured by a nearby meteorological 

station and the red curve corresponds to the output voltage provided by the photonic measurement 

platform. 

5. Conclusions 

In this paper we report on a dye-based photonic sensor platform for UV and NO2 sensing. 

For the first time, fully integrated sensing systems based on plasma deposited fluorescent 

organic nanocomposite thin-films are demonstrated. The fluorescent signal of the dye thin-

films responds to changes in the environment and is selectively filtered by a Fabry-Perot 

resonant cavity photonic structure, onto which the dye thin-film is deposited. The photonic 

chip thus combines a sensing element and a photonic transducer tuned to the sensing 

signal in a single package formed at wafer scale.  

The sensor systems were evaluated in real-world scenarios in a car traffic tunnel for NO2 

detection and in an open environment for UV detection. The results confirm the suitability 

of the developed technology for environmental monitoring of different variables. The 

narrow spectral peaks of the photonic structures are very sensitive to small changes in the 

wavelength spectral response and intensity of the dye emissions. Thus, the technology is 

generic and can be expanded to other applications by utilizing different dye sensing 

elements.  

6. Acknowledgements 

The authors thank the EU (Phodye Strep Project 033793), and the Spanish Ministry of 

Economy and Competitiveness (MAT-2010-21228) and Junta de Andalucía (P09-TEP-

5283) for financial support. 

7. References 

[1] J. Dakin, B. Culshaw, Optical Fiber Sensors Volume IV: Applications, Analysis, and 
Future Trends, Artech House, Boston, London, 1997. 

[2] S.J. Mihailov, Fiber Bragg Grating Sensors for Harsh Environments, Sensors. 12 
(2012) 1898–1918. doi:10.3390/s120201898. 



[3] A. Barranco, P. Groening, Fluorescent Plasma Nanocomposite Thin Films Containing 
Nonaggregated Rhodamine 6G Laser Dye Molecules, Langmuir. 22 (2006) 6719–6722. 
doi:10.1021/la053304d. 

[4] I. Blaszczyk-Lezak, F.J. Aparicio, A. Borrás, A. Barranco, A. Álvarez-Herrero, M. 
Fernández-Rodríguez, et al., Optically Active Luminescent Perylene Thin Films 
Deposited by Plasma Polymerization, J. Phys. Chem. C. 113 (2009) 431–438. 
doi:10.1021/jp807634j. 

[5] F.J. Aparicio, I. Blaszczyk-Lezak, J.R. Sánchez-Valencia, M. Alcaire, J.C. González, C. 
Serra, et al., Plasma Deposition of Perylene–Adamantane Nanocomposite Thin Films 
for NO2 Room-Temperature Optical Sensing, J. Phys. Chem. C. 116 (2012) 8731–
8740. doi:10.1021/jp209272s. 

[6] F.J. Aparicio, M. Holgado, A. Borras, I. Blaszczyk-Lezak, A. Griol, C.A. Barrios, et al., 
Transparent Nanometric Organic Luminescent Films as UV-Active Components in 
Photonic Structures, Adv. Mater. 23 (2011) 761–765. doi:10.1002/adma.201003088. 

[7] K. Najafi, Micropackaging Technologies for Integrated Microsystems: Applications to 
MEMS and MOEMS, in: SPIE Proc, The International Society for Optical 
Engineering., 2003: pp. 1–19. doi:10.1117/12.484953. 

[8] F. Niklaus, G. Stemme, J.-Q. Lu, R.J. Gutmann, Adhesive wafer bonding, J. Appl. 
Phys. 99 (2006) 031101. doi:10.1063/1.2168512. 

[9] F. Niklaus, H. Andersson, P. Enoksson, G. Stemme, Low temperature full wafer 
adhesive bonding of structured wafers, Sens. Actuators Phys. 92 (2001) 235–241. 
doi:10.1016/S0924-4247(01)00568-4. 

[10] C.-J. Kim, Microgasketing and adhesive wicking techniques for fabrication of 
microfluidic devices, in: SPIE Proc, 1998: pp. 286–291. doi:10.1117/12.322072. 

[11] A. Decharat, J. Yu, M. Boers, G. Stemme, F. Niklaus, Room-Temperature Sealing of 
Microcavities by Cold Metal Welding, J. Microelectromechanical Syst. 18 (2009) 1318–
1325. doi:10.1109/JMEMS.2009.2030956. 

[12] M.A. Lapisa, F. Niklaus, G. Stemme, Room-temperature wafer-level hermetic sealing 
for liquid reservoirs by gold ring embossing, in: Solid-State Sens. Actuators Microsyst. 
Conf. 2009 TRANSDUCERS 2009 Int., 2009: pp. 833–836. 
doi:10.1109/SENSOR.2009.5285763. 

[13] S.-H. Lee, J. Chae, N. Yazdi, K. Najafi, Micro-Brush Press-On Contact: A New 
Technique for Room Temperature Electrical and Mechanical Attachment, in: 19th 
IEEE Int. Conf. Micro Electro Mech. Syst. 2006 MEMS 2006 Istanb., 2006: pp. 342–
345. doi:10.1109/MEMSYS.2006.1627806. 

[14] C. Huyghebaert, J. Van Olmen, Y. Civale, A. Phommahaxay, A. Jourdain, S. Sood, et 
al., Cu to Cu interconnect using 3D-TSV and wafer to wafer thermocompression 
bonding, in: Interconnect Technol. Conf. IITC 2010 Int., 2010: pp. 1–3. 
doi:10.1109/IITC.2010.5510444. 

[15] M. Lapisa, M. Antelius, A. Tocchio, H. Sohlström, G. Stemme, F. Niklaus, Wafer-level 
capping and sealing of heat sensitive substances and liquids with gold gaskets, Sens. 
Actuators Phys. 201 (2013) 154–163. doi:10.1016/j.sna.2013.07.007. 

[16] F.J. Aparicio, M. Alcaire, A. Borras, J.C. Gonzalez, F. López-Arbeloa, I. Blaszczyk-
Lezak, et al., Luminescent 3-hydroxyflavone nanocomposites with a tuneable refractive 
index for photonics and UV detection by plasma assisted vacuum deposition, J. Mater. 
Chem. C. 2 (2014) 6561–6573. doi:10.1039/C4TC00294F. 

[17] F.J. Aparicio, G. Lozano, I. Blaszczyk-Lezak, Á. Barranco, H. Míguez, Conformal 
Growth of Organic Luminescent Planar Defects within Artificial Opals, Chem. Mater. 
22 (2010) 379–385. doi:10.1021/cm902819x. 



[18] A. Barranco, F. Aparicio, A. Yanguas-Gil, P. Groening, J. Cotrino, A.R. González-
Elipe, Optically Active Thin Films Deposited by Plasma Polymerization of Dye 
Molecules, Chem. Vap. Depos. 13 (2007) 319–325. doi:10.1002/cvde.200606552. 

[19] M.K. Schwiebert, W.H. Leong, Underfill flow as viscous flow between parallel plates 
driven by capillary action, IEEE Trans. Compon. Packag. Manuf. Technol. Part C. 19 
(1996) 133–137. doi:10.1109/3476.507149. 

[20] Données météo de Soumagne (province de Liège), (n.d.). 
http://phitofa.be/meteo.html. 

 

 



Excitation 

Detection 

Dye 
Film 

VC 

D
e

te
ctio

n
 

Excitation 
a) b) 

Figure 1



Figure 2a
Click here to download high resolution image

http://ees.elsevier.com/snb/download.aspx?id=881381&guid=f8181eea-07a9-4963-90cd-5e8374241f28&scheme=1


Figure 2b
Click here to download high resolution image

http://ees.elsevier.com/snb/download.aspx?id=881382&guid=db3d0d7b-c8b3-4298-b1c2-2487cfcf8a78&scheme=1


Figure 3
Click here to download high resolution image

http://ees.elsevier.com/snb/download.aspx?id=881383&guid=6988b0a8-0ed2-4e1c-9bf5-44af9c71df2c&scheme=1


 Glass substrate (500 µm)

PECVD Silicon Oxide

Multilayer PECVD Oxide and Nitride

Polyimide Tape (25 µm)

Glass substrate (500 µm)

 PECVD Silicon Oxide

Multilayer PECVD Oxide and Nitride

Dye film

 Glass substrate (500 µm)

 PECVD Silicon Oxide

Multilayer PECVD Oxide and Nitride

Sandblasted Glass 
substrate (500 µm)

Gold Seed Layer (150 nm) Photoresist Electroplating Mould (5 µm) Gold Sealing Structures (5 µm)

Glass substrate (500 µm)

PECVD Silicon Oxide

Multilayer PECVD Oxide and Nitride

Pressure

Glass substrate (500 µm)

PECVD Silicon Oxide

Multilayer PECVD Oxide and Nitride

Pressure

Device wafer

Cap wafer

Sealing and bonding

(a) (b) (c)

(d) (e) (f )

(g) (h)

Sandblasted Glass 
substrate (500 µm)

Sandblasted Glass 
substrate (500 µm)

Sandblasted Glass 
substrate (500 µm)

Sandblasted Glass 
substrate (500 µm)

Figure 4



Figure 5a
Click here to download high resolution image

http://ees.elsevier.com/snb/download.aspx?id=881385&guid=679ba82d-2c30-4cb2-a433-e195044ba977&scheme=1


Figure 5b



Figure 5c



Figure 6
Click here to download high resolution image

http://ees.elsevier.com/snb/download.aspx?id=881388&guid=c553de7c-3a6b-41f6-b5a7-1d9e2369658e&scheme=1


Figure 7
Click here to download high resolution image

http://ees.elsevier.com/snb/download.aspx?id=881389&guid=64793a5a-84a7-4450-81f5-2bc572dc6ff2&scheme=1


Figure 8
Click here to download high resolution image

http://ees.elsevier.com/snb/download.aspx?id=881390&guid=ac3b5e76-1474-482d-8f6d-dc58665b2cfb&scheme=1


Figure 9
Click here to download high resolution image

http://ees.elsevier.com/snb/download.aspx?id=881391&guid=abac04f9-95b5-46f6-a1b0-b04b127040f5&scheme=1


4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

11:00 12:00 13:00 14:00 15:00 16:00 

U
V

- 
In

d
e

x
 

Time [hour:min] 

Meteorological UV index 

Sensing platform output 

Figure 10



Author biographies 

Francisco J. Aparicio 
Dr. Francisco J. Aparicio received the PhD Degree from the University of Seville (2011). 

Afterwards he realized a postdoctoral stay at the University of Trento (Italy) and the 

University of Mons (Belgium). At the present he is a postdoctoral researcher at the 

Institute of Materials Science of Seville (CSIC-US). His current research is focused in 

functional organic thin films by plasma deposition techniques. 

María Alcaire 
(Biography not available at the time of submission) 

Agustín R. González-Elipe 
Prof. Agustín R. González-Elipe received the PhD degree in Chemistry at the University 

Complutense of Madrid in 1979 and worked in different laboratories in Paris (Université 

Pierre et Marie Curie) and Munich (Institut für Physikalische Chemie). He was director of 

the Institute of Materials Science of Seville and responsible scientist  for the Materials 

Science area of the National Research Council of Spain (CSIC) (1998-2005). At present he 

leads the Nanotechnology on Surfaces laboratory of the Institute of Materials Science of 

Seville, joined centre between CSIC and the University of Seville. His present research 

interests fall within the fields of thin films, plasma technologies and functional materials, 

these latter mainly in relation with sensor, wetting and photovoltaic applications. 

Angel Barranco 
Angel Barranco (MSc Degree in Physical-Chemistry (University of Granada (1995)), PhD 

Degree in Chemistry (University of Seville (2002)) is Tenured Scientist at the National 

Research Council of Spain (Materials Science Institute of Seville CSIC-University of 

Seville) after several postdoctoral stays in France (CNRS) and Switzerland (EMPA-ETH). 

He was the coordinator of an European Project (Phodye STREP Project ref. 033793) 

involving eight different academic and industrial partners from four different European 

countries that aimed the development of the photonic sensing chip technology resumed in 

this work. 

Miguel Holgado 
Dr. Miguel Holgado received the Bachelor's and Master's degree in Electrical Engineering 

from Technical University of Madrid (UPM) (1996), and Doctoral degree (Ph.D.) at the 

Institute of Material Science belonging to the Spanish National Research Council CSIC 

(2000). He is currently group leader of the Optics, Photonics and Biophotonics 

Technology Lab. at the Center for Biomedical Technology CTB-UPM, and associate 

professor at the Applied Physics and Material Engineering Department of ETSII (UPM). 

He worked as R&D engineer at Laser Section of TPyCEA at the Spanish Ministry of 

Defense and responsible for RAMAN spectroscopy service Lab at ICMM-CSIC. He was 

process engineer at Lucent Technologies Microelectronics during 4 years, Spanish 

representative in the 5th and 6th European R&D Framework Programme, Sub-director of 

RTD projects at Nanophotonics Technology Center and Head of European Communities 

Unit at CSIC. He have led and participated in 11 European and in 10 National research 

projects as well as other R&D initiatives. He is author/co- author of more than 40 

scientific publications, which have been cited more than 1000 times, and more than 68 

Author Biographies



communications to congresses. I am also the inventor of 5 patents applications. In 

addition, I am also founder of BIOD S.L. focusing on the development and the 

commercialization of biomedical optical devices.  

Rafael Casquel 
Rafael Casquel holds PhD degree from the Universidad Politécnica de Madrid (UPM) in 

2013, Ingeniero Industrial (2004) degree from the Universidad Politécnica de Valencia, 

Valencia , Spain. He moved in 2006 to continue with his thesis to the Laser Centre at the 

Universidad Politécnica de Madrid (UPM), where has remained working in the field of 

micro and nano optical biosensors, covering from the conception of the sensor, and its 

theoretical response, until its fabrication and biomolecular response, besides of developing 

applications of laser–based techniques to photonic chips developing and characterization. 

At the present moment he is associate professor  in the Applied Physics and Material 

Science department at the Escuela Técnica Superior de Ingenieros Industriales Technical 

School belonging to the UPM 

Francisco J. Sanza 
Francisco J. Sanza received Ph.D. Degree from Universidad Politécnica de Madrid (2015), 

IT Engineer degree in 2008 (Universidad de Navarra, Spain), a M.Sc. in Photonics in 2009 

(Universidad Autónoma de Madrid) and a M.Eng. in Laser Technology in 2011 

(Universidad Politécnica de Madrid). He is currently senior Researcher at Center for 

Biomedical Technology belonging to the Universidad Politécnica de Madrid since 2015. 

His research is focused on micro and nano-fabrication and characterization of optical 

sensors and biosensors. 

Amadeu Griol 
Amadeu Griol was born in Valencia, Spain in 1973. He received the telecommunication 

engineer and Ph.D. degrees from the Universitat Politècnica de València in 1998 and 2003, 

respectively. His research interests include fabrication, modeling and characterization of 

electrical and optical devices, especially microwave microstrip filters with harmonic 

suppression techniques and also Photonic Integrated Circuits and nanophotonics devices. 

Currently, he is working in the fabrication of optical micro and nanodevices by using 

electron beam lithography.  He authored and coauthored more than 35 papers in 

international journals and more than 85 contributions to international conferences.) 

Damien Bernier 
Damien Bernier obtained his PhD degree in 2008 after three years of research activity in 

silicon on insulator (SOI) nanophotonics at Paris-Sud Institute of Fundamental Electronics 

(IEF). He is currently working at Multitel a.s.b.l. as a research and development engineer 

for the Biophotonics group 

Fabian Dortu 
Dr. Ir. Fabian Dortu received his engineer degree in applied physics from the University of 

Liège (Belgium) in 2001, and a specialized master degree in materials for microelectronics 

at the University of Leuven (KUL) in 2002. In 2009, he obtained his PhD at the KUL in 

collaboration with IMEC on the development of optical methods for the characterization 

of ultra-shallow junctions in semiconductors. In 2008, he joined the Applied Photonics 

department of Multitel (Research Institute, Mons Belgium), where he specialised on 

biophotonics applications. Since 2010 he is leading the Biophotonics group of Multitel. 



Santiago Cáceres 
Santiago Cáceres (PMP) is Electronic Engineer – communications networking 

specialization – from the Polytechnic University of Valencia (Spain). He has worked in the 

past in LE-Technichs (Slovenia), the Technical University of Prague (Czech Republic) and 

in Generalitat Valenciana (the public administration of the region of Valencia, Spain). He 

has been involved for more than nine years as senior project manager and business 

development at the Technology Department of ETRA I+D mainly in the areas of ICT and 

Security. 

Mikael Antelius 
Mikael Antelius received the M.Sc. degree in chemical engineering from Uppsala 

University, Sweden in 2007 and the PhD degree at the department of Micro- and 

Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden in 2013. His 

research interests included silicon photonics and wafer-level vacuum and liquid packaging, 

particularly with regards to gas sensors. He is currently at APR Technologies. 

Martin Lapisa 
(Biography not available at the time of submission) 

Hans Sohlström 
Hans Sohlström received the M. Sc. degree in electrical engineering from KTH Royal 

Institute of Technology, Stockholm, Sweden, in 1978 and a Ph.D. degree with a thesis 

about fibre optical magnetic field sensors based on YIG thin films, in 1993. He is now 

associate professor at the Micro and nanosystems department at the KTH School of 

Electrical engineering, where he is leading research in micro-optics. He is also responsible 

for courses in measurement technology.  

Frank Niklaus 
Frank Niklaus received the Dipl.Ing. degree in mechanical engineering from the Technical 

University of Munich, Germany and the Ph.D. degree in MEMS from KTH Royal Institute 

of Technology, Stockholm, Sweden, in 1998 and 2002, respectively. Currently he is a 

Professor at the Department of Micro and Nanosystems in the School of Electrical 

Engineering at KTH Royal Institute of Technology, where he is leading research in the area 

of micro- and nanofabrication. 

 


