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Competition with invasive species is recognized as having a major impact on biodiversity 

conservation. The upper part of the Cabriel River (Eastern Iberian Peninsula) harbours the most 

important population of the Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866), a fish 

species in imminent danger of extinction. Currently, this species cohabits with several non-

native species, such as the Iberian nase (Pseudochondrostoma polylepis; Steindachner, 1864) 

and the bermejuela (Achondrostoma arcasii; Steindachner, 1866). The potential habitat 

competition with these species was studied by analysing the spatial and temporal overlapping of 

suitable microhabitats. Generalized Additive Mixed Models (GAMMs) were developed to model 

microhabitat selection and these GAMMs were used to assess the habitat suitability (i.e., 
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probability of presence) under several flows simulated with River-2D. The Júcar nase will 

compete, spatially and temporarily, for the few suitable microhabitats with bermejuela and, to a 

lesser extent, with small Iberian nase; conversely, large Iberian nase was of minor concern, due 

to increased differences in habitat preference. This study represents an important assessment of 

potential competition and, therefore, these results might support the definition of future 

management practices in the upper part of the Cabriel River. 

 

Keywords: Generalized Additive Mixed Model, habitat duration curve, invasive 

species, Mediterranean river, physical habitat simulation. 

 

1 Introduction 

Despite being apparently inoffensive, the introduction of a foreign species in an ecosystem 

always poses an ecological risk because it can result in negative impacts on native species 

and, occasionally, on the functioning of the ecosystem (Gozlan et al., 2010). Numerous non-

native fish, from a variety of sources, have been introduced across Mediterranean Europe for 

various reasons, including the biological control of aquatic plants and mosquitoes, 

aquaculture, to compensate for the decline in native fish stocks, and to create new and more 

diverse recreational fisheries (Marr et al., 2013). Accordingly, the impacts of foreign fish 

species are currently recognized as a major threat to freshwater biodiversity, through a variety 

of adverse impacts, such as: habitat alteration, predation, hybridisation, vectoring diseases, 

food web alteration and interspecific competition (Almeida and Grossman 2012). Iberian 

rivers have also suffered multiple and recurrent introductions during the last century and, 

although they may have resulted in increased economic benefits (Gozlan et al., 2010), such 

acclimatization of foreign fish has been confirmed as one of the main negative factors 

affecting the survival of native, mostly endemic, species (Elvira and Almodóvar 2001). The 
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introduced species have traditionally been categorized as: non-native, invasive (i.e., those 

non-native species that harm native populations) and translocated, which corresponds to those 

species transferred between basins within the same country (Gozlan et al., 2010; Leunda 

2010). Translocated species have traditionally been viewed acquiescently, although there is 

evidence that they can produce negative impacts in the same way as non-natives (Oscoz et al., 

2006; Alcaraz et al., 2014). Consequently, it is crucial to improve our ability to forecast the 

risks resulting from translocations, by developing precise and appropriate management tools 

and mitigation protocols based on the evidence of possible impacts (Gozlan et al., 2010). 

The Iberian Peninsula is considered to be one of the hotspots for freshwater fish 

biodiversity within Europe (Reyjol et al., 2007) with several species in imminent risk of 

extinction (Leunda 2010). Among these, some paradigmatic species such as the Valencia 

toothcarp (Valencia hispanica; Valenciennes, 1826) have been the subject of thorough 

research (Rincón et al., 2002, and therein references), whereas very few studies have focused 

on the Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866) (Elvira and Almodóvar 

2008; Costa et al., 2012; Alcaraz et al., 2014), even though it has been deemed to be the 

Iberian fish species most susceptible to extinction (Doadrio 2002). Formerly, the Júcar nase 

inhabited the entire Júcar River basin from coastal areas to montane streams (Elvira and 

Almodóvar 2008; Alcaraz et al., 2014). However, habitat fragmentation and the introduction 

of non-native and invasive species  some of them large predators such as the Esox lucius 

(Linnaeus, 1758) – as well as habitat degradation and pollution have reduced its distribution 

area by up to 20% (Alcaraz et al., 2014). This confluence of impacts, typical of rivers with 

increasing demands and limited water resources (Paredes-Arquiola et al., 2014), has 

marginalized native fish populations to the headwaters of the streams, where the remaining 

populations are isolated one from another by dams and barriers (Aparicio et al., 2000; Alcaraz 

et al., 2014). 
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Currently, the Cabriel River (the main tributary of the Júcar River) harbours the most 

important populations, in terms of presence and fish density, of the Júcar nase (Alcaraz et al., 

2014). However, this is not an unspoilt stream, it is split into two stretches of similar length 

(i.e., upper and lower Cabriel) by a sequence of weirs and dams; the most noteworthy being 

the Contreras dam. Both segments harbour non-native and invasive species, although invasive 

piscivorous species are absent in the upper part of the Cabriel River (Olaya-Marín et al., 

2012). The non-native species in the upper Cabriel are principally present in the lower part, 

due to the presence of the Cristinas weir, which also splits the upper part into two 

unconnected segments, whereas the uppermost river stretch remains largely unspoilt. Thus, 

the non-native species in the upper Cabriel are the Iberian nase (Pseudochondrostoma 

polylepis; Steindachner, 1864), the Iberian gudgeon (Gobio lozanoi; Doadrio & Madeira, 

2004) and the bermejuela (Achondrostoma arcasii; Steindachner, 1866); the latter has been 

reported, in 2016, as occurring in several segments of the upper Cabriel, and was sampled in 

very small numbers during the study made by Olaya-Marín et al. (2012) in the lower part of 

this river segment. Such fish species were probably translocated through the “Tajo-Segura” 

inter-basin water transfer canal (Alcaraz et al., 2014) and perhaps, to a lesser extent and 

distance, by anglers (Leunda 2010). The Iberian nase has demonstrated itself to be a superior 

competitor and, over time, it has displaced the Júcar nase from a broad expanse of its 

historical distribution area (Alcaraz et al. 2014). This mechanism of exclusion, typical of 

competing species (Almeida and Grossman 2012), has been corroborated by a strong spatial 

segregation between the occurrence of the Júcar nase and the occurrence of the Iberian nase 

(Alcaraz et al., 2014). Therefore, the study of the mechanisms of competition between both 

species has been highlighted by several authors as a priority field of research (Leunda 2010; 

Alcaraz et al., 2014).  



5 

 

To date, several approaches have been followed to study the current or the potential 

competition of non-native species, from broad-scale approaches (i.e., basin scale) aimed at 

encouraging ecologically-friendly policies (e.g., alternative water release or management 

protocols) (Ribeiro et al., 2008; Clavero 2011), to site- and/or species-specific studies in 

natural river segments (Almeida et al., 2014) or in aquaria, artificial streams or other 

mesocosms (Rincón et al., 2002; Almeida and Grossman 2012). Although the benefits of 

direct underwater observation have been highlighted, because the competition mechanism can 

only be understood at a local scale, interspecific competition is commonly measured via 

indirect methods, such as descriptive comparisons of habitat use/selection, dietary overlap or 

stable isotope analysis (Almeida and Grossman 2012). Aquaria and mesocosm studies can 

provide evidence of impact mechanisms on native fish and ecosystems (Ribeiro and Leunda 

2012), but they differ vastly from natural conditions. Furthermore, the ability to distinguish 

between fish species or the dimensions of the target stream can be a key factor determining 

the choice of the surveying methodology. The Cabriel River presents deep pools that 

discourage the use of electrofishing equipment (Vezza et al., 2015); in addition the Júcar nase, 

the juvenile Iberian nase and, to a lesser extent, the bermejuela are hardly distinguishable by 

direct observation (snorkelling) when they occur concurrently. Consequently, in this research 

we considered an indirect method based on habitat selection to be necessary. 

The potential microhabitat competition between these non-native species, formerly 

included within the genus Chondrostoma (Robalo et al. 2007), and the Júcar nase was studied 

by analysing the degree of overlapping of suitable microhabitats, named as the Suitable Area 

(SA), in a river stretch of the upper part of the Cabriel River. The specific objectives of this 

research were: i) the development of presence/absence Generalized Additive Mixed Models 

(GAMMs) describing the microhabitat selection by the Júcar nase, bermejuela and Iberian 

nase (large and small); ii) the assessment of the habitat suitability in a set of simulated river 
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flows; iii) the analysis of the potential competition of the different fish species by comparing 

the spatial and temporal overlapping between the suitable microhabitats (i.e., the 

aforementioned Suitable Areas or SAs). 

 

2 Methods 

2.1 Ecology of the target fish species and data collection 

The habitat requirements of the Júcar nase have been poorly documented, thus, there is no 

consensus about its habitat preferences. Consequently, it has been suggested to be a rheophilic 

species, occurring more often in riffles with a relatively high velocity, coarse substrate and 

aquatic vegetation (Alcaraz et al., 2014). Conversely, other studies have suggested a positive 

correlation between density of the Júcar nase and depth (up to 4 m), and with the presence of 

backwaters, which suggests a more limnophilic nature (Costa et al., 2012). Nevertheless, as 

far as we know, in the existing scientific literature, this species has never been the subject of 

habitat suitability modelling at the microhabitat scale through any multivariate approach, and 

this is the first article to present such information. The habitat requirements of the bermejuela 

are even less well documented, but it has been observed that juveniles occur in shallow areas 

with slow currents and move to deeper and faster waters in late July (Kottelat and Freyhof 

2007). This pattern was partially corroborated by Muñoz-Mas et al. (2014a), who used part of 

the dataset employed in this study. Finally, the Iberian nase is a rheophilic species with large 

specimens inhabiting deep habitats with a relatively high velocity (Martínez-Capel et al., 

2009), therefore, they demonstrate greater swimming capacity than other Iberian cyprinid 

species of similar size (Romão et al., 2012), whereas small specimens inhabit shallower areas 

(Martínez-Capel et al., 2009). 
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The dedicated, or retrieved, fish data (converted into presence/absence data) was 

collected in several river basins and sites where these species naturally occur and the 

competitor fish species were absent (Figure 1). All of the sampled rivers run under a 

continental Mediterranean climate and the study sites were placed in river segments of similar 

stream order, with good underwater visibility and minimal influence from human activity 

(Martínez-Capel et al., 2009). In order to improve the transferability of the models (Thomas 

and Bovee 1993; Vilizzi et al., 2004), the study sites tried to encompass the largest 

microhabitat variability by surveying different types of hydro-morphological units (i.e., pool, 

glides, runs, riffles and rapids (Martínez-Capel et al., 2009) (Table 1). 

The data for the Júcar nase were purposefully collected in three sites of the Cabriel 

River both downstream and upstream of the Traqueiro fall; a natural barrier in the vicinity of 

the municipality of Boniches (Cuenca, Spain), which isolates the upper population from the 

lower one. During these surveys 2091 individuals were observed spread over 123 different 

microhabitats. Conversely, the bermejuela and Iberian nase data were collected in previous 

studies carried out in the Palancia River and several streams and tributaries of the Tagus River 

(Martínez-Capel et al., 2009; Muñoz-Mas et al., 2014a). 

 

[Figure 1 here] 

 

[Table 1 here] 

 

Although the surveys for data collection were distant in time, they were performed 

following similar approaches. In each case they were carried out in late-spring and summer 

(warm period), during low flow conditions and considering complete hydro-morphological 

units in the data stratification prior to surveying, by direct observation (snorkelling). 
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Snorkelling was selected as the sampling approach because it proved to be superior to direct 

observation from the shoreline and the electrofishing sampling approach (Heggenes et al., 

1990). 

The diver moved carefully from downstream to upstream and placed a marker in each 

occupied microhabitat, but skipped those microhabitats occupied by fish that had evidently 

been disturbed. Regarding fish size, the Iberian nase was divided into two different classes (< 

7 or > 7 cm) in accordance with its ecology and maximum body length (see Martínez-Capel et 

al., 2009) whereas one single-size class was considered for the other fish species (Table 1). 

The hydraulic conditions for the presence data were measured in the occupied 

microhabitats, whereas the absence data (unoccupied microhabitats) was measured at several 

points through cross-sections distributed over each hydro-morphological unit. Three of the 

measured abiotic variables coincided among datasets: mean flow velocity of the water column 

(velocity), water depth (depth), and substrate composition (substrate). Velocity was measured 

with a current meter [m/s]; depth was measured with a wading rod to the nearest centimetre 

[m] and substrate was visually estimated by size classes, i.e., bedrock, boulders, cobbles, 

gravel, fine gravel, sand, silt and macrophytes (Martínez-Capel et al., 2009; Muñoz-Mas et 

al., 2014a). Subsequently, the percentages of the different substrate types were summarized in 

a single substrate index [–] (Mouton et al., 2011), which may range from 0 (vegetated silt) to 

8 (bedrock) (Figure 2). 

 

[Figure 2 here] 

 

Microhabitat studies are undertaken using high resolution, which typically leads to 

low data prevalence (i.e., ratio of presence cases over the entire dataset) (Guisan et al., 2007). 

It is assumed that there are not enough individuals to occupy each suitable microhabitat, thus, 
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in such a situation, model optimization usually takes place by selecting loss functions 

irrespective of data prevalence (e.g., True Skill Statistic – TSS) (Mouton et al., 2010), and 

stimulating over-prediction by favouring a larger proportion of presence predictions (e.g., 

Fukuda et al., 2013). To deal with low prevalence contributing to over-prediction, the 

Neighbourhood Cleaning Rule algorithm (Laurikkala 2001) implemented in the R (R Core 

Team 2015) package unbalanced (Dal Pozzolo et al., 2015) was applied to each dataset prior 

to model training. This algorithm first removes those absence data misclassified by their three 

nearest neighbours and, then, the neighbour of each presence data is found and those 

belonging to the absence class are removed. 

 

2.2 Habitat suitability modelling – Generalized Additive Mixed Models (GAMMs) 

Traditionally the habitat suitability at the microhabitat scale has been modelled by 

means of univariate – unimodal or monotonic – Habitat Suitability Curves (HSCs) (e.g., 

Jowett and Davey 2007; Muñoz-Mas et al., 2012). However, HSCs treat the input variables 

(e.g., velocity or depth) independently and the method employed to aggregate their individual 

predictions affects the ultimate prediction, finally compromising the reliability of the habitat 

assessment (Jowett and Davey 2007). For the foregoing, the HSCs have been demonstrated to 

be less transferable than other multivariate approaches y (Guay et al., 2000), thus, the 

scientific community currently advocates multivariate approaches (e.g., Jowett and Davey 

2007; Fukuda et al., 2013; Muñoz-Mas et al., 2016b). Generalized Additive Models (GAMs) 

(Hastie and Tibshirani 1990) are a semi-parametric extension of generalized linear models 

especially suitable for ecological modelling, since they do not presuppose any type of 

statistical distribution of the input variables (Jowett and Davey 2007). GAMs are 

characterized by the use of regression splines that resemble the HSCs (i.e. the 𝑓𝑓𝑖𝑖 in equation 
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1) to model the effects of the inputs over the desired output (Jowett and Davey 2007). 

Therefore, although different in nature, the structure of the GAMs could be considered the 

natural succession of the HSCs because the effect of the set of inputs is simultaneously 

optimized to maximize the predictive capability of the model (Jowett and Davey 2007). 

However, environmental data may present temporal and spatial auto-correlation, violating the 

data independence assumed for the development of GAMs (Girard et al., 2014). For instance, 

in our specific situation, data collected in one river is likely to be more correlated to each 

other than to the data collected in any of the remaining rivers (Zuur et al., 2009). To overcome 

such limitations, Generalized Additive Mixed Models (GAMMs) have been proposed (Lin 

and Zhang 1999). GAMMs maintain the flexibility of GAMs by using nonparametric 

regression, while accounting for correlation between observations by using random effects 

(Lin and Zhang 1999). The GAMMs structure follows equation 1: 

 

𝑔𝑔�𝜇𝜇𝑖𝑖𝑏𝑏� = 𝛽𝛽0 + 𝑓𝑓1(𝑥𝑥𝑖𝑖1) + ⋯+ 𝑓𝑓𝑝𝑝�𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜃𝜃𝑖𝑖𝑇𝑇𝑏𝑏 (Equation 1) 

 

where 𝑔𝑔(·) is a monotonic differentiable link function, 𝜇𝜇𝑖𝑖𝑏𝑏 are the expected values, β0 

is the intercept, 𝑓𝑓𝑗𝑗 is a centred twice-differentiable smooth function (e.g., Nadaraya-Watson 

Kernel Smoothing or the smoothing spline), 𝑥𝑥𝑗𝑗 are the environmental variables, the random 

effects b are assumed to be distributed as 𝑁𝑁{0,𝐷𝐷(𝜃𝜃)} and 𝜃𝜃 is a 𝑐𝑐 × 1 vector of variance 

components. 

The GAMMs were developed in R (R Core Team 2015) with the mgcv package 

(Wood 2004). As recommended in a number of publications (e.g., Arlot and Celisse 2010), a 

stratified (considering river and class) fivefold cross-validation was performed to search for 

the most generalizing model, including each microhabitat variable once (i.e., velocity, depth 
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and substrate), either independently or in two- and three-way interactions and the random 

effects (i.e., random intercepts) were the sampled rivers (Table 1). The selected link function 

(𝑔𝑔) was the binomial (outputs between 0 and 1), to accommodate the dichotomous nature of 

the output data, and the smooth functions were cubic regression splines when variables were 

considered independently and tensor product smooths when they were considered within 

interactions. The latter type were selected because they are especially indicated for 

representing functions of covariates measured in different units (Wood 2006). Compared to 

previous studies (i.e., Girard et al., 2014), we relaxed the imposed constraints by increasing 

the maximum number of allowed knots (i.e., the number of bends of the smooth function) up 

to 4, and the selected mathematical structure among the different model alternatives was the 

one producing the largest mean TSS on the test datasets. TSS relies on the aggregation of the 

ratio of presences correctly classified (Sensitivity – Sn) and the ratio of absences correctly 

classified (Specificity – Sp) (see Mouton et al., 2010 for additional information about 

performance criteria) as follows: 

 

𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆 − 1 (Equation 2) 

 

Data prevalence has been proven to significantly impact the classificatory capability 

of GAMs (e.g., Beakes et al., 2014), similarly, it should affect GAMMs. Therefore, in order to 

reduce the number of erroneously predicted absences (stimulating over-prediction) and 

keeping the discriminant threshold at 0.5, the presence data in the training dataset were 

randomly replicated to obtain 0.5 prevalence datasets. This resampling was carried out 

employing the function UBOver implemented in the R (R Core Team 2015) package 

unbalanced (Dal Pozzolo et al., 2015). Following previous studies (e.g., Fukuda et al., 2013; 

Muñoz-Mas et al., 2016a), once the optimal mathematical structure had been determined, one 
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single GAMM per group of fish was trained with the aforementioned settings, the complete 

dataset (i.e., without cross-validation), and the optimal mathematical structure for the 

corresponding group. 

 

2.3 Study area and hydraulic modelling 

The upper part of the Cabriel River Basin, where the study site is located, has an average 

riverbed gradient of 1.1% and the land cover – from the CORINE Land Cover classification –

mainly consists of forested areas (86%) and crops (12%) (Bossard et al., 2000). This river 

basin has been affected by a marked human depopulation (Instituto Nacional de Estadística 

2013), allowing us to consider any anthropogenic impact as negligible (e.g., measurable water 

abstraction or pollution) as well as the corresponding synergistic effects with the presence of 

these non-native species. The study area has a typical Mesomediterranean climate with a 

mean annual precipitation of ca. 500 mm, resulting in low flows and high evapotranspiration 

in summer and high flows in spring and autumn (Vezza et al., 2015). Therefore, summertime 

would represent the period of highest potential competition, due to the smaller wetted area 

(Figure 3). 

 

[Figure 3 here] 

 

The hydraulic simulation was retrieved from Muñoz-Mas et al. (2012; 2014b; 2016a) 

and is located approximately 7.5 km downstream of the Júcar nase sampling points (Figure 1). 

It encompassed an approximately 300 m long reach of the Cabriel River that met various 

requirements, such as habitat heterogeneity and representativeness, and had been proven to 

have a stable channel for more than a decade (Muñoz-Mas et al., 2014b), which will extend 



13 

 

the validity of the predictions. Data collection and model development followed common 

procedures (Jowett and Duncan 2012) thereby the topographic data of the river channel and 

banks were collected using a Leica© Total Station with an average area of ca. 2 m2 per 

topographic measurement, collecting concomitantly the substrate composition as described 

above. The hydrometry was performed in 11 cross-sections, with depth and velocity measured 

along these sections and the resulting information was used to gauge the flow rate. 

Measurements were performed at three different flow rates (0.54, 1.04 and 2.75 m3/s) and 

these were used to calibrate the model. The 2D hydraulic simulation was performed with 

River2D© (University of Alberta, 2002) modifying the bed roughness (ks) to adjust the 

outcomes to the measurements performed during the hydrometric campaigns. Once the model 

rendered acceptable results (mean error in water surface elevation around 5 cm and similar 

velocity distribution patterns), thirty-four different flows were simulated, ranging from 0.05 to 

6.5 m3/s; in all cases the water level was below the bankfull stage of the river channel. 

 

2.4 Comparison of the modelled microhabitat suitability  

The relationship between the input variables and the probability of presence was graphically 

characterized with partial dependence plots (Friedman 2001) adapting the code implemented 

in the package randomForests (Liaw and Wiener 2002). Partial dependence plots depict the 

average of the response variable (i.e., the output rendered by the binomial link function) 

versus each input variable and account for the effects of the other variables within the model 

by averaging their effect (Friedman 2001). Consequently, partial dependence plots are a 

useful way to visualize the marginal effect of the target variable on the predicted probability 

of presence when multivariate models present interacting variables (Vezza et al., 2015; 
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Shiroyama and Yoshimura 2016; Muñoz-Mas et al., 2016a). The function being plotted is 

defined as: 

 

𝑓𝑓(𝑥𝑥) = 1
𝑛𝑛
∑ 𝑓𝑓(𝑥𝑥, 𝑥𝑥𝑖𝑖𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (Equation 3) 

 

where n corresponds to the amount of points in which the function is being plotted, x is the 

variable for which partial dependence is sought, and xiC are the remaining variables in the 

dataset, whereas 𝑓𝑓 corresponded to the predictions exerted by the GAMMs. The partial 

dependence was computed for each of 50 equally spaced points over the range of each 

examined variable. 

 

2.5 Assessment of potential microhabitat competition 

The four GAMMs were used to assess the set of 34 simulated flows in a multivariate manner 

by considering the varying velocity and depth obtained from the hydraulic model and the 

underlying substrate, rendering the suitability (from 0 to 1) for every pixel (1 𝑚𝑚 ×  1 𝑚𝑚) on 

the hydraulic model. Then, the general suitability of the study site (i.e., the habitat quantity 

and quality for the simulated flows and species) was assessed with a modification of the 

Weighted Usable Area (WUA) versus flow curves (Bovee et al., 1998). The WUA consists of 

the sum of the area of every pixel multiplied by the corresponding suitability; however, in this 

specific study, only the classificatory nature of the GAMMs was taken into account, thus the 

Suitable Area (SA; i.e., the one with suitability > 0.5, corresponding to fish presence) was 

aggregated to develop the SA versus flow curves. The Overlapping Area (OA) counterparts 

were likewise calculated as the aggregation of the area, considering those pixels 

concomitantly assessed as presence (i.e., suitability > 0.5) for the Júcar nase and the 
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competitor analysed. 

However, the information provided by both types of curves (SA and OA) is restricted 

to the general suitability of the spatial competition at a given flow and neglects the frequency 

of occurrence. Therefore, the time series analysis was performed by developing and 

comparing the duration curves of SA and OA, inspired by the work carried out by Milhous et 

al. (1990). For this task, after calculating the SA and OA versus flow curves, the time series 

were implemented by interpolating the different summer mean monthly flows (Figure 4) upon 

the corresponding curves; 2% of the data were extrapolated because the mean monthly flow 

exceeded the largest simulated flow.  

 

[Figure 4 here] 

 

Accounting for uncertainty in a model has been highlighted in a number of 

publications (e.g., Elith and Leathwick, 2009) and the package mgcv allows predictions to be 

made by taking into account the uncertainty of the estimation of parameters. Therefore, the 

aforementioned indicators, including the partial dependence plots, were also calculated for the 

95% confidence interval in order to estimate the reliability of the potential microhabitat 

competition. 

 

3 Results 

3.1 Comparison of the modelled microhabitat suitability 

The optimal model structure varied for each groups of fish, although in any case the 

considered terms were always significant (p–value < 0.05) (Figure 5). Therefore, the optimal 

model for the Júcar nase was that where the three variables interacted fully, whereas the one 
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for the bermejuela did not present interactions. The models for the Iberian nase, both large 

and small, each presented one two-way interaction. 

The performance of the models did not vary significantly between species although 

the model for the Júcar nase outperformed any other, presenting the highest TSS, whereas the 

GAMM for large Iberian nase presented the lowest value (Table 2). 

 

[Figure 5 here] 

 

[Table 2 here] 

 

The Júcar nase selected low flow velocity, high depth and fine substrate (Figure 6). 

The bermejuela also selected microhabitats with low flow velocity and fine substrate but 

appeared more often in microhabitats of medium depth, and large Iberian nase preferred 

medium flow velocity, the greatest depth, and coarse substrate. Conversely, small Iberian nase 

were inclined to appear nearer the river banks, thus selecting low flow velocity, but medium-

to-low depth and finer substrate. 

 

[Figure 6 here] 

 

3.2 Assessment of potential microhabitat competition 

The hydraulic model mainly encompassed a run-type river segment – which is 

characterized by medium depth and relatively high velocity – also including areas of riffle, 

rapid and pool. In accordance, the river reach presented a low overall suitability for the Júcar 

nase with a slight increment of SA below 1 m3/s. Nevertheless, the maximum SA, achieved 
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for 0.1 m3/s, barely represented 10% of the wetted area (Figure 7 – Upper sequence). The 

bermejuela presented the largest SA around 0.5 m3/s decreasing for larger flows. Beyond 2.5 

m3/s it stabilized slightly above ca. 20% of the wetted area. The bermejuela SA versus flow 

curve showed a constant overlap with the curve of the Júcar nase, based on the 95% 

confidence interval. The SA versus flow curve for large Iberian nase presented a parabolic 

increment showing the maximum at 2 m3/s; at that point it achieved the largest SA among all 

the species (ca. 60% of the wetted area for that flow). Above this flow, the curve decreased 

almost linearly, approximating the Júcar nase curve for the largest simulated flow. The curve 

for small Iberian nase presented the maximum at 1 m3/s (ca. 60% of the wetted area) and 

decreased rapidly for the larger flows due to the increment in water velocity and depth. This 

SA versus flow approximated the curve of the Júcar nase for the larger simulated flows, 

considering only the 95% confidence interval. 

 

[Figure 7 here] 

 

In absolute terms (m2) the potential microhabitat competition was low in all cases in 

comparison with the maximum wetted area (ca. 4000 m2) (Figure 7 – Central sequence). 

However, in accordance with the SA and the OA versus flow curves, the Júcar nase will 

spatially compete for every suitable microhabitat with the bermejuela and, to a lesser extent, 

with small Iberian nase, which presented lower values but some overlap considering the 95% 

confidence interval. Finally, large Iberian nase represent a minor concern due to the increased 

differences in habitat preferences. 

The match of the SA duration curve for the Júcar nase and the OA duration curve for 

bermejuela corroborated that both species would compete spatially and temporarily for the 

same microhabitats (Figure 7 – Lower sequence), even taking into account the uncertainty of 
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the predictions (95% confidence interval). Conversely, large Iberian nase represent a minor 

competitor, because the OA duration curve was appreciably displaced below the SA duration 

curve for the Júcar nase. Finally, small Iberian nase presented a similar pattern to their larger 

counterpart. Nevertheless, considering the uncertainty of the predictions, the competition 

could be greater than that exerted by their larger counterpart, as the 95% confidence interval 

presented greater overlapping. 

 

4 Discussion 

The GAMMs developed presented satisfactory results because they achieved values of 

performance criteria analogous to those of previous studies that modelled the microhabitat 

suitability with several techniques and similar prevalence (e.g., Fukuda et al., 2013; Muñoz-

Mas et al., 2014b). Furthermore, as depicted in the partial dependence plots, they fitted the 

ecological gradient theory well (Austin 2007), by modelling the effects of the input variables 

with straight (almost linear) or unimodal (curved) smooth functions. 

Following previous studies that employed GAMs (e.g., Jowett and Davey 2007; Fukuda et al. 

2013; Muñoz-Mas et al. 2016b), we assumed the relevance of the three input variables: 

velocity, depth and substrate. In accordance, neither variable selection nor significance 

inspection was carried out and only the structure of each model was optimised (Anderson et 

al. 2000; Platts et al. 2008). This optimization of each model was performed through cross-

validation on the basis of a global measure of model performance (i.e., TSS) and with each 

test fold of similar prevalence and proportion of data from each site than the original dataset. 

To the best of our knowledge, three main approaches have been described in the literature to 

maximize the performance of GAMs trained with low prevalence datasets: (i) down- and 
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over-sampling (as followed here) (Barbet-Massin et al. 2012), case weighting (Maggini et al. 

2006; Muñoz-Mas et al. 2016c) and the modification of the classification threshold (Liu et al. 

2005). However, each may present limitations either with regards of the terms significance or 

models transferability. For instance, the modification of the classification threshold (e.g., 

based on the prevalence) may present poor transferability to other sites of different frequency 

of occurrence (Fukuda et al. 2013) whereas the use of case weighting may lead to unreliable 

p-values (Simon Wood personal communication), a phenomenon perhaps extensible to down- 

and over-sampling, which will require dedicated analyses. Therefore, our approach could be 

unsuitable when model terms are selected scrutinizing the calculated p–values. 

In our case, the Júcar nase achieved the maximum value of the TSS (over the non-replicated 

data) between the four models because it presented the most specific microhabitat use, 

selecting microhabitats with slow flow velocity, high depth and fine substrate. This pattern of 

habitat selection contradicts its classification as a rheophilic species with a preference for 

riffles of relatively high velocity and coarse substrate (Alcaraz et al., 2014). Conversely, it 

better fits the preference for deep habitats with low or null velocity (i.e., backwaters) as 

demonstrated along the Cabriel River in Costa et al. (2012), or its correlation with the 

presence of other native cyprinids of the Cabriel River, which, in turn, showed a positive 

correlation with depth (Vezza et al., 2015). Therefore, we contend that, in the Cabriel River, 

this species cannot be classified as rheophilic and that the previous assertion made for this 

river can only be attributable to the inherent limitations of the electrofishing sampling 

approach (wadeable river stretches) (Brosse et al., 2001). Certainly, the former distribution 

area of the Júcar nase encompassed areas from coastal to montane water bodies (Elvira and 

Almodóvar 2008; Alcaraz et al., 2014), suggesting a wider plasticity in the selection of 

microhabitat than that depicted here. We also acknowledge that it could be suggested that 
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such differences may be attributable to seasonal changes in fish behaviour, as has been 

demonstrated indoors and outdoors for other fish species and assemblages (e.g., Baltz et al., 

1991; Vilizzi et al., 2004). However, in addition to the observations performed in this study, 

the Cabriel River was frequently and extensively surveyed for several years to collect the data 

for Costa et al. (2012) and Vezza et al. (2015), confirming a strong site fidelity for the Júcar 

nase. Thus, specimens of the Júcar nase were never observed occupying any riffle of fast flow 

habitat. Therefore, although we recognize that the Júcar nase may present different 

preferences in other rivers, it becomes clear that the classification of the Júcar nase within the 

group of eurytopic species would be more in accordance with current knowledge about the 

species. 

In regard to the predicted potential competition, the use of different modelling 

techniques can render divergent patterns of habitat selection (Fukuda et al., 2013; Muñoz-Mas 

et al., 2016b). In this study, the restriction of the models complexity by limiting the number of 

knots (up to four) suggested preferences for the bermejuela (Muñoz-Mas et al., 2014a) and the 

Iberian nase (Martínez-Capel et al., 2009) similar to those found in the previous studies, 

which were carried out using a varied set of modelling approaches. The bermejuela presented 

the largest similarity with the habitat selection of the Júcar nase by selecting microhabitats 

with slow flow velocity, fine substrate and medium depth, which finally determined our 

evaluation regarding the threat posed by this species. The match of the SA and the OA versus 

flow curves, as well as the coincidence of SA and the OA duration curves for the Júcar nase 

and for the bermejuela predicted that both species shall steadily compete for the same 

microhabitats. It can be argued that an over-predictive model (Sn > Sp) by nature can predict 

presence and overlap in habitats where there will be no fish, thus overestimating potential 

competition. However, this over-predictive nature was not observed to be very relevant, either 

in the model for the Júcar nase or in that for bermejuela (Sp ≈ 0.7), and we considered it to be 
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negligible. The flow rate is undoubtedly another factor in the competition. Our direct 

observations in sites where the Júcar nase is very abundant indicate that this species is 

gregarious, occupies deep pools and is associated with aquatic vegetation and helophytes 

(Costa et al., 2012; Vezza et al., 2015). Therefore, in other river stretches with deeper hydro-

morphological units, there would be a potential segregation between these two species due to 

the bermejuela’s preference for microhabitats of intermediate depth. Furthermore, very few 

specimens of bermejuela were found in the Cabriel River (Olaya-Marín et al., 2012), 

fortunately, suggesting that either the propagule pressure (sensu Gozlan et al., 2010) or the 

recruitment success were low. However, uncertainty exists, because its presence could be 

masked due to its hybridization with the Júcar nase or the Iberian nase, since there is previous 

evidence of hybridization between bermejuela and the Iberian nase (i.e. P. polylepis × A. 

arcasii) (Collares-Pereira and Coelho 1983).  

The preference for deep microhabitats suggests increasing overlap with the 

microhabitats occupied by large Iberian nase for lowland and for deeper river segments. 

However, large Iberian nase tended to occupy the centre of the channel, which typically lacks 

any element of cover (e.g., aquatic vegetation), while the Júcar nase tended to avoid these 

open waters. Thus, we discarded such possibility. Consequently, large Iberian nase may pose 

a minor threat for the Júcar nase in terms of competition for the suitable microhabitats. 

Regarding small Iberian nase, they were observed near river banks (Martínez-Capel et 

al., 2009); thus, they selected low flow velocity, low depth and fine substrate. Therefore, they 

could potentially compete in a distant second tier with the Júcar nase. In accordance with the 

SA and the OA duration curves such encounters should be rare and restricted to the lower 

flows. However, they will become recurrent if the predicted climatic changes for the study 

site finally occur (see Muñoz-Mas et al., 2016a), which will increase the frequency of low 

flow periods, even resulting in the complete depletion of the Cabriel River. Despite the 
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differences in the optimal microhabitats and the low overlapping of the suitable areas, as we 

performed some prior surveys by snorkelling (Costa et al., 2012; Vezza et al., 2015), we 

observed different escape behaviours in the areas where we would expect to find the Júcar 

nase. Consequently, we suspected that in the Cabriel River both species would eventually 

occupy similar microhabitats. These areas of cohabitation were surveyed with electrofishing 

by Olaya-Marín et al. (2012), who captured individuals of both species. The number of 

catches and electrofishing sites in the Cabriel River were too low for statistical analysis, 

although, partially contradicting our results; they provided evidence that both may compete 

for the same microhabitat in a greater extent than predicted. Nevertheless, it should be the 

subject of further thorough study in order to be confirmed. 

On the basis of the previous knowledge and the habitat suitability models developed, 

we here provide a reasonable assessment of the threat posed by these potential competitors, 

but several additional phenomena should also be considered in the near future. For instance, 

the general threat posed by potential hybridisation with the bermejuela cannot be discarded. 

Thus, studies on genetic introgression should be performed in order to better analyse the 

underlying mechanisms operating in the spatial segregation of both species (Alcaraz et al., 

2014). Furthermore, one of the main limitations in competition studies is the lack of pre-

invasion information and the assumption that different locations with and without non-native 

species are adequate proxies of pre- and post-invasion scenarios (Ribeiro and Leunda 2012). 

The bermejuela and Iberian nase were absent in the areas where the Júcar nase microhabitat 

selection was studied. The Iberian nase is contained by the presence of the Cristinas weir, 

which we consider should be preserved, despite the negative impact that it exerts on the river 

continuum. However, in several places the Júcar nase was already cohabiting with another 

invasive species, the Iberian gudgeon, and recent news (2016) has suggested the presence of 

the bermejuela upstream of the Traqueiro fall, although 2014 captures did not confirm its 
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presence. Downstream of this fall, the Júcar nase co-occurred with the Iberian gudgeon; a 

species that behaves as invasive when translocated (Alcaraz et al., 2014). We have not 

observed significant differences in the patterns of habitat selection in any of the studies 

performed, in either the upstream or the downstream river segments (Costa et al., 2012; 

Olaya-Marín et al., 2012; Vezza et al., 2015). However, the analysis of the contribution of 

non-native species to the decline of native species is often difficult because it is usually 

concurrent with habitat degradation in synergistic processes (Brook et al., 2008). Although 

some studies suggested the introduction of non-native species as the main driver of the 

decline of the Júcar nase (Maceda-Veiga 2013) another study performed in the Júcar River 

basin highlighted the hydrological alteration over the non-native species as the fundamental 

factor (Olaya-Marín et al., 2012). Thus, the apparently neutral coexistence of the Júcar nase 

with the Iberian gudgeon or, currently, with the bermejuela, can only represent a biased 

snapshot at the very outset of the negative effects on populations of the Júcar nase. 

Consequently, it would be necessary to perform additional studies in order to thoroughly 

analyse the patterns of coexistence of these species. 

Although the study site was largely unsuitable for the Júcar nase in comparison with 

the sites sampled upstream, in accordance with the habitat suitability depicted in the partial 

dependence plots, we concluded that there is a high potential microhabitat competition with 

the bermejuela. However, this asseveration is solely valid in terms of competition for suitable 

microhabitats, as other ecological factors, such as food resources or optimal spawning sites, 

were not analysed. The Júcar nase could face secondary competition from small Iberian nase 

and, finally, from large Iberian nase. Nevertheless, further studies encompassing different 

river geometries and study sites are considered necessary because the Júcar nase is scarce in 

the river segment partially covered by the hydraulic model (Vezza et al., 2015) and other river 

segments further upstream are more favourable to the presence of the species. Bearing in 
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mind the state of conservation of the Júcar nase, this piece of research is considered a 

necessary pilot study to inspect the potential competition between these cohabiting species.  

Finally, we would like to reiterate the need to maintain the Cristinas weir in its current 

condition, avoiding measures to improve connectivity, as it is the only barrier impeding the 

colonization of the uppermost part of the Cabriel River. This study should contribute towards 

evaluating potential risks for the Júcar nase, guiding and triggering urgent management 

actions for the protection of the species, such as fish catches to control non-native species or 

informing and educating local fishermen to avoid tentative introductions. 
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