

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/150042

Lizcano, D.; López, G.; Soriano, J.; Lloret, J. (2016). Implementation of end-user
development success factors in mashup development environments. Computer Standards &
Interfaces. 47:1-18. https://doi.org/10.1016/j.csi.2016.02.006

https://doi.org/10.1016/j.csi.2016.02.006

Elsevier

Implementation of End-User Development Success Factors in
Mashup Development Environments

David Lizcano1, Genoveva López2, Javier Soriano2, Jaime Lloret3

1Universidad a Distancia de Madrid, Camino de la Fonda 20, 28400, Collado Villalba, Madrid,
Spain

2Universidad Politécnica de Madrid, Campus de Montegancedo, 28660, Boadilla del Monte,
Madrid, Spain

3Universidad Politécnica de Valencia, Camino Vera s/n, 46022, Valencia, Spain

Abstract

The Future Internet is expected to be composed of a mesh of interoperable web services
accessed from all over the Web. This approach has been supported by many software
providers who have provided a wide range of mashup tools for creating composite applications
based on components prepared by the respective provider. These tools aim to achieve the
end-user development (EUD) of rich internet applications (RIA); however, most, having failed
to meet the needs of end users without programming knowledge, have been unsuccessful.
Thus, many studies have investigated success factors in order to propose scales of success
factor objectives and assess the adequacy of mashup tools for their purpose. After reviewing
much of the available literature, this paper proposes a new success factor scale based on
human factors, human-computer interaction (HCI) factors and the specialization-functionality
relationship. It brings together all these factors, offering a general conception of EUD success
factors. The proposed scale was applied in an empirical study on current EUD tools, which
found that today’s EUD tools have many shortcomings. In order to achieve an acceptable
success rate among end users, we then designed a mashup tool architecture, called FAST-
Wirecloud, built taking into account the proposed EUD success factor scale. The results of a
new empirical study carried out using this tool have demonstrated that users are better able to
successfully develop their composite applications and that FAST-Wirecloud has scored higher
than all the other tools under study on all scales of measurement, and particularly on the scale
proposed in this paper.

Keywords: End-user development, mashup tool, service front-ends, service-oriented architectures, HCI success
factors

1. Introduction

Service-oriented architectures (SOA) have attracted a great deal of interest over the last few
years. In fact, SOAs increase asset reuse, reduce integration expenses and improve business
agility in responding to new demands [1]. Nonetheless, mainstream development and research
into SOAs have until now focused mainly on middleware and scalability, service engineering
and automating service composition, using business modelling process technologies. Little or
no attention has been paid to service front-ends, which are a fundamental part of SOAs [2].

As a result, SOAs remain on a technical layer hidden away from the service end user, called
end-user programmer (EUP), a person who programs to achieve the result of a program
primarily for personal rather than public use [35]. The evolution of web-based interfaces bears
testimony to the progress made towards improving service usability. However, existing web-
based service front-ends do not come anywhere near to meeting EUPs’ expectations [3].
Applications and EUP tools are still based on monolithic, inflexible, non-context-aware, non-
customizable and unfriendly user interfaces [4]. Consequently, EUPs do not really benefit from
the advantages promoted by service orientation in terms of modularity, flexibility and
composition [5].

The Web 2.0 social and technological movement highlighted the need to involve service-based
consumer portals, web content and web applications in the development, adaptation and
improvement of such applications. Accordingly, data mashups and interfaces, and mashup
development environments, have come to prominence in recent years. Large companies have
earmarked part of their investment for providing service front-ends for applications and data
on which they base their business value. These front-ends are adapted to and adapted by the
user in order to lower the barrier between the technology layer of a SOA-based application
and the EUP [6]. This DIY (do-it-yourself) approach has the backing of large companies like
Google (originally via iGoogle and then Chrome Web Store), Yahoo! (with Yahoo! Pipes and
Yahoo! Dapper), Microsoft (with PopFly) or IBM (with SOA4People and QEDWiki) among
others [7].

Their aim is to get EUPs to appreciate the benefits of SOA by fostering composition, loose
coupling and reuse on the front-end layer, and moving towards a user-centred service
conception [8]. Thus the above web development tools aim to empower EUPs to create their
own mashups of data and service interfaces, which are organized so as to cover their basic
needs. The resulting expenditure of time and effort should be well below that of traditional
compositional development, which is based on integrating and organizing back-end services
and resources and requires advanced programming skills that an end user does not have.

There is, however, an epistemological problem: although they target EUPs, resources and
mashup tools are not enough to ensure that EUPs can develop their own solution to a
particular problem, primarily because they have not been taught how go about this. In most
cases, EUPs do not perceive themselves as being able to translate requirements to a mashup
that meets such requirements.

This is less of a problem if the components of these mashups and the employed compositional
techniques tie in with the end-user cognitive model [9]. This has been achieved with great
success in the spreadsheet field, where end users can create a spreadsheet application by
establishing data flows between cells and preconceived functions that they neither have to be
acquainted with nor have to program. Our research is based on applying the success factors of
this domain, commonly called end-user success factors, to the mashup field, to provide EUPs
with a web development dataflow model between heterogeneous and dispersed service
interfaces. To do this, we have to consider which actions, principles and objectives, and design
decisions can be derived from replicable success factors in the spreadsheet domain and study
their applicability to web composition tools targeting EUPs.

In this paper we will review the most relevant publications and scientific results on end-user
development (EUD) success factors, which we will then combine in an innovative architecture
to study EUD success factors in the web domain. Thus, we will be able to study each web
mashup tool and form a general idea of how successful it is likely to be among EUPs based on
the studied factors. Additionally, we will demonstrate the usefulness of this study for guiding

key design and architectural decisions in order to achieve EUP satisfaction, which is vital for
improving future EUD solutions. For this purpose, we will present the architecture of a web
mashup tool that we have developed and highlight how this architecture performs on the
proposed scale for studying EUD success factors. The remainder of the paper is structured as
follows. Section 2 presents the state of the art and related work on end-user development
tools with respect to well-known and commonly accepted human and human–computer
interaction (HCI) success factors and successful specialization/functionality trade-offs. The
proposed scale for studying end-user development success factors is presented in Section 3.
Section 4 shows a performance comparison of our proposal according to traditional
measurement scale success factors. On the basis of the proposed measurement scale, Section
5 proposes a novel architecture for end user-centred service front-end development that is
based on the proposed measurement scale. We have used this architecture to drive the
development of an improved mashup tool that is presented in Section 6. Sections 5 and 6 both
illustrate how this mashup tool architecture performs with respect to the reported EUD
success factors and that it offers an appropriate specialization/functionality trade-off. Section
7 evaluates this mashup tool using the end-user development success factor scale. Section 8
discusses threats to validity. Finally, Section 9 outlines the conclusions.

2 Related Work

Nowadays there are several applications empowering EUPs to develop their own software
solutions, which are adapted to their unique and instant requirements. These applications, like
spreadsheets, e-mail filter creators or mashup web tools, focus on outputting different
software solutions, each oriented to a specific problem domain, such as calculation
requirements, spam filtering or visual web widget composition. Of all these approaches,
several studies state that spreadsheets are the major and most successful EUD solution
existing at present [10]. In an empirical study carried out by Wu et al. [10], 100% of a huge
sample of EUPs had at some time used a spreadsheet program in their daily work to solve one
problem or another. Other publications, like Boehm [11], suggested that more than 55 million
people in the United States do this kind of spreadsheet programming, whereas professional
programmers account for about 2.75 million of the country’s population. This gap is actually
widening, as Scaffidi [12] predicted that the EUD population (users of spreadsheets and other
EUD approaches) at workplaces in the United States would be 100 million by 2015. These
studies and publications indicate that EUD is about to take control not only of personalizing
computer applications and writing programs but also of designing new computer-based
applications without ever seeing the underlying program code.

For this reason, many researchers have begun to study EUD success factors [13], focusing
above all on the most relevant EUD solution, spreadsheets, to understand which of their
principles and factors are used and accepted by EUPs. Studies like [10] focus on successful
human EUD factors, whereas other studies like [14] focus on HCI factors or on aspects of
specialization and functionality [15]. The feedback that we got after reviewing all referenced
studies is that EUD success is related to human factors, HCI factors and the specialization-
functionality relationship. However, there are no publications that put all these ideas together
to offer a general conception of EUD success factors. Besides, we have not found any reliable
reference to other success factors that could lead an EUP tool to successfully achieve such
objectives. In this paper, we propose a joint scale that brings together all the success factors
considered in previous studies by other researchers and ourselves, which measures the extent
to which an EUP tool has such factors and what impact they have on the achieved results and
users.

2.1 Human Success Factors

All software development tools should be well accepted by their target users if they are to be
considered a successful solution. However, this acceptance, as Wu et al. [10] show in their
empirical survey, is not down to the choice of particular technologies or architectural
decisions, but to whether or not they preserve and take care of a number of human factors.

End-user computer acceptance has been established by Wu et al. [10] as one of the critical
success factors in achieving business success and is defined as the adoption and use of
information technology by personnel outside the IT domain to develop software applications
in support of organizational tasks. Davis [16] proposed the technology acceptance model
derived from reasoned action theory that has been tested and extended by numerous
empirical researchers. In these studies the actual use of any application is derived from several
human factors like perceived ease of use, perceived usefulness, and so on, and these ideas
were the basis for Wu et al.’s research. The empirical study carried out by Wu et al. [10] relied
on 800 people testing programs and evaluating software solutions. The evaluation showed
that actual software use follows the causal relationships illustrated in Figure 1. This diagram
establishes which factors are related to actual end use, and what weight or strength this causal
relation has, expressed by a correlation coefficient between two factors. The correlation
coefficient, ranging from -1 to 1, indicates that the correlation between the factors is positive
and stronger the closer it comes to 1. A negative correlation, which is stronger the closer it
comes to -1, would indicate that the value of one factor decreases, as the value of the other
increases. If the value is 0, there is no correlation between the factors. The key factors are
explained in detail in Table 1.

Figure 1. Empirical results of study about human factors related to EUD success.

Computer Self-Efficacy A person’s perception of his or her ability to use computers

in the accomplishment of a task.

Computer Enjoyment Individuals experience immediate pleasure and joy from
using software

Subjective Norm The degree to which a person believes that people that are
important to him or her think that he or she should do the
thing in question

Management Support Perceived level of general support offered by top
management

Internal Computing
Support and Training

Technical support and the amount of training provided
within the company.

External Computing
Support and Training

Technical support and the amount of training provided by
individuals from outside the company.

Network Externality The utility of software use increases if its number of users
increases.

Task-Technology Fit The degree to which an organization’s applications meet the
information needs of the task.

Perceived Ease of Use The degree to which a person believes that using specific
software would be free of effort.

Perceived Usefulness The degree to which a person believes that using specific
software will increase his or her job performance.

Table 1. Human factors related to EUD success (actual use).

Figure 1 includes factors with multiple weighted paths to the final concept of actual use, and
therefore the correlation coefficient between each factor and the use of a program is not
clear. All correlation coefficients need to be recalculated for each new application domain in
order to reveal the final impact of each factor on the actual use of the software. Figure 2
shows the coefficients originally calculated by Davis [16] and later refined and applied by Wu
et al. [10] to EUD success. It is thus possible to calculate the final impact of each factor on the
actual use of service-oriented software. Accordingly, each factor can be scaled to give an idea
of its importance.

Figure 2. Relevance of each human factor related to EUD success in web software.

The above research suggests that an end user will use a program if he or she perceives it to be
useful and enjoys the experience of using it. If other people in the end user’s environment use
the application, the end user is more likely to accept and use this software, too. Finally, ease of

use and the fact that application usefulness would increase if it were used by more and more
users will lead to more actual use of a software tool.

2.2 HCI Success Factors

Other studies like the one presented by Jones et al. in [14] claim that spreadsheets (and other
similar EUD solutions, such as web mashups and visual end-user programming IDEs) are the
programming language of choice for many people because of their HCI facilities. Spreadsheets
are a user-centred approach to language design, focusing on fostering usability through
effective HCI. Specialized research into the psychology of programming and empirical studies
of programmers [14] offer groundwork for human issues in programming, structured as
cognitive dimensions, that EUD solutions should consider and optimize in order to be
successful among EUPs [13]. These cognitive dimensions are in fact HCI factors that, if properly
taken care of, result in high end-user acceptance on a par with spreadsheets [17]. Green and
Petre [18] defined 13 cognitive dimensions (nine of which are of equal importance, the other
four being minor dimensions more related to user-related cultural issues) that if properly
addressed, improve HCI and simplify EUD. The most often cited factors are listed below:

• Abstraction gradient: What are the minimum and maximum levels of abstraction? Can
fragments be encapsulated?

• Consistency: When some of the techniques, methodology and programming language
have been learnt, how much of the rest can be inferred?

• Error-proneness: Does the design of the notation induce “careless mistakes”?

• Hidden dependencies: Is every dependency overtly indicated in both directions? Is the
indication perceptual or merely symbolic?

• Premature commitment: Do programmers have to make decisions before they have
the information they need?

• Progressive evaluation: Can a partially complete program be executed to gather
feedback on “How am I doing”?

• Role expressiveness: Can the reader see how each component of a program relates to
the whole?

• Viscosity: How much effort is required to make a single change?

• Visibility and juxtaposability: Is every part of the code/development simultaneously
visible, or is it at least possible to compare any two parts side by side at will? If the
code is dispersed, is it clear in which order it should be read at least?

According to Jones et al.’s study [14], software that accounts for these factors, like Microsoft
Excel or other spreadsheet and end-user programming solutions, enable EUPs to implement
software in a simple and flexible manner. Therefore, these dimensions must be kept in mind
when new EUD approaches are set out.

2.3 Successful Specialization/Functionality Trade-off

For many researchers in the EUD and composite applications domain, the key factor for
success among EUPs is that EUD software accomplishes a good trade-off between the
specialization and the functionality of the resulting solutions [15]. Some mashup approaches

recently started to work on "domain specificity", i.e. the tailorability of a mashup tool to
specific requirements that may arise in specific domains (e.g. in specific working communities)
[44]. However, solutions focusing on a single domain are unable to address complex problems
that require solutions involving heterogeneous interdisciplinary components, that is, they do
not have the functionality to solve generic problems. There is, therefore, a need for a trade-off
between two opposite approaches: the EUP tool should be able to build specialized solutions
in a domain and have sufficient functionality to be able to do the same in domains that are
quite unalike. This trade-off gives an idea of whether EUPs would be able to build their own
solutions to satisfy their needs [19].

How well suited a developed solution is for a task or real problem could be quantified by two
factors:

• Specialization: the degree to which an application exactly matches real requirements,
features and details of a real problem, without the need for the user to have to further
adapt it to the problem domain.

• Functionality: the sum or any aspect of what a product, such as a software application
or computing device, can do for a user. The overall functionality decreases when the
solution is overly specialized for a specific problem.

As these are opposing factors, however, it is impossible to increase one factor without
decreasing the other. For this reason, EUD solutions should adopt a trade-off where both
factors are at equilibrium [19]. This will lead to solutions that are very specialized for a
problem but could easily be exported and used in other problem domains. This balance is
frequently measured on a four-point Likert scale (poor, average, good or optimal
specialization/functionality relationship) [15].

In this paper we detail how we built a new measurement scale for EUD success factors which is
based on a previous proposal [20]. We also statistically validate the scale by demonstrating
that all the families of factors used on separate axes are independent. Additionally, we report
a case study illustrating performance on this new scale, which found that the existing tools
ranking top on the proposed scale are the ones using which EUPs are more efficient.
Accordingly, if current mashup tools were to score higher on the proposed scale, they would
be more successful among EUPs and more usable. This would make current tools and
environments better at supporting EUD processes.

3. Proposal

All the factors studied in the literature are frequently referenced and used in EUD research,
but they are always applied individually. In this paper, we propose the creation of a complex
scale to study key EUD success factors globally by combining all the studied factors. Since each
factor type targets one axis of the scale structure, we have concluded that, as demonstrated in
[42], human factors, HCI factors and the specialization/functionality factor are orthogonal to
each other, that is, they are mutually independent, uncorrelated factors. Considering this
premise, which is validated in the next section, each family of factors can be integrated as an
independent axis on a complex 3D scale that represents each independent family of factors
(Figure 3). Each axis must be managed as follows:

• X-axis = human factors. In the last section we described eight factors that should be
considered to achieve EUD success. These factors had correlation coefficients denoting
their relevance. On the proposed scale, the study of an EUD solution will include an

evaluation of each factor on a three-point Likert scale (0 for a low factor rating, 1 for
an average rating and 2 for a high rating). This rating will be multiplied by the
correlation coefficient (shown in Figure 2) to output a final rating for this factor. Each
factor must be evaluated and added together for each EUD solution studied. This will
add up to a final rating of from 0 to 9.56 (as a result of the correlation coefficients).
Finally, this rating has to be normalized to a standard scale ranging from 0 to 10 (by
multiplying by 10/9.56). This final value will be represented on the X-axis to illustrate
how successful the studied solution would be in terms of EUD based on human factors.

• Y-axis = HCI factors. In the previous section we studied thirteen HCI factors that should
be improved to achieve EUD success, all of which were equally important. Therefore,
an analysis of these factors for a EUD solution will involve evaluating each factor on a
three-point Likert scale (0 for a low rating, 1 for an average rating and 2 for a high
rating of the factor) and adding up this value for each factor. This process will output
an overall rating ranging from 0 to 26 points. Finally, this value has to be normalized to
a standard scale (0-10) by multiplying by 10/26. This final value will be represented on
the Y-axis to illustrate how successful the studied solution would be in terms of EUD
based on its cognitive dimensions.

• Z-axis = Specialization/functionality trade-off: the four-point Likert score studied in the
related work is represented directly on the z-axis, adding a third dimension to the
expected EUD success of a solution.

Figure 3. Proposed scale for studying EUD success factors.

We believe that this theoretical framework for the study of success factors is very useful in two
ways: It is a powerful scale for rating any EUD tool for EUP and for forming an idea of expected
EUD success based on widespread and proven principles, founded on factors included in
several referenced research papers, and it also summarizes all proven factors that are related
to actual use and user acceptance. It is therefore a good starting point for creating new EUD
environments or approaches.

4. Performance comparison

To verify the effectiveness of each measurement scale success factor, we conducted a study in
response to the following research questions:

• RQ1: Are there correlations between the different scales of measurement considered,
or are they independent of each other?

• RQ2: Which measurement scale (human factor measures, HCI measures, specialization
/ functionality measures or a combined measurement, as proposed in this paper) is
better at rating the success of a given EUD tool?

To address these two issues, we ran an experiment with 100 EUPs, characterized according to
Table 2.

 Sample division into work groups
Characterization EUPs (100) Yahoo!

Dapper and
Pipes group

Open
Kapow
group

Chrome
PT group

Popfly
group

Gender
 Male 51 13 13 12 13
 Female 49 12 12 13 12
Age
 < 20 years 19 5 4 5 5
 20-34 years 23 5 6 6 6
 35-49 years 22 6 5 5 6
 50-64 years 21 5 6 5 5
 > 65 years 15 4 4 4 3
Educational Attainment
 Secondary School 23 5 6 6 6
 Vocational Training 27 7 6 7 7
 Bachelor’s Degree 25 6 7 6 6
 Master’s Degree 25 7 6 6 6
Employment
 Student 28 7 7 7 7
 Researcher 30 7 8 8 7
 Employee 42 11 10 10 11
Experience and previous knowledge
 Mashup Tools 3 0 1 1 1
 Web Services (SOAP, ESB, BPEL,
etc.)

2 1 0 0 1

 HTML, CSS 1 1 0 0 0
 Java, J2EE 0 0 0 0 0
 JavaScript, AJAX 0 0 0 0 0
 PHP, ASP 1 0 0 0 1
 OO Programming 0 0 0 0 0
 C, C++, C# 0 0 0 0 0
 Scripting, Perl 0 0 0 0 0
 Haskell, Prolog 0 0 0 0 0

Table 2. Characterization of the 100 users in the study.

These 100 users were recruited in an experiment conducted during the Computer Sciences
Applied to Business Week. We were able to recruit a very broad sample (over 160 people),
select a non-biased subsample, and conduct the experiment as part of a one-day hands-on
seminar.

None of the users, except for three users with knowledge of mash-up tools (in this case
iGoogle), two with knowledge of web services, one with knowledge of HTML and CSS, and
another acquainted with PHP, ASP, have programming skills. A key step in the study is to
validate the sample, statistically proving that there is no bias in the characterization of the
users. On this ground, we recruited users of different ages, with diverse professional and
academic backgrounds, and tried to balance each of the qualitative and quantitative variables
that characterize the sample.

The sample of users was randomly divided into four equal groups to assure that none of the
groups were biased by age, sex, training, employment and previous experience. The
distribution is shown in the respective columns of Table 2. Each group attended a hands-on
workshop with a different tool: Yahoo! Dapper and Pipes, OpenKapow, Chrome PT
(productivity tools) and PopFly. An ANCOVA study [43] was conducted to study whether the
random distribution had caused bias in the variables studied in RQ1 and RQ2. The results of

this study were satisfactory, specifying that the four groups were not biased and there was no
correlation between the distribution and the study. The explained variable used was the group
to which each user was assigned, and all the surveyed user characteristics were used as the
explanatory variables. The R² and adjusted R² of the resulting ANCOVA model were more or
less equal to 0 (0.0156 and 0.0014, respectively), that is, there is no way that the group to
which each end user belongs is correlated to their descriptive characteristics. This means that,
irrespective of the impact of each characteristic (sex, age, training, employment, previous
experience) has on the study of the RQs addressed in this paper, all the analysed tools will
have been measured by equivalent subsamples of users, that is, any bias is ruled out and all
tools have been measured by the same yardstick.

To answer RQ1, what scale of measurement is better for rating the success of a given EUD tool,
EUPs received initial training in the EUD field and in the above tools, with the following
schedule of activities:

• Fundamentals session (four hours): Introduction to EUD and acquaintance with web
composite applications, widgets and mashups.

• Practical session (four hours): Development of solutions on the respective platform,
either Yahoo! Dapper and Pipes, OpenKapow, Chrome PT (productivity Tools) or
PopFly.

• Tool survey (two hours): Completion of three surveys by users to rate their tool on
each of the three scales: human factors, HCI factors, factors of specialization /
functionality.

• Case study (unspecified): Hands-on experience in the laboratory developing the
proposed composite application using the respective tool.

Note that the tools were rated after a practical session that we led.

The problem to be solved during the proposed case study was:

“Part of a user's routine work is to supervise changes and notifications published by two of his
country's public administration webpages. This user wants to build an application that is
capable of automatically reviewing these two webpages and emailing and SMS messaging
these specific changes to him. Therefore he is looking for an application that does the
following:

1. Stores a baseline containing the original status of the two webpages.

2. Examines the respective web pages, which do not publish RSS or notify content
changes in any other way, at a user-configurable time interval and check whether any
changes have been made compared against the baseline.

3. SMS message or email an outline of any changes made to the user's mobile phone and
email address. Both data should obviously be configurable at runtime.”

This task requires the use of 20 integrated components, which results in a set of 100 activities
(component selection, parameterization, interconnection with the prototype at development
time, unit testing and integration testing). Very few users completed all 100 activities, on
which ground we measured the percentage of activities completed by the 25 users that used
each tool.

Table 3 shows the results for each tool, based on the score achieved by the 25 users of each
tool on each of the traditional measurement scales (listing the average and median score on
each scale), and the respective success rate. The questions and weights described in Figure 1
were used for human factors, producing a measure of between 0 and 9.56. The 13 factors
listed in the related work section were used as HCI factors, where each factor was evaluated
on a Likert scale. This process will output an overall rating ranging from 0 to 26 points. We
used a four-point Likert scale to measure specialization/functionality factors: poor, average,
high and optimal, ranging from 0 to 3 points. Finally, the proposed scale uses the three-
dimensional scheme described in Section 3, and orthogonally sums values for each axis by
weighting the result on a scale of 0 to 10, making a linear change of basis from 0-27.86 to 0-10.

 Human
Factors

HCI Factors Specialization /
Functionality

Factors

Proposed Scale
(Combined Factors)

Completed
Activities

Yahoo!Pipes and
Yahoo! Dapper

Mean 4.65
Median 4.03

Mean 13.54
Median 12

Average Mean 5.15
Median 4.56

52%

OpenKapow Mean 5.68
Median 3.22

Mean 13.69
Median 13

High Mean 5.37
Median 4.86

55.6%

Chrome PT Mean 3.81
Median 4.16

Mean 13.05
Median 12.75

Poor Mean 4.88
Median 4.81

51.2%

PopFly Mean 2.82
Median 2.53

Mean 13.97
Median 13.47

Poor Mean 5.11
Median 4.92

53.8%

Table 3. Results for each tool on traditional measurement scales and the number of solutions built (for all results,
see [43]).

In response to RQ1, whether the different measurement scales are correlated or independent
of each other, we studied the results and found that the measurements on all three scales are
not dependent on each other. This was the hypothesis on which our proposal was based. To do
this, we conducted a correlation and covariance analysis. Table 4 reports the final results for
the different measurements.

Covariance Values

Human Factors, HCI Factors 0.03127

Human Factors, S/
F Factors

0.02217

HCI Factors, S/F Factors 0.02271

Human Factors, HCI Factors, S/F Factors 0.00185

Table 4. Covariance values.

In this analysis, we did not use the measurements that we propose, because they are derived
by the orthogonal summation of the values of the other scales, and are, understandably, highly
correlated. As all the values are less than 0.05, we can say that, for α = 0.05, the hypothesis
that human, HCI and specialization / functionality factors are independent is true.

In response to RQ2, which scale of measurement is better for rating the success of a given EUD
tool, we conducted statistical studies to define a regression model of ratings against
completed activities and to analyse the correlations and covariances between the tool ratings
by a user on each scale and the number of activities successfully completed by that user using
that tool. Based on the measurement scale results for the different users, we built a
parametric regression model for the number of completed activities, using each of the
analysed scales as explanatory variables. Table 5 reports the model fitting results.

Adjusted
coefficients of
the regression
model

Human Factors HCI Factors Specialization / Functionality
Factors

Proposed Scale (Combined
Factors)

R 0.979 0.675 0.913 0.989

R2 0.959 0.456 0.833 0.978

R2 adjusted 0.938 0.184 0.750 0.966

SCR 1.233 16.318 5.000 0.672

Table 5. Model fitting results.

As shown in the Table 5, the values of R2 and adjusted R2, indicating the goodness of fit, are
closer to 1 (best possible fit) when using the proposed measurement scale combining all the
analysed factors, followed by the human factors scale, the specialization / functionality factors
and, finally, the HCI factors scale, which has been one of the more popular proposals in recent
years and which ultimately proved to be the worst fit for the observed final results of each
tool. Therefore, the best scale for predicting the success of any of the tools examined in this
paper is the proposed combined factors scale, described in Section 3. The use of the proposed
scale to evaluate any tool provides more consistent and reliable results than the other tools
analysed in our research.

In view of the high statistical correlation between the completed activities and the
measurements (normalized from 0 to 10) of the EUP tool on our joint measurement scale, we
conducted an ANCOVA to build a regression model to statistically explain the dependent
variable (completed activities) based on the measurements taken on the end users (Table 6).

Evaluation of the value of the information sourced from the variables (H0 = Y=Moy(Y))
Source DF Sum of squares Mean square Fisher’s F Pr > F

Model 1 20.640 20.659 59528.954 < 0.0001

Residues 99 0.001 0.001

Total 100 20.763

Table 6. ANCOVA regression model, fitting results.

The high Fisher’s F value, together with Pr>F, both of which are very close to 0, indicate that
the explanatory variables used (score on the proposed scale) quite closely explain the success
of the above tool for the proposed problem. The model predicts a linear relation between X
and Y, and plots the confidence intervals within which 95% of the sample is located as a
function of the Y value predicted by the model and the real mean of the observed Y value. The
more compact the plot is, the better the model will be, whereas a wider spread denotes that
the Y value is more random with respect to X and is not as predictable based on the value of
the respective explanatory variable. In sum, the model that provides most information for
predicting whether or not an EUD tool will be successful among EUPs is based on the scale
proposed in this paper. This model is governed by the following linear adjustment inequality
(see Equation 1), from which the success of the tool can be predicted with a probability of 97%
(a measurement taken from the adjusted R² calculated using the resulting regression model in
the statistical study), with a confidence interval of 0.005 in view of the sample, for values of X
between the specified values, where X is the final 0-10 rating on our scale:

 Y ≥ +3.5+9.789 * X, for X ∈[1.8, 8.3] (1)

As we can see, the function relates the group of ratings made by the recruited sample to the
group of successful results for the same sample. This piecewise function is not undefined for
very low and very high values of X, which predicts a confidence interval for Y, where Y is the
percentage of successfully completed activities in the experiment. This fit is only valid where X
is greater than or equal to 1.8 and less than or equal to 8.3, as none of measurements made in
this experiment had values outside the above range, and it can only be fitted for the specified
confidence interval. The value of this function is not intrinsically generalizable, but it is valid for
this type of sample, with similar characteristics and background, and the same pre-
experimental training (a total of 10 hours of tutorials and workshops) and it does follow a
trend in the 100 tests performed (see Figure 4).

Figure 4. Plot summarizing the x - “rating” and y – “percentage of correctly completed activities” variables for all
100 users and four tools

There is a proven linear relationship (the straight line plotted in Figure 4, which illustrates
Equation 1) between the rating of a tool on our proposed scale and the percentage of
successfully completed activities by the tool end users. This at least guarantees that tool
improvement taking into account the measured factors in order to achieve a better rating on
the proposed scale will result in a better performance of the EUP activities using the respective
tool. In none of the experiments run so far has the success rate Y been less than 10*X at most,
where X is the EUP tool rating on our scale, as illustrated by the shading in Figure 4,
corresponding to the function Y = 10*X, the lower bound of the respective confidence interval
for the model.

Finally, having analysed RQ1 and RQ2, we conducted a study (see [43]) on the correlation
between the tool use success rate and the characteristics of the users that participated in the

experiment. This study was again carried out using an ANCOVA (where the percentage of
activities was the explained variable and the subject’s sex, age, training, employment and
experience were the explanatory variables. The results did not provide any statistically
significant evidence with respect to any particular factor. The factor with the biggest impact on
the explained variable appears to be subject’s previous experience in development
technologies such as web mashups or PHP (with a R² equal to 0.567), followed by age
(R²=0.421), which are nowhere near significant values close to 1 for α = 0.01. The conducted
study is, at any rate, sound, since the subsample in each group was unbiased with respect to
these characteristics, as explained in Section 7.

5. Defining an architecture that adopts the success factors analysed on the
proposed scale

In this section, we propose a new architecture for end user-centred service front-end
development tools that is based on the proposed measurement scale and addresses each and
every one of the success factors covered by this scale. This architecture was devised in
accordance with the presented guiding principles, and applies the human, HCI and
specialization / functionality factors of the proposed scale. This whole complex architecture
has been researched, developed and evaluated as part of several major R&D Spanish and EU-
funded projects like EzWeb, FAST, and, more recently, FI-WARE and FI-CORE (two of the
biggest European R&D projects funded by the European Commission under its 7th Framework
Programme as part of the Future Internet Public-Private Partnership -FI-PPP- initiative), with
the aim of building this architecture into EUD tools so that EUPs can more effectively create
their own software solutions to meet their requirements [21]. As a result of this effort, we
have developed the FAST-Wirecloud mashup tool [27][39]. FAST-Wirecloud has been
successfully used in some recent R&D projects, as reported, for example, in [40, 41].
Moreover, FAST-Wirecloud is the mashup solution provided by the FIWARE platform [36]. The
FAST-Wirecloud tool, based on architectural components detailed here, is described in Section
6.

The description of the proposed architecture for end user-centred service front-end
development tools separates the development, semantics enrichment and authoring phases of
the service front-end development lifecycle (see Figure 5) to better depict the different roles,
components and relationships that make up this architecture.

Figure 5. Roles, components and relationships in the proposed architecture.

Widgets and operators are the main building blocks of this architecture. A widget represents
part of the user interface and application logic necessary to interact with one or more
underlying services. Widgets are self-contained front-end components focusing on a single
goal and, consequently, are of limited complexity [22]. Widgets can be grouped into
workspaces and connected with each other and operators to create a mashup. Operators are
similar to widgets, but do not provide a user interface. They are, therefore, intended to
implement the necessary application logic to interact with one or more underlying services,
and can be used to build less specific widgets. This helps to improve the above
specialization/functionality trade-off success factor.

As shown in Figure 5, our proposal is based on providing supporting technology for widgets
and operators and for their composition to enable a mashup. The widget will be built by an
EUP using the Widget Authoring Component or directly by a software developer. To do this,
the EUP may require forms, screens and connectors to back-end resources, which will have to
have previously been developed by web programmers and made available in a global Resource
Palette. Widgets that have been built and have been tested for correctness by the software
provider or, respectively, by the EUP using a verification and validation wizard are published in
a global Resource Catalogue, where they can be semantically annotated by a
domain/knowledge expert through a knowledge framework. This Resource Catalogue gives
end users acting as workspace editors access to these widgets which they use to create the
mashup.

In order to better detail our proposed architecture (Figure 5), we explain its three main
components:

• A Widget Authoring Component, which is a user-centric IDE dedicated to widget design
and creation. Developers can program widgets. Nevertheless, this is a visual tool that
helps non-IT-aware users to visually create their own widgets [23] from a palette of
composable authoring resources, including widget screens, flows and connectors to
off-the-shelf back-end resources (e.g. web/REST APIs), which have been developed by

programmers. Two key architectural concepts of this tool are the input and output
endpoints associated with widgets, by means of which they can be composed as
described below. The tool also offers support for the domain/knowledge experts in
order to semantically annotate these artefacts. This component is useful for satisfying
the specialization/functionality requirements for users to build the components that
they require.

• A Workspace Editing Component intended to design customized user workspaces, like
a mashup editor. This tool enables the visual design, reuse and sharing of user
workspaces by selecting, connecting and composing the most suitable widgets for
dealing with a domain problem in a dashboard [24]. The ultimate aim is to allow end
users to create new service front-ends for their specific (situational) needs (instant
applications) by visually combining smaller parts (widgets and operators). Each user
can have and share any number of workspaces with other members of the community.
This component is useful for satisfying the success factors related to interaction
between users and the compositional system.

• A Wiring Editing Component that provides a mechanism to visually compose a fully-
fledged mashup from the widgets placed in a workspace using the Workspace Editing
Tool, which can now interact with each other via events and data sharing. This
mechanism is what the composition model calls wiring. The idea behind wiring is easy:
widgets display (data/event) inputs and (data/event) outputs, so that, if they are
semantically compatible, an output from one widget can be linked to other widgets’
inputs. This way, the mashup tool manages the data/event flow between widgets. The
mechanism enables the use of event-driven programming features, e.g. a widget can
send an event through one of its outputs on an event trigger. Alternatively, the wiring
can be automated by following a composition technique based on a pre- and post-
condition mechanism described in [47].

Even though the three components (Widget Authoring, Workspace Editing, Wiring Editing)
target EUPs, the Widget Authoring Component targets more specialized, possibly corporate
EUPs aimed at populating the Resource Catalogue, whereas the Workspace Editing Component
and the Wiring Editing Component target EUPs interested in using widgets and operators from
the Resource Catalogue as building blocks to build a mashup. Widget authoring cannot be
considered an essential, or necessary, part of the process of creating a mashup, and widgets
are usually provided directly by application providers. Nevertheless, it is considered here for
the sake of completeness, since it targets EUPs.

A mashup is built at two different abstraction levels:

• At Screen Level, the EUP visually creates a workspace (e.g. a visualization dashboard or
an operations cockpit) by picking out, positioning and resizing the right widgets from a
shared catalogue of web components in order to create the desired layout. To do this,
he or she uses the Workspace Edition Tool.

• At Wiring Level, the EUP visually specifies the relationships between the widgets used
at Screen Level and between these widgets and the respective operators (which are
also selected from the above-mentioned catalogue) to achieve the desired mashup
behaviour. To do so, the EUP visually connects (wires) them. Each connection
represents a data/event flow. In the wiring process, the EUP validates the result
against to the semantic annotations carried out previously by a domain/knowledge

expert on the resources palette and the resources catalogue. Alternatively, the wiring
can be automated by means of the pre- and post-condition/fact method explained
later in this section.

Having created the workspace and wired the respective widgets and necessary operators, it is
published as a new mashup in the Resource Catalogue, which is useful as an asynchronous tool
for collaboration between the different roles involved in the development of the end-user
solution.

Finally, at run time, an end user can pick and run one of the above workflows on a mashup tool
like FAST-Wirecloud, which he or she will have previously adapted to his or her needs with the
help of the Workspace Editing Component and the Wiring Editing Component. The proposed
architecture enables interoperability between tools from different providers used at mashup
design and run time. This interoperability is based on the standardization of the resources
published in the catalogue and the tool APIs. Particularly, the specification of the architecture
described here, including the catalogue resources (i.e. widgets, operators and mashups) and
the Workspace Editing Component and the Wiring Editing Component APIs are part of the
FIWARE platform open specifications (see [38]). This, in turn, fosters the applicability of the
architecture models for the design of new tools by third parties: the availability of such open
specifications “operationalize” these models, which can now be fruitfully exploited by other
teams/researchers to design tools that comply with the identified EUD success factors by
adopting the proposed architecture.

Figures 6 and 7 describe the FAST and Wirecloud structures used to create the widget-based
composite applications that are the result of applying the architecture described in Figure 5
and have been designed considering the success factors. Figure 6 (FAST) focuses on the web
components that enable an EUP to design a widget based on its building blocks and a set of
facts, whereas Figure 7 (Wirecloud) focuses on the components that are capable of designing a
workspace (i.e. a mashup) based on widgets and operators.

Figure 6. Pre- and post-condition / FAST framework.

As illustrated in Figure 6, there are two types of components at the disposal of a designer to
create a widget: facts or building blocks. There are four types of building blocks listed in
decreasing order of generality: resources, forms, screens, operators and screenflows. A
screenflow is a flow of screens that is valid according to the screen facts. The composition of
one or more screenflows results in a widget. A screen is a form that has been connected to an
operator in order to provide access to one or more back-end resources. The forms, on the

other hand, are generic screens (in the sense of HTML forms) that have not yet been
connected to specific back-end resources. These resources may be software provider services
or web APIs that have adopted a SaaS philosophy or simply data or list operators (filters,
arithmetic operations, data source concatenations, etc.). This hierarchy meets the needs
revealed by our EUD success factor scale, where the compositional model has to be adapted to
the user cognitive model, abstraction level and provide different specificity/functionality
relations. Accordingly, the resulting building blocks become more specific and less generic as
the designer composes resources as forms, forms as screens and screens as screenflows to
produce a widget.

The pre- and post-condition and facts mechanism is useful for providing guidance to the EUP
on the design of a widget based on its building blocks. A fact is a constraint on the data types
that a building block accepts or produces. As the EUP designer is not a programmer, this
abstraction manages the data types, whereby the designer can build valid data flows between
components based on the tool recommendations. These data type constraints build pre- and
post-conditions into the managed building blocks. Accordingly, if the pre-condition for
component execution are inputs requiring a specific data type, the resources palette can
recommend new components that produce such data. Thus, it can recommend new
components that consume data generated by the ongoing design completed so far by the
designer.

Figure 7 describes the Wirecloud wiring architecture by means of which the EUP can create a
mashup.

Figure 7. Wiring framework/Wirecloud.

As mentioned above, the wiring model enables the end user to visually connect the widgets
taken from the catalogue with each other and to the necessary operators within a screen (i.e.
workspace) in order to compose a fully-fledged web mashup in which these components can
now interact with each other via events and data sharing. To do this, widgets and operators
(the two possible components) display data/event input endpoints and data/event output
endpoints, so that an output endpoint from one widget/operator can be linked to other the
input endpoints of other widgets/operators by means of wires. The model adopts the concept

of behaviour in order to facilitate wiring. Behaviours are useful for partitioning the mashup
widget and operator wiring process. Each behaviour accounts for a separate part of the
mashup functionality which abstracts a specific mashup “use case” interaction that can be
described in natural language by a simple sentence.

Applied to the wiring architecture, that is, assigning pre- and post-conditions and facts to the
widget endpoints, the above pre- and post-conditions and facts mechanism is also useful for
automating the workspace creation process (i.e. the mashup).

The aim of this architecture (explained in more detail in [20]) is to try to meet the
requirements measured objectively on the scale proposed in this paper. With respect to the
successful human factors, Table 7 specifies how the architecture includes the three factors that
directly influence real end use. The results of the statistical study reported in Section 7, which
found that there was an improvement of roughly 20% in each human success factor studied
with respect to the tools studied in Sections 2 and 4 confirms this point.

Perceived
ease of use

The architecture is defined on the basis of a rather small set of techniques and
visual notation elements and quite a simple methodology that minimizes the
tool learning curve and helps the user to infer other options once he or she has
started to use the techniques and components.

Additionally, the EUP can execute the mashup that he or she is building at any
time during the process and gather feedback on how he or she is doing. This
increases the degree to which an EUP believes that tool use would be free of
effort.

Besides, the divide and conquer approach to the wiring process introduced by
behaviours helps the EUP to build and test the mashup incrementally. This
increases the perception of ease of use. The same applies for an EUP who is
trying to understand the functionality provided by an existing mashup by
directly seeing how each of its parts works and checking when each piece of
functionality matches its respective natural language description.

Finally, as the number of users increases thanks to the availability of a resources
palette and a resources catalogue where both developers and EUPs can share
their developments, the tools become more useful.

Perceived
usefulness

Mashups typically serve a specific situational (i.e. immediate, short-lived,
customized) need. This "situationality" means that they cannot be offered as
'off-the-shelf' functionality by solution providers or IT departments. This creates
the need for tools that empower EUPs to create the timely special-purpose
software they need to improve their job performance. In doing so, the FAST-
Wirecloud tool is automatically perceived by users as useful for improving their
job performance.

Computer
enjoyment

The ability of and ease with which EUPs using this architecture can pick out the
necessary building blocks from an off-the-shelf catalogue of resources to
visually compose a operational mashup that will improve their job performance,
and the option of being able to run the mashup from the very beginning in
order to gather early feedback on how they are doing, is immediately satisfying
for EUPs using the tools.

Table 7. How to adopt human success factors

Table 8 summarizes how the proposed architecture accounts for each and every one of the
considered HCI success factors.

Abstraction
gradient

The notion of behaviour, which EUPs can use to partition the mashup
widget wiring (i.e. connection) process into separate parts of mashup
functionality, each abstracting a specific “use case” interaction with the
mashup that can be described in natural language by a simple sentence,
provides the EUP with an adequate level of abstraction when visually
creating the mashup. Each snippet is then encapsulated and uniquely
identified for later reference and reuse. Furthermore, an EUP can also take
advantage of this architectural feature when inspecting other mashups
since it provides a modular description of the mashup functionality. Thus
the EUP separately inspects the constituent behaviours of the respective
mashup to understand its overall functionality (which is a kind of divide and
conquer approach to mashup building/analysis). This is also useful for
verification and validation purposes. The lowest level of abstraction is the
mashup considered as a single behaviour, whereas the top level of
abstraction is the partitioning of a mashup into a number of behaviours
that can be encapsulated.

Consistency The architecture is defined on the basis of a rather small set of techniques
and visual notation elements and quite a simple methodology that
minimizes the tool learning curve and helps the user to infer the other
options once he or she has taken the live tutorial provided by each tool.
This has been recurrently demonstrated in each and every experiment and
study that we have conducted so far.

Error-
proneness

The design of the visual notation, which includes support for the semantics-
aware approach to the wiring process, helps to avoid careless mistakes.
When an EUP wants to connect (i.e. wire) an output endpoint of a given
widget to an input endpoint of another widget, detailed information is
displayed for the EUP about which endpoints are compatible, incompatible,
or even partially compatible with the respective endpoint, requiring, in the
latter case, the connection to be made at a given sub-endpoint level . The
workspace editing tool itself provides a safeguard against error-proneness
since each and every widget in a workspace is isolated from the others by
design. All their interdependencies are generated through the wiring
process.

Hidden
dependencies

Neither the widget authoring component, nor the workspace editing
component has hidden dependencies. There could be hidden dependencies
between the different behaviours that make up the wiring in the wiring
editing component if they share relationships. The editor automatically
manages such dependencies by keeping track of the number of occurrences
of a given relationship throughout all the behaviours within the wiring. This
is maintained until the EUP removes the last occurrence. Any given
relationship between two widgets (or between a widget and an operator)
can be safely removed without affecting their proper operation.

Premature
commitment

Since the workspace editing tool and the wiring editing tool can initially
develop (and use) a mashup for a small number of widgets and behaviours,
respectively, which are then gradually enhanced by adding new widgets

and/or behaviours one at a time to adopt additional functionalities, there is
no need for the EUP to make decisions before he or she has the all the right
information in place. Besides, the widgets and behaviours that are already
on board can be easily modified at any time as new requirements are put in
place.

Progressive
evaluation

A mashup can be executed at any time during its creation process, showing
the partial functionality already achieved through the widgets in the
dashboard and their wiring. This way, the EUP can find out how he or she is
doing at any time. Besides, the behaviour-oriented approach to the wiring
enables the EUP to execute the mashup and check whether he or she gets
the specific functionality described by each and every one of the
behaviours of which it is composed. This eases the task of determining
when the overall mashup functionality is achieved. It also helps an EUP to
better understand the functionality provided by a given behaviour by
directly seeing how it works and checking when this functionality matches
its respective natural language description.

Role
expressiveness

The EUP can see how each mashup component relates to the whole by
means of the wiring editor, which shows the existing relationships (data
communication and events) between each component (widgets, operators)
and the rest of the mashup. Besides, the EUP can even see how each
specific interaction use case (i.e. each behaviour) relates to the whole
functionality of the mashup.

Viscosity It is relatively effortless to make a single change. All you have to do is either
add/remove/resize/reposition the necessary widgets in the workspace, or
add/remove the necessary components (widget, operator and/or wire) to
the respective behaviour, or create a new behaviour if needed.

Visibility and
juxtaposability

Each and every part of the development (i.e. the mashup) is simultaneously
visible in the wiring editor, and the EUP is capable of focusing on
meaningful parts of the mashup through the behaviour editor so that he or
she can compare any two parts and their relationship side by side.

Table 8. How to adopt HCI success factors

With regard to the specialization and functionality factors, our architecture offers a rather
good trade-off between the level of specialization and the functionality of the created
solutions. This is achieved thanks to the fine-grained modularity offered by the components
available in the catalogue (widgets and operators) and the level of configurability that they
offer for customization. Thus they can be used in mashups that are very specialized for a given
problem, but can at the same time be easily exported and used in other application domains.
As a result, the EUP can start from a given mashup specialized for a given domain and change it
by reconfiguring its components (through parameterization) and/or by reconnecting them to
other (new) components. The shared repository (catalogue) of components (widgets,
operators and other existing mashups) actually offers separate sets of components for
different application domains, along with a number of general-purpose, cross-domain
components. In particular, the use of operators, which are intended to implement the
application logic necessary to interact with one or more underlying services, provides for more
generic widgets, which can therefore be more application logic-agnostic (i.e. domain-
independent) and focus on providing the user interface logic.

Additionally, the availability of separate sets of components for different application domains
in the resource catalogue, and the separation of concerns between widgets and operators
(where operators take care of most of the specificities of the application domain) also helps to
cater for domain specificity (in the sense of [46]), i.e., how customizable the mashup tool is for
specific requirements possibly emerging in specific domains.

6. The FAST-Wirecloud mashup tool implementing the proposed architecture

FAST-Wirecloud is a mashup tool in which widgets published in a collaborative catalogue can
be interconnected and arranged in one or more workspaces to create an application mashup
that satisfies instant requirements. The FIWARE Academy website offers training courses,
lessons and many other contents that demonstrate FAST-Wirecloud features and teach EUPs
how to create their own solutions. In doing so, FAST-Wirecloud implements the architecture
proposed by the authors in the previous section. In particular, FAST implements the Widget
Authoring Component (i.e. the pre- and post-condition / fact framework), whereas Wirecloud
implements the Workspace Editing Component and the Wiring Editing Component (i.e. the
wiring framework).

Figure 8 illustrates the FAST-Wirecloud Workspace Editing Component, which enables the EUP
to build an application mashup from a number of widgets. Once the widgets are placed in the
workspace, it can be automatically executed, because the FAST-Wirecloud Workspace Editing
Component is also the mashup tool runtime component. This goes along with the findings of
some related work in the literature, which has found that the distinction between the mashup
tool design or authoring phase and execution phase is not perceived as effective by EUPs (see,
for example, [45]). Besides, this gives the user the chance to see how the designed widget
works both during its design in the Widget Authoring Component and later when it is
integrated into a workspace with the Workspace Editing Component to compose the
application mashup. This provides immediate feedback for testing the validity of the
composition.

Figure 8. FAST-Wirecloud Workspace Editing Component.

However, if EUPs are unable to find what they need in that catalogue, they can create new
widgets using the FAST-Wirecloud Widget Authoring Component, designed to enable non-
programmer users to create widgets from more specific components called resources,
available in public catalogues and around Internet.

The FAST-Wirecloud Workspace Editing Component incorporates the Consistency, Error
proneness, Premature Commitment, Progressive Evaluation, Viscosity and Visibility success
factors.

Figure 9 illustrates the FAST-Wirecloud Widget Authoring Component, which strictly
implements the pre- and post-condition / fact framework proposed in this paper. Figure 9
shows three screens that are being integrated into a screenflow. The circles denote the pre-
and post-conditions and are coloured green or red depending on whether or not the
associated conditions are met. Note that the Product Details screen cannot be integrated
because its pre- and post-conditions are coloured red. To be able to integrate this screen, the
user must add one or more other screens to the screenflow to assure that the pre- and post-
conditions are met. The tool will give the user recommendations for this purpose.

By design, the FAST-Wirecloud Widget Authoring Component incorporates the same success
factors as the FAST-Wirecloud Workspace Editing Component did, i.e. Consistency, Error
Proneness, Premature Commitment, Progressive Evaluation, Viscosity and Visibility.
Nevertheless, as stated above, it targets a different, more specialized (and possibly corporate)
user aimed at populating the resource catalogue with ready-to-use widgets.

Figure 9. FAST-Wirecloud composition component.

To better illustrate the wiring process, we borrow a common scenario from the banking
domain: wire transfers over Internet. The Centre for Open Middleware [48], a Santander and
UPM Joint Technology Centre, developed the widgets and the mashup used in this scenario as
a case study for the open source implementation of the proposed architecture built using Java

and Liferay, as a proof of concept. As shown in Figure 10, the resulting mashup contains two
widgets that display the list of contacts and the list of accounts, respectively, along with a
widget that shows the details of a given account and a widget that enables the user to enter
the wire transfer details. Additionally, the mashup includes a couple of additional widgets that
enable the user to check the result of the notification of a given transfer via email and SMS.

Figure 10. FAST-Wirecloud wiring model.

Obviously, the widgets in the mashup are of no use until they are interconnected. The
Movements widget can be connected to the My Accounts widget to show the details of the
account selected in the widget. The Transfer Details widget can be connected to My Accounts
and My Contacts for auto-completing the source and target account fields. Finally, the SMS
and email notifiers can be connected to My Contacts to send the alert to the contact selected
in the My Contacts widget.

Figure 11 illustrates the application of the FAST-Wirecloud wiring model to this scenario, which
is a strict implementation of the wiring framework of the reference architecture proposed in
this paper.

Figure 11. FAST-Wirecloud wiring model applied to the wire transfers scenario.

The wiring editor takes the end user through the process of wiring the widgets that make up
the mashup. It visually advises the end user on which endpoints could be wired by highlighting
the endpoints that are semantically compatible (i.e. connectable) in green. Figure 12 below
illustrates this idea. The Sender and the Beneficiary endpoints of the Transfers widget are
semantically compatible with the Account No. endpoint offered by both the My Accounts and
Movements widgets.

Figure 12. FAST-Wirecloud wiring model: Semantic-awareness feature.

This feature even works at sub-endpoint level, i.e. can recursively analyse the data structure
that is accepted/sent by each endpoint. Figure 13 illustrates this idea. On the left side, the EUP
is informed that the Contact endpoint of the My Contacts widget could be connected to the
Beneficiary endpoint of the Transfers widget, but not directly (the endpoint is highlighted in
amber, instead of green). This way, the EUP can inspect the structure of the Contact endpoint
and decide which sub-endpoint to use (if there is only one compatible sub-endpoint, it can be
wired automatically without having to work at sub-endpoint level).

Figure 13. FAST-Wirecloud wiring model: Semantic-awareness feature.

This feature uses an ontology server and requires widgets and operators to be annotated with
the elements of at least one domain ontology and more than one domain-agnostic high-level
ontology, but the EUP is isolated from these formalisms and is presented with a user-friendly
visual metaphor.

The tool also offers a feature that enables the EUP to partition the wiring into different
behaviours, following the wiring framework concepts described in Section 5. Figure 14 shows a
mashup whose wiring is made up of two different behaviours. The first behaviour (top)
describes the wiring needed to make a video call to a given technician chosen by the operator.
The second behaviour (bottom) describes the wiring needed to display the profile and the
location of all the available technicians at any time.

Figure 14. FAST-Wirecloud wiring model: Behaviour-oriented partitioning feature.

As shown in Figure 14, the EUP does not need to deal with the whole wiring graph (describing
the overall mashup) at once. The widgets, operators and connections belonging to the
behaviour selected by the EUP at any time are highlighted so that he or she can focus on
whichever he or she requires. At the same time, however, the EUP always has an overview of
the entire mashup so that he or she can pick out any widget/operator/connection already in
use (i.e. present in one or more behaviours) for addition to the current behaviour, if necessary.

Any given connection can belong to more than one behaviour. In this case, it is only dropped
from the overall mashup when it is dropped from all the behaviours (i.e. from the last
behaviour of which it was part).

The FAST-Wirecloud Wiring Model incorporates the Abstraction Gradient, Consistency, Error
Proneness, Premature Commitment, Progressive Evaluation, Role Expressiveness, Viscosity and
Visibility and Juxtaposability success factors.

In order to evaluate the goodness of fit of the success factors to the proposed architecture and
the mashup platform, we conducted another statistical experiment which is described in
Section 7 below.

7. Evaluation of the proposed tool using the EUD success factor scale and an end user-based
experiment

Now that we have presented the FAST-Wirecloud composition tool, research focuses on
evaluating its use and proving that our premise of enabling EUPs to build their own composite
applications is feasible and true. This tool will be evaluated with the proposed measurement
scale to ensure that its development based on achieving the EUD success factors effectively
translates into a good score on the scale. The tool also includes an advanced wizard that helps
EUPs throughout the application development life cycle, but, as this wizard is not adaptable to
the other tools, it has been disabled to assure a fair comparison. Finally, we have to check if
this hypothetical achieved good score is representative of the real success of the EUPs in our
study achieving better results than with existing tools. FAST-Wirecloud evaluation aims to test
whether the developed user-centred composition system satisfies its usability, functionality
and performance requirements.

The proposed evaluation was the same as stated for Section 4, that is, a new sample of 25
users tackled the proposed problem (and its 100 activities) using FAST-Wirecloud to solve the
problem, using the same research questions RQ1 and RQ2 as listed in Section 4. Table 9 shows
the characteristics of this new sample.

Characterization WireCloud/FAST
group

Gender
 Male 13
 Female 12
Age
 < 20 years 5
 20-34 years 6
 35-49 years 5
 50-64 years 5
 > 65 years 4
Educational Attainment
 Secondary School 6
 Vocational Training 7
 Bachelor’s Degree 6
 Master’s Degree 6

Employment
 Student 7
 Researcher 8
 Employee 10
Experience and previous knowledge
 Mashup Tools 1
 Web Services (SOAP, ESB,
 BPEL, etc.)

0

 HTML, CSS 0
 Java, J2EE 0
 JavaScript, AJAX 0
 PHP, ASP 0
 OO Programming 0
 C, C++, C# 0
 Scripting, Perl 0
 Haskell, Prolog 0

Table 9. Characterization of the sample of users that participated in the experiment with WireCloud/FAST.

This new group was validated by means of an ANCOVA study which found that this group was
not biased with respect to the sample of 100 users employed earlier. Adding this new
subsample to the ANCOVA [43] conducted to validate the first 100 years, the results for R² and
adjusted R² were close to 0.02, far removed from the value 1 that would suggest a possible
statistically significant bias. We looked for people with the same profile as the four groups
formed in the studies explained above.

The results of new experiments carried out by this new set of 25 users are shown in Table 10.

 Human
Factors

HCI Factors Spec/Functionality
Factors

Proposed Tool Percentage of
Resolved
Activities

WireCloud/Fast Mean 6.95

Median 7.20
Mean 19.5
Median 19.3

Optimal Mean 7.50
Median 7.47

75%

Table 10. Results of the evaluation of the proposed architecture.

Looking at Table 10, the first relevant fact is that the new tool users managed to successfully
complete 75% of the activities associated with the problem. Accordingly, a sizeable part of the
sample was able to successfully perform the requested compositional development, which
contrasts with the poorer results of the other tools. The second issue to be taken into
consideration is that FAST-Wirecloud scored higher than all the other analysed tools on all
measurement scales, especially on the scale proposed in this paper. This is because the FAST-
Wirecloud architecture has been modelled taking into account the factors measured by the
respective scales.

Finally, we checked whether the new explanatory data (ratings attached to FAST-Wirecloud)
and new study data (number of activities successfully completed by new EUPs) led to changes
in the correlation and ANCOVA studies reported in Section 4. We found in Table 11, which
includes the statistical data for all five subsamples, that the correlations of the characteristics
of these users (sex, age, training, employment, previous experience) with the results are
almost identical and do not provide any new statistically significant evidence to suggest that
any of them is directly correlated to the results. The complete statistical calculations are
reported in [43].

Analysis of variance:

Source df Sum of squares Mean squares F Pr > F

Model 35 5.932 0.169 1.196 0.264

Error 89 9.072 0.142

Corrected Total 124 15.004

Computed against
model Y=Mean(Y)

Type I and Type III sum
of squares analysis:

Source DF Sum of squares Mean squares F Pr > F
R² of the
partial model

Gender 1 0.134 0.134 0.943 0.335 0.331

Age 3 0.752 0.251 0.968 0.262 0.432

Educational Attainment 2 0.163 0.081 0.575 0.566 0.214

Employment 6 0.456 0.076 0.536 0.779 0.114

Experience and
previous knowledge

22 4.387 0.199 1.407 0.146
0.578

Table 11. ANCOVA results with the statistical effect of each characteristic on the percentage of completed activities
dependent variable.

Note, from Table 11, that the selected explanatory variables cannot be considered to be the
source of a significant amount of model information (Pr > F = 0.264 >> 0.01). The model is not
significant because these data suggest that the percentage of completed activities is
independent of the characterization of the sample. Of the studied variables, the variable with
the greatest Fisher F-distribution is previous knowledge and expertise (F=1.407). Pr > F is equal
to 0.146 (the closest to 0.01) for that variable. The next variable is again age (as found in the
study reported in Section 4). Therefore, we can infer that, again, there is no sign of there being
any critical factor in the conducted study.

As the population subsample in each of the five subgroups is unbiased with respect to these
characteristics, the two studies reported in Section 4 and Section 7 are, at any rate, sound,
although we intend to embark upon a new future line of research to specifically explore the
dependence of this type of tools targeting end users on specific user characteristics, as
explained in Section 9.

Therefore, evaluating a web development tool on the proposed scale provides both a priori
and a posteriori knowledge of how many users would be successful using this tool. According
to the nonlinear model calculated above, the number of solutions produced in this case is very
similar to expectations considering the resulting score calculated according to Equation (1).

Now that the preliminary evaluation of this tool based on the proposed scale is complete,
WireCloud/FAST is undergoing a further evaluation process through its use in FP7 projects.
There is qualitative and quantitative evidence that FAST-Wirecloud has been successfully used

in some recent R&D projects [40, 41]. Some evidence of the extensive use of this platform
follows:

• Downloads of the last version from PyPI: more than 2600 downloads per month 1

• Use of the FAST-Wirecloud portal instance at FIWARE Lab [42]
(http://mashup.lab.fiware.org):

o Users: 5936 (as of Dec. 2015)

o Total dashboards developed: 9540 (143 public) (as of Dec. 2015)

o Total Mashable Application Components (MACs) developed: 2785 (as of Dec.
2015)

A recent survey conducted by the FIWARE Accelerator Programme in mid-2015[36] asked
about the perceived usefulness and maturity level of the mashup solution offered by FAST-
Wirecloud platform as a tool implementing the details of the success factors explained here.
To do this, a five-point Likert scale was used: 1 – Completely immature/useless, 2 –Low
maturity, 3 – Mid-maturity, 4 – Mature, final adjustments needed, 5 – Ready for market. The
68 companies that took the survey stated that they were using (33) or planned to use (35)
FAST-Wirecloud as an application mashup solution for their products (see
http://catalogue.fiware.org/ for an exhaustive lists). With regard to maturity, the surveyed 68
companies that stated that they were using FAST-Wirecloud gave this applications mashup
solution a score of “4 – Mature, final adjustments needed” (mean 3.48, mode 4, median 4).
The conclusion of the survey is that the international community of users perceives FAST-
Wirecloud to be a useful and mature mashup solution.

8. Discussion of threats to validity

This discussion on threats to the validity of end-user development success factors for mashup
development environments in EUD will refer to five aspects of validity, which can be
summarized as follows:

- Construct validity: This aspect of validity reflects the extent to which the operational
measures that are studied really represent what the researcher has in mind and what is
investigated according to the research questions. The stated research questions aimed to
demonstrate that the results of designing a EUD web tool using particular quality factors are
more satisfactory than using current tools, which we believe has been proven in this research.
The studies used to respond to the research questions have been carried out with non-biased
samples, designed to reflect the target profile of the archetypal EUD tool user. Additionally,
ANCOVA and standard regression models were employed to assure statistical data validity. We
have taken into account some user characteristics that may later have an impact of the
soundness of the measurements, such as sex, age, training, employment and previous
experience in software tools (a characteristic that should be and seldom is taken into account
in this type of studies). In this study we have found that none of the characteristics influence
the analysed RQs, but it is, in any case, essential to assure that there is no bias in the
distribution of the subsamples. On this ground, we originally used four groups, later adding a
fifth group which is absolutely equivalent with respect to the above characteristics.

1https://pypi.python.org/pypi/wirecloud/0.8.4

http://mashup.lab.fiware.org/
http://catalogue.fiware.org/
https://pypi.python.org/pypi/wirecloud/0.8.4

- Internal validity: This aspect of validity is of concern when examining causal relations. When
the researcher is investigating whether one factor affects an investigated factor there is a risk
that the investigated factor is also affected by a third factor. If the researcher is not aware of
the third factor and/or does not know to what extent it affects the investigated factor, there is
a threat to internal validity. In principle, the covariance studies suggest that the studies are not
influenced by external factors that have not been taken into account, as all the possible factors
and characteristics affecting each user have been accounted for. Additionally, we believe that
the reward offered to users for participating in the study (free user accounts for the beta
version of FAST and beta licences for all the software presented at, as well as free registration
for, the congresses) was proportionate, thereby removing the threat of compensation causing
selection bias and potentially invalidating the study.

- External validity: This aspect of validity is concerned with the extent to which it is possible to
generalize the findings and how much interest the findings are to other people outside the
investigated case. The sample is large enough to suggest that the data are generalizable. The
analysed tools are free, and a similar sample can be recruited to replicate the results step by
step. Additionally, FAST-Wirecloud has become a Fi-WARE FP7 project reference tool, and has
thus been elevated to the standard EUD platform in Europe. On this ground, we believe that its
principles and success factors can be extrapolated to other fields.

- Reliability: This aspect is concerned with the extent to which the data and the analysis are
dependent on the specific researchers. As shown in the paper, we have conducted statistical
studies based on direct observations, questionnaires and specific practical exercises which are
not at all subjective.

9. Conclusions

More and more software vendors are embracing the SaaS (software as a service) philosophy
and providing all their products, data and services as web services, which are accessible not
only to businesses but also to all Internet users [30]. Thanks to this philosophy and the
emergence of open data published by government agencies, many consumers and small
businesses are able to create more and more complex applications organizing calls between
services and calling and remixing various data sources. However, EUPs do not have access to
these benefits and privileges.

However, as the Web 2.0 philosophy showed a decade ago, EUPs have to be taken into
account as "prosumers", providers of applications and data that they previously could only
consume. To achieve this milestone, it is not enough to provide users with user-centric
development tools, such as mashup tools. There is statistical evidence that current EUD web
tools have little success among users without programming skills. Therefore, it is necessary to
study the specific factors that have led other applications (e.g. spreadsheets) to ensure that
millions of EUPs become programmers of applications that will solve everyday problems [31].
This article presents research on these factors, and existing measurement scales for their
promotion. It also provides a new measurement scale based on existing research, which has
proved to be better aligned with what happens when an EUP needs to successfully use a
particular tool. As a result of this research, we report a reference architecture, which is based
on the success of EUD factors and meets the needs of the EUPs who have tested and used its
open source reference implementation, FAST-Wirecloud, as a guideline for improving the
existing technology in this field.

FAST-Wirecloud incorporates the three human factors that directly influence the actual end
use of a software solution: perceived usefulness, perceived ease of use and computer

enjoyment. As it targets specific situational needs that cannot be catered for by traditional
“off-the-shelf” applications or by IT departments following a planned development process,
FAST-Wirecloud is automatically perceived by its users as useful for increasing their job
performance, as shown by the ratings of the items related to human success factors and the
comments to open questions as part of the survey conducted at the end of the study. The
open responses stated that the option of simply picking the necessary building blocks to
visually compose the functional mashup to improve their job performance from an off-the-
shelf catalogue of resources, and the option of executing the mashup from the very beginning
of its development to gather early feedback on how they were doing were an asset. They also
generated immediate satisfaction and the desired ease of use perception among end users.
Perceived ease of use is also promoted through the divide-and-conquer approach to the wiring
process introduced by the behaviour concept.

With regard to the HCI success factors, the paper has illustrated how the proposed
architecture and its reference implementation FAST-Wirecloud promotes the abstraction
gradient, consistency, error-proneness, premature commitment, progressive evaluation, role
expressiveness, viscosity, and visibility and juxtaposability factors.

Finally, we argue that the proposed architecture and its reference implementation FAST-
Wirecloud offer a rather good trade-off between the level of specialization and the
functionality of the resulting solutions thanks to the fine-grained modularity offered by the
components available in the shared resource catalogue and the level of configurability for
customization. This allows for their use in mashups that are very specialized for a given
problem, while they can at the same time be easily exported and used in other application
domains. In particular, more generic widgets can be built using operators, which can therefore
be more application logic-agnostic (i.e. domain-independent). Additionally, the availability of
separate sets of components for different application domains in the resource catalogue, and
the separation of concerns between widgets and operators (which take care of most
application domain specificities) also helps to cater for domain specificity, i.e. customize the
mashup tool for specific requirements that possibly emerging in specific domains.

Regarding the future trends of this work, the key line of future research to be undertaken next
is to study the web components within the tool catalogues and analyse which metrics they
should meet to qualify as quality components, how quality can be assured and how to improve
components so that they can be used by EUPs with every guarantee of success. This work will
be the next logical step in this research field, considering that we have measured the different
success factors to be met by an EUP tool.

Finally, this study has not turned up any correlation between end users’ previous experience in
the use of software tools and the results for EUD tasks, a correlation that we suspected would
exist. Most of the sample (94.4%) had no experience, and the few experienced users that took
part were equally divided across the five work groups. On this ground, we were unable to
study the impact of this characteristic in more depth. Therefore, another RQ that might be
addressed in the future is to analyse the real impact of this type of previous experience on EUD
user success. This study could be performed as part of the new qualitative and quantitative
analyses on the FAST-Wirecloud tool and the success factors that have driven its development
based on the data from hundreds of users that are now using this tool today.

Acknowledgements

This research was partially supported by the European Union co-funded IST projects FAST: Fast
and Advanced Storyboard Tools (GA 216048), FI-WARE: Future Internet Core Platform (GA

285248) and FI-CORE: Future Internet - Core (GA 632893). The FI-WARE and FI-CORE projects
are part of the European Commission’s Future Internet Public-Private Partnership (FI-PPP)
initiative.

We would like to thank Fernando Alonso Amo for his support for and collaboration in the
reported research, which has been very helpful for drafting this paper.

References

[1] G. Alonso, F. Casati, H. Cuno, and V. Machiraju, Web Services Concepts, Architectures and
Applications. Data-Centric Systems and Applications. Germany: Springer, 2004.

[2] C. Schroth and O. Christ, “Brave new web: Emerging design principles and technologies as
enablers of a global SOA,” in Proceedings of the IEEE International Conference on Services
Computing, 2007. SCC 2007. Los Alamitos, CA (USA), 2007, pp. 597–604.

[3] D. Lizcano, J. Soriano, M. Reyes, and J. J. Hierro, “Ezweb/FAST: Reporting on a successful
mashup-based solution for developing and deploying composite applications in the
upcoming “ubiquitous SOA”,” International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, September 29 - October 4, Valencia, Spain. Pp. 488–
495, 2008.

[4] P. J. Molina, I. Torres, O. Pastor, “User Interface Patterns for Object-Oriented Navigation”,
in Upgrade, Human-Computer Interaction: Overcoming Barriers Vol. 4, issue 1, February
2003.

[5] A. P. McAfee, “Enterprise 2.0: The dawn of emergent collaboration,” MIT Sloan
Management Review, vol. 47, no. 3, pp. 21–28, 2006.

[6] A. S. Lee, “Remarks from MIS quarterly editor – inaugural editor’s comments,” MIS
Quarterly, vol. 23, no. 1, 1999.

[7] R. Smith, “Enterprise mashups: an industry case study,” in Keynote at New York PHP
Conference and Expo. NY, USA: IBM Software Group Press, June 2006.

[8] C. Anderson, The Long Tail: Why the Future of Business Is Selling Less of More. NY, USA:
Hyperion, July 2006.

[9] T. Janner, R.Siebeck, C. Schroth and V. Hoyer, “Patterns for Enterprise Mashups in B2B
Collaborations to Foster Lightweight Composition and End User Development”, in
Proceedings of the 2009 IEEE International Conference on Web Services (ICWS '09), Los
Angeles, CA, USA, pp. 976-983, 2009

[10] J.H. Wu, Y.C. Chen, and L.M. Lin, “Empirical evaluation of the revised end user computing
acceptance model,” Computers in Human Behavior, vol. 23, no. 1, pp. 162 – 174, 2007.

[11] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy and R. and Selby, “Cost models
for future software life cycle processes: COCOMO 2.0,” Annals of software engineering,
vol. 1, no. 1, pp. 57-94, 1995.

[12] C. Scaffidi, M. Shaw and B. Myers, “Estimating the numbers of end users and end user
programmers,” in IEEE Symposium on Visual Languages and Human-Centric Computing,
Pittsburgh, USA, September 20-24, 2005.

[13] A. Blackwell and T. R. G. Green, “Investment of Attention as an Analytic Approach to
Cognitive Dimensions, in Collected Papers of the 11th Annu. Workshop Psychology of
Programming Interest Group (PPIG-11), T. R. G. Green, R. H. Abdullah & P. Brna, Eds. ,
Leeds, UK. pp. 24-35, 1999,

[14] S. P. Jones, A. Blackwell, and M. Burnett, “A user-centred approach to functions in Excel,”
in ICFP 03: Proceedings of the eighth ACM SIGPLAN international conference on
Functional programming. Uppsala, Sweden, 2003, pp. 165–176.

[15] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, End-User Development: An Emerging
Paradigm. Human-Computer Interaction Series. Germany: Springer, Nov. 2006, vol. 9, pp.
1–8.

[16] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “Extrinsic and intrinsic motivation to use
computers in the workplaces” Journal of Applied Social Psychology, vol. 22, no. 14, pp.
1111–1132, 1992.

[17] M. Gaedke, “Web Engineering: Creating Solutions in the Age of Emotion, SOA, and Web
2.0”, Tutorial in the 17th International World Wide Web Conference, Beijing, China, April
20, 2008.

[18] T. Green and M. Petre, “Usability analysis of visual programming environments: A
cognitive dimensions framework,” Journal of Visual Languages and Computing, vol. 7, no.
2, pp. 131–174, 1996.

[19] S. Meliá, J. Gómez, S. Pérez, O. Díaz, “Architectural and Technological Variability in Rich
Internet Applications”, Internet Computing, IEEE, vol.14, no.3, pp.24-32, 2010.

[20] D. Lizcano, F. Alonso, J. Soriano, G. López, End-User Development Success Factors and
their Application to Composite Web Development Environments, The Sixth International
Conference on Systems (ICONS 2011), St. Maarten, The Netherlands Antilles, January 23-
28, 2011.

[21] V. Hoyer, A. Fuchsloch, S. Kramer, K. Moller, and J. López, “Evaluation of the
implementation,” FAST Consortium, Tech. Rep. D6.4.1, February 2010.

[22] B. Shneiderman “Promoting universal usability with multi-layer interface design”, in
Proceedings of the 2003 conference on Universal usability, 1-8, New York, NY, USA.

[23] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, University of California, Irvine, 2000.

[24] J. Wong and J. I. Hong, “Making mashups with marmite: towards end-user programming
for the web”, in Proceedings of the SIGCHI conference on Human factors in computing
systems; 1435-1444, New York, USA, 2007.

[25] Z. Obrenovic and D. Gasevic, “Mashing up oil and water: Combining heterogeneous
services for diverse users”, in IEEE Internet Computing, 13, 6, pp. 56-64, 2009.

[26] EzWeb (2012) http://demo.ezweb.morfeo-project.org (Last Access, April 2012).

[27] FAST (2012) http://demo.fast.morfeo-project.org (Last Access, April 2012).

[28] FAST GVS - Manual Part I (2009) http://www.youtube.com/watch?v=qFt2LBlxkwU (Last
Access, April 2012).

[29] FAST GVS - Manual Part II (2009) http://www.youtube.com/watch?v=dpoRhnF8_1A (Last
Access, April 2012).

[30] A. P. McAfee, “Will web services really transform collaboration,” MIT Sloan Management
Review, vol. 46, no. 2, pp. 78–84, 2005.

[31] J.C. Preciado, M. Linaje, S. Comai, S., F. Sanchez-Figueroa, “Designing Rich Internet
Applications with Web Engineering Methodologies”, in proceedings of the 9th IEEE
International Workshop on Web Site Evolution (WSE 2007), pp.23-30, Paris, France, 5-6
October 2007.

[32] I. Garrigós, J. Gomez and G.-J. Houben, “Specification of personalization in web
application design”, in Inf. Softw. Technol. 52, 9, pp. 991-1010, 2010.

[33] M. D. McIlroy, “Mass produced software components,” in Software Engineering, Report
on a conference sponsored by the NATO Science Committee, Garmisch, Germany,
October 1968, pp. 138–155.

[34] R. M. Balzer, “Imprecise program specification,” Report ISI/RR-75-36, Information
Sciences Institute, December 1975.

[35] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi, J.
Lawrance, H. Lieberman, B. Myers, M. B. Rosson, G. Rothermel, M. Shaw, and S.
Wiedenbeck, The state of the art in end-user software engineering. Journal ACM
Computing Surveys 43, 3, Article 21, April 2011.

[36] FIWARE EC FP7 Project, https://www.fiware.org/

[37] FIWARE Catalogue, http://catalogue.fiware.org/

[38] FIWARE Application Mashup Open Specifications,
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecifica
tion.Apps.ServiceMashup. Last access: September 2015.

[39] FIWARE Application Mashup Generic Enabler (Wirecloud)
http://catalogue.fiware.org/enablers/application-mashup-wirecloud

[40] D. Havlik, J. Soriano, C. Granell, S. Middleton, H. van der Schaaf, A. Berre, J. Pielorz, Future
Internet enablers for VGI applications. In Proceedings of the 27th Conference On
Environmental Informatics (ENVIROINFO), Hamburg; Sept. 2013.

[41] F. Ramparany, F. Galan-Marquez, J. Soriano, T. Elsaleh, Handling smart environment
devices, data and services at the semantic level with the FI-WARE core platform, In
Proceedings of the 2014 IEEE International Conference on Big Data (IEEE BigData 2014),
Washington DC, USA, 27-30 Oct. 2014, pp. 14-20. DOI 10.1109/BigData.2014.7004417

[42] D. Lizcano, F. Alonso, J. Soriano, G. López, End-User Development Success Factors and
their Application to Composite Web Development Environments, The Sixth International
Conference on Systems (ICONS 2011), St. Maarten, The Netherlands Antilles, January 23-
28, 2011.

https://www.fiware.org/
http://catalogue.fiware.org/
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Apps.ServiceMashup
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Apps.ServiceMashup
http://catalogue.fiware.org/enablers/application-mashup-wirecloud

[43] D. Lizcano. 2015, Statistical Survey of the End-User Development. Technical Report.
http://apolo.ls.fi.upm.es/eud/

[44] A. Angeli, A. Battocchi, S. R. Chowdhury, C. Rodriguez, F. Daniel, and F. Casati, End-user
requirements for wisdom-aware EUD. In Proceedings of the Third international
conference on End-user development (IS-EUD'11), Maria Francesca Costabile, Yvonne
Dittrich, Gerhard Fischer, and Antonio Piccinno (Eds.). Springer-Verlag, Berlin, Heidelberg,
245-250, 2011.

[45] F. Casati, F. Daniel, A. De Angeli, M. Imran, S. Soi, C. R. Wilkinson, M. Marchese,
Developing Mashup Tools for End-Users: On the Importance of the Application Domain,
International Journal of Next Generation Computing 3(2), 2012.

[46] D. Lizcano, F. Alonso, J. Soriano, G. López, A component- and connector-based approach
for end-user composite web applications development, Journal of Systems and Software,
Volume 94, August 2014, Pages 108-128, ISSN 0164-1212,
http://dx.doi.org/10.1016/j.jss.2014.03.039.

[47] Centre Open Middleware Santander – UPM, http://www.centeropenmiddleware.com.

http://dx.doi.org/10.1016/j.jss.2014.03.039

