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STRONG EXTENSIONS FOR ¢-SUMMING OPERATORS
ACTING IN p-CONVEX BANACH FUNCTION SPACES FOR
1<p<gq

0. DELGADO AND E.A. SANCHEZ PEREZ

ABSTRACT. Let 1 < p < ¢ < oo and let X be a p-convex Banach function space
over a o-finite measure . We combine the structure of the spaces LP(u) and
L9(&) for constructing the new space S)q(p (€), where £ is a probability Radon
measure on a certain compact set associated to X. We show some of its
properties, and the relevant fact that every g-summing operator T' defined on
X can be continuously (strongly) extended to S)%p (&). Our arguments lead to
a mixture of the Pietsch and Maurey-Rosenthal factorization theorems, which
provided the known (strong) factorizations for g-summing operators through
Li-spaces when 1 < g < p. Thus, our result completes the picture, showing
what happens in the complementary case 1 < p < q.

Operator and extension and factorization and p-convex and g-summing.
46E30 and 47B38 and 46B42.

1. INTRODUCTION

Fix1<p<g<ooandlet T: X — F be a Banach space valued linear operator
defined on a saturated order semi-continuous Banach function space X related to
a o-finite measure p. In this paper we prove an extension theorem for 7" in the
case when T is g-summing and X is p-convex. In order to do this, we first define
and analyze a new class of Banach function spaces denoted by S )%p (&) which have
some good properties, mainly order continuity and p-convexity. The space S )%p &)
is constructed by using the spaces LP(u) and L9(£), where £ is a finite positive
Radon measure on a certain compact set associated to X.

Corollary 5 states the desired extension for 7. Namely, if T' is ¢g-summing and
X is p-convex then T can be strongly extended continuously to a space of the type
S )%p (€). Here we use the term “strongly” for this extension to remark that the map
carrying X into S )%p (&) is actually injective; as the reader will notice (Proposition
3), this is one of the goals of our result. In order to develop our arguments, we
introduce a new geometric tool which we call the family of p-strongly g-concave
operators (see the definition at the beginning of Section 4). The inclusion of X into
S )%p (€) turns out to belong to this family. In particular, it is g-concave.

If T is g-summing then it is p-strongly g-concave (Proposition 5). Actually, in
Theorem 4 we show that in the case that X is p-convex, T can be continuously
extended to a space S )%p (&) if and only if T' is p-strongly g-concave. This result can
be understood as an extension of some well-known relevant factorizations of the
operator theory:

(I) Maurey-Rosenthal factorization theorem: If T is g-concave and X is g-convex
and order continuous, then T can be extended to a weighted L7-space related
1



2 0. DELGADO AND E.A. SANCHEZ PEREZ

to p (see for instance [3, Corollary 5]). Several generalizations and applications
of the ideas behind this fundamental factorization theorem have been recently
obtained (see [1, 2, 4, 5, 9]).

(IT) Pietsch factorization theorem: If T is g-summing, then it factors through a
closed subspace of L(), where ¢ is a probability Radon measure on a certain
compact set associated to X; see for instance [6, Theorem 2.13].

Let us explain how the relation of our results with these ones must be understood.
The extreme case p = ¢ in Theorem 4 gives the Maurey-Rosenthal type factorization
(I), since the g-strongly g-concave operators are exactly the g-concave operators.
This is the situation in the well-known case 1 < ¢ < p for which p = ¢ can be
assumed, since p-convexity of X (u) implies g-convexity of X (u). The factorization
space S )‘éq (&) can be then identified with a weighted L?-space, that is, the measure
¢ appearing in its definition can be given by the Dirac’s delta d,,, where w is the
weight function. The other extreme case p = 1 gives a Pietsch type factorization
(IT). In this case the convexity requirement disappears —every Banach lattice is
1-convex— and the 1-strongly g-concave operators are defined by a g-summing
type inequality. Indeed, for an operator acting in a C(K)-space, g-concavity, g¢-
summability and 1-strong g-concavity are the same thing. More aspects of the
asymptotic behavior of p-strongly g-concave operators will be explained in Remark
4.

We must also say that our generalization will allow to face the problem of the
factorization of several p-summing type of multilinear operators from products of
Banach function spaces —a topic of current interest—, since it allows to understand
factorization of ¢g-summing operators from p-convex function lattices from a unified
point of view not depending on the order relation between p and gq.

As an application, we also prove by using Theorem 4 a kind of Kakutani repre-
sentation theorem (see for instance [7, Theorem 1.b.2]) through the spaces S )%p )
for p-convex Banach function spaces which are p-strongly g-concave (Corollary 4).

2. PRELIMINARIES

Let (£,%, 1) be a o-finite measure space and denote by L°(u) the space of
all measurable real functions on {2, where functions which are equal p-a.e. are
identified. By a Banach function space (briefly B.f.s.) we mean a Banach space
X C L%p) with norm || - ||x, such that if f € LO(u), g € X and |f| < |g| p-
a.e. then f € X and ||f||lx < |lgllx- In particular, X is a Banach lattice with
the p-a.e. pointwise order, in which the convergence in norm of a sequence implies
the convergence p-a.e. for some subsequence. A B.f.s. X is said to be saturated if
there exists no A € ¥ with pu(A) > 0 such that fx4 = 0 p-a.e. for all f € X, or
equivalently, if X has a weak unit (i.e. ¢ € X such that g > 0 p-a.e.).

Let X be a saturated B.f.s. For every f € L°(u), there exists (f,)n,>1 C X such
that 0 < f,, 1 |f| p-a.e.

Proof. Consider a weak unit g € X and take g, = ng/(1 + ng). Note that 0 <
gn < ng p-a.e., so g, is a weak unit in X. Moreover, (g,)n>1 increases p-a.e.
to the constant function equal to 1. Now, take f, = gulf|X{weq:|f|<n}. Since
0 < fn < ng, p-a.e., we have that f,, € X, and f,, 1|f] p-a.e.

The Kdthe dual of a B.f.s. X is the space X' given by the functions h € L%(u)
such that [ |hf|dp < oo for all f € X. If X is saturated then X' is a saturated
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B.f.s. with norm ||Al|x: = sup;cp, [ |hf|dpfor h € X'. Here, as usual, Bx denotes
the closed unit ball of X. Each function h € X' defines a functional {(h) on X by
(C(h), f) = [ hfduforall f e X. In fact, X' is isometrically order isomorphic (via
() to a closed subspace of the topological dual X* of X.

From now and on, a B.f.s. X will be assumed to be saturated. If for every
fy fn € X such that 0 < f,, 1 f p-a.e. it follows that || fn|x 1| f]lx, then X is said
to be order semi-continuous. This is equivalent to ¢(X’) being a norming subspace
of X*, ie. ||flx =suppep,, [|fhlduforall f € X. AB.fs. X is order continuous
if for every f, f,, € X such that 0 < f,, T f p-a.e., it follows that f, — f in norm.
In this case, X’ can be identified with X*.

For general issues related to B.f.s.” see [7], [8] and [10, Ch. 15] considering the
function norm p defined as p(f) = || f||x if f € X and p(f) = co in other case.

Let 1 < p < oo. A B.fis. X is said to be p-conver if there exists a constant C' > 0

such that
" 1/p
_=o(XnsIR)
i=1

for every finite subset (f;)?; C X. In this case, MP(X) will denote the smallest
constant C satisfying the above inequality. Note that MP?(X) > 1. A relevant fact
is that every p-convex B.f.s. X has an equivalent norm for which X is p-convex
with constant MP?(X) = 1, see [7, Proposition 1.d.8].

The p-th power of a B.f.s. X is the space defined as

Xy ={feLQu):|fI'" e X},

I(35 )

1

n
1=

endowed with the quasi-norm | f|lx, = || [f|"/?|/%, for f € X,. Note that X,
is always complete, see the proof of [8, Proposition 2.22]. If X is p-convex with
constant MP(X) = 1, from [3, Lemma 3|, || - ||x, is a norm and so X, is a B.fs.

Note that X, is saturated if and only if X is so. The same holds for the properties
of being order continuous and order semi-continuous.

3. THE SPACE S (§)

Let 1 < p < g < o and let X be a saturated p-convex B.f.s. We can assume
without loss of generality that the p-convexity constant MP(X) is equal to 1. Then,
X, and (X)) are saturated B.f.s.". Consider the topology o((X,)’, X,) on (X,)
defined by the elements of X,,. Note that the subset B&p), of all positive elements
of the closed unit ball of (X,,)" is compact for this topology.

Let £ be a finite positive Radon measure on B(—FX,,)" For f € LY(u), consider the

map ¢y : B&p), — [0, o0] defined by

o5 = ([ 1)) dute)) "

for all h € B& % In the case when f € X it follows that ¢; is continuous

and so measurable, since |f|P € X,. For a general f € L%(u), by Lemma 2 we
can take a sequence (fn)n>1 C X such that 0 < f, 1 |f| p-a.e. Applying the
Monotone Convergence Theorem, we have that ¢, 1 ¢; pointwise and so ¢ is
measurable. Then, we can consider the integral fBix , ¢r(h)d¢(h) € [0,00] and
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define the following space:

st©@=3rer: [ ([ repn) du)”" e <

(X )

Let us endow S )’ép (¢) with the seminorm

1/q
)P a/p
Mssyo = | [, ([ 1rerme )
Bixpy
1/p
L LI Y T
In general, || - [[ss (¢) is not a norm. For instance, if £ is the Dirac measure at

some hg € B&p), such that A = {w € Q : ho(w) = 0} satisfies u(A) > 0, taking
f =gxa € X with g being a weak unit of X, we have that

Ifllsg, 0= ] lo)Phote) ()" =0

and
i{w € Q: f(w) £0}) = w(AN fw € Q: g(w) £ 0}) = u(A) >0,
If the Radon measure £ satisfies
1) [ ([ ) asm o = a0
Bxpy
then, S)%p (€) is a saturated B.f.s. Moreover, S)%p (€) is order continuous, p-convex
(with constant 1) and X C S )%p (&) continuously.

Proof. 1t is clear that if f € LO(u), g € Sx,(€) and |f| < |g| pra.e. then f € S% (€)
and |[fllse ) < llgllsz (¢)- Let us see that | - [|sa (¢) is a norm. Suppose that

||f||5§ © = 0and set A, = {w € Q: [f(w)| > L} for every n > 1. Since
Xa, < n|f| and

[ (] werdn)"” dem = lxaly o <n71f1% o -

(X )/ n
from (1) we have that p(A,) =0 and so
pl{w € Q: f(w) #0) = lim p(4,) = 0.
Now we will see that S)q(p (§) is complete by showing that >° -, fn € S)%p (&)
whenever (fp)n>1 C S)q(p(g) with C' = 3| fallse (¢) < oo. First let us prove that

> st [fnl < 00 p-ae. For every N,n > 1, taking A) = {w € Q : > [ (w)] >
N}, since xan < 3 > i1 | fj], we have that

a/p
Lo ()™ aem =yt o

(Xp)!
1 = q
= [ > 15|
j=1

sy = N
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Note that, for N fixed, (AY),>1 increases. Taking limit for n — oo and applying

twice the Monotone Convergence Theorem, it follows that

/B+ </Un,>1A§Y Alw) du(W)>Q/p de(h) < %'

(Xp)’

Then,

a/p C
< ] P —
/+ (/QNNUn>1 . h(w) du(w)) dé(h) ]\}lm 7 0,

(Xp)’

and so, from (1),
p({wea: Y@l =oc}) =u( N U4Y) =0
n>1 N>1n>1
Hence, Zn21 fn € L°(11). Again applying the Monotone Convergence Theorem, it

follows that
fooo (LI

"hw) dn()) " dg(n) <

(Xp)’ n>1
p a/p B
B(*Xp)/ (/Q (n; |fn(w)|) h(w) du(w)) de(h) =

lim (/Q(jzj:l|fj(w)|)”h(w)du(w))q/pdg(h) -

n
1 . q
Jm [ 3215 ¢
J:

IN

q
SE (€

and thus 37, o, fn € S¥ (§).
Note that if f € X, for every h € B&p), we have that

/Q\f(w)\ph(w) dp(w) < [ xRl o,y < LI

and so y
a/p
([ 1F@)Ph@)du(w)) " ds(h) < 115 §(Bfy, )-
v, Vo ()

Xp)!
Then, X C Sx (§) and ||fllsz () < f(BTXp),)l/q || fllx for all f € X. In particular,
S%,(€) is saturated, as a weak unit in X is a weak unit in S§ (£).

Let us show that S)%p () is order continuous. Consider f, f,, € S)‘ép (&) such that
0 < fn T f p-a.e. Note that, since

/B+ (/Q F@)Phw) du(w)) " de(h) < oo,

(Xp)!

there exists a {-measurable set B with §(B(+Xp),\B) = 0 such that

[ 17)Ph) dufw) < oc
Q

for all h € B. Fixed h € B, we have that |f — f,|Ph | 0 p-a.e. and |f — f,|Ph <
|f|Ph p-a.e. Then, applying the Dominated Convergence Theorem, fQ |f(w) —
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fn(w)|Ph(w) du(w) | 0. Consider the measurable functions ¢, ¢y, : B(JFXP), — [0, 00]
given by

o) = ([ |f(w>|ph<w>du<w>)q/p
oo = ([ 170 = £l ) dut)"”

for all h € B&p),. It follows that ¢, | 0 £-a.e. and ¢, < ¢ -a.e. Again by the
Dominated Convergence Theorem, we obtain

_f e _
1= Fallsg o= [ onlmrien) Lo.
(Xp)/
Finally, let us see that Sy (£) is p-convex. Fix (fi)iL; C Sy () and consider
the measurable functions ¢, : B&P), — [0,00] (for 1 <4 < n) defined by

- / (@) Ph(w) dyu(w).
Q

for althB(X) Then,
H(pr) ’sq © /ixp» </Q§n:|fl JPh(w) du(w )>Q/pd5(h)
- q/zJ
=y, (o) e

IN

(Z ||¢iHLq/P(f)>q/p'
=1

Since ||l Lasp(e) = ||f¢||§;p(5) for all 1 <i < n, we have that

(315" g = (S50, 0)

O

Take a weak unit g € (X,)" and consider the Radon measure ¢ as the Dirac
measure at g. If A € ¥ is such that

). (U, ) dute)) " ag(n) = ([ gt au))””

then, gxa = 0 p-a.e. and so, since g > 0 p-a.e., u(A) = 0. That is, & satisfies (1).
In this case, S¢ (f) = LP(gdu) with equal norms, as

[ ([ ue)" dem = ([ 1)rae) dut) "

(Xp)’
for all f € LO(p).
Write Q = Up,>18, with (€,,),>1 being a disjoint sequence of measurable sets
and take a sequence of strictly positive elements (a,),>1 € ¢1. Let us consider the
Radon measure § = >, - anlgy,, ON B&p),, where dyy,, is the Dirac measure
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at gxn, with g € (X,) being a weak unit. Note that for every positive function
¢ € LO(€), it follows that [+ ¢dé =" o amd(gxa, ). If A € ¥ is such that
(Xp)/ -

o= [ ([ mwrau)" as) = ([ gt dute))””

(Xp)’ n>1

then, fAﬂQn g(w) dp(w) = 0 for all n > 1. Hence,

Juoner =3 [ o) =o

n>1
and so gxa = 0 p-a.e., from which pu(A) = 0. That is, £ satisfies (1). For every
f € L) we have that

[ ([ rern due) " dem -
By
> an( [ Py au)"”

n>1 n
Then, the B.f.s. S)%p (&) can be described as the space of functions f € N,,>1LP(gxq, di)
such that (a,l/q||f||Lp(gXQndu))n>1 € ¢4. Moreover,

1/
1£s2 © = (3 @l lioream)

n>1

for all f € S)%p(g).

4. p-STRONGLY ¢-CONCAVE OPERATORS

Let 1 < p<qg<ooandlet T: X - E be a linear operator from a saturated
B.f.s. X into a Banach space E. Recall that T is said to be g-concave if there exists
a constant C' > 0 such that

(ZHT(ﬁ )" <0H(Z|fl )

for every finite subset (f;)’.; C X. The smallest possible value of C will be
denoted by M,y (T'). For issues related to g-concavity see for instance [7, Ch.1.d].
We introduce a slightly stronger notion than g-concavity: T will be called p-strongly
q-concave if there exists C > 0 such that

- /a
(S i) <e s
=1

(Bi)i>1€Br

X

(me) v

for every finite subset (f;)7_; C X, where 1 < r < oo is such that % = 5 - %. In this

case, M), ,(T) will denote the smallest constant C satisfying the above inequality.
Noting that % and % are conjugate exponents, it is clear that every p-strongly g¢-

concave operator is g-concave and so continuous, and moreover ||T']] < My (T) <
M, o(T). As usual, we will say that X is p-strongly g-concave if the identity map
I: X — X is so, and in this case, we denote M, ,(X) = M, ,(I).

Our goal is to get a continuous extension of T' to a space of the type S )%,, (€) in
the case when T is p-strongly ¢-concave and X is p-convex. To this end we will
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need to describe the supremum on the right-hand side of the p-strongly g-concave
inequality in terms of the Kothe dual of X,.
If X is p-convex and order semi-continuous then

n / " /pN\1/
(;Iﬂiﬁ-l”)l ’ HX = h:;p (; (/|fi|phdﬂ)q p)l !

(Xp)’

sup
(Bi)i>1€Byr

for every finite subset (f;)I_; C X, where 1 < r < oo is such that 1 = % - % and

B&p), is the subset of all positive elements of the closed unit ball B(x,) of (X})".

Proof. Given (f;)!~, C X, since X, is order semi-continuous (as X so is) and
(ealPys = /P (as + is the conjugate exponent of 1), we have that

(2; sl Zj Bifie ||

= sup sup /Z |Bi filP|h| dp

(B:)€Ber h€B(x,y J 12

p p
sup
(Bi)€Ber

= Sup
X 1)EByr

= sup  sup /Zlﬁifilphdu

(Bi)€Ber hGBE" ) i=1
— s YA [ 1t
hEB< , (Bi)€Ber ;4
—ap s Y [1srnn
heBl, |, (e)eB} =1
n a/p\p/a
= sw (30 ([1nan))""
hEB(X ) i=1

O

In the following remark we show a general example of p-strongly g-concave op-
erator that can be easily obtained from Lemma 4. In a sense, this operator is the
prototype of p-strongly g-concave operator.

Suppose that X is p-convex and order semi-continuous. For every finite positive
Radon measure £ on B( N,y satisfying (1), it follows that the inclusion map i: X —

S )‘ép (&) is p-strongly g-concave. Indeed, for each (f;)"; C X, we have that

anznsq © = Z > (o i) e
(Xp)!
w Y ([ nrne )"

(X)/’L 1

IN

13 (B( e ) s
heB

. . . + 1/q
and so, Lemma 4 gives the conclusion for M, 4(i) < &(Bfy )"
Now let us prove our main result.
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If T is p-strongly g-concave and X is p-convex and order semi-continuous, then
there exists a probability Radon measure £ on B& y satisfying (1) such that
p

1/q

@ 1l <@ ([ ([ 1) )" dm)
for all f € X.

Proof. Recall that the topology on (X,)" is o((X,)’, Xp), the one which is de-
fined by the elements of X,. For each finite subset (with possibly repeated el-
ements) M = (f;), C X, consider the map ;s : B&p), — [0,00) defined by
v (h) =30 (fo |fi|phdu)q/p for h € B(JFXP),. Note that 1, attains its supre-
mum as it is continuous on a compact set, so there exists hys € B&p), such that
supheB&p)/ ¥ar(h) = Yar(har). Then, the p-strongly g-concavity of T, together

with Lemma 4, gives

m m /
S ITEE < Myt s 3 JREREO

+ °
heB(Xp), i=1

IN

My o(T)"  sup ¢ar(h)

T
hEB(Xp),

(3) = My o(T)" Pns(har)-

Consider now the continuous map ¢y : B&p), — R defined by

orr(h) = My o(T) Yar(h) — Z 1T(fi)ll%

for h € B&p),. Take B = {¢pr : M is a finite subset of X}. Since for every M =

(fi)m,, M' = (f)k_, c X and 0 < t < 1, it follows that térr + (1 — t)par = parr
where M" = (tl/qfi)zzl U((1- t)l/qfi’)f:l, we have that B is convex. Denote
by C (B&p),) the space of continuous real functions on B(J_FXP),, endowed with the

supremum norm, and by A the open convex subset {¢ € C(B(J“Xp),) s p(h) <

0 for all h € B&p)/}. By (3) we have that AN B = . From the Hahn-Banach

separation theorem, there exist £ € C(B(J“Xp),)* and o € R such that (£,¢) < a <
(&, ¢dpr) for all ¢ € A and ¢ € B. Since every negative constant function is in A,
it follows that 0 < . Even more, @ = 0 as the constant function equal to 0 is just
$oy € B. It is routine to see that (£, ¢) > 0 whenever ¢ € C(B(+Xp)’) is such that

¢(h) > 0 for all h € B(J_rxp),. Then, ¢ is a positive linear functional on C(B(Jg(p),)
and so it can be interpreted as a finite positive Radon measure on B&p),. Hence,

we have that

0< dar d
B:Xp)/
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for all finite subset M C X. Dividing by & (B(JFXP),)7 we can suppose that ¢ is a
probability measure. Then, for M = {f} with f € X, we obtain that

TN < Mo [ ([ 1) dute)) " deiny

(Xp)’

and so (2) holds. O

Actually, Theorem 4 says that we can find a probability Radon measure £ on
B&p), such that T: X — F is continuous when X is considered with the norm of
the space S )q(p (€). In the next result we will see how to extend T' continuously to
S )%p (€). Even more, we will show that this extension is possible if and only if T is
p-strongly g-concave.

Suppose that X is p-convex and order semi-continuous. The following statements
are equivalent:

(a) T is p-strongly g-concave.

(b) There exists a probability Radon measure £ on B(JFXP), satisfying (1) such that
T can be extended continuously to S)q(p (£), i.e. there is a factorization for T'
as

where T is a continuous linear operator and 4 is the inclusion map.
If (a)-(b) holds, then M, ,(T) = ||T||.
Proof. (a) = (b) From Theorem 4, we get that there is a probability Radon measure
¢ on B&p), satisfying (1) such that |T(f)l|g < Mpq(T)[|fllsa (¢ for all f € X.

Given 0 < f € S)q(p(f), from Lemma 2, we can take (f,)n,>1 C X such that
0 < fn 1 f p-a.e. Then, since S)Zp (€) is order continuous, we have that f,, — f

in S)%p (€) and so (T(fn))n>1 converges to some element e of E. Define T(f) = e.

Note that 7" is well defined, since if (gn)n>1 C X is such that 0 < g, 1T f p-a.e.,
then

1T (frn) = T(gn)lle < Mp,q(T)an - gn”S;p(g) — 0.

Moreover,

IT()le

T [TCF)
< Mp(T) lim | fallsg o)
= Mp,q(T)Hstgp(gy

For a general f € S)q(p (&), writing f = f* — f~ where fT and f~ are the positive

and negative parts of f respectively, we define T(f) = T(f+) — T(f~). Then,
T:S )%p (§) — E is a continuous linear operator extending 7. Moreover ||T|| <
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My,q(T). Indeed, let f € S§ (&) and take (f;)n>1, (fo )n>1 C X such that 0 <
At frand0< f 1 f~ p-ae. Then, ff — f7 — fin S)%p(g) and

T(fF = ) =T - T(f) = T - T(f) =T(f)
in E. Hence,
ITNle =l (T — )l
< Mp,q(T) nh_fgo ||f: - fn_”S)%p(g)
= Mp,q(T)”fHS)‘gp(gy

(b) = (a) Given (f;)"; C X, we have that
DTS < ITI Y NFillgy (o)
i=1 i=1

||f||qi [, ([ iserne) au(w)) " de(n)

(Xp)!

>IN

q/p

IN

71 swp ([ 15)PAG) duw))
hEB:“Xp)/ i=1 Y9

Thus, we obtain from Lemma 4 that T is p-strongly g-concave with M, ,(T) <

1T O

The definition of the norm of the spaces S )%p (&) and the characterization given
in Theorem 4 show some inclusions among the spaces of p-strongly g-concave op-
erators. Indeed, for a p-convex Banach function space X, a suitable probability
measure ¢ and real numbers p < ¢; < ¢o, Holder’s inequality gives the inclusion
S)‘Z (&) C S)‘g (§). Therefore, if g1 < g2 and T is gj-concave, then it is also go-
concave.

The structure of the spaces S )%p (&) also allows to understand the asymptotic
behavior of the factorization when ¢ — oco. In this case, the norm in the space
S )q(p (&) for a given function in X tends to the norm in X when ¢ increases, in the
sense that the L?(u)-norm of a bounded function tends to the L (u)-norm. Note
also that for this asymptotic behavior the p-convexity of X does not play any role,
so it can be assumed to be the trivial 1-convexity.

A first application of Theorem 4 is the following Kakutani type representation
theorem (see for instance [7, Theorem 1.b.2]) for B.f.s.” being order semi-continuous,
p-convex and p-strongly g-concave.

Suppose that X is p-convex and order semi-continuous. The following statements
are equivalent:

(a) X is p-strongly g-concave.
(b) There exists a probability Radon measure £ on B&p), satisfying (1), such that
X=5 )%p (&) with equivalent norms.

Proof. (a) = (b) The identity map I: X — X is p-strongly g-concave as X is
so. Then, from Theorem 4, there exists a probability Radon measure £ on B&p),
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satisfying (1), such that I factors as

X X
i f
BN
S¢(©)
where T is a continuous linear operator with ||I]| = M, 4(X) and ¢ is the inclusion

map. Since £ is a probability measure, we have that ||f||5§p ©) < |Ifllx for all

f € X, see the proof of Proposition 3. Let 0 < f € S)%p (£). By Lemma 2, we can
take (fn)n>1 C X such that 0 < f, T f p-a.e. Since S)q(p (&) is order continuous,

it follows that f, — f in S;ép({) and so f, = I(f,) — I(f) in X. Then, there

is a subsequence of (f,)n>1 converging p-a.e. to I(f) and hence f = I(f) € X.
For a general f € S)%p (&), writing f = f* — f~ where fT and f~ are the positive

and negative parts of f respectively, we have that f = I(fT)—I(f~)=1I(f) € X.

Therefore, X = S;I(p(g) and I is de identity map. Moreover, || fllx = [[I(f)||x <

17101753, © = Mpa(X)If s (o) for all f € X.

(b) = (a) From Remark 4 it follows that the identity map I: X — X is p-strongly
g-concave. [

Note that under conditions of Corollary 4, if X is p-strongly g-concave with
constant M, o(X) =1, then X = S)q(p (&) with equal norms.

5. ¢-SUMMING OPERATORS ON A p-CONVEX B.F.s.

Recall that a linear operator T: X — FE between Banach spaces is said to be
q-summing (1 < g < 00) if there exists a constant C' > 0 such that

=1 pt

T*EBx*

for every finite subset (z;)}.; C X. Denote by m,(T") the smallest possible value of
C'. Information about g-summing operators can be found in [6].

One of the main relations between summability and concavity for operators
defined on a B.f.s. X, is that every g-summing operator is g-concave. This is a
consequence of a direct calculation which shows that for every (f;)?; C X and
x* € X* it follows that

)

X

@ (iW*m@wéwww(imﬁw

see for instance [7, Proposition 1.d.9] and the comments below. However, this
calculation can be slightly improved to obtain the following result.

Let 1 < p < g < c0. Every ¢g-summing linear operator 7': X — FE from a B.fs.
X into a Banach space E, is p-strongly g-concave with M), ,(T) < 7 (T).
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Proof. Let 1 < r < oo be such that } = and consider a finite subset

(fi)'~, € X. We only have to prove

sup (il(w*,fﬁlq)l/qﬁ sup
i=1

T*EBx* (Bi)i>1E€Ber

1
q

(i),

Fix z* € Bx~». Noting that % and % are conjugate exponents and using the

1
P

inequality (4), we have

- 1/q

(i) = s (Yl r)”

=1 (Oti)qj21€Be,,./p i—1
1/p
= sw (Yl sisr)

(Bi)i>1E€Ber Zl
- 1/p
< sup ( ‘Bifi‘p) H
(ﬂi)izleBm’ ; X

Taking supremum in z* € Bx~ we get the conclusion. O

From Proposition 5, Theorem 4 and Remark 4, we obtain the final result.

Set 1 <p < g <oo. Let X be a saturated order semi-continuous p-convex B.f.s.
and consider a g-summing linear operator 7': X — F with values in a Banach space
E. Then, there exists a probability Radon measure £ on B&p), satisfying (1) such
that T can be factored as

E

where T is a continuous linear operator with |T| < my(T) and i is the inclusion
map which turns out to be p-strongly g-concave, and so g-concave.

Observe that what we obtain in Corollary 5 is a proper extension for 7', and not
just a factorization as the obtained in the Pietsch theorem for g-summing operators
through a subspace of an L?-space.
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