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SURVEYING THE SPIRIT OF ABSOLUTE SUMMABILITY ON

MULTILINEAR OPERATORS AND HOMOGENEOUS POLYNOMIALS

DANIEL PELLEGRINO, PILAR RUEDA, ENRIQUE A. SÁNCHEZ-PÉREZ

Abstract. We draw a fundamental compendium of the most valuable results of the

theory of summing linear operators and detail those that are not shared by known mul-
tilinear and polynomial extensions of absolutely summing linear operators. The lack of

such results in the theory of non-linear summing operators justifies the introduction of

a class of polynomials and multilinear operators that satisfies at once all related non-
linear results. Surprisingly enough, this class, defined by means of a summing inequality,

happens to be the well known ideal of composition with a summing operator.

1. Introduction

Our aim in this paper is to provide a promenade through the most significant theorems
that come from the theory of absolutely summing linear operators, highlighting those non
linear notions of summability that lack one or more of their non-linear analogs. The fact
that known multilinear or polynomial classes given by summing inequalities do not com-
pletely fit the whole compendium of results from the linear theory, will be evidenced. Far
from carrying with a disappointing feeling, we mix some of the known notions of non-linear
summability in order to get a new one that improve their behavior. Factorable strongly p-
summing multilinear operators and homogeneous polynomials are defined to the full extent
of absolutely p-summing linear operators. This apparently new class of summing polyno-
mials/multilinear operators is a subclass of strongly p-summing multilinear operators, that
stand apart from previous generalizations as they keep a big amount of the fundamental
properties, as a natural Pietsch Factorization type theorem or weak compactness. Fac-
torable strongly p-summing homogeneous polynomials also satisfy a factorization theorem
in the spirit of Pietsch, are weakly compact and a polynomial belongs to the class if and
only if its second adjoint (in the sense of Aron and Schottenloher) is in the class. Actually,
an homogeneous polynomial is factorable strongly p-summing if and only if its associated
multilinear map is factorable p-summing or, equivalently, its linearization is absolutely p-
summing. This brings deep strengths that are not shared by former classes of summing
polynomials as dominated or strongly summing polynomials. In addition, this proves that
factorable strongly p-summing polynomial/multilinear mappings coincide indeed with those
mappings that can be obtained as the composition of an absolutely p-summing linear op-
erator with a polynomial/multilinear one. Then, it is worth mentioning that we are not
really introducing a new class, but rediscovering the well known ideal of composition with
absolutely p-summing operators by characterizing it by means of a summing inequality.
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The interest of the paper remains on the fact that it closes the longstanding research
line whose main aim was the pursuance of better classes of polynomial and multilinear
mappings whose behavior was as close as possible to the classical absolutely p-summing
linear operators. This search, that at some stage seemed to be a never-ending story, has
been in the core of the theory of non-linear absolutely summing mappings since Pietsch
proposed his celebrated research program on the subject in 1983 [42]. This is why it is
crucial for our purpose to go over classical properties with a fine toothcomb even if their
proofs use nothing but classical techniques. To check that these properties are fulfilled by
the distinguished subclass of factorable strongly summing multilinear mappings does not
require in most cases new ideas, but the reader does not have to forget the two-fold purpose
of the paper: to present a compendium of results, some of them having non-linear analogs
in certain classes of non-linear summing mappings and some other lacking such analogs, and
to stablish the multilinear/polynomial class that shares all the basic essentials of absolutely
p-summing linear operators. Although it is not strictly necessary —because of their well-
known classical nature— some of the proofs have been included for the sake of completeness.

The seeds of absolutely summing linear operators come from A. Grothendieck’s work in
the 1950s, but it was A. Pietsch [41] who cultivated the land in 1966-67 and got bumper
crops that have fed analysts for many decades. J. Lindenstrauss and A. Pe lczyński [27] clar-
ified Grothendieck’s ideas without the use of tensor products and were also responsible for
the reformulation of Grothendieck’s inequality, which is still a fundamental result of Banach
Space Theory and Mathematical Analysis in general (see [43]). For a detailed approach
to the linear theory of absolutely summing operators we refer to the excellent books of J.
Diestel, H. Jarchow and A. Tonge [19] and A. Defant and K. Floret [18]. Nowadays abso-
lutely summing operators is a current subject in books of Banach Space Theory (see, for
instance, [2, 22]). The deep influence that the theory of absolutely summing operators has
borne justifies the big effort that has been made, since Pietsch’s proposal [42], to try and
generalize the linear theory to non-linear operators. However, extending summability prop-
erties to a non-linear context has been proved difficult and intriguing. For instance, there
are several extensions of absolutely p-summing linear operators to the multilinear setting
that have been considered in the literature. Besides its intrinsic interest, the multilinear
theory of absolutely summing operators has shown important connections, including appli-
cations to Quantum Information Theory (see [32]). This proliferation of classes of summing
multilinear maps has lead to the appearance of works that compare different approaches
(see [15, 40]). The first challenging task when dealing with multilinear operators is probably
to identify the class of multilinear operators that best inherits the spirit of the absolutely
summing linear operators. According to [37, 39] one of the most natural extensions of the
notion of absolutely p-summing linear operators to the multilinear setting is the notion of
strongly p-summing multilinear operators, due to V. Dimant ([20]). This class lifts to the
multilinear framework most of the main properties of absolutely p-summing linear opera-
tors: Grothendieck’s Theorem, Pietsch Domination Theorem, Inclusion Theorem. However,
as we will see, a natural version of the Pietsch Factorization Theorem does not hold for this
class.

The good behavior of multilinear extensions has found no echo when considering exten-
sions of absolutely summing operators to polynomials. In this non linear setting, several
attempts have been made but all of them have found rough edges to succeed in. This is the
case of p-dominated homogeneous polynomials, for which a Pietsch type factorization theo-
rem has been pursuit (see [28, 31, 9, 14]) and succeeded just when the domain is separable.
Related factorization schemes for homogeneous maps and polynomials can be found in [1]
and [45]. Recently, the second and third authors [44] have isolated the class of p-dominated
polynomials that satisfy a Pietsch type factorization theorem: the factorable p-dominated
polynomials. However, even if this makes a big difference with p-dominated polynomials,
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they still lack good properties as evidenced by the feeling that factorable p-dominated poly-
nomial do not define a composition ideal or, equivalently, the linearization of a factorable
p-dominated polynomial may not be absolutely p-summing.

This paper is organized as follows. Section 2 contains a compendium of the main results
on linear and non linear summability and, their validity for different classes of nonlinear sum-
ming operators is analyzed. In Section 3, and inspired in the recent paper [44] of the second
and third author, we combine the notion of strongly p-summability and that of factorable
p-domination to generate a new notion that inherits the main properties of each individual
class including a natural factorization theorem that follows the spirit of the linear theory.
The resulting class is formed by the factorable strongly p-summing multilinear operators.
As a consequence we have weak compactness, as in the linear case. In Section 4 we deal
with homogeneous polynomials, proving that a polynomial is factorable strongly p-summing
if and only if its linearization is absolutely p-summing. This yieds to identify the class
of factorable strongly p-summing multilinear operators with the class formed by composi-
tion with absolutely p-summing linear operators. The connection between m-homogeneous
polynomials and m-linear operators is then established: an m-homogeneous polynomial is
factorable strongly p-summing if and only if its associated symmetric m-linear map is fac-
torable strongly p-summing. These results yield to obtain in Section 5 proper generalizations
of fundamental properties related to summability for linear operators to multilinear maps
and homogeneous polynomials. Among other results, we show that a Dvoretzky-Rogers
type theorem, a Lindenstrauss–Pe lczyński type theorem or a Grothendieck type theorem
work for factorable strongly summability. Finally, in Section 6 we show that the sequence
formed by the ideals of factorable strongly summing homogeneous polynomials and fac-
torable strongly summing multilinear operators is coherent and compatible with the ideal
of absolutely summing linear operators.

2. Background: linear and multilinear summability

If 1 ≤ p < ∞ and X,Y are Banach spaces, a continuous linear operator u : X → Y is
absolutely p-summing (u ∈ Πp (X;Y )) if there is a constant C ≥ 0 such that m∑

j=1

‖u(xj)‖p
1/p

≤ C

 sup
ϕ∈BX∗

m∑
j=1

|ϕ(xj)|p
1/p

for all x1, ..., xm ∈ X and all positive integers m. The infimum of all C that satisfy the
above inequality defines a norm, denoted by πp(u), and (Πp (X,Y ) , πp) is a Banach space.
The cornerstones of the theory of absolutely summing linear operators are the following
theorems:

• (Dvoretzky-Rogers theorem) If p ≥ 1, then Πp(X;X) = L(X;X) if and only if
dimX <∞.

• (Grothendieck’s theorem ) Every continuous linear operator from `1 to `2 is abso-
lutely 1-summing.

• (Lindenstrauss–Pe lczyński theorem) If X and Y are infinite-dimensional Banach
spaces, X has an unconditional Schauder basis and Π1(X;Y ) = L(X;Y ) then X =
`1 and Y is a Hilbert space.

• (Pietsch Domination theorem) If X and Y are Banach spaces, a continuous linear
operator u : X → Y is absolutely p-summing if and only if there exist a constant
C ≥ 0 and a Borel probability measure µ on the closed unit ball of the dual of X,
(BX∗ , σ(X∗, X)) , such that

(1) ‖u(x)‖ ≤ C
(∫

BX∗

|ϕ(x)|p dµ
) 1
p
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for all x ∈ X.
• (Inclusion theorem) If 1 ≤ p ≤ q <∞, then every absolutely p-summing operator is

absolutely q-summing.
• (Pietsch Factorization theorem) A continuous linear operator u : X → Y is abso-

lutely p-summing if, and only if, there exist a regular Borel probability measure µ on
BX∗ , a closed subspace Xp of Lp (µ) and a continuous linear operator û : Xp → Y
such that

jp ◦ iX(X) ⊂ Xp and û ◦ jp ◦ iX = u,

where iX : X → C (BX∗) and jp : C (BX∗) → Lp (µ) are the canonical inclusions.
Moreover, every absolutely p-summing linear operator is weakly compact.

From now on p ∈ [1,∞) and X,X1, ..., Xn, Y are Banach spaces over the same scalar field
K = R or C. A continuous n-linear operator T : X1 × · · · ×Xn → Y is p-dominated if there
is a constant C ≥ 0 such that m∑

j=1

‖ T (x1
j , ..., x

n
j ) ‖

p
n

n/p

≤ C

 sup
ϕ∈BX∗1

m∑
j=1

∣∣ϕ(x1
j )
∣∣p1/p

· · ·

 sup
ϕ∈BX∗n

m∑
j=1

∣∣ϕ(xnj )
∣∣p1/p

for all xkj ∈ Xj , all m ∈ N and (j, k) ∈ {1, ...,m} × {1, ..., n}. This concept is essentially
due to Pietsch (see [3, 28]) and lifts several important properties of the original linear
ideal of absolutely summing operators to the multilinear framework. The terminology “p-
dominated”, coined by M.C. Matos, is motivated by the following Pietsch-Domination type
theorem:

Theorem 2.1 (Pietsch, Geiss [24]). A continuous n-linear operator T : X1× · · ·×Xn → Y
is p-dominated if and only if there exist C ≥ 0 and regular probability measures µj on the
Borel σ-algebras of BX∗j endowed with the weak star topologies such that

‖T (x1, ..., xn)‖ ≤ C
n∏
j=1

∫
BX∗

j

|ϕ (xj)|p dµj (ϕ)

1/p

for every xj ∈ Xj and j = 1, ..., n.

Corollary 2.2. If 1 ≤ p ≤ q < ∞, then every p-dominated multilinear operator is q-
dominated.

The notion of p-semi-integral operator is another possible multilinear generalization of
the class of absolutely summing linear operators. If p ≥ 1, a continuous n-linear operator
T : X1 × · · · ×Xn → Y is p-semi-integral if there exists a C ≥ 0 such that m∑

j=1

‖ T (x1
j , ..., x

n
j ) ‖p

1/p

≤ C

 sup
(ϕ1,..,ϕn )∈BX∗1×···×BX∗n

m∑
j=1

| ϕ1(x1
j )...ϕn(xnj ) |p

1/p

for every m ∈ N, xkj ∈ Xk with k = 1, ..., n and j = 1, ...,m.
This class dates back to the research report [3] of R. Alencar and M.C. Matos. As in the

case of p-dominated multilinear operators, a Pietsch Domination theorem is valid in this
context:

Theorem 2.3. A continuous n-linear operator T : X1 × · · · × Xn → Y is p-semi-integral
if and only if there exist C ≥ 0 and a regular probability measure µ on the Borel σ−algebra
B(BX∗1 ×· · ·× BX∗n ) of BX∗1 ×· · ·× BX∗n endowed with the product of the weak star topologies
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σ(X∗l , Xl), l = 1, ..., n, such that

‖ T (x1, ..., xn) ‖≤ C

(∫
BX∗1

×···×BX∗n

| ϕ1(x1)...ϕn(xn) |p dµ(ϕ1, ..., ϕn)

)1/p

for all xj ∈ Xj, j = 1, ..., n.

Corollary 2.4. If 1 ≤ p ≤ q < ∞, every p-semi-integral multilinear operator is q-semi-
integral.

This class is strongly connected to the class of p-dominated multilinear operators. For
example, in [15] it is shown that every p-semi integral n-linear operator is np-dominated.

The following result shows that we cannot expect to lift coincidence results of the linear
case to dominated multilinear operators:

Theorem 2.5 (Jarchow, Palazuelos, Pérez-Garćıa and Villanueva [26]). For every n ≥ 3
and every p ≥ 1 and every infinite dimensional Banach space X there exists a continuous
n-linear operator T : X × · · · ×X → K that fails to be p-dominated.

Since p-semi-integral n-linear operators are np-dominated, we have:

Corollary 2.6. For every n ≥ 3, every p ≥ 1 and every infinite dimensional Banach space
X there exists a continuous n-linear operator T : X × · · · ×X → K that fails to be p-semi-
integral.

So, in view of the previous result, it is obvious that we cannot expect a Grothendieck
type theorem for dominated or semi-integral operators. In this direction, the classes of
multiple summing multilinear operators ([4, 29]), strongly multiple summing multilinear
operators ([8]) and strongly summing multilinear operators ([20]) are other possible gener-
alizations, with a quite better behavior if we are interested in lifting coincidence theorems,
like Grothendieck’s theorem. But, as a matter of fact, none of these classes lifts all the main
properties of absolutely summing linear operators to the multilinear setting.

In [44], a variant of the notion of p-dominated polynomials which satisfy (in a very natural
form) a Pietsch factorization type theorem, is introduced. A continuous n-homogeneous
polynomial P : X → Y is factorable p-dominated if there is a C ≥ 0 such that for every
xij ∈ X, and scalars λij , 1 ≤ j ≤ m1, 1 ≤ i ≤ m2 and all positive integers m1,m2, we havem1∑

j=1

∥∥∥∥∥
m2∑
i=1

λijP
(
xij
)∥∥∥∥∥
p
 1

p

≤ C sup
ϕ∈BX∗

m1∑
j=1

∣∣∣∣∣
m2∑
i=1

λijϕ
(
xij
)n∣∣∣∣∣

p
 1

p

.

The natural multilinear version of the notion of “factorable p-dominated polynomials” seems
to be:

Definition 2.7. A continuous n-linear operator T : X1 × · · · × Xn → Y is factorable p-
dominated if there is a constant C ≥ 0 such that for every xik,j ∈ Xk, and scalars λij,
1 ≤ j ≤ m1, 1 ≤ i ≤ m2 and all positive integers m1,m2, we havem1∑

j=1

∥∥∥∥∥
m2∑
i=1

λijT
(
xi1,j , ..., x

i
n,j

)∥∥∥∥∥
p
 1

p

≤ C sup
ϕk∈BX∗

k
k=1,...,n

m1∑
j=1

∣∣∣∣∣
m2∑
i=1

λijϕ1

(
xi1,j

)
· · ·ϕn

(
xin,j

)∣∣∣∣∣
p
 1

p

.

These notions have some connection with the idea of weighted summability, sketched in
[38]. It is likely that this class has a nice factorization theorem (like its polynomial version)
but a simple calculation shows that any factorable p-dominated multilinear operator is p-
semi-integral and thus we have:
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Proposition 2.8. For every n ≥ 3 and every p ≥ 1 and every infinite dimensional Banach
space X there exists a continuous n-linear operator T : X × · · · × X → K that fails to
be factorable p-dominated. A fortiori, regardless of the Banach space Y , there exists a
continuous n-linear operator T : X × · · · ×X → Y that fails to be factorable p-dominated.

So, since we are looking for classes that also lift coincidence results to the multilinear set-
ting, the class of factorable p-dominated multilinear operators is not what we are searching.

A continuous n-linear operator T : X1 × · · · × Xn → Y is strongly p-summing if there
exists a constant C ≥ 0 such that

(2)

 m∑
j=1

‖ T (x1
j , ..., x

n
j ) ‖p

1/p

≤ C

 sup
φ∈BL(X1,...,Xn;K)

m∑
j=1

| φ(x1
j , ..., x

n
j ) |p

1/p

.

for every m ∈ N, xkj ∈ Xk with k = 1, ..., n and j = 1, ...,m.
The class of strongly p-summing multilinear operators is due to V. Dimant [20] and

according to [37, 39] it is perhaps the class that best translates to the multilinear setting the
properties of the original linear concept. For example, a Grothendieck type theorem and a
Pietsch-Domination type theorem are valid:

Theorem 2.9 (Grothendieck-type theorem [20]). Every continuous n-linear operator T :
`1 × · · · × `1 → `2 is strongly 1-summing.

Theorem 2.10 (Pietsch Domination type theorem [20]). A continuous n-linear operator
T : X1×· · ·×Xn → Y is strongly p-summing if, and only if, there are a probability measure
µ on B(X1⊗̂π···⊗̂πXn)∗ , with the weak-star topology, and a constant C ≥ 0 so that

(3) ‖T (x1, ..., xn)‖ ≤ C

(∫
B(X1⊗̂π···⊗̂πXn)∗

|ϕ (x1 ⊗ · · · ⊗ xn)|p dµ (ϕ)

) 1
p

for all (x1, ..., xn) ∈ X1 × · · · ×Xn.

Corollary 2.11. If p ≤ q then every strongly p-summing multilinear operator is strongly
q-summing.

It is not hard to prove that a Dvoretzky-Rogers Theorem is also valid for this class:

Theorem 2.12 (Dvoretzky-Rogers type theorem). Every continuous n-linear operator T :
X × · · · ×X → X is strongly p-summing if, and only if, dimX <∞.

A property fulfilled by the class of absolutely summing operators which is not lifted to the
multilinear framework by the notion of strong summability is the weak compactness. In fact,
it is well known that every absolutely p-summing linear operator is weakly compact, but
Carando and Dimant have shown that there exist strongly p-summing multilinear operators
that fail to be weakly compact [16]. This result implies that a natural version of the Pietsch
Factorization Theorem is not valid for strongly summing multilinear operators, as we will
see below.

Suppose that the following factorization theorem holds: T : X1×· · ·×Xn → Y is strongly
p-summing if and only if there is a regular Borel probability measure µ on B(X1⊗̂π···⊗̂πXn)∗ ,

with the weak-star topology, a closed subspace Zp of Lp

(
B(X1⊗̂π···⊗̂πXn)∗ , µ

)
and a contin-

uous linear operator T̂ : Zp → Y such that

jp ◦ iX1×···×Xn(X1 × · · · ×Xn) ⊂ Zp and T̂ ◦ jp ◦ iX1×···×Xn = T,

where

iX1×···×Xn : X1 × · · · ×Xn → C
(
B(X1⊗̂π···⊗̂πXn)∗

)



ABSOLUTE SUMMABILITY ON MULTILINEAR OPERATORS AND POLYNOMIALS 7

is the canonical n-linear map iX1×···×Xn(x1, ..., xn) (ϕ) = ϕ(x1 ⊗ · · · ⊗ xn) and

jp : C
(
B(X1⊗̂π···⊗̂πXn)∗

)
→ Lp

(
B(X1⊗̂π···⊗̂πXn)∗ , µ

)
is the canonical linear inclusion.

Since jp is absolutely p-summing (and thus weakly compact), then we conclude that the

set jp (iX1×···×Xn(BX1
× · · · ×BXn)) is relatively weakly compact in Zp. Since T̂ is contin-

uous and linear, then T (BX1 , ..., BXn) = T̂ (jp (iX1×···×Xn(BX1 × · · · ×BXn))) is relatively
weakly compact in Y and thus T is weakly compact, but this is not true in general ([16]).

In this paper we combine the idea of factorable summability from [44] with the notion
of strongly p-summing multilinear operators and we show that the new class we introduce
recovers all these lacks suffered by the former multilinear extensions. Indeed we will show
that this class coincides with the class of composition of multilinear mappings with absolutely
summing operators.

3. Factorable strongly p-summing multilinear operators

The following definition is inspired in ideas from [44], adapted to the notion of strongly
summing multilinear operators:

Definition 3.1. A continuous n-linear operator T : X1 × · · · × Xn → Y is factorable
strongly p-summing if there is a constant C ≥ 0 such that for every xik,j ∈ Xk, 1 ≤ j ≤ m1,
1 ≤ i ≤ m2 and all positive integers m1,m2, we havem1∑

j=1

∥∥∥∥∥
m2∑
i=1

T
(
xi1,j , ..., x

i
n,j

)∥∥∥∥∥
p
 1

p

≤ C sup
‖ϕ‖≤1

m1∑
j=1

∣∣∣∣∣
m2∑
i=1

ϕ
(
xi1,j , ..., x

i
n,j

)∣∣∣∣∣
p
 1

p

.

where the supremum is taken over all the continuous n-linear functionals ϕ : X1×· · ·×Xn →
K of norm less or equal than 1. The class of all factorable strongly p-summing n-linear
operators T : X1 × · · · × Xn → Y is denoted by LFSt,p(X1, . . . , Xn;Y ) and endowed with
the norm ‖ · ‖FSt,p, where ‖T‖FSt,p is given by the infimum of all constant C fulfilling the
above inequality.

Note that if T is factorable strongly p-summing then making m2 = 1 we havem1∑
j=1

∥∥T (x1
1,j , . . . , x

1
n,j

)∥∥p1/p

≤ C sup
‖ϕ‖≤1

m1∑
j=1

∣∣ϕ (x1
1,j , ..., x

1
n,j

)∣∣p 1
p

,

i.e., T is strongly p-summing. In particular, whenever n = 1, LFSt,p(X1;Y ) = Πp(X1;Y ) is
the class of all absolutely p-summing operators from X1 to Y .

The ideal property is straightforward. It is also trivial that every scalar-valued n-linear
operator is factorable strongly p-summing. Straightforward calculations show that this class
forms a Banach multi-ideal.

As we will see in Section 5, this class preserves the nice properties of the class of strongly
summing multilinear operators and has extra desirable properties: weak compactness and a
factorization theorem.

Theorem 3.2 (Pietsch-Domination type theorem). A continuous n-linear operator T :
X1×· · ·×Xm → Y is factorable strongly p-summing if and only if there is a regular probability
measure µ on B(X1⊗̂π···⊗̂πXn)∗ , endowed with the weak-star topology, and a constant C ≥ 0,

such that ∥∥∥∥∥
m∑
i=1

T
(
xi1, ..., x

i
n

)∥∥∥∥∥ ≤ C
(∫

B(X1⊗̂π···⊗̂πXn)∗

∣∣∣∣∣
m∑
i=1

ϕ
(
xi1, ..., x

i
n

)∣∣∣∣∣
p

dµ (ϕ)

) 1
p

.
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for every m and every xik ∈ Xk, 1 ≤ k ≤ n, 1 ≤ i ≤ m.

Proof. The notion of factorable strongly p-summing multilinear operator is precisely the
concept of RS-abstract p-summing (see [11, 36, 39]) for

R : B(X1⊗̂π···⊗̂πXn)∗ × (X1 × · · · ×Xn)
N × {0} → [0,∞)

given by

R
(
ϕ,
(
x1

1, ..., x
1
n

)
, ..., (xm1 , ..., x

m
n ) , 0

)
=

∣∣∣∣∣
m∑
i=1

ϕ
(
xi1 ⊗ · · · ⊗ xin

)∣∣∣∣∣
and

S : L (X1, ..., Xn;Y )× (X1 × · · · ×Xn)
N × {0} → [0,∞)

given by

S
(
T,
(
x1

1, ..., x
1
n

)
, ..., (xm1 , ..., x

m
n ) , 0

)
=

∥∥∥∥∥
m∑
i=1

T
(
xi1, ..., x

i
n

)∥∥∥∥∥ .
Since R and S satisfy the hypotheses of the general Pietsch Domination Theorem, the result
follows straightforwardly. �

Theorem 3.3 (Pietsch-Factorization type theorem). A continuous n-linear operator T :
X1 × · · · × Xn → Y is factorable strongly p-summing if and only if there exist a regular
probability measure µ on B(X1⊗̂π···⊗̂πXn)∗ , endowed with the weak-star topology, a constant

C ≥ 0, a closed subspace Zp of Lp

(
B(X1⊗̂π···⊗̂πXn)∗ , µ

)
and a continuous linear operator

T̂ : Zp → Y such that

jp ◦ iX1×···×Xn(X1 × · · · ×Xn) ⊂ Zp and T̂ ◦ jp ◦ iX1×···×Xn = T,

where

iX1×···×Xn : X1 × · · · ×Xn → C
(
B(X1⊗̂π···⊗̂πXn)∗

)
is the canonical n-linear map iX1×···×Xn(x1, ..., xn) (ϕ) = ϕ(x1 ⊗ · · · ⊗ xn) and

jp : C
(
B(X1⊗̂π···⊗̂πXn)∗

)
→ Lp

(
B(X1⊗̂π···⊗̂πXn)∗ , µ

)
is the canonical linear inclusion.

Proof. Suppose that T is factorable strongly p-summing. Let µ be the measure given by
the Pietsch Domination Theorem (Theorem 3.2) applied to T . Let Wp be the subspace of

Lp

(
B(X1⊗̂π···⊗̂πXn)∗ , µ

)
given by the linear span of jp ◦ iX1×···×Xn(X1 × · · · ×Xn). Define

the linear operator T̂ : Wp → Y by

T̂ (z) =

n∑
i=1

λiT
(
xi1, ..., x

i
n

)
for

z =

n∑
i=1

λi〈·,
(
xi1 ⊗ · · · ⊗ xin

)
〉 ∈Wp.

Note that T̂ is well-defined. In fact, if

z1 =

m1∑
i=1

λi〈·,
(
xi1 ⊗ · · · ⊗ xin

)
〉 and z2 =

m2∑
i=1

αi〈·,
(
yi1 ⊗ · · · ⊗ yin

)
〉
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coincide in Wp, then considering

w :=

m1∑
i=1

λi〈·,
(
xi1 ⊗ · · · ⊗ xin

)
〉 −

m2∑
i=1

αi〈·,
(
yi1 ⊗ · · · ⊗ yin

)
〉,

we have w = 0 almost everywhere in Wp, i.e.,∫
B(X1⊗̂π···⊗̂πXn)∗

∣∣∣∣∣
m1∑
i=1

λiϕ
(
xi1 ⊗ · · · ⊗ xin

)
−

m2∑
i=1

αiϕ
(
yi1 ⊗ · · · ⊗ yin

)∣∣∣∣∣
p

dµ (ϕ) = 0.

Thus, from the domination theorem,∥∥∥∥∥
m1∑
i=1

λiT
(
xi1, ..., x

i
n

)
−

m2∑
i=1

αiT
(
yi1, ..., y

i
n

)∥∥∥∥∥
≤ C

(∫
B(X1⊗̂π···⊗̂πXn)∗

∣∣∣∣∣
m1∑
i=1

λiϕ
(
xi1 ⊗ · · · ⊗ xin

)
−

m2∑
i=1

αiϕ
(
yi1 ⊗ · · · ⊗ yin

)∣∣∣∣∣
p

dµ (ϕ)

) 1
p

= 0

and we conclude that

T̂ (z1)− T̂ (z2) =

m1∑
i=1

λiT
(
xi1, ..., x

i
n

)
−

m2∑
i=1

αiT
(
yi1, ..., y

i
n

)
= 0.

Note also that for z =
m∑
i=1

λi〈·,
(
xi1 ⊗ · · · ⊗ xin

)
〉 ∈Wp we have

∥∥∥T̂ (z)
∥∥∥ =

∥∥∥∥∥
m∑
i=1

λiT
(
xi1, ..., x

i
n

)∥∥∥∥∥
≤ C

(∫
B(X1⊗̂π···⊗̂πXn)∗

∣∣∣∣∣
m∑
i=1

λiϕ
(
xi1 ⊗ · · · ⊗ xin

)∣∣∣∣∣
p

dµ (ϕ)

) 1
p

= C ‖z‖Lp(µ)

and T̂ is continuous. It is obvious that from the very definition of T̂ we have T̂ ◦ jp ◦
iX1×···×Xn = T . Now we extend T̂ to Zp = Wp. The converse is immediate. �

4. Factorable strongly p-summing polynomials

The m-fold symmetric tensor product of X is the linear span of all tensors of the form
x⊗ · · · ⊗ x, x ∈ X, and is denoted by ⊗m,sX. This space is endowed with the s-projective
tensor norm, defined as

πs(z) = inf{
k∑
j=1

|λj |‖xj‖n : k ∈ N, z =

k∑
j=1

λjxj ⊗ · · · ⊗ xj},

for z ∈ ⊗m,sX. Let ⊗̂m,sπs X denote the completion of ⊗m,sπs X.

Given P ∈ P(mX;Y ), the linearization of P is the unique linear operator PL,s : ⊗̂m,sπs X →
Y such that PL,s(x⊗· · ·⊗x) = P (x) for all x ∈ X. Ryan [46] proved that the correspondence
P ↔ PL,s establishes a isometric isomorphism between the space P(mX), endowed with the

usual sup norm, and the strong dual of ⊗̂m,sπs X. Another map associated to P ∈ P(mX;Y )

is the unique continuous symmetric m-linear mapping P̌ that satisfies P̌ (x, . . . , x) = P (x),
for all x ∈ X. It is well known that ‖P̌‖ ≤ c(m,X)‖P‖ for all P ∈ P(mX), where c(m,X)
is the m-th polarization constant of X. For the general theory of homogeneous polynomials
we refer to [21] and [33].
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Concomitantly to multilinear mappings, factorable strongly p-summing homogeneous
polynomials can be introduced. Our aim is to prove that both classes coincide in the sense
that a polynomial is factorable strongly p-summing if and only if its associated symmetric
multilinear mapping is factorable strongly p-summing. Moreover, we will see the deep rela-
tionship between factorable strong summability and absolute summability by proving that,
for an homogeneous polynomial, it is equivalent that the polynomial is factorable strongly
summing to that its linearization is an absolutely summing operator. To attain this purpose,
we will show that both, factorable strongly p-summing polynomials and factorable strongly
p-summing multilinear operators, form composition ideals. It is worth mentioning that the
linearization of a dominated polynomial is not necessarily absolutely summing.

Definition 4.1. A continuous n-homogeneous polynomial P : X → Y is factorable strongly
p-summing if there is a C ≥ 0 such that for every xij ∈ X, and scalars λij, 1 ≤ j ≤ m1,
1 ≤ i ≤ m2 and all positive integers m1,m2, we have thatm1∑

j=1

∥∥∥∥∥
m2∑
i=1

λijP (xij)

∥∥∥∥∥
p
1/p

≤ C sup
‖q‖≤1,q∈P(mX)

m1∑
j=1

∣∣∣∣∣
m2∑
i=1

λijq(x
i
j)

∣∣∣∣∣
p
1/p

.

The class of all factorable strongly p-summing m-homogeneous polynomials from X to Y is
denoted by PFSt,p(mX;Y ) and endowed with the norm ‖ · ‖FSt,p given by the infimum of all
constants C fulfilling the above inequality.

It is clear that factorable p-dominated polynomials are factorable strongly p-summing.
An easy calculation shows the following ideal property:

Proposition 4.2. If P ∈ PFSt,p(mX;Y ) and u : G→ X, v : Y → Z are continuous linear
operators then v ◦ P ◦ u ∈ PFSt,p(mG;Z) and ‖v ◦ P ◦ u‖FSt,p ≤ ‖v‖ · ‖P‖FSt,p‖u‖m.

It is not difficult to complete Proposition 4.2 and show that factorable strongly n-
homogeneous polynomials form an ideal of polynomials (for the definition of ideal of poly-
nomials we refer to [5]).

Dimant [20] introduced the class of strongly p-summing m-homogeneous polynomials
from X to Y as those m-homogeneous polynomials P : X → Y that satisfy that there exists
K > 0 such that for any n ∈ N and any x1, . . . , xn ∈ X,

(

n∑
j=1

‖P (xj)‖p)1/p ≤ K sup
‖q‖≤1,q∈P(mX)

(

n∑
j=1

|q(xj))|p)1/p.

In [20, Proposition 3.2] it is proved that if the linearization PL,s of P ∈ P(mX;Y ) is ab-
solutely p-summing then p is strongly p-summing. However, the converse is not true (see
[16, Example 3.3]). The reason, as for p-dominated polynomials, is that not every strongly
p-summing polynomial is weakly compact. So, once again, the lack of connection with weak
compactness turns out to be a deep inconvenience in the way that strongly p-summing
polynomials generalize absolutely p-summing linear operators. Even if a domination holds
also for strongly p-summing polynomials [20, Proposition 3.2], no factorization theorem is
expected. Let us prove a factorization theorem for factorable strongly p-summing polyno-
mials. We first need a domination theorem, that is obtained as a particular case of [11,
Theorem 2.2]. We denote by δ : X → C(BP(mX)) the m-homogeneous polynomial given by
δ(x) := δx : BP(mX) → K, where δx(P ) := P (x). Considering that the space of continu-
ous m-homogeneous polynomials is a dual space (see [46]), its closed unit ball BP(mX) is a
weak-star compact set.

Theorem 4.3 (Pietsch-Domination type theorem). Let P ∈ P(mX;Y ). Then P is fac-
torable strongly p-summing if and only if there exists a regular Borel probability measure µ
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on BP(mX), endowed with the weak-star topology, such that

‖
k∑
i=1

λiP (xi)‖ ≤ C(

∫
BP(mX)

|
k∑
i=1

λiq(xi)|p dµ)1/p

for all x1, . . . , xk ∈ X and λ1, . . . , λk ∈ K.

Proof. It is a particular case of [11, Theorem 2.2] analogous to the proof of Theorem 3.2. �

We shall need the following result to prove the sufficiency of the Factorization Theorem.
When dealing with polynomials, the main difficulty to obtain a factorization theorem is to
prove that the linear operator that closes the diagram is well defined. We will see that the
class of factorable strongly p-summing polynomials fits perfectly to recover this handicap.
Besides, Proposition 4.4 will be the key for our purposes to obtain that factorable strongly
p-summing homogeneous polynomials form a composition ideal. We include the proof for
the sake of completeness.

Proposition 4.4. If Q ∈ P(mG;X) and u : X → Y is an absolutely p-summing linear
operator, then u ◦Q ∈ PFSt,p(mG;Y ) and ‖u ◦Q‖FSt,p ≤ πp(u)‖Q‖.

Proof. Let m1,m2 be positive integers, xij ∈ X, and scalars λij , 1 ≤ j ≤ m1, 1 ≤ i ≤ m2.
Then,

(

m1∑
j=1

‖(
m2∑
i=1

λiju ◦Q(xij)‖p)1/p = (

m1∑
j=1

‖u(

m2∑
i=1

λijQ(xij)‖p)1/p

≤ πp(u) sup
‖x∗‖≤1,x∗∈X∗

(

m1∑
j=1

|〈x∗,
m2∑
i=1

λijQ(xij)〉|p)1/p

≤ πp(u)‖Q‖ sup
‖x∗‖≤1,x∗∈X∗

(

m1∑
j=1

|
m2∑
i=1

λij〈x∗, Q/‖Q‖(xij)〉|p)1/p

≤ πp(u)‖Q‖ sup
‖q‖≤1,q∈P(mG)

(

m1∑
j=1

|
m2∑
i=1

λijq(x
i
j)|p)1/p.

�

Theorem 4.5 (Pietsch-Factorization type theorem). Let P ∈ P(mX;Y ). Then P is fac-
torable strongly p-summing if and only if there exists a regular Borel probability measure µ
on BP(mX), a closed subspace Gp of Lp(µ) and a continuous linear operator v0 : Gp → Y
such that jp ◦ δ(X) ⊂ Gp and v0 ◦ jp ◦ δ = P , where jp : C(BP(mX))→ Lp(BP(mX), µ) is the
canonical inclusion.

Proof. Assume first that P is factorable strongly p-summing. Let µ be given by Theo-
rem 4.3. Take Gp the completion of the image by jp of the linear span of δ(X). De-

fine v0(jp(
∑k
i=1 λiδxi)) :=

∑k
i=1 λiP (xi). To see that v0 is well defined, consider that

jp(
∑k
i=1 λiδxi) = jp(

∑l
i=1 ηiδyi). Then w :=

∑k
i=1 λiδxi −

∑l
i=1 ηiδyi = 0 a.e. on BP(mX).

Hence,

‖
k∑
i=1

λiP (xi)−
l∑
i=1

ηiP (yi)‖ ≤ ‖P‖FSt,p(
∫
BP(mX)

|
k∑
i=1

λiq(xi)−
l∑
i=1

ηiq(yi)|p dµ)1/p = 0.



12 DANIEL PELLEGRINO, PILAR RUEDA, ENRIQUE A. SÁNCHEZ-PÉREZ

Thus, v0(w) = 0. That proves that v0 is well defined. The continuity of v0 follows from the
calculations:

‖v0(z)‖ = ‖
k∑
i=1

λiP (xi)‖ ≤ ‖P‖FSt,p(
∫
BP(mX)

|
k∑
i=1

λiq(xi)|pdµ)1/p

= ‖P‖FSt,p‖
k∑
i=1

λiδxi‖Lp(µ) = ‖P‖FSt,p‖z‖Lp(µ)

for any z = jp(
∑k
i=1 λiδxi). The desired linear operator is just the continuous extension of

v0 to Gp. The converse follows from Proposition 4.4. �

Corollary 4.6. Let P ∈ P(mX;Y ). Then P ∈ PFSt,p(mX;Y ) if and only if P = u ◦ Q,
for some continuous m-homogeneous polynomial Q and some absolutely p-summing linear
operator u. In that case ‖P‖FSt,p = inf{πp(u)‖Q‖ : P = u ◦Q}.

Proof. It follows from Theorem 4.5 and Proposition 4.4. �

Corollary 4.6 says that the ideal of all factorable strongly p-summing m-homogeneous
polynomials is the composition ideal with all absolutely p-summing linear operators, that
is, PFSt,p = Πp ◦ P (see [10]). An analogous argument for multilinear operators instead
of polynomials yields to prove that the ideal of all factorable strongly p-summing m-linear
operators is the composition ideal with all absolutely p-summing linear operators, that is,
LFSt,p = Πp ◦ L.

Remark 4.7. In [31] it is shown an example of a continuous m-homogeneous polynomial P :
X → Y and φ ∈ Πr(Y ;Z) such that φ ◦P : X → Z is not r-dominated. By Proposition 4.4,
φ◦P is factorable strongly r-summing. Therefore, the class of dominated polynomials differs
from the class of factorable strongly r-summing polynomials.

An application of Corollary 4.6 and [10, Proposition 3.2(b)] yields the announced char-
acterization:

Proposition 4.8. Let P ∈ P(mX;Y ). The following are equivalent:

(1) P ∈ PFSt,p(mX;Y ).
(2) PL,s is absolutely p-summing.

(3) P̌ ∈ LFSt,p(mX;Y ).

In that case, ‖P‖FSt,p = πp(PL,s).

5. The wealth of factorable strong p-summability

In this section it is shown that factorable strong p-summability is an excellent non linear
frame where linear results for absolute summability are properly generalized to multilinear
operators and polynomials. This evidences the interest of this new class as it really reflects
the good behavior of absolute summability in the non linear context. Some of these results
are established for multilinear operators and some for homogeneous polynomials. However,
as a consequence of Proposition 4.8 it is clear that one can pass easily from one to each
other.

Proposition 4.8 spreads open the way to lift the classical results for linear operators to
the polynomial and multilinear setting. A good example is the following Grothendieck type
theorem.

Theorem 5.1 (Grothendieck type theorem). If m ≥ 1 is a positive integer, then P(m`1; `2) =
PFSt,1(m`1; `2).
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Proof. Let P ∈ P(mX;Y ). Then PL,s ∈ L(⊗̂m,sπs `1; `2) = L(`1; `2) = Π1(`1; `2). Theo-
rem 4.8 yields the result. �

Using this technique that combines Proposition 4.8 and their linear analogs we can now
lift many other classical results (see [19, Theorems 3.15 and 3.17]). Most of the proofs are
then omitted.

Proposition 5.2 (Composition Theorem). If u ∈ Πp(X;Y ) and P ∈ PFSt,q(mG;X) then
u ◦ P ∈ PFSt,r(mG;Y ) for 1/r := min{1, 1/p+ 1/q}.

Proof. By Theorem 4.8 PL,s is absolutely q-summing. Then u ◦ PL,s is r-summing for
1/r := min{1, 1/p + 1/q} (see [19, Theorem 2.22]). Since u ◦ PL,s = (u ◦ P )L,s, a second
application of Theorem 4.8 yields the result. �

Theorem 5.3 (Extrapolation type theorem). Let 1 < r < p < ∞, and let X be a Banach
space. If PFSt,p(mX; `p) = PFSt,r(mX; `p) then PFSt,p(mX;Y ) = PFSt,1(mX;Y ) for every
Banach space Y .

Recall that given 1 ≤ p ≤ ∞ and λ > 1, a Banach space X is said to be an Lp,λ-space if
every finite dimensional subspace E of X is contained in a finite dimensional subspace F of
X for which there is an isomorphism v : F → `dimF

p with ‖v‖ · ‖v−1‖ < λ.

Theorem 5.4 (Lindenstrauss–Pe lczyński type theorem). Let 1 ≤ p ≤ 2 and 2 < q <
∞. If X is a Banach space and Y is a subspace of an Lp,λ-space, then PFSt,q(mX;Y ) =
PFSt,2(mX;Y ).

We have already proved that Domination/Factorization Theorems are fulfilled in the mul-
tilinear and polynomial classes of factorable strongly p-summing maps. As a straightforward
consequence of the Factorization Theorem 4.5 we get

Theorem 5.5. Any factorable strongly p-summing polynomial is weakly compact.

An alternative way to prove it is the following: by Theorem 4.8 the linearization of a
factorable strongly p-summing polynomial P is absolutely p-summing and hence weakly
compact. By [46] this is equivalent to the weak compactness of P . The same holds for the
case of multilinear operators.

The Domination Theorem 3.2 also yields to the following inclusion theorem.

Proposition 5.6 (Inclusion Theorem). If 1 ≤ p ≤ q < ∞ then every factorable strongly
p-summing polynomial is factorable strongly q-summing.

The forthcoming lemmas 5.7, 5.10 and its consequences show that, besides its good prop-
erties, the classes of factorable strongly p-summing multilinear operators and polynomials
have a coherent size.

Lemma 5.7. If every continuous n-linear operator T : X1 × · · · × Xn → Y is factorable
strongly p-summing, then every continuous linear operator uj : Xj → Y is absolutely p-
summing for every j = 1, ..., n.

Proof. Since Πp ◦ L = LFSt,p, it follows from [10, Lemma 3.4]. �

The following two theorems are immediate consequences of the previous lemma and of
the respective linear results (see also [10, Propositions 5.3 and 5.5]):

Theorem 5.8 (Dvoretzky-Rogers type theorem). Let Y be a Banach space. Every contin-
uous n-linear operator T : Y × · · · × Y → Y is factorable strongly p-summing if, and only
if, dimY <∞.
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Theorem 5.9 (Lindenstrauss–Pe lczyński type theorem). Let m be a positive integer. If X
and Y are infinite-dimensional Banach spaces, X has an unconditional Schauder basis and
LFSt,1(mX;Y ) = L(mX;Y ) then X = `1 and Y is a Hilbert space.

For polynomials we have a natural version of Lemma 5.7:

Lemma 5.10. If every continuous n-homogeneous polynomial P : X → Y is factorable
strongly p-summing, then every continuous linear operator u : X → Y is absolutely p-
summing.

Proof. Let u : X → Y be a continuous linear operator and ϕ ∈ X∗ be a non-null linear
functional and a ∈ X be so that ϕ (a) = 1. Then P (x) := u (x)ϕ (x)

n−1
is factorable

strongly p-summing. Thus P̌ is factorable strongly p-summing. From the proof of Lemma
5.7 we conclude that the linear operator v : X → Y defined by v(x) = P̌ (a, ...., a, x)
is absolutely p-summing. But v is a linear combination of u (a)ϕ and u; since u (a)ϕ is
absolutely p-summing it follows that u is absolutely p-summing. �

An immediate consequence of the previous lemma is that the analogs of theorems 5.8 and
5.9 work for polynomials. For instance:

Theorem 5.11 (Dvoretzky-Rogers type theorem for polynomials). Let Y be a Banach space.
Every continuous n-homogeneous polynomial P : Y → Y is factorable strongly p-summing
if, and only if, dimY <∞.

Given P ∈ P(mX;Y ) let us consider its transpose P t : Y ∗ → P(mX) given by P t(y∗) :=
y∗ ◦ P . Note that P t is a continuous linear operator. Let P tt : P(mX)∗ → Y ∗∗ be the
transpose of P t. It is well known (see [19, Theorem 2.21]) that, if Y = H is a Hilbert
space then a continuous linear operator is absolutely 1-summing whenever its transpose is
absolutely p-summing for some 1 ≤ p <∞. Let us see that the analogous result is true for
polynomials.

Proposition 5.12. Let H be a Hilbert space and P ∈ P(mX;H). If P t ∈ Πp(⊗̂
m,s
πs X;H)

for some 1 ≤ p <∞ then P ∈ PFSt,1(mX;H).

Proof. From the equality P tL,s = δ ◦ P t, where δ : P(mX) →
(
⊗̂m,sπs X

)∗
is the canonical

isomorphism, it follows that P tL,s is absolutely p-summing and then PL,s is absolutely 1-
summing. By Theorem 4.8 we conclude that P is factorable strongly 1-summing. �

Proposition 5.13. Let P ∈ P(mX;Y ). Then P ∈ PFSt,p(mX;Y ) if and only if P tt ∈
Πp(P(mX)∗;Y ∗∗).

Proof. It is a consequence of Theorem 4.8, the fact that P ttL,s = P tt ◦ δt and the analogous

well known property for linear operators (see [19, Proposition 2.19]). �

6. Coherence and compatibility

Let us denote the ideal of factorable strongly p-summing n-homogeneous polynomials by
PnFSt,p, whereas LnFSt,p denotes the ideal of factorable strongly p-summing n-linear operators.
The notions of coherent and compatible ideals of polynomials were introduced by Carando,
Dimant and Muro [17] in order to evaluate what polynomial approaches preserve the spirit

of a given operator ideal. Standard calculations show that
(
PnFSt,p

)∞
n=1

is coherent and

compatible with Πp. Very recently, in [35], the notions of coherence and compatibility were
extended to pairs of ideals of polynomials and multi-ideals. It is also possible to show that(
PnFSt,p,LnFSt,p

)∞
n=1

is coherent and compatible with Πp.

We have shown that PnFSt,p coincides with the composition ideal with the absolutely p-

summing operators. However, we cannot apply [35, Theorem 5.7] to get the coherence and
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compatibility as the topology involved in that result comes from the multilinear operators
space norm and it does not coincide with ‖ · ‖FSt,p (see [10]). Despite of this, standard
calculations also allow to get the following:

Theorem 6.1. The sequence
(
PnFSt,p,LnFSt,p

)∞
n=1

is coherent and compatible with Πp.

Acknowledgment: The authors are indebted to M. López Pellicer for his valuable
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(1966/1967) 333–353.
[42] A. Pietsch, Ideals of multilinear functionals (designs of a theory). Proceedings of the second international

conference on operator algebras, ideals, and their applications in theoretical physics (Leipzig, 1983),
185–199, Teubner-Texte Math., 67, Teubner, Leipzig, 1984.

[43] G. Pisier, Grothendieck’s theorem, past and present. Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 2,

237–323.
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