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Abstract

In this paper we deal with the polyhedral description and the resolution of the Mixed
General Routing Problem. This problem, in which the service activity occurs both at some
of the nodes and at some of the arcs and edges of a mixed graph, contains a large number
of important arc and node routing problems as special cases. Here, a large family of facet
defining inequalities, the Honeycomb inequalities, is described. Furthermore, a cutting plane
procedure for this problem that incorporates new separation procedures for the K-C and
Honeycomb inequalities is presented. Extensive computational experiments over different
sets of instances are included.

Key Words: Polyhedral Combinatorics, Rural Postman Problem, General Routing
Problem, Mixed Rural Postman Problem.

1 Introduction

Routing Problems arise in several areas of distribution management and logistics and their
practical significance is widely known. While in Node Routing Problems the service activity
occurs at all (or at some subset of) the nodes, Arc Routing Problems are routing problems
where a single vehicle or a fleet of vehicles must service all (or some subset of) the arcs (and/or
edges) of a transportation network. Although Arc Routing Problems have historically received
less attention than Node Routing Problems, they have been extensively studied in recent years.
The papers by Assad & Golden (1995), Eiselt, Gendreau & Laporte (1995a,b) and the recent
book edited by Dror (2000a) summarize the state of the art and practical applications of these
problems.

In this paper we deal with a more general routing problem in which the service activity
occurs both at some of the nodes and at some of the arcs and edges of a mixed graph. Given a
strongly connected mixed graph G = (V, E, A) with vertex set V , edge set E, arc set A, a cost
ce for each link e ∈ E ∪ A, a subset ER ⊆ E of required edges, a subset AR ⊆ A of required arcs
and a subset VR ⊆ V of required vertices, the Mixed General Routing Problem (MGRP) is the
problem of finding a minimum cost tour passing through each e ∈ ER ∪ AR and through each
i ∈ VR at least once.

∗corresponding author: angel.corberan@uv.es
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The MGRP contains most of the best known routing problems with a single vehicle as special
cases:

• When A = ∅, the General Routing Problem (GRP) is obtained (Orloff (1974), Letchford
(1997,1999), Corberán & Sanchis (1998), Corberán, Letchford & Sanchis (2001)).

– If, in addition, VR = ∅, the Rural Postman Problem (RPP) is obtained (Orloff (1974),
Christofides et al. (1981), Corberán & Sanchis (1994), Ghiani & Laporte (2000),
Fernández et al. (2001)). Similarly, when ER = E, the RPP reduces to the well
known Chinese Postman Problem or CPP (Guan (1962), Edmonds (1963), Edmonds
& Johnson (1973)).

– On the other hand, if ER = ∅ the GRP reduces to the Steiner Graphical Traveling
Salesman Problem (Cornuèjols, Fonlupt & Naddef, 1985), also called the Road Trav-
eling Salesman Problem (Fleischman, 1985); if, in addition, VR = V , the Graphical
Traveling Salesman Problem is obtained (Cornuèjols, Fonlupt & Naddef, 1985).

• When E = ∅ and VR = ∅, the MGRP reduces to the Directed Rural Postman Problem
(Christofides et al., 1986). If, in addition, AR = A, the Directed Chinese Postman Problem
(DCPP) is obtained (Edmonds & Johnson, 1973). Also, as in the undirected case, the
Graphical Asymmetric Traveling Salesman Problem (GATSP) is obtained when E = ∅,
AR = ∅ and VR = V (Chopra & Rinaldi, 1996).

• Finally, when A �= ∅, E �= ∅ and VR = ∅, the Mixed Rural Postman Problem (MRPP) is
obtained (Romero (1997), Corberán, Romero & Sanchis (2002)). If, in addition, ER = E
and AR = A, the MRPP reduces to the Mixed Chinese Postman Problem (Edmonds &
Johnson (1973), Christofides et al. (1984), Grötschel & Win (1992), Nobert & Picard
(1996)).

While the CPP and the DCPP can be solved in polynomial time, all the other problems are
NP -hard. These results can be found in some of the previous references and in the papers by
Papadimitriou (1976), Lenstra & Rinnooy-Kan (1976) and Dror (2000b). In what refers to the
polyhedral descriptions and solution methods for these problems, the reader is referred to the
above mentioned papers as well as to the chapters by Eglese & Letchford, Hertz & Mittaz and
Benavent, Corberán & Sanchis in the book edited by Dror (2000a).

Very recently, the Mixed General Routing Problem has been studied in Corberán, Romero
& Sanchis (2002). In this paper, the authors present a formulation of the problem and a partial
description of its associated polyhedron. Some basic facet defining inequalities are introduced
(trivial, connectivity, balanced-set and R-odd cut constraints), as well as a large family of
inequalities, the Path Bridge (PB) inequalities. Furthermore, some computational results are
presented with a preliminary cutting-plane algorithm. This procedure, which includes separation
algorithms for the connectivity, balanced-set and R-odd cut constraints, has produced very good
lower bounds over a set of 100 randomly generated instances of the MRPP.

In this paper, we present a new family of facet defining inequalities, the Honeycomb inequal-
ities, first introduced by Corberán and Sanchis (1998) for the undirected GRP. New separation
procedures for these inequalities and for an important subset of the PB constraints, the K-C
inequalities, have allowed us to improve the previous cutting-plane algorithm considerably. More
precisely, in the next section we define the problem and we present the notation to be used. Sec-
tion 3 briefly summarizes the known results on the MGRP polyhedron, while sections 4 and 5
describe a new family of facet-inducing inequalities, the Honeycomb inequalities. Finally, section
6 describes the implemented cutting-plane algorithm and the computational results obtained.
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2 Problem definition and notation

In the MGRP, as in the undirected case, it is helpful to assume, without loss of generality, that
the vertices incident to any required link (arc or edge) are also required. Moreover, we will also
assume that the original graph has been transformed to satisfy that V = VR and E \ ER = ∅.
This is not a serious restriction as there is a simple way to transform MGRP instances which do
not satisfy the assumption into instances which do (see, for instance, Christofides et al. (1986)
or Eiselt, Gendreau & Laporte (1995b)). Hence, we will assume, in what follows, that we are
working with a (simplified) strongly connected graph G = (V, E, A) := (VR, ER, AR ∪ ANR), in
which all the vertices are either required or incident to a required link and E \ ER = ∅.

The first part of the polyhedral study of the MGRP is given in Corberán, Romero & Sanchis
(2002). In this paper we use the same notation. Let GR = (V, E, AR) be the graph obtained by
deleting in G all the non-required arcs. This graph is, in general, non-connected. Let us denote
by p the number of its connected components and by V1, V2, . . . , Vp, with V1∪ . . .∪Vp = V , their
corresponding vertex sets (R-sets). The subgraphs of G induced by the R-sets will be represented
by Ci = G(Vi), i = 1, . . . , p, and they will be referred to as R-connected components. Given
S, T ⊂ V , (S : T ) will denote the set of links with an endpoint in S and the other in T , E(S : T )
will be the set of edges between S and T , while A(S : T ) will represent the set of arcs from S
to T . Hence, (S : T ) = E(S : T ) ∪ A(S : T ) ∪ A(T : S). Furthermore, δ(S) = (S : V \ S),
A+(S) = A(S : V \S), A−(S) = A(V \S : S), A(S) = A+(S)∪A−(S), E(S) = E(S : V \S) and
γ(S) will denote the set of links with both endpoints in S. These sets are defined in a similar
way with respect only to the required links or to the non-required links: (S : T )R, ANR(S : T ),
A+

R(S), δR(S), etc.

Applying the necessary and sufficient conditions for a mixed graph to be Eulerian (Ford and
Fulkerson, 1962), a family F of links of G will be a tour for the MGRP if F contains all the
required links, and graph (V, EF ∪AF ) is even, connected and balanced. The balanced condition
means that for every S ⊂ V , the difference between the number of arcs in A+(S) (leaving S)
and the number of arcs in A−(S) (entering S) is less than or equal to the number of edges in
E(S).

In Corberán, Romero & Sanchis (2002), the MGRP is formulated with respect to semitours,
i.e., the family of links obtained from any tour for the MGRP by deleting one copy of every
required link. An incidence vector x = (xe : e ∈ E ∪ A) ∈ R

E∪A is associated with each
tour (semitour), where xe denotes the number of times a link e ∈ E ∪ A appears in the tour
(semitour). If xR denotes the incidence vector of the required links, x is a semitour for the
MGRP on G if, and only if, x + xR is a tour. A vertex v ∈ V is R-odd if it is incident to an
odd number of required links, otherwise it is R-even. Note that every isolated required vertex
is R-even. Given S ⊂ V , let uS = |A+

R(S)| − |A−
R(S)| − |E(S)|. The set of semitours for the

MGRP is the set of vectors x ∈ R
E∪A satisfying:

xe ≥ 0 and integer, ∀e ∈ E ∪ A (1)
x(δ({i})) ≡ 0 mod 2, ∀i ∈ V : v is R − even (2)
x(δ({i})) ≡ 1 mod 2, ∀i ∈ V : v is R − odd (3)

x(A+(S)) ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (4)
−x(A+(S)) + x(A−(S)) + x(E(S)) ≥ uS , ∀S ⊂ V (5)

where conditions (2) and (3), (4) and (5) force the graph represented by the tour to be, respec-
tively, even, connected and balanced.

The above system (1) to (5) includes an equation associated with each set S ⊂ V with
E(S) = ∅. Let us represent by K1, K2, . . . , Kq the sets of vertices of the connected components
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of the graph (V, E). Some sets Ki could consist of a single vertex only. We will call the q
subgraphs of G induced by sets Ki edge-connected components of G. The q equations

x(A+(Ki)) + uKi = x(A−(Ki)), i = 1, 2, . . . , q (6)

will be referred to as the system equations and any q−1 of them are linearly independent.

3 MGRP Polyhedron

Let MGRP(G) be the convex hull of all the semitours x ∈ R
E∪A satisfying (1) to (5). Cor-

berán, Romero and Sanchis (2002) show that MGRP(G) is an unbounded polyhedron with
dim(MGRP(G)) = |E ∪ A| − q + 1, where q is the number of the connected components of the
graph (V, E), and that the following inequalities are, under mild conditions, facet-inducing for
MGRP(G):

• Trivial inequalities

• Connectivity inequalities (4)

• Balanced-set inequalities (5)

• The R-odd cut inequalities

x(δ(S)) ≥ 1, ∀δ(S) R-odd cutset of G (7)

• The (standard) Path-Bridge (PB) and the Path-Bridge02 (PB02) inequalities.

Moreover, it is also shown that all facet-inducing inequalities for the MGRP(G), except those
equivalent to the trivial ones, are configuration inequalities, i.e., each inequality is defined by
a partition of V , B = {B1, B2, . . . , Br}, and by some costs associated with the links among
these node sets Bi. The variables associated with the links in γ(Bi) have coefficient zero in the
inequality, and the variables associated with the links in (Bi : Bj) have coefficient equal to the
cost defined between Bi and Bj . Then, associated with an inequality, we have a configuration
graph, GC , having node set B, a required edge (Bi, Bj) for each required edge (u, v) of G with
u ∈ Bi, v ∈ Bj , a required arc (Bi, Bj) for each required arc (u, v) of G with u ∈ Bi, v ∈ Bj and
a non-required arc (Bi, Bj) for each pair Bi, Bj such that ANR(Bi : Bj) �= ∅. In other words,
GC is the graph resulting after shrinking node sets Bi, i = 1, . . . , r, into a single vertex each, and
shrinking each set of non-required parallel arcs into one single arc, but keeping all the required
links.

To illustrate the above definitions, we describe here the K-C inequalities and their configu-
ration graph. For these inequalities, which are a particular case of PB inequalities, separation
algorithms are presented in section 6.1.

A K-C configuration (see figure 1a) is defined by an integer K ≥ 3, a partition of V into
K + 1 subsets {M0, M1, M2, . . . , MK−1, MK} such that each R-set Vi, 1 ≤ i ≤ p , is contained
in exactly one of the node sets M0 ∪ MK , M1, M2, . . . , MK−1, the induced subgraphs G(Mi),
i = 0, 1, 2, . . . , K, are strongly connected and (M0 : MK) contains a positive and even number of
required links, and by the cost functions defined as c(M0, MK) = K − 2 and c(Mi, Mj) = |i− j|,
∀i, j : {i, j} �= {0, K}.

The partition B = {M0, M1, M2, . . . , MK−1, MK} and the above costs define the configura-
tion graph GC whose skeleton is shown in figure 1a. Internal arcs (Mi, Mj) not represented in
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Figure 1: K-C and K-C02 configurations.

figure 1 have a cost equal to the length of the shortest path from Mi to Mj using external arcs.
The associated K-C inequality is:

(K−2) x
(
(M0 : MK)

)
+

∑

0 ≤ i < j ≤ K
(i, j) �= (0, K)

| i−j | x
(
(Mi : Mj)

)
≥ 2(K−1) (8)

Other facet-inducing inequalities closely related to the above (standard) K-C inequalities are
the K-C02 inequalities, whose skeleton is shown in figure 1b. Note that the opposite external
arcs in (M0 : M1) now have coefficients 0 and 2 (these coefficients could be associated with the
opposite arcs in any set (Mi : Mi+1), for i = 1, 2, . . . , K−1, but the corresponding inequalities
would be equivalent), and that links in (M0, MK) now have coefficient K−1. Again, internal
arcs (Mi, Mj) have a cost equal to the length of the shortest path from Mi to Mj using external
arcs.

All the above described inequalities, except the trivial ones, have been proved to be facet-
inducing for MGRP(G) in Corberán, Romero and Sanchis (2002) by using two ‘lifting’ theorems.
These theorems state conditions for a given configuration inequality which is facet-inducing for
MGRP(GC) to be also facet-inducing for MGRP(G). Below, a third lifting theorem that will be
used in the next sections is presented.

Theorem 1 Let G be a mixed graph and let C be a configuration on G. The associated con-
figuration inequality is facet-inducing for MGRP(G) if the configuration inequality F (x) ≥ c0

associated with C on graph GC is facet-inducing for MGRP(GC) and the following conditions are
satisfied:

(a) Given any proper subset of edges in GC, it is possible to orient each edge in such a way that
inequality F (x) ≥ c0 is also facet-inducing for the MGRP polyhedron associated with the
resulting graph G′

C.
(b) Given any edge in GC that has been oriented in (a) to obtain graph G′

C, there exists at least
one semitour x∗ for the MGRP traversing edge e in the opposite direction to that given in
G′

C satisfying F (x∗) = c0.

Proof: The proof is similar to that of the second lifting theorem in Corberán, Romero and
Sanchis (2002) and is omitted here for the sake of brevity. �
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4 Honeycomb inequalities

The Honeycomb inequalities were introduced by Corberán & Sanchis (1998) for the undirected
GRP. Like PB inequalities, they are also a generalization of K-C inequalities. However, the
generalization is in a different direction and neither class contains the other.

In a K-C configuration (see figure 1), a R-connected component (or a cluster of R-connected
components) is divided into two parts (M0 and MK). In this section we generalize this config-
uration simultaneously both in the number of parts a R-connected component is divided into
and in the number of R-connected components we divide.

As an illustration, consider the MGRP instances in figure 2, where the required links and
the required vertices are represented in bold lines. It can be seen that the vector x such that
xa = 0.5 for each a ∈ ANR and xe = 0 for each e ∈ ER∪AR is an extreme point of the polyhedron
defined by all the inequalities mentioned before, but x is not a semitour. An inequality that
is not satisfied by x is

∑
e∈E∪A xe ≥ 6, which could be considered as a more general K-C

inequality dividing a R-connected component into 3 parts (this would be the case of figure 2a)
or dividing two R-connected components simultaneously (figure 2b). We show below that these
(honeycomb) inequalities are facet-inducing of MGRP(G).
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Figure 2: Two MGRP instances

Consider a partition of the set of vertices V into K vertex sets {A1, A2, . . . , AL,
AL+1, . . . , AK}, 3 ≤ K ≤ p, 1 ≤ L ≤ K, in such a way that each Vj , 1 ≤ j ≤ p, is contained
in exactly one Ai and the induced subgraphs G(Ai), i = 1, 2, . . . , K, are strongly connected.

Suppose we can now partition each set Ai, i = 1, 2, . . . , L, into γi ≥ 2 subsets, Ai = B1
i ∪B2

i ∪
. . . ∪ Bγi

i , satisfying the following conditions:

H1) Each Bj
i contains an even number of R-odd nodes, j = 1, 2, . . . , γi.

H2) The induced subgraphs G(Bj
i ), j = 1, 2, . . . , γi, are strongly connected.

H3) The graph with node set B1
i , B2

i , . . . , Bγi
i and having an edge (Bj

i , B
k
i ) for every pair of

nodes Bj
i �= Bk

i such that (Bj
i : Bk

i )R �= ∅, is connected.

Condition H3 is obviously satisfied when Ai is a single R-set. When Ai consists of several R-
sets, condition H3 implies that the partition of Ai into the Bj

i is made by cutting the R-connected
components.

For notational convenience, we denote B0
i = Ai, i = L + 1, . . . , K. We have therefore the

following partition of V :

B = {B1
1 , B2

1 , . . . , Bγ1
1 , B1

2 , B2
2 , . . . , Bγ2

2 , . . . , B1
L, B2

L, . . . , BγL
L , B0

L+1, . . . , B
0
K}
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This partition B defines a configuration graph GC = (B, E ∪ A) with a set of nodes B and
a set of links E ∪ A formed by a required link (edge or arc) (Bi

r, B
j
q) for each required link

e ∈ (Bi
r : Bj

q)R and a non-required arc (Bi
r, B

j
q) between each couple of nodes Bi

r, Bj
q such that

ANR(Bi
r : Bj

q) �= ∅.
Let us suppose that there is a set T of pairs of opposite non-required arcs in GC joining

nodes corresponding to different Aj , j = 1, 2, . . . K, such that the undirected graph with node
set B and having an edge (Bj

i , B
q
p) for each pair of opposite arcs (Bj

i , B
q
p), (Bq

p, B
j
i ) in T , is a

spanning tree. Then, for each pair of nodes Bj
i , Bq

p in B, d(Bj
i , B

q
p) will denote the number of

arcs in the unique path in (B, T ) joining Bj
i to Bq

p. We will assume that the following condition
is also satisfied:

H4) d(Bj
i , B

q
i ) ≥ 3 ∀ i = 1, . . . , L and ∀ j �= q.

The graph (B, T ) defines the skeleton of the configuration (see figure 3, where the arcs in T
are represented in thin lines and the required links in bold lines) and looks like a honeycomb
where each cell is a K-C configuration defined by a pair of nodes Bi

q, Bj
q (related to the same

Aq) and by the unique path in T joining Bi
q and Bj

q (K ≥ 3 since H4 is satisfied). We divide
the set of links in the configuration graph GC = (B, E ∪ A) into 3 sets:

• The set C (from ‘cut’) formed by the links joining nodes Bp
i , Bq

i with p, q �= 0 (the nodes
obtained by ‘cutting’ the sets Ai, i = 1, . . . , L).

• The set of arcs in T , which will be called external arcs.

• The set In formed by the remaining arcs, which will be called internal arcs.
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Figure 3: Honeycomb Configuration

We define the configuration costs on the links of (B, E ∪ A) as follows:

I) For the links (Bi
q, B

j
q) ∈ C such that the path in (B, T ) joining Bi

q and Bj
q does not contain

more than one node related to the same As (except the nodes Bi
q and Bj

q):

c(Bi
q, B

j
q) = d(Bi

q, B
j
q) − 2
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(Note that, since H4 is satisfied, c(Bi
q, B

j
q) ≥ 1).

II) For the arcs (Bi
r, B

j
q) ∈ T ∪ In, r �= q, such that the path in (B, T ) joining Bi

r and Bj
q does

not contain more than one node related to the same As:

c(Bi
q, B

j
q) = d(Bi

q, B
j
q)

III) The remaining links (if any), i.e. links (Bi
r, B

j
q), such that in the path in (B, T ) joining

Bi
r and Bj

q there is more than one node related to the same As (as distinct from pair Bi
r, Bj

q ,
when r = q), are ordered in an arbitrary way a1, a2, . . . , ak. For h = 1, . . . , k, if a = (Bi

r, B
j
q),

let c(Bi
r, B

j
q) be the maximum value such that a belongs to a semitour of c-cost 2(K−1) using

only links from (E ∪ A) \ {ah+1, . . . , ak} (sequential lifting).

A honeycomb configuration will be the pair formed by the partition B of V and the costs
obtained from T . The following inequality will be called honeycomb inequality:

∑
a∈E∪A

caxa ≥ 2(K−1), where ca = c(Bi
r, B

j
q) ∀a ∈ (Bi

r : Bj
q), ca = 0 ∀a ∈ γ(Bi

r) (9)

It is interesting to note that, when the degree of every node Bi
q, i �= 0, in (B, T ) is equal

to 1 (the nodes from parts of the R-connected components are all ‘leaves’ of the tree), the
configuration graph (B, E ∪ A) has no links of type III. In this case, there is no need for the
sequential lifting and all the coefficients in the honeycomb inequality can be computed in terms
of the shortest distances in the graph (B, T ).

Given that the sequential lifting process for a set of links guarantees the validity of an
inequality if it is valid without this set of links, and that this is also true for a facet inducing
inequality, in what follows we will assume that the honeycomb configuration has no links of type
III. In other words, for each link (Bi

r, B
j
q), the path in (B, T ) joining Bi

r and Bj
q does not contain

more than one node related to the same As (except the nodes Bi
r and Bj

q , when q = r).

Before proving that the honeycomb inequalities are valid for MGRP(G) and that, under
certain conditions, they are facet-inducing, let us show how to build semitours for the MGRP
on the graph (B, E ∪ A). A family of links S ⊂ E ∪ A is a semitour for the MGRP on GC if
(1) graph (B, S) is even, (2) graph (B, S ∪ E ∪ AR) is balanced and (3) the graph obtained by
shrinking every node set {B1

i , B2
i , . . . , Bγi

i } in graph (B, S) into a single node Ai, i = 1, 2, . . . , L,
is (strongly) connected.

Condition (1) means that every node Bj
i should be incident with an even (or zero) number of

links in S, and it is due to the fact that every node Bj
i contains an even number of R-odd nodes.

With respect to condition (3), it is interesting to note that graph (B, S) may be connected or
disconnected, since connectivity among different Bj

i , j = 1, 2, . . . , γi, (within the same Ai) is
assured by (H3) and within Bj

i by (H2). Nevertheless, S must connect at least one node Bj
i of

each Ai, i = 1, . . . , K, in such a way that after shrinking each node set {B1
i , B2

i , . . . , Bγi
i } into a

single node Ai, we obtain a connected graph.

As an illustration, we show how to build semitours with c-cost 2(K−1). Let us denote by
(Ā, TĀ) the undirected graph with node set Ā = {A1, A2, . . . , AL, AL+1, . . . , AK} and having an
edge (Ai, Aj) for each pair of opposite arcs (Bp

i , Bq
j ), (Bq

j , B
p
i ) in T (figure 4). Then, by taking

a copy of each one of the K−1 pairs of opposite arcs corresponding to any spanning tree of
(Ā, TĀ), we obtain a semitour of c-cost 2(K−1) (figure 4). These semitours play a crucial role
in the proof that the honeycomb inequalities are facet-inducing of MGRP(G).

Given that Honeycomb inequalities are valid for the undirected GRP (Corberán and Sanchis,

8



���� ����

���� ����

�����
�
��

�
�
��

�
�

��

�
�

��

�
�
�
�

�
�
��

�
�
�
�
���
�
�
�

���� ����

���� ����

����
����
����
����

����
����
����

�
����

��	

�
����

��	

� �

���

�

�

	
��

�
����
���

�

�

�

�

Figure 4: Graph (Ā, TĀ) and a semitour with c-cost 2(K−1)

1998), they are also valid for MGRP(G). To show that, under certain conditions, they are also
facet-inducing, we will use the following well known result from Polyhedral Theory:

Lemma 1 Let P ⊂ R
n be a polyhedron such that aff(P ) = {x ∈ R

n : Mx = b}, where M is a
q×n matrix. Let cx ≤ α be a valid inequality for P and let F = P ∩{x ∈ R

n : cx = α}. Then,
F is a facet of P if, and only if, given another valid inequality dx ≤ β, with F ⊆ P ∩ {x ∈ R

n :
dx = β}, there exist μ ∈ R

q and λ ≥ 0 such that d = λc + μM and β = λα + μb.

The following result will be also applied:

Lemma 2 Let M be the matrix of the equation system associated with polyhedron MGRP(G).
A given vector d′ can be written as d′ = μM if:

1. for every link e of G, joining two vertices belonging to the same edge-connected component,
d′(e) = 0 is satisfied, and

2. for every subset W of arcs of G, joining vertices belonging to different edge-connected compo-
nents and defining a cycle on the graph obtained when shrinking each edge-connected component
of G into a single node, d′(W ) = 0 is satisfied.

Proof: Let K1, K2, . . . , Kq be the vertex sets of the q edge-connected components of G. The
equation system associated with the MGRP on G is Mx = b, where

i) M has q rows, one for each edge-connected component:

x(A+(Ki)) − x(A−(Ki)) = −uKi , i = 1, 2, . . . , q

ii) M has one column associated with each link of G:

a) For each arc joining two different edge-connected components, say from Ki to Kj , its
corresponding column has a 1 in row i and a −1 in row j.

b) For each link joining two vertices in the same edge-connected component, its corre-
sponding column has all its entries equal to zero.

Let d′ ∈ R
E∪A be a vector satisfying the two conditions described in the lemma. We will

show that there exists μ ∈ R
q such that d′ = μM .

9



From (1) and (ii.b), both vectors d′ and μM (for any μ) have their entries corresponding to
the links in the edge-connected components equal to zero. Hence, it suffices to show the result
for the arcs joining different edge-connected components.

Consider any arborescence rooted in K1 (for example) in the directed graph obtained by
considering the node sets Ki as single nodes (see figure 5).

��
��
K1 ��

��
K2

��
��
K3

��
��

��
��

��
��

�






�

������


�

�

������


Figure 5: Arborescence rooted in K1

Set μ1 = 1 and compute μj such that μ1 − μj = d′1j for each Kj adjacent to K1 in the
arborescence. Repeat this process now with the nodes adjacent to Kj and so on. We have
defined a vector μ ∈ R

q satisfying d′ij = μi − μj for every arc (Ki, Kj) in the arborescence.

If we now consider the cycle Ki → Kj → Ki, condition (2) of the lemma implies that
d′ij + d′ji = 0 and then d′ji = −d′ij = μj − μi also for every arc (Kj , Ki) such that (Ki, Kj) is in
the arborescence.

Finally, given any arc (Kr, Kp), let W be the cycle Kp, Ki1 , Ki2 , . . . , Kr, Kp that uses arcs in
the arborescence or its opposite ones. Given that all these arcs satisfy d′ij = μi − μj and given
that d′(W ) = 0 from condition (2), we have

d′rp = −d′pi1 − d′i1i2 − . . . − d′imr =
= −μp + μi1 − μi1 + μi2 − μi2 + . . . − μim + μr = μr − μp

and, hence, μM = d′. �

Theorem 2 Honeycomb inequalities (9) are facet-inducing of MGRP(G) if

1. the shrunk graph (Ā, TĀ) is 2-connected, and

2. the subgraph of GC induced by the required links is balanced.

Proof: Let cx ≥ 2(K−1) be the Honeycomb inequality and let dx ≥ β be a valid inequality
such that for every semitour x satisfying cx = 2(K−1) would also satisfy dx = β. Given that
the RHS is not zero, we can assume that β = 2(K−1). Let us set λ = 1. As a consequence of
the previous lemma, in order to show that cx ≥ 2(K−1) is facet-inducing of MGRP(G), it will
suffice to show that the vector d′ = d − c satisfies conditions (1) and (2) in Lemma 2.

Given an arc
→
a , we will denote its opposite arc by

←
a . In what follows, the conditions satisfied

by the components of vector d corresponding to the different links of GC are presented.

a) For the arcs in T

Let
→
a= (Bi

r, B
j
t ) ∈ T . Given that graph (Ā, TĀ) is 2-connected, although node Ar is removed,

10



the graph remains connected, and we can find a spanning tree with K−2 edges. Let T ′ be the
corresponding set of K−2 pairs of opposite arcs in GC . We define the semitour x1 as:

x1→
a

= x1←
a

= 1, x1
e = 1 ∀e ∈ T ′, x1

e = 0 otherwise,

which satisfies cx1 = 2 + 2(K−2) = 2(K−1) and therefore dx1 = 2(K−1).

Let now
→
b = (Bi

r, B
m
s ) ∈ T be any other arc with s �= t (this arc exists because graph

(Ā, TĀ) is 2-connected). Given that the edges in TĀ corresponding to T ′ and to arc
→
b also

define a spanning tree, the semitour x2 is defined in the following way:

x2→
b

= x2←
b

= 1, x2
e = 1 ∀e ∈ T ′, x2

e = 0 otherwise,

which also satisfies cx2 = 2 + 2(K−2) = 2(K−1) and therefore dx2 = 2(K−1).

We have d(x1 − x2) = 0 and then d→
a

+ d←
a

= d→
b

+ d←
b
. Hence, every pair of opposite arcs

→
a ,

←
a in T incident to node Bi

r have the same value for the sum d→
a

+ d←
a
. By iterating this

argument, we find that all the opposite pairs of arcs
→
a ,

←
a in T have the same value for the sum

d→
a

+ d←
a
. Furthermore, as dx1 = 2(K−1), we have

d→
a

+ d←
a

= 2,

for every pair of opposite arcs
→
a ,

←
a in T .

b) For the internal arcs
Let now

→
a= (Bi

r, B
j
q) be an internal arc with r �= q and where i, j can be zero. Let us call

(u, v) = (Bi
r, B

j
q). On graph (B, T ) there exists a path joining u and v, say

u,
→
a1, w1,

→
a2, . . . ,

−→
aH−1, wH−1,

→
aH , v,

where H = c→
a

and nodes u, w1, w2, . . . , wH−1, wH , v are associated with different sets Ai. The

edges in graph (Ā, TĀ) corresponding to arcs
→
a1,

→
a2, . . . ,

−→
aH−1,

→
aH do not form a cycle, and we

can add K−1−H more edges in TĀ in order to obtain a spanning tree of (Ā, TĀ). Let T ′ be the
corresponding set of K−1−H pairs of opposite arcs in GC . We define the semitour x1 as (see
figure 6):

���� ����

���� ����

����
����
����
����

����
����
����

v

u

�

→
a

←
aH

←
a1

�
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Figure 6: Semitours x1 and x2 associated with an internal arc
→
a .
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x1→
a

= x1←
a1

= x1←
a2

= . . . = x1←
aH

= 1, x1
e = 1 ∀e ∈ T ′, x1

e = 0 otherwise,

which satisfies cx1 = H + H + 2(K−1−H) = 2(K−1). We define the semitour x2 as:

x2→
a

= 0, x2→
a1

= x2←
a1

= . . . = x2→
aH

= x2←
aH

= 1, x2
e = 1 ∀e ∈ T ′, x2

e = 0 otherwise,

which also satisfies cx1 = 2H + 2(K−1−H) = 2(K−1). Then, dx1 = dx2 = 2(K−1) and hence,
d(x1 − x2) = 0 and we obtain

d→
a

= d→
a1

+ d→
a2

+ . . . + d →
aH

c) For the links in C
Let e = (Bi

r, B
j
r) = (u, v) be a link in C (edge or arc) such that it can be traversed from u to v.

On graph (B, T ) there exists a path joining u and v, say

u,
→
a1, w1,

→
a2, . . . ,

−→
aH−1, wH−1,

→
aH , v,

where ce = H−2 and nodes u, w1, w2, . . . , wH−1 are associated with different sets Ai. The edges
in graph (Ā, TĀ) corresponding to the arcs

→
a1,

→
a2, . . . ,

−→
aH−1 do not form a cycle, and we can

add K−H more edges in TĀ in order to obtain a spanning tree of (Ā, TĀ). Let T ′ be the
corresponding set of K−H pairs of opposite arcs in GC . We define the semitours x1 and x2 as
(see figure 7 ):
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Figure 7: Semitours x1 and x2 associated with a link e ∈ C.

x1
e = x1←

a1
= x1←

a2
= . . . = x1←

aH

= 1, x1
a = 1 ∀a ∈ T ′, x1

a = 0 otherwise,

x2→
a1

= x2←
a1

= . . . = x2 →
aH−1

= x2 ←
aH−1

= 1, x2
a = 1 ∀a ∈ T ′, x2

a = 0 otherwise,

which satisfy cx1 = cx2 = 2(K−1) and then dx1 = dx2 = 2(K−1). From d(x1 − x2) = 0, we
obtain

de + d ←
aH

= d→
a1

+ d→
a2

+ . . . + d →
aH−1

or de = d→
a1

+ d→
a2

+ . . . + d →
aH−1

− d ←
aH
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and
de = d→

a1
+ d→

a2
+ . . . + d →

aH
− 2 (10)

as d →
aH

+ d ←
aH

= 2.

Equation (10) is satisfied by every link in C. Furthermore, for the edges and arcs with both
endnodes in the same edge-connected component, we have:

(c.1) If e = (u, v) ∈ C is an edge, it can be traversed both from u to v and from v to u. Therefore,

de = d→
a1

+ d→
a2

+ . . . + d →
aH

− 2 and de = d←
a1

+ d←
a2

+ . . . + d ←
aH

− 2

Hence, by adding both expressions and considering that, from (a), d→
ai

+ d←
ai

= 2, we obtain

de = H−2 = ce

(c.2) If
→
a = (Bi

r, B
j
r) ∈ C is an arc parallel to an edge e in C, given that edge e can be traversed

in the opposite direction to that of
→
a , we obtain

d→
a

= d→
a1

+ d→
a2

+ . . . + d →
aH

− 2 and de = d←
a1

+ d←
a2

+ . . . + d ←
aH

− 2

By adding both expressions de + d→
a

= 2H − 4 is obtained. Finally, given that, from (c.1),
de = H − 2 we obtain

d→
a

= H−2 = c→
a

(c.3) Let now
→
a = (Bi

r, B
j
r) = (u, v) ∈ C be an arc within an edge-connected component. For

the sake of simplicity, let us suppose that the two endnodes of
→
a are connected by two edges

e1 = (u, w) and e2 = (w, v) (see figure 8). On graph (B, T ) there exists a path joining u and v,
say

u,
→
a1, u1,

→
a2, . . . , uL−1,

→
aL, uL,

→
aL+1, uL+1, . . . ,

−→
aH−1, uH−1,

→
aH , v,

where c→
a

= H − 2, and a path joining w and a node in the previous path, say uL:

w,
→
b1, w1,

→
b2, w2, . . . , wm−1,

→
bm, wm = uL

where ce1 = L + m − 2 and ce2 = H − L + m − 2. Proceeding as before,

d→
a

= d→
a1

+ d→
a2

+ . . . + d→
aL

+ d →
aL+1

+ . . . + d →
aH

− 2

de1 = d←
a1

+ d←
a2

+ . . . + d←
aL

+ d→
b1

+ . . . + d →
bm

− 2

de2 = d ←
aL+1

+ . . . + d ←
aH

+ d←
b1

+ . . . + d ←
bm

− 2

and by adding these 3 expressions and considering that, from (c.1), de1 = ce1 and de2 = ce2 , we
obtain

d→
a

+ (L + m − 2) + (H − L + m − 2) = 2m + 2H − 6

and
d→

a
= H−2 = c→

a

Hence, vector d satisfies:
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b1 b2 bm

Figure 8: Arc
→
a ∈ C connected by two edges in the proof of theorem 2

1. d→
a

+ d←
a

= 2 for every pair of opposite arcs
→
a ,

←
a in T ,

2. d→
a

= d→
a1

+ d→
a2

+ . . . + d →
aH

for every internal arc
→
a ,

3. de = d→
a1

+ d→
a2

+ . . . + d →
aH

− 2 for every link e in C, and

4. de = H − 2 = ce for every link e in C with both endnodes in the same edge-connected
component,

where, in each case, H is the number of arcs
→
a1,

→
a2, . . . ,

→
aH of the unique path in T joining the

two terminal nodes of the corresponding link.

In what follows we will show that vector d′ = d− c satisfies conditions (1) and (2) in Lemma
2:

(1) For every link e of G joining two vertices belonging to the same edge-connected compo-
nent, from 4, de = H − 2 = ce and then d′e = 0.

(2) Let W be a set of arcs in GC , joining vertices belonging to different edge-connected
components and defining a cycle on the graph obtained when shrinking each edge-connected
component into a single node. We have to prove that d(W ) = c(W ) is satisfied.

If W contains an internal arc
→
a= (u, v), we replace it by the arcs in the path in T joining

u and v. Let us call this new cycle W ′. Given that d→
a

= d→
a1

+ d→
a2

+ . . . + d →
aH

and also
c→

a
= c→

a1
+ c→

a2
+ . . . + c →

aH
, it follows that d(W ′) = d(W ) and c(W ′) = c(W ). In the same way,

if W contains an arc
→
a= (u, v) in C (necessarily between different edge-connected components),

we replace it by the arcs in the path in T joining u and v. Let us call this new cycle W ′′.
Again, as d→

a
= d→

a1
+ d→

a2
+ . . . + d →

aH
− 2 and c→

a
= c→

a1
+ c→

a2
+ . . . + c →

aH
− 2, it follows that
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d(W ′′) = d(W ) + 2 and c(W ′′) = c(W ) + 2. Hence, we can assume that W is formed only by
external arcs. We can also assume that W is a cycle of one of the following types:

- Type I: W is a cycle formed by a pair of opposite arcs
→
a ,

←
a in T . Then, d(W ) = d→

a
+d←

a
= 2

and also c(W ) = c→
a

+ c←
a

= 2.

- Type II: W is a cycle starting on a node u = Br
i and ending on a node v = Bs

i (related
to the same R-set Ai) and without traversing any other node Bq

j , q �= 0 (see figure 9). For
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Figure 9: Cycle of type I in the proof of theorem 2

simplicity, let us suppose that there exists an edge e = (u, v). Then, proceeding as in (c.1),
de = d→

a1
+ d→

a2
+ . . . + d →

aH
− 2 = H − 2 and then d(W ) = d→

a1
+ d→

a2
+ . . . + d →

aH
= H. Given that

ce = c→
a1

+ c→
a2

+ . . . + c →
aH

− 2 = H − 2, we also obtain c(W ) = c→
a1

+ c→
a2

+ . . . + c →
aH

= H.

- Type III: W is a cycle joining nodes Br
i with r �= 0 corresponding to different R-sets Ai.

For the sake of simplicity, we will assume that the number of such R-sets is 3, as in figure
10a. For the two nodes incident with arcs in W in each R-set, there exists a unique path in
T joining them. These paths also define a cycle on the graph obtained when shrinking each
edge-connected component into a single node. Let W1, W2 and W3 be these cycles (see figure
10b). Each Wi is a cycle of type II above and then c(Wi) = d(Wi) and c(W1)+ c(W2)+ c(W3) =
d(W1) + d(W2) + d(W3). The arcs in cycles W1, W2 and W3 are the arcs in cycle W plus a set
of arcs, say F . Then, c(W ) + c(F ) = d(W ) + d(F ) and, given that c(F ) = d(F ), as F is formed
by cycles of type I, we obtain c(W ) = d(W ).

The two conditions in lemma 2 are therefore satisfied and there exists a vector μ such that
μM = d′ = d − c which implies d = c + μM and the Honeycomb inequality is facet-inducing of
MGRP(GC). In order to show that it is also facet inducing of MGRP(G), we have to prove that
the conditions (a) and (b) of theorem 1 are satisfied.

(a) Given a proper set F of ER it is always possible, as in GC the set of links AR ∪ ER

induce an even and balanced subgraph, to orient its edges in such a way that the required links
also induce an even and balanced subgraph in the resulting graph G′

C . Then, the Honeycomb
inequality is facet inducing of MGRP(G′

C).
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Figure 10: Cycle of type II in the proof of theorem 2

(b) Let e = (u, v) be an edge in GC that has been oriented from u to v in G′
C . Associated

with e there exists a path in T joining u to v, say

u,
→
a1, w1,

→
a2, . . . ,

−→
aH−1, wH−1,

→
aH , v.

As usual, we can add a set T ′ of pairs of opposite arcs in T to the arcs in the path from u to v
to obtain the vector x∗:

x∗
e = x∗→

a1
= x∗→

a2
= . . . = x∗→

aH

= 1, x∗
a = 1 ∀a ∈ T ′, x∗

a = 0 otherwise.

This vector is a semitour for the MGRP on GC because the edge e (traversed from v to u) and
the arcs

→
a1,

→
a2, . . . ,

→
aH form a cycle, which satisfies cx∗ = 2(K−1) and the edge e is traversed,

at least once, from v to u.

Hence, the Honeycomb inequality is facet-inducing of MGRP(G). �

5 Honeycomb02 inequalities

In the previous section we have studied the Honeycomb inequalities. They have the same
coefficients as the corresponding inequalities for the undirected GRP and will be referred to as
‘standard’ Honeycomb inequalities. In this section we will present a related set of inequalities,
the Honeycomb02 inequalities. Their study will not be as general as that done for the standard
inequalities as we will consider only Honeycomb02 inequalities with L = 1, i.e. when only one
R-set is divided into γ1 parts. Before their formal definition, let us first see several simple
examples.

While a standard Honeycomb configuration can be seen as a combination of several stan-
dard K-C configurations, a Honeycomb02 configuration can be seen as a combination of several
standard K-C and K-C02 configurations. Consider the structure of a Honeycomb02 configuration
with 6 nodes where a R-set has been divided into 3 parts (see figure 11a, where the number
associated with each link represents the coefficient of the corresponding variable in the inequal-
ity). In the standard Honeycomb inequality all the variables associated with arcs in T have
coefficient equal to 1. Assign now coefficients 0 and 2 to the pair of opposite arcs in T joining
nodes 1 and 4 (but maintaining the other arcs in T with coefficient equal to 1). Notice that the
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Figure 11: Three equivalent Honeycomb02 configurations.

coefficient of the arc joining nodes 1 and 2 is now 2 (in the standard Honeycomb inequality it
would be 1) given that the path joining nodes 1 and 2 by arcs in T contains a pair of opposite
arcs with coefficients 0 and 2, just like the external arcs of a K-C02. Something similar occurs
with the edge joining nodes 1 and 3, but not with that joining nodes 2 and 3, whose associated
path would correspond to a standard K-C. We will show that, with these coefficients, inequality
F (x) ≥ 6 is valid and facet-inducing of MGRP(G).

Let us now consider node 4 in this configuration. This node has a system equation associated
with it: x(A+(4)) = x(A−(4)). In the corresponding inequality F (x) ≥ 6 we can replace the
variables x41+x45 by the variables x14+x54 to obtain an equivalent inequality, whose coefficients
are shown in figure 11b. If we proceed in a similar way with the equation associated with node
5 and then with that corresponding to node 6, we obtain another equivalent inequality, whose
coefficients are shown in figure 11c. This last inequality has two arcs in the skeleton with
coefficient 0, entering at nodes 2 and 3 respectively, whilst the initial inequality has only one
such arc (leaving node 1). However, both inequalities are equivalent.

On the other hand, it is easy to see that if a Honeycomb02 configuration has, simultaneously,
an arc with coefficient 0 leaving a node Bi

1 and another arc (also with coefficient 0) entering at
a node Bj

1, its corresponding inequality is not valid for MGRP(G).

Hence, given a Honeycomb02 configuration with L = 1, we will classify the γ1 nodes Bi
1 into

two types: nodes of type O (from ‘out’) and nodes of type I (from ‘in’). A coefficient 0 will be
associated to each arc in T leaving from a node of type O (and coefficient 2 to its opposite arcs).
There is no loss of generality in this step because the corresponding inequality is equivalent to
that obtained by assigning a coefficient 0 to each arc in T entering at a node of type I. The
coefficient of a link e ∈ C is H−2 if e joins two nodes of the same type and is H−1 otherwise,
where H represents the number of arcs in T in the unique path joining these nodes.

Finally, let us consider a Honeycomb02 configuration with all its nodes Bi
1 of type O. By

using the equation corresponding to the set of nodes B1
1 , B2

1 , . . . , Bγ1
1 , a standard Honeycomb

inequality is obtained. Hence, in a Honeycomb02 configuration with L = 1, which we define
next, there will be at least one node of type O and one node of type I.

Let G = (V, E, A) be a mixed graph. Consider now a standard Honeycomb configuration,
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as defined in Section 4, with L = 1 (only the set A1 is divided into γ subsets Bi
1). We have a

partition of V , B = {B1
1 , B2

1 , . . . , Bγ
1 , B0

2 , B0
3 , . . . , B0

K}, a set of arcs T forming the skeleton of
the configuration and d(Bp

i , Bq
j ) will denote the number of arcs in the unique path joining Bp

i

and Bq
j by arcs in T . We will suppose that in graph (B, T ) the in-degree and the out-degree of

each node Bj
1 is equal to 1. These nodes will be labelled as nodes of type O and nodes of type

I.

As the number, K, of components in a K-C configuration must be greater than or equal to 3
in the standard case, while it is 2 for the K-C02 case, condition H4 of the standard Honeycomb
configurations is replaced here by:

• d(Bj
1, B

q
1) ≥ 3 if Bj

1, B
q
1 are nodes of the same type, and

• d(Bj
1, B

q
1) ≥ 2 if Bj

1, B
q
1 are nodes of different types.

The configuration graph GC = (B, E ∪A) is shown in figure 12. Again, we will suppose that
this configuration graph has no links of type III and hence there is no need for the sequential
lifting. We define the costs as follows:

• For the links in C:

– c(Bi
1, B

j
1) = d(Bi

1, B
j
1) − 2, if Bi

1, B
j
1 are nodes of the same type.

– c(Bi
1, B

j
1) = d(Bi

1, B
j
1) − 1, if Bi

1, B
j
1 are nodes of different type.

• For the arcs in T (external arcs):

– c(Bi
1, B

0
q ) = 0, c(B0

q , Bi
1) = 2, if Bi

1 is a node of type O.

– c(Bi
r, B

j
q) = 1 otherwise.

• For the arcs in In (internal arcs):

– c(Bi
r, B

j
q) is the c-length of the shortest path from Bi

r to Bj
q using arcs in T .

A Honeycomb02 configuration will be the pair (B, c) and its corresponding Honeycomb02

inequality is:
∑

a∈E∪A

caxa ≥ 2(K−1), where ca = c(Bi
r, B

j
q) ∀a ∈ (Bi

r, B
j
q), ca = 0 ∀a ∈ γ(Bi

r) (11)

Theorem 3 Honeycomb02 inequalities (11) are valid for MGRP(G).

Proof: We will consider, w.l.o.g., that GC is a complete graph and that the set C contains only
edges. Let S be any semitour for the MGRP on GC . We have to show that c(S) ≥ 2(K−1).

If S uses an internal arc, we can replace it by the path in (B, T ) joining its terminal nodes
and we obtain another semitour with the same c-cost. If S uses an edge (u, v) in C joining two
nodes of different types, we can replace it by the path in (B, T ) joining u and v and we obtain
another semitour with the same c-cost. If S uses the edges in any cycle in C, we can remove
them to obtain a semitour with less c-cost. If S uses two adjacent edges in C, say (u, v) and
(v, w), replacing them by the edge (u, w) (also in C), another semitour with less or equal c-cost
is obtained.
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Figure 12: Honeycomb02 Configuration with L = 1

It can therefore be assumed that S uses only arcs in T and some isolated edges in C joining
nodes of the same type. If S uses, for example, an edge e = (Bi

1, B
j
1), it also uses external arcs

joining the nodes Bi
1 and Bj

1. Replacing the edge e by the path in T joining Bi
1 and Bj

1, a
semitour with c-cost equal to c(S) + 2 is obtained (an edge with c-cost H−2 has been replaced
by a path with c-cost H). Removing the two opposite arcs incident with Bi

1, a semitour with
c-cost c(S) is obtained.

Hence, we can finally consider that S uses only arcs in T . As every node has even degree
with respect to the arcs in S, from the definition of T (if each pair of opposite arcs were replaced
by an edge, T would be a tree), S consists of a set of pairs of opposite arcs in T and pairs of
copies of arcs in T . On the other hand, given that S connects at least one node associated with
each set A1, A2, . . . , AK , it contains at least K−1 pairs of arcs in T . Each pair of opposite arcs
in T has a c-cost of 2 (either 1 + 1 or 0 + 2). Each pair of copies of an arc in T has at least a
c-cost of 2 (either 1 + 1 or 2 + 2) except the pairs of copies of an arc leaving a node of type O,
which has a c-cost of 0.

Given that the arcs in S plus the required links induce a balanced graph, if S uses a pair
of copies of an arc from a node Bi

1 (of type O) to another node, say B0
p , S also uses a pair of

copies of an arc leaving B0
p and entering a node B0

q , and so on. Notice that the arcs used by S
have to be ‘balanced’ with the required links and that nodes B0

p , are not incident to required
links. Then, this ‘double path’ starting at Bi

1 arrives at some node Bj
1. We can now remove

from S the pair of copies of the arc leaving the node Bi
1 to obtain a set of arcs that also connect

at least one node associated with each set A1, A2, . . . , AK .

S then contains at least K−1 pairs of arcs in T , each pair with a c-cost greater than or equal
to 2. Hence, c(S) ≥ 2(K−1) and the Honeycomb02 inequality is valid for MGRP(G). �

Some semitours having ‘double paths’, starting at a node Bi
1 of type O and ending at a

node Bj
1 of type I, similar to those described in the previous proof, are needed to show that

the Honeycomb02 inequality is facet-inducing of MGRP(G). They are semitours for the MGRP
if these ‘double paths’ together with the required links define a balanced graph. This is the
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purpose of condition (3) in the following theorem.

Theorem 4 Honeycomb02 inequalities (11) with L=1 are facet-inducing of MGRP(G) if

1. the shrunk graph (Ā, TĀ) is 2-connected,

2. The subgraph of GC induced by the required links is balanced and

3. For every edge or arc (u, v) ∈ C, with node u of type O and node v of type I, the subgraph of
GC induced by the required links plus two extra arcs from u to v, is a balanced graph.

Proof: The proof is similar to that of theorem 2 and is omitted here for the sake of brevity.
We would just like to briefly comment on the main difference between both proofs, which is
related to condition (3) above. Let e = (Bi

r, B
j
r) = (u, v) ∈ C be a link (edge or arc) that can

be traversed from u to v, where node u is of type O and node v is of type I. Note that the
semitour used in the proof of theorem 2 corresponding to link e above (see figure 7a) cannot be
used here, as cx = 2K. A semitour satisfying cx = 2(K−1), which now has to be associated
to e, is that represented in figure 13a. It is a semitour for the MGRP on GC because condition
(3) is satisfied. Furthermore, semitours such as that represented in figure 13b are needed in the
proof. They also satisfy cx = 2(K−1) but, again, condition (3) has to be satisfied. �

���� ����

���� ����

����
����
����
����

v

u

�

−→
aH

→
a1

e

−→
aH−1

→
a2

→
a3

��
���

�
��	

�

��

�

�

	
���� ����

���� ����

����
����
����
����

v

u

aH

a1

e

aH−1

a2

a3

��

�
��	

�
��	

��

��

�
���

�
���

�

�

�

	

Figure 13: Semitours used in the proof of theorem 4.

Condition (3) above implies the existence of (required) edges joining each pair of adjacent
nodes of different type (see figure 14a). In fact, if all the required links are arcs, condition (3)
cannot be satisfied, although it can be seen that, in this case, the Honeycomb02 inequality is
dominated by the standard Honeycomb inequality. Finally, condition (3) is satisfied if all the
required links are edges, as the subgraph of GC induced by the required links is even (see figure
14b).

6 Computational Experience

Corberán, Romero and Sanchis (2002) implemented a preliminary cutting-plane algorithm for
the MGRP with separation procedures only for the connectivity, R-odd cut and balanced-set
inequalities. Here, we improve this algorithm by adding to it separation procedures for the K-C
and the Honeycomb inequalities.

The initial LP relaxation, LP0, includes the system equations (6), one connectivity inequality
(4) for each R-set, one balanced-set inequality (5) for each ‘unbalanced’ vertex, and one R-odd
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Figure 15: Phases I and II for K-C separation

cut inequality (7) for each R-odd ‘balanced’ vertex. Let x∗ ∈ R
|E∪A| be a given LPi solution.

If x∗ represents a semitour, it is an optimal solution for the MGRP. Otherwise, we consider the
weighted graph G∗(V, E, A, x∗) as the input to all of the separation procedures. The separation
of connectivity, R-odd cut and balanced-set inequalities can be done in polynomial time. In the
following subsections, we describe heuristic separation algorithms for the K-C and Honeycomb
(with L = 1) inequalities described in the previous sections.

If the separation procedures find violated inequalities of the above mentioned classes, they
are added to the current LPi relaxation to generate the LPi+1 and so on. When the separation
procedures do not find violated inequalities and the current LP solution x∗ is not a semitour
for the MGRP, we invoke branch and bound. If the resulting integer solution is a semitour for
the MGRP, it is optimal. Otherwise, the procedure terminates with a tight lower bound, but
no feasible MGRP solution.

6.1 K-C and K-C02 separation

The separation procedures for K-C and K-C02 inequalities are based on those developed for
the undirected GRP in Corberán, Letchford & Sanchis (2001). For each R-set, the algorithm
consists of three phases. At the two first phases, which are similar to those for the undirected
GRP, we ignore the directions of the arcs.

In phase I (see figure 15a), we search to divide each R-set into two parts, say M0 and MK ,
both containing an even number of R-odd nodes and such that x∗(δ(M0)) ∼= 1 but x∗(M0 :
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MK) ∼= 0.

Phase II (see figure 15b) consists of finding the (undirected) maximum x∗-weight tree span-
ning the nodes M0, MK (represented as triangles) and the p−1 remaining R-sets (represented as
circles). Then, the tree is transformed into a path linking M0 and MK by iteratively shrinking
each R-set with degree 1 on the tree into its unique adjacent node.

At this point, we have an initial K-C configuration with node sets M0, M1, . . . , MK . We
consider the configuration mixed graph having node set {M0, M1, . . . , MK} and having an arc
(Mi, Mj) —an edge in the case (M0, MK)— with x∗-weight equal to the sum of the x∗-weights
of all the arcs —links in the case (M0, MK)— (u, v) in G with u ∈ Mi and v ∈ Mj . See figure
16a for an example with K = 6.
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Figure 16: Skeleton graph for K-C separation

In phase III we check the corresponding K-C inequality for violation and, if not, we try
to find a smaller violated K-C inequality. To do this, from the graph in figure 16a we build
the skeleton graph in figure 16b. It consists of the opposite arcs (Mi, Mi+1), (Mi+1, Mi), for
i = 0, 1, . . . , K−1. Such a transformation is done in the following way. Each non-external arc
(Mp, Mq) is removed and its x∗-weight is added to every arc in the unique path from Mp to
Mq using external arcs. Given that the coefficient at the K-C inequality of each internal arc in
(Mp : Mq) is |p−q|, the value of its LHS, F (x∗), remains unchanged. For example, we remove
the arc (M4, M2) in graph 16a and 0.2 is added to the x∗-weight of arcs (M4, M3) and (M3, M2).

With respect to the links in (M0 : MK), note that their orientations do not affect the
computation of F (x∗). Hence, they can all be considered as edges in graph 16a. Then, each link
e ∈ (M0 : MK) could be replaced either by the external arcs in the path from M0 to MK or by
those in its opposite path. We add x∗

e
2 to each external arc in the skeleton (50% to each path).

Given that the coefficient of link e is K−2 instead of K, this step increases the value of the LHS
in 2x∗

e units.

Now, F (x∗) can be easily computed as the sum of all the x∗-weights shown in figure 16b,
minus 2x∗(M0 : MK). If F (x∗) < 2(K−1), the K-C inequality is violated. In the example in
figure 16, F (x∗) = 10.6 − 0.4 = 10.2 ≥ 10 and, then, the K-C inequality is not violated and its
associated slack is +0.2.

At this point, we check whether by shrinking some consecutive nodes Mi and Mi+1 into a
single node we obtain a smaller K-C configuration with an associated violated K-C inequality.
For example, it is easy to see that by shrinking nodes M2 and M3 into a single node, we obtain
a new K-C configuration (with K = 5) whose corresponding skeleton graph is exactly that
obtained after shrinking nodes M2 and M3 in the skeleton graph of figure 16b. Notice that
all the coefficients associated with the links in graph 16a, involved in the computation of the
x∗-weights associated with (M2, M3) and (M3, M2), would decrease by exactly one unit after
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shrinking. Then, the LHS would decrease by x∗(M2 : M3) (1.6 + 0.9 = 2.5 units) while the
RHS would decrease by only 2 units. The slack is now negative (0.2 − 0.5 = −0.3) and we
would obtain a K-C inequality violated by 0.3, i.e. after shrinking we would obtain a new K-C
inequality F ′(x) ≥ 8 which is not satisfied by x∗, as F ′(x∗) = 7.7.

This shrinking procedure can be repeated as long as K ≥ 3 remains. For example, we can
also shrink nodes M4 and M5 and decrease the slack by 1.5 + 0.8 − 2 = 0.3 units more. After
these two shrinking steps, we obtain a K-C inequality F ′(x) ≥ 6 violated by x∗ (F ′(x∗) = 5.4).

The previous procedure is not as simple if one of the nodes to be shrunk is M0 (or MK). For
example, shrinking nodes M5 and MK (K = 6) in figure 16, the internal arcs in (M0 : M5) —with
coefficient 5 in the K-C inequality with K =6— would become arcs in the set (M0 : MK′) with
coefficient K ′−2=3 in the new K-C configuration with K ′ =5. Then, the LHS would decrease
by not only x∗(M5 : MK) but x∗(M5 : MK) + x∗(M0 : M5).

Hence, from the skeleton graph we can conclude with little computational effort if there is,
or not, a K-C inequality violated by x∗.

Once the K-C inequalities have been checked, we consider again the initial skeleton graph
(figure 16b) in order to find violated K-C02 inequalities. Associated with a given K-C configu-
ration, we have two possible K-C02 inequalities, depending on whether we assign, respectively,
coefficients 0 and 2 to the arcs (M0, M1) and (M1, M0), or viceversa.

Given that the sets M0 ∪ MK , M1, · · · , MK−1 are not incident with edges, they satisfy
x∗(A+(Mi)) = x∗(A−(Mi)). Then, the differences x∗(Mi, Mi+1)−x∗(Mi+1, Mi) have the same
value for each i = 0, 2, . . . , K. The direction of such ‘difference’ determines the direction of
the arc with coefficient 0. For example, in the skeleton graph of figure 16b, the difference 0.7
corresponds to the direction from M0 to MK−1. Then, in the K-C02 inequality we will assign
coefficient 0 to the arc (M0, M1) and coefficient 2 to the arc (M1, M0).

Then, the LHS of the corresponding K-C02 inequality can be easily computed as the sum of
all the x∗-weights shown in figure 16b, minus x∗(M0 : MK) (because the coefficient for links in
(M0 : MK) is now K−1, instead of K−2), minus the ‘difference’. If F (x∗) < 2(K−1), the K-C02

inequality is violated. In the example in figure 16b, F (x∗) = 10.6 − 0.2 − 0.7 = 9.7 < 10 and,
then, the K-C02 inequality is violated.

Notice that, if the ‘difference’ is zero, i.e. if x∗(Mi, Mi+1) = x∗(Mi+1, Mi), then the LHS of
the K-C02 inequality is less than or equal to the LHS of the standard K-C inequality. Then, we
do not consider the former inequality.

As for standard K-C inequalities, by shrinking some consecutive nodes Mi and Mi+1 with
x∗(Mi, Mi+1) + x∗(Mi+1, Mi) > 2 into a single node, we obtain a smaller K-C02 configuration
with a K-C02 inequality having smaller slack.

6.2 Honeycomb and Honeycomb02 separation

As for the K-C inequalities, the separation procedures for the Honeycomb and Honeycomb02

inequalities with L = 1 are based on those developed for the undirected GRP. For each R-set,
the two first phases are similar to those for the undirected case, and the direction of the arcs
will be ignored.

In phase I (see figure 17a), given a R-set, the vertices that are adjacent with arcs with
positive x∗-weight to vertices in different R-sets, are the seeds to form the sets B1

1 , B2
1 , . . . , Bγ

1 .
The remaining vertices in the considered R-set are associated with one of these seeds by trying
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Figure 17: Phases I and II for Honeycomb separation

to get the x∗-weight among the different Bi
1 to be as small as possible. Finally, all the Bi

1 having
an odd number of R-odd vertices are joined to form a single set (which obviously has an even
number of R-odd vertices).

Phase II (see figure 17b) consists of finding the (undirected) maximum x∗-weight tree span-
ning the Bi

1 (represented with triangles) and the p−1 remaining R-sets (represented with circles).
Then, we iteratively shrink each R-set with degree 1 on the tree into its unique adjacent node.

At this point, we have a former Honeycomb configuration and its associated x∗-weighted
configuration mixed graph. In the same way as for the K-C inequalities, each non-external arc
is removed and its x∗-weight is added to the corresponding external arcs to obtain the skeleton
graph shown in figure 18.

Then, the LHS of the corresponding Honeycomb inequality can be computed as the sum of
all the x∗-weights shown in figure 18, minus twice the sum of the x∗-weights associated to the
links among the Bi

1 nodes. If F (x∗) < 2(K−1), the Honeycomb inequality is violated. In the
example in figure 18, we have F (x∗) = 15 ≥ 14 (assuming that all the links among the Bi

1 nodes
have zero x∗-weight). Then, the Honeycomb inequality is not violated and its associated slack
is +1.

The shrinking procedure described earlier for the K-C inequalities can also be applied here.
In the skeleton graph in figure 18 we could shrink nodes B0

3 and B0
5 and nodes B0

7 and B0
8 .

Nevertheless, in this case the slack will only decrease from +1 above to +1 − 0.3 − 0.5 = +0.2
and therefore, even shrinking nodes, we would not obtain a violated Honeycomb inequality from
the Honeycomb configuration corresponding to figure 18.

Once the standard Honeycomb inequalities have been checked, we consider again the skeleton
graph in figure 18 in order to find violated Honeycomb02 inequalities. Associated with a given
Honeycomb configuration, several Honeycomb02 inequalities can be defined, depending on the
node type O or I assigned to each Bi

1. Due to the equation associated with each node B0
j , the

differences between the x∗-weights associated with the opposite arcs in the skeleton graph define
the graph shown in figure 19. The direction of such differences on the nodes Bi

1 determines
their node type, O or I (see figure 19). A coefficient 0 will be assigned to the arcs leaving the
nodes Bi

1 of type O and coefficient 2 to their opposite arcs. Then, the LHS of the corresponding
Honeycomb02 inequality can be computed as:

• the sum of all the x∗-weights shown in figure 18,
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Figure 18: Skeleton graph for Honeycomb separation

• minus twice the sum of the x∗-weights among nodes Bi
1 of the same type,

• minus (once) the sum of the x∗-weights among nodes Bi
1 of different type,

• minus the sum of the ‘differences’ associated to nodes of type O.

In the example in figure 18 (again it is assumed that the x∗-weights associated to links joining
different nodes Bi

1 are zero), we have F (x∗) = 15 − 0.7 − 0.2 = 14.1 > 14 and therefore the
Honeycomb02 inequality is not violated and its associated slack is +0.1.

As before, by shrinking some adjacent nodes B0
j with x∗-weight greater than 2 into a single

node, we obtain a smaller Honeycomb02 configuration with a Honeycomb02 inequality with less
slack. In the example in figure 18, we can shrink nodes B0

3 and B0
5 and nodes B0

7 and B0
8 , with

x∗-weight 0.8 + 1.5 = 2.3 and 1.0 + 1.5 = 2.5, to obtain a Honeycomb02 inequality F ′(x) ≥ 10
violated by x∗ (F ′(x∗) = 9.3).

6.3 The Overall Algorithm

In each iteration of the cutting-plane algorithm, the separation procedures are invoked in the
following ordering:

1. R-odd cut and connectivity separation heuristics.
2. Exact connectivity separation if the heuristics failed.
3. Exact R-odd cut separation if the heuristics failed.
4. Exact balanced-set separation.
5. If the number of violated inequalities detected so far is ≤ 10, for each R-set, try K-C and
K-C02 separation heuristic.
6. If the number of violated inequalities detected so far is ≤ 10, for each R-set, try Honeycomb
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Figure 19: Differences associated with the opposite arcs in the skeleton

and Honeycomb02 separation heuristic (that can also find K-Cs).
7. If no violated inequalities have been detected so far, try heuristics for K-C, K-C02, Honeycomb
and Honeycomb02 inequalities by iteratively merging two adjacent R-sets.

When a large number of inequalities have been added, the LPs can become rather large,
causing speed and memory problems. Hence, every time a violated inequality is found, it is
added to the LP and it is also stored in a cut pool. Every 10 iterations, we rebuild the LP with
all the inequalities in the pool having a slack less than 0.1.

When the cutting-plane algorithm does not find more violated inequalities and the LP re-
laxation is still not integral, we invoke branch-and-bound. The IP to be solved is formed by
all the inequalities stored in the pool. If the IP solution is a semitour for the MGRP, we have
obtained an optimal MGRP solution. Otherwise, the procedure terminates with a tight lower
bound, but no feasible MGRP solution.

6.4 The instances

In Romero (1997), 100 instances for the Mixed Rural Postman Problem were randomly generated
with the following features: 3 ≤ p ≤ 12, 20 ≤ |V | ≤ 100, 15 ≤ |E| ≤ 220, 5 ≤ |ER| ≤ 150,
50 ≤ |A| ≤ 350, 5 ≤ |AR| ≤ 200. Link costs were randomly generated in the range 1−20. The
procedure described in Corberán, Romero and Sanchis (2002) is capable of finding an optimal
solution in 71 out of these 100 MRPP instances and this number increases up to 93 after
invoking branch and bound. Given that our cutting plane algorithm (with K-C and Honeycomb
separation procedures) solves all these instances up to optimality, we decided to generate harder
MGRP instances. These have been grouped into 3 sets:

• 25 instances from the Albaida graph. This is an undirected graph with 116 vertices and
174 edges representing the real street network of the town of Albaida (Valencia, Spain).
From this graph we have generated several MGRP instances in the following way. Each
edge is selected as ‘required’ with probability P1 and is transformed into an arc with
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probability P2. If there is more than one strongly connected component in the resulting
graph, some arcs are transformed into edges, until a strongly connected graph is obtained.
All the vertices in the graph are considered as ‘required’. We generated 25 instances, called
albaij, by combining the values of 0.1, 0.3, 0.5, 0, 7 and 0.9 for P1 and for P2, where i refers
to P1 and j refers to P2.

• 25 instances from the Madrigueras graph. This is an undirected graph with 196 vertices
and 316 edges representing the real street network of the town of Madrigueras (Albacete,
Spain). Another 25 instances, madrij, were generated as above.

• 31 instances from the Aldaya graph. This is a mixed graph with 214 vertices, 224 edges and
127 arcs representing the real street network of the town of Aldaya (Valencia, Spain). The
first instance in this group, called aldaya in tables, is based on a real garbage collection
problem solved in this city. From the original mixed graph, we have generated other
MGRP instances in the following way. Each edge is selected as ‘required’ with probability
P1 and each arc is selected as ‘required’ with probability P2. All the vertices of the
graph are considered as ‘required’. Thirty MGRP instances were generated by combining
different values for P1 and for P2: aldaij, where i refers to P1 and j refers to P2. Instance
alda00 is a pure GTSP instance on a mixed graph (all its vertices are required while there
are no required links), whilst alda99 is, in practice, a MCPP instance, because it has 2
R-connected components only.

6.5 Computational Results

The algorithm has been coded in C and run on a Personal Computer with a 400 MHz Pentium
II processor, using CPLEX as LP solver. As stated before, all the 100 MRPP instances from
Romero (1997) were solved to optimality with our algorithm, 25 of them after invoking branch
and bound. Tables 1, 2 and 3 show the results obtained for the other three sets of instances.

For each instance, we present the number of R-connected components (column p), the number
of inequalities found by the separation procedures for each inequality class: connectivity (conn),
R-odd cut (odd), balanced set (bal), K-C, K-C02, Honeycomb (HC) and Honeycomb02 (HC02),
the lower bound obtained with the pure cutting-plane procedure (column LB), the lower bound
obtained after invoking the branch and bound (column B&B) and the CPU time in seconds
(column time). An entry marked with an asterisk means that an optimal solution is reached.

When the branch and bound ends in a non-feasible MGRP solution, it is possible to apply
the separation procedures to this integer solution to define a new Integer Program and so on. If
this iterative procedure produces an optimal MGRP solution, its cost is shown in column Opt.

The algorithm produces an optimal solution on 57 out of the 81 instances shown in tables 1, 2
and 3. Most of the solved instances are those corresponding to greater values for the probabilities
P1 (P1 and P2 for the Aldaya instances), which have a medium or large number of required links
and hence a smaller value for p. On the other hand, small values for P1 (P1 and P2 for the
Aldaya instances) produce instances with a large number of R-sets, most with only one vertex,
and it is known that the difficulty of the GRP instances increases with the number of R-sets.
Furthermore, fewer K-C and Honeycomb violated inequalities are found for instances with few
required links. Nevertheless, for the 15 unsolved instances with known optimal solution, the
lower bound obtained (column B&B) is on average 0.20% from the optimal value (column Opt).
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7 Conclusions

In this paper, a large family of facet-inducing inequalities for the polyhedron associated with the
Mixed General Routing Problem has been described: the Honeycomb inequalities. The MGRP
is an important routing problem as it contains most of the best known routing problems with
a single vehicle as special cases and the above inequalities enlarge the known facial descrip-
tion of its polyhedron. In addition, new separation procedures for the known K-C and K-C02

inequalities, and for the above Honeycomb and Honeycomb02 inequalities have been devised.
Finally, a cutting-plane algorithm for the MGRP performing these separation procedures has
been presented. The computational results obtained over several sets of instances prove that
the K-C, K-C02, Honeycomb and Honeycomb02 inequalities are computationally useful to solve
MGRP instances of medium size. As far as we know, this is the best algorithm for the MGRP
published up to now.
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p conn odd bal KC KC02 HC HC02 LB B&B Time Opt

alba11 99 153 45 1 36 8 1 1 9302.5 9367 38

alba13 94 81 60 2 41 1 2 3 10744∗ 15

alba15 103 59 56 - - - - - 11322.5 11331 4 11332

alba17 97 54 44 - - - - - 10617 10727 4 10795

alba19 97 43 70 - 12 3 2 2 11351 11401 18 11410

alba31 65 77 125 5 19 11 6 7 9866 9870∗ 12

alba33 70 53 96 6 8 5 1 1 11307 11315∗ 12

alba35 64 35 73 2 10 4 8 1 11435∗ 8

alba37 70 28 60 3 - 1 1 - 11742∗ 3

alba39 64 26 83 3 13 1 1 - 12766∗ 5

alba51 27 27 102 8 13 14 4 3 10931∗ 7

alba53 30 11 60 4 6 - - - 12480∗ 3

alba55 34 14 128 6 28 10 1 - 15558∗ 21

alba57 29 13 68 8 5 1 - - 14893∗ 3

alba59 31 5 73 13 - 6 - - 15848∗ 7

alba71 10 7 232 30 - - - - 12566∗ 32

alba73 18 5 87 7 - 2 - - 16647∗ 4

alba75 7 1 70 7 - - - - 14887∗ 4

alba77 12 3 81 13 - - - - 17427∗ 7

alba79 11 - 56 3 - - - - 15501∗ 3

alba91 2 - 158 12 - - - - 14497∗ 24

alba93 4 - 200 18 - - - - 15680∗ 21

alba95 1 - 92 12 - - - - 19032∗ 12

alba97 3 - 62 5 - - - - 19338∗ 3

alba99 3 - 94 15 - - - - 20026∗ 16

Table 1: Computational results for the Albaida-based MGRP instances.
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p conn odd bal KC KC02 HC HC02 LB B&B Time Opt

madr11 163 221 119 2 29 1 - - 14547.7 14720 259

madr13 160 194 116 2 28 2 2 1 15221.0 15335 56

madr15 168 143 74 - 21 1 8 1 17957.4 18100 59 18115

madr17 164 99 98 2 31 3 1 - 17845 17865 19 17875

madr19 156 103 98 2 2 - 1 1 18127.5 18170 14 18185

madr31 103 134 281 8 86 21 8 1 16566.1 16620 119 16725

madr33 106 89 147 6 1 1 1 - 18927.5 18940∗ 16

madr35 108 52 129 8 1 2 - 1 23495∗ 12

madr37 99 45 112 5 7 7 2 - 23415∗ 9

madr39 101 49 88 4 2 - 1 - 23322.5 23345 7 23375

madr51 45 50 249 21 17 28 8 7 18445 18445 29

madr53 52 36 149 9 16 6 1 - 20490∗ 9

madr55 43 12 141 16 3 8 1 1 26730 26775 9 26815

madr57 44 10 114 9 - - - - 35795∗ 6

madr59 50 25 116 5 1 3 - - 25007.5 25015 5

madr71 10 7 200 24 3 25 1 1 22540 22540∗ 19

madr73 11 4 285 41 - 17 - - 25215∗ 42

madr75 11 3 158 24 - - - - 36310∗ 17

madr77 7 4 144 17 2 6 - - 30170∗ 10

madr79 11 1 130 14 - - - - 41440∗ 7

madr91 2 - 206 21 - - - - 25380∗ 17

madr93 4 - 439 95 - - - - 29835∗ 87

madr95 3 1 335 77 - - - - 37095∗ 55

madr97 3 - 235 54 - - - - 44750∗ 39

madr99 2 - 183 34 - - - - 38340∗ 22

Table 2: Computational results for the Madrigueras-based MGRP instances.
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p conn odd bal KC KC02 HC HC02 LB B&B Time Opt

aldaya 84 115 239 5 46 21 8 6 25579 25655 131 25703

alda00 214 317 28 - - - - - 20274.1 20437 119 20503

alda11 185 255 98 1 20 4 1 - 21059.5 21126 112 21209

alda13 157 215 136 3 14 2 - - 22217.7 22382 122 22430

alda15 128 186 173 4 32 7 10 4 24933.2 25033 151 25053

alda17 100 149 116 4 13 4 - - 26512.5 26613 24

alda19 102 147 143 4 12 3 - - 27291.6 27373∗ 62

alda22 140 180 252 8 51 5 11 2 23730.3 23837 203

alda31 130 151 225 7 36 9 9 - 23219 23312∗ 77

alda33 107 125 693 11 42 18 2 - 25424.2 25526 390

alda35 88 100 545 9 89 18 16 4 25985.6 26013∗ 214

alda37 67 82 239 13 26 13 9 5 29393∗ 29

alda39 50 63 275 12 20 9 2 2 30498 30591 30 30594

alda44 79 79 229 9 17 3 - - 26537∗ 19

alda51 95 88 550 25 37 26 4 2 25547 25565∗ 172

alda53 72 59 199 10 25 5 1 - 26310 26355 45

alda55 36 40 290 9 4 10 - - 29876.3 29909∗ 27

alda57 30 37 158 8 3 7 - - 31325∗ 7

alda59 30 34 172 11 3 9 - - 31671∗ 12

alda66 30 32 300 19 7 18 - 1 31865 31942∗ 41

alda71 64 51 934 43 40 24 4 - 26539 26566∗ 183

alda73 38 26 450 20 20 7 7 - 30018 30036∗ 50

alda75 21 14 396 30 1 16 1 3 32338∗ 32

alda77 7 6 212 10 - 1 - - 34811∗ 9

alda79 8 9 170 9 5 5 - - 34230∗ 5

alda88 3 1 264 34 - - - - 38119∗ 28

alda91 35 19 236 30 10 30 6 1 33119∗ 37

alda93 16 8 217 26 - 10 - 1 33000∗ 22

alda95 6 3 218 18 - 5 - - 36677∗ 15

alda97 5 3 329 27 - 1 - - 39493∗ 24

alda99 2 1 283 18 - - - - 39359∗ 16

Table 3: Computational results for the Aldaya-based MGRP instances.
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