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Abstract

The Min-Max Windy Rural Postman Problem is a multiple vehicle version of the
Windy Rural Postman Problem, WRPP, which consists of minimizing the length of
the longest tour in order to find a set of balanced tours for the vehicles. In [6], an
ILP formulation and a partial polyhedral study was presented, and a preliminary
branch-and-cut algorithm that produced some promising computational results was
implemented. In this work, we present further results on this problem. We describe
several new facet-inducing inequalities obtained from the WRPP, as well as some
inequalities that have to be satisfied by any optimal solution. We present an enhanced
branch-and-cut algorithm that takes advantage of both these new inequalities and high
quality MM K-WRPP feasible solutions obtained by a metaheuristic. Computational
results on a large set of instances are also reported.

Keywords: Rural Postman Problem, Windy Postman Problem, Windy Rural Postman
Problem, Facets, multivehicle.

1 Introduction

The Rural Postman Problem on a windy graph (WRPP) generalizes most of the single-vehicle
Arc Routing Problems. Let G = (V, E) be a ‘windy’ graph, i.e., an undirected graph with
two nonnegative costs ¢;j, ¢j; associated with each edge e = (3, j), corresponding to the costs
of traversing e from ¢ to j and from j to i, respectively. Let Er be a subset of required
edges (representing those edges requiring some service to be done along them). The WRPP
consists of finding a tour of minimum cost traversing each edge in Er at least once.

In this paper we deal with the situation where there is a fleet of identical vehicles that
jointly service the required edges. If the capacity of the vehicles is not restricted and we look
for K routes starting and ending at the depot, in such a way that all the edges of the graph
are serviced by exactly one vehicle and the total distance is minimized, we have the K-CPP
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which Assad, Pearn and Golden [5] showed to be solvable in polynomial time in the undirected
and directed cases. Nevertheless, Pearn [14] proved that the K-CPP is N P-hard when it is
defined on a mixed or windy graph. The Min-Max K-CPP is a more realistic problem in
which the objective is to minimize the length of the longest route among the K vehicles. This
is a way of balancing the working load of the vehicles. It was introduced by Frederickson,
Hecht and Kim [12], who also proved that the Min-Max K-CPP is N P-hard and proposed
a (2— %)—approxirnation algorithm. More recently, Ahr and Reinelt present several lower
bounds and heuristics for this problem ([2]) and a Tabu Search procedure that produces very
good solutions ([3]). Finally, in Ahr [1] some more results on the Min-Max K-CPP, including
an exact solution method based on a branch-and-cut approach, are presented.

In Benavent et al. [6], the Min-Max K-vehicles Windy Rural Postman Problem (MM
K-WRPP) is introduced. Given a windy graph, a distinguished vertex (the depot), a subset
of required edges and a fixed number K of vehicles, the problem consists of finding a set
of K tours for the vehicles in such a way that each tour starts and ends at the depot and
each required edge is serviced by exactly one vehicle. The objective is to minimize the length
of the longest tour in order to find a set of balanced tours for the vehicles. In that paper,
a formulation of the problem is presented and some valid inequalities are introduced. Fur-
thermore, the polyhedron associated with the MM K-WRPP solutions is partially described
and a branch-and-cut algorithm producing encouraging results on a large set of instances is
presented.

In this work, we present further results on this problem. In Section 2, we present some
notation, the formulation of the problem and the inequalities studied in [6]. In Section 3 we
describe several new facet inducing inequalities obtained from the WRPP and, in Section 4,
some inequalities that have to be satisfied by any optimal solution. An enhanced branch-
and-cut algorithm that uses these new inequalities and high quality MM K-WRPP feasible
solutions obtained by a metaheuristic is presented in Section 5. The computational results
obtained on a large set of instances are shown in Section 6 and in Section 7 some conclusions
are drawn.

2 The Min-Max K-vehicles Windy RPP

Let G = (V, E) be an undirected and connected graph with two costs ¢;;, ¢;; associated with
each edge e = (4,7), and assume that node 1€V represents the depot. Let Er C E be the
set of required edges. Consider a fixed number of vehicles, which we will denote from now
on K in order to avoid confusion with the letter K used for the description of some well
known families of inequalities that will be presented in Section 3. We have to find a tour
(closed walk starting and ending at the depot) for each vehicle such that each required edge
is traversed at least once by at least one vehicle. A set of such tours (one per vehicle) will
be called a MM K-WRPP solution. The objective is to find a MM K-WRPP solution such
that the cost of the maximum cost vehicle tour is minimum.

As in [6], we will assume that each vertex in V is incident with at least one required
edge. Let us call Ggr = (V, ER) the graph induced by the required edges. In general, Gr
is not connected. The sets of vertices Vi, Va,...,V, of the p connected components of Gr
are called R-sets and the subgraphs induced by them are called R-connected components.
Given two node subsets 5,5 C V, (S : S’) denotes the edge set with one end-point in S



and the other in S’. Given a node subset, S C V, let us denote §(S) = (S : V\S) and let
E(S) ={(i,j) € E :i,j € S} be the set of edges with both endpoints in S. The previous
sets restricted to the required edges are denoted by 0r(S), Er(S) and (S : S')g.

To formulate the problem, in [6], 2K variables $”, gfz are defined for each edge e = (i, ) €

E, representing the number of times edge e is traversed by vehicle k from 7 to j or from j to 1,
respectively. In addition, if edge e is required, K more variables y¥ which take the value 1 if
edge e is serviced by the vehicle k and 0 otherwise, are defined. Finally, an artificial variable
z is used to minimize the maximum tour cost. The Min-Max K-WRPP can be formulated
as follows:

Minimize z

s.t.:

Z (cijxi-“j —}—cjix?i) <z Vk=1,...,K (1)
(i,J)eE
> yb=1, VecEpg (2)
:cf]—i-a:?Zny Ve = (i,j) € ERr and Vk=1,... K (3)
Y (@ —ab)=0, VieVandVk=1,... K (4)
(i.4)€8 (i)

F(5(S)) > 2F,  VScV\{l1}, VecEg(S), Vk=1,...,K (5)
k., 2k > 0 and integer V(i,j) € B, Vk=1,...,K (6)
yF € {0,1}  VeeEg Vk=1,...,K (7)

where 2*(F) denotes Z :c 4+ :1: ) for any subset F' C E.
(i,J)eF

Inequalities (1) imply that the maximum cost vehicle route is minimized. Equations (2)
assure that each required edge is serviced by exactly one vehicle and traversing inequalities
(3) force a vehicle to traverse the edges it services. Symmetry equations (4) force each vehicle
route to be symmetric, while connectivity inequalities (5) ensure that each vehicle route
connects the edges it services and the depot.

A vector (2!, yt, 22,92, ... ,xk,yk) with (2|E|+|Eg|)K components satisfying (2) to (7)
will be called a solution for the MM K-WRPP on G. The pair (z¥,4") is the route associated
with vehicle k, while z* will denote the corresponding tour. Note that this formulation allows
solutions in which a vehicle tour 2* is formed by several disconnected subtours, one of them
connecting all the edges it services to the depot and the others traversing edges not serviced
by this vehicle. Note also that solutions where a given vehicle neither traverses nor services
any edges are allowed (z* = ¢* = 0).

Let KWRPP(G) be the convex hull of all the MM K-WRPP solutions, which is a polyhe-
dron of dimension I?(2|E|—|VH—1) +(K—1)|Eg|. In [6] it is shown that, if F(z) > ¢ is a valid
inequality for the (1 vehicle) WRPP defined on graph G, then inequality >, F(z*) > co,
called aggregate inequality, is valid for KWRPP(G). Hence, aggregate R-odd cut, K-C, Hon-



eycomb and other inequalities for the WRPP described in Corberan, Plana and Sanchis [10]
are valid inequalities for KWRPP(G).

In [6] it is also shown that the following inequalities are facet-inducing for KWRPP(G):

e trivial inequalities, xfj >0, mi >0 V(i,j) € E and Vk and y* > 0 Ve € Ep and Vk
(inequalities y* < 1 for e€ Er are implied by y¥ >0 and the system equations (2)),

e traversing inequalities (3), :c,’fj + x;“z > yk, Ve = (i,j) € Ep and Vk,
e connectivity inequalities (5), z¥(§(S))>2y¥, VSCV\{1} and e€ Er(S) and Vk,

e aggregate R-odd cut inequalities, Zkkzl 2%(86(9)) > |6r(S)|+1, VS CV such that |0r(9)|
is odd,

e parity inequalities, 2%(3(S)) > 2y*(F) — |F| + 1, VS CV, VF C dg(S) such that |F| is
odd, and Vk, and

e P-aggregate parity inequalities, z*1 (6(9))+-- 4 akP (6(9)) > 2k (F)+-- - 2ykP (F)—
|[F|+1, VSCV, VF C 0r(S) such that [F| is odd, and for every subset {k1, k2, ..., kp}
of P < K vehicles.

3 More facet inducing inequalities

In this section, we will present new families of facet-inducing inequalities for the polyhedron
associated with the MM K-WRPP.

K-C and K-Cps inequalities are well known families of facet-inducing inequalities for the
WRPP ([10]). In this section we show that the new versions of these families corresponding to
a single vehicle, a subset of vehicles and all the vehicles, called disaggregate, P-aggregate and
aggregate versions respectively, are valid and facet-inducing inequalities for KWRPP(G).
Similar results regarding its validity have been obtained for the well known Honeycomb
inequalities.

3.1 K-C and K-C,, inequalities

Although K-C and K-Cys inequalities for the WRPP differ in the coefficients of the variables,
they share the same underlying configuration (see Figure 1). It is defined by a partition of V,
{Mo, My, My, ..., Mg_1, Mg}, such that each R-set V; is contained in one of the node sets
MoUMpg, My, Mo, ..., Mg_1q, the induced subgraphs G(M;) are connected and (My : M)
contains a positive and even number of required edges. Furthermore, it is assumed that sets
(M; : Mjyq) are non-empty. The coefficients a;; of the variables in the inequality are shown
in Figure 1, where each number represents the coefficient of the variable associated with the
traversal of the edge from the nearest node to the farthest one. The coefficient of a variable
associated with an edge not shown in Figure 1 between sets M; and M;, can be calculated
as the cost of the shortest path from M; to M; using the coefficients shown in this figure.
Then, the corresponding K-C and K-Cgpo inequalities are:

F(x) = Z (ai]mij + ajixji) > Q(K—l) + ag, (8)
(i,4)eE



where ag = (K-2)|[(Mo: Mk)g| for the K-C inequality and ag = (K —1)|(Mo: Mk)p| for the
I/(\—C()Q. Since K-C and K-Cyp inequalities are facet-inducing for WGRP(G) when K > 3 and
K > 2, respectively, we will assume in this paper that these conditions for K are satisfied.

Figure 1: K-C and K-Cpy configurations.

Then, the corresponding aggregate K-C and K-Cpg inequalities are

ZF ) > 2(K—1) + ag, (9)

and, as it has been mentioned before, are valid for the MM K-WRPP. In what follows we
will prove that they are also facet-inducing.

Note 1 There are two types of WRPP tours that satisfy a K-C inequality with equality,
and they will be used in the proof of some theorems:

(i) tours that use the path My, M, ..., Mk, Mg once (either from My to My or viceversa),
and traverse |(Mo : Mi)gr| + 1 times the edges in (Mg : M), and

(ii) tours that use the path My, My, ..., M1, Mg twice, once in each direction, except for
one pair (M;, M), i € {0,1,..., K—1}, and traverse |(My : Mk)r| times the edges in
(M() : MK)

Theorem 1 Aggregate K-C' inequalities (9) are facet-inducing for KWRPP(G) if the
following conditions are satisfied:

1. The depot 1 € My U Mg and
2. |Er(M;)| =1 for eachi=1,2,...., K—1.

Proof: To simplify this proof and later ones, we will consider the case K = 3, although they
can be easily extended to any value of K.

Consider the (1 vehicle) WRPP defined on G and let WRPP(G) denote its associated
polyhedron. It is known ([10]) that, if G is connected, dim(WRPP(G))= 2|E|—[V| + 1. Let
us call m = dim(WRPP(G)). Since dim(KWRPP(G))= Km + (K —1)|Eg]| ([6]), this is the



number of MM K-WRPP solutions satisfying the inequality with equality we have to find.
Given that the K-C inequality F'(z) > o = 2(K—1)+ap is facet-inducing for WRPP(G), there
are m linearly independent tours wi,ws,...,w,, for the WRPP on G satisfying F(z) = a.
Hence, we can build MM K-WRPP solutions in the following way. One vehicle performs any
WRPP tour w; above and services all the required edges while the other vehicles do nothing.
We can define these MM K-WRPP solutions arranged as rows of the blocks (a), (b) and
(c) in the matrix shown in Figure 2, where a block with a large 0 (or 1 or -1) represents a
submatrix with all its entries 0 (or 1 or -1) and I represents the identity matrix.

X1 X2 X3 vl Y2 ys
w1
w2
(a) 0 0 1 0 0
w2
(b) 0 0 0 1 0
m u}l
w9
(c) 0 0 0 0 1
(d) l ] 0 B 1-B 0
(e) 0 j 0 B 1-B

Figure 2: MM K-WRPP solutions satisfying Z,f:l F(2%) = 2(K—1) + ag.

To prove that the aggregate K-C inequality is facet-inducing, we need to find (I? —1)|ER|
more solutions satisfying (9) with equality. Then, for each pair of vehicles k, k + 1, we will
construct a MM K-WRPP solution associated with each required edge e € Egr, where vehicle
k will service only edge e (when possible), and vehicle k + 1 will service all the other required
edges. Let us suppose that 1 € M.

e For each edge e € Er(M)), tour w* leaves the depot, traverses edge e and comes back to
the depot, using only edges in G(My), while w** is any tour of types (i) or (ii) described
in Note 1. Vehicle k services only edge e and vehicle k£ + 1 services all the remaining
required edges.

e For each edge e € (Mg : Mg)g, tour w* uses only edges in G(Myp) and G(Mjy), and
traverses edge e twice, once in each direction, while w** is any tour such that w* 4+ w**
is a WRPP tour of type (i). Vehicle k services only edge e and vehicle k + 1 services
all the remaining required edges.

e Let € be a required edge in (My: Mk )r. For each edge e € Er(Mg), tour w* traverses
edge e, edge € twice and edges in G(My) and G (M), while w** is any tour such that
w* +w** is a WRPP tour of type (i). Vehicle k services edges e and € and vehicle k+1
services all the remaining required edges.



e Since |Er(M;)| = 1, we will denote by {e;} = ERr(M;). Then, for each edge es €
Er(Ms), s =1,2,...,K—1, we construct a tour w* traversing edges ej,ea,...,es in
both directions, using the path Mgy, M1,..., M, once in each direction and edges in
G (M), while w** is any tour such that w* + w** is a WRPP tour of type (ii). Vehicle
k services edges ej,eo,...,es, while vehicle k + 1 services all the remaining required
edges.

For the case K = 3, we obtain rows (d) and (e) of matrix shown in Figure 2, where B
is the matrix B depicted in Figure 3 after removing the last column and the last row. In
order to see that the matrix shown in Figure 2 has full rank we proceed as follows. Given
that the m vectors wi,ws, ..., wy,, satisfy F(z) = «, if we compute F(x!') on the columns
corresponding to the variables X! and divide this sum by a we obtain a column with all its
entries in (a) equal to 1. By subtracting this column from the columns corresponding to Y
we obtain a 0 block in the rows in (a) and columns corresponding to Y''. We proceed in
the same way to obtain 0 blocks in the rows (b) and (c) and columns corresponding to Y?2
and Y3. Obviously, blocks B and 1-B in (d) and (e) also change. Given the structure of the
matrix in Figure 2, if we prove that the matrix in which B is transformed is non singular,
the proof will be complete for any number K of vehicles.

ER(]W()) e (Afo : ]\/IK)R ER(]WK) €1,€2,...,€6K 1 F(w*)
I 0 0 0 0
2(K-2)
0 [ 0 0 :
2(K-2)
1 K=
1 .
0 0 [ 0 :
1 2(K-2)
1 2704
11 4/
0 0 0
1 1 1 1
11 1 1 1|2K-1)/a
-1 -1 -1 -1 -1

Figure 3: Matrix B of Theorem 1.

From each column of B in (d) we have subtracted a column obtained as the result of
computing F(z!) on the columns of (d) corresponding to the variables X! divided by «a.
From the construction of tours w* corresponding to (d), the resulting column has a value

0 in the entries associated with the edges in My, a value @ in those associated with

(M : M )UMp and values %, é, g, e 2([21) in those associated with edges e1, €a,...ex 1,
respectively. F(w*) will represent this column. Let us suppose B is a n xn matrix and
let B, B?,..., B™ denote its n columns. We have to prove that the n columns B!-F(w*),



B2-F(w*), ..., B"-F(w*) are linearly independent, i.e., the n+1 columns B!, B?,..., B",
F(w*) are affinely independent. To see this, we append an entry -1 to each one of these
vectors and we obtain the (n+1)x (n+1) matrix B depicted in Figure 3. After performing
Gaussian elimination on the entries of the last column of matrix B it can be seen that it has
full rank if, and only if, K # 2. ¢

In what follows we will see that aggregate K-C inequalities (9) are not facet-inducing for
KWRPP(G) if conditions 1 or 2 are not satisfied. We present a new class of aggregate K-C
inequalities that dominates the former ones in this case .

Let us consider a K-C configuration in which the depot is in any set in {My U
Mg, My, ..., Mg_1} and there is another one of these sets, different from the one containing
the depot, that contains more than one required edge. Let e and f be two such required
edges. We will call lifted aggregate K-C inequalities to:

ZF )Z2K-1)+ar+ > 2F+ ) 2yf -2 (10)

kel kels

where I, I5 is a proper partition of the vehicles index set {1,2,... ,I?}
Theorem 2 Lifted aggregate K-C inequalities (10) are valid for KWRPP(G)

Proof: Note that the maximum value for the RHS of (10) is 2(K —1) + agr + 2, which is
only achieved when a vehicle in set I; services edge e and a vehicle in set I services edge f.
Let us suppose that the depot 1 is in MyU Mg and e, f € Er(M;). In this case two different

vehicles travel to set M; and, as it can be seen in Figure 4, Zkkzl F(2%) > 2(K—1)+ ar +2
holds. In all the other cases, the RHS of (10) is 2(K —1) 4+ ar or fewer and then (10) is
satisfied. ¢

Figure 4: Tours with two vehicles visiting M;.

These new inequalities dominate the standard aggregate K-C inequalities (9) because if
we add the two following valid inequalities

ZF )= 2(K—1)+ar+ Y 2yi+ Y 2y} -2

i€l j€l>



M=

Fa®) > 2(K-1)+ar+ Y 25+ > 2yl -2
1 i€l jel>

b
Il

we obtain inequality (9). Hence, the standard aggregate K-C inequalities (9) are not facet-
inducing for KWRPP(G) if the depot is in My U Mg and |Er(M;)| > 1 holds for any
i=1,2,.. K—1.

On the other hand, if condition 1 € My U My is not satisfied, that is, if 1 € My, for
example, then we select two required edges e and f from one of the sets Er(My U Mg),
Er(Ms), Er(Ms3), ... ErR(Mk_1), and inequality (10) holds. Notice that from Egr(MyU Mg)
we can always select two required edges. Hence, the standard aggregate K-C inequalities (9)
are not facet inducing if the depot is not located in My U M.

Theorem 3 Lifted aggregate K-C inequalities (10) are facet-inducing for KWRPP(G)

Proof: For M = 3, any partition I, I5 of set {1,2,3} contains one and two vehicle indices,
respectively. Let us suppose that I; = {1,3} and I = {2}. Let us suppose also that the
depot is in one of the sets MoUMpg, My, Ms, ..., Mk 1, say M;, and that edges e, f are in
another different set, say M;. The proof is similar to that of Theorem 1. Given that K-C
inequality F'(z) > o = 2(K —1) + ap is facet inducing for WRPP(G), there exist m linearly
independent tours wi,ws,...,w, for the WRPP on G satisfying F(x) = «. Hence, the
vectors represented in the rows of the first 3 blocks of matrix shown in Figure 2 are feasible
MM K-WRPP solutions satisfying the inequality as an equality (note that all these solutions
satisfy Z]kvil F(2%) = a because all the vectors z* are zero except one of them, say 2P, which
satisfies F'(zP) = «, and the RHS is equal to a + 2 — 2 because exactly one variable y£ or y?
is one and all the other are zero).

The vectors represented in the last two block rows of matrix shown in Figure 2 are feasible
MM K-WRPP solutions satisfying the inequality as an equality using two vehicles, one in Ij
and the other in I5 (vehicles 1 and 2 in (d) and vehicles 2 and 3 in (e)), performing tours w*
and w** and servicing the required edges according to matrix B shown in the top left block in
Figure 5. In the first solution, vehicle 1 only services edge e. In the following solutions except
the last one, vehicle 1 services edge e and exactly one of the remaining required edges except
edge f. In all these solutions, vehicle 1 performs a tour w* consisting of traveling around the
K-C structure and, hence, F(w*) = 2(K — 1) holds. In the last solution, vehicle 1 services
both edges e, f and all the remaining required edges except those in a set next to set M;, say
M; 11, different from M;. In this case, tour w* is of type (ii) described in Note 1 except that
it does not travel between M; and M, (this is done by vehicle 2). Hence, F(w*) = o —2 in
this case. We obtain the matrix B in Figure 5 and we proceed as in Theorem 1 to show that
the matrix obtained from B after transforming into zeros the 1 block is full rank.

For other values on the number of vehicles K it can be seen that we always can order
the vehicles in such a way the part of the matrix formed by the (M —1) x (M —1) blocks
corresponding to matrices B and 1-B (rows (d) and (e) and columns Y! and Y? of the
matrix in Figure 2) is upper triangular by blocks with all the diagonal blocks equal to B. For
example, if M =7, I has 5 vehicles associated with edge e and Iy has 2 vehicles associated
with edge f, we can suppose the vehicles are sorted in such a way that vehicles 1,2,3,4,5,6
and 7 are associated with edges e, f, e, e, e, e and f, respectively. Then, we select the M — 2
pairs of vehicles (1,2), (2,3), (3,7), (4,7), (5,7) and (6,7) to define the solutions described



with w* and w**. ¢

e ER f F(w*)

1 2(K—1)/a
1 2K —1)/a
1 0 1 0 2K —1)/a
1 0 0 ... 1 2K—1)/a
1 0 1 ... 1 1| (a=2)/a
1 1 1 ... 1 1 1

Figure 5: Matrix B of Theorem 3.

In summary, given a K-C configuration on graph G, if we can select two required edges
e, f with its vertices in one of the sets Mo U Mg, My, ..., Mg_1 except the set containing
the depot then the corresponding lifted aggregate K-C inequality (10) is facet-inducing for
KWRPP(G). If it is not possible to select such edges e, f then conditions 1 and 2 of theorem
1 hold and the standard aggregate K-C inequality (9) is facet-inducing for KWRPP(G).

For aggregate K-Cgo inequalities the situation is different. In addition to the two types
(i) and (ii) of WRPP tours described in Note 1 for the standard K-C inequalities (in the case
(i) using the path My, My, ..., Mg 1, Mg only from My to M), we have another type of
WRPP tour:

Note 2 The following WRPP tours satisfy a K-Cgy inequality as an equality:

(iii) tours that use the path My, M, ..., Mk, Mk twice from My to M and traverse half
plus one of the edges in (My: Mg )r from Mg to My and half minus one from My to
My

Then, there exist MM K-WRPP solutions satisfying the aggregate K-Cp2 inequality (9) as
an equality in which two different vehicles traverse the path My, M1, ..., Mk 1, M. Hence,
there is no need for ‘lifting’ inequalities.

Theorem 4 Aggregate K-Cyo inequalities (9) are facet-inducing for KWRPP(G)

Proof: The proof is similar to that of Theorems 1 and 3, specially in respect to the MM K-
WRPP solutions represented in the first 3 blocks of matrix shown in Figure 2. The vectors
represented in the rows of the last two blocks of this matrix are feasible MM K-WRPP
solutions satisfying the inequality as an equality using two vehicles performing tours w* and
w**, respectively.

Tour w* consists of traveling around the K-C structure, using the path
My, My, ..., Mk, Mk once and traversing exactly one edge in (Mg : Mk)pr, from Mg to
My, hence satisfying F'(w*) = 2(K —1). Tour w** uses the path My, My,..., Mg, Mk
once and traverses all the remaining edges in (My : M)g, in such a way that w* + w**
is a WRPP tour of type (iii) described in Note 2. For each required edge e € Er we
have a MM K-WRPP solution in which vehicle 1 only services edge e and vehicle 2

10



services all the remaining required edges. We obtain the matrix B in Figure 6 and
proceeding as in Theorem 1, we show that the matrix obtained from B after transform-
ing into zeros the 1 blocks is full rank unless |(My: Mk )r| = 2 = |ERr|, which is a nonsense. 4

Er F(w")
1 2(K—1)/a
1 2(K—1)/a
1 0 2K—1)/a
0 1 2K—1)/a
2(K-1)/a

1 1 -1 1 1 1

Figure 6: Matrix B of Theorem 4.

Now we deal with the disaggregate K-C inequality corresponding to a single vehicle k.
Note that the RHS of a K-C inequality for the WRPP, 2(K—1)+ (K—2)|(My: Mk )|, derives
from the fact that all the WRPP tours are ‘required’ to traverse the edges in (My: Mk)r
and to visit the sets My, Mo, ..., Mg _q. Let {My, M1, My, ..., Mk_1, Mk} be a partition of
V' (where each subgraph G(;) is connected) and and let us assume there exists an edge set
F C(My: Mg)g such that |F| is positive and even and another set H = {e1,ea,...,ex_1} C
ER such that each e; € E(M;). For each vehicle k we will call disaggregate K-C inequality

to:
F(z") > 2y"(H) + (K -2) (24" (F) - |F|) (11)

and disaggregate K-Cgo inequality to:
F'(a*) > 24" (H) + (K =1) (24"(F) — | F|) (12)

where F(x) and F’(x) are, respectively, the LHS of the standard K-C and K-Cypg inequalities
corresponding to that configuration.

Theorem 5 Disaggregate K-C inequalities (11) and disaggregate K-Cpo inequalities (12) are
valid for KWRPP(G)

Proof: We will prove the theorem for inequalities (11). The proof for inequalities (12) is
similar. If vehicle k services all the edges in F U H then y*(H) = K —1, y*(F) = |F| and
the RHS of inequality (11) is 2(K —1) + (K —2)|F|. In this case, vehicle k£ must traverse the
edges in F' (with cost, at least, (K —2)|F|) and visit the sets My, Ma, ..., Mg_1 (with cost,
at least, 2(K —1)) and F(z*) > 2(K—1) + (K —2)|F| holds.

If vehicle k£ services all the edges in H except one of them and all the edges in F' then
vehicle k£ must traverse the edges in F' and visit the sets { My, Mo, ..., Mg _1} except, perhaps,
one of them (with cost, at least, 2(K —2)) and F(z¥) > 2(K —2) + (K —2)|F| holds. Note
that, in this case, 2(K —2) + (K —2)|F| is the RHS of (11).

If vehicle k services all the edges in F' except one of them and all the edges in H then
y*(F) = |F|—1 and the RHS of the inequality (11) is 2(K —1) + (K —2)(|F|—2). In this
case, vehicle k must traverse the |F'|—1 edges it services in F' at least once (with cost, at
least, (K—2)(|F| —1)) and visit the sets {My, Ms, ..., Mg_1}. Given that |F| —1 is odd, the
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cheapest way to visit them, with cost K, is to begin in My, then M7, M5, and so on until
My. Hence, F(2¥) > K + (K —2)(|F|-1) = 2(K—1) + (K —2)(|F|-2).

It is easy to see that the inequality is also satisfied when vehicle k services any other
number of edges in F'U H. ¢

Note 3 In order to prove that the above inequalities are facet-inducing, we need to build for
each required edge e € F'U H a tour for vehicle k servicing all the edges in F'U H except e
and satisfying the inequality as an equality. Obviously if the depot is, for example, in set M1,
then there is no such tour for the edge e; € M;. Hence, in order to assure that disaggregate
inequalities (11) and (12) are facet-inducing we need the depot located in My U Mg. If
the depot 1 € M;, i # 0, K then each vehicle k is forced to visit set M; although it does
not service the edge e;. In this case we define H = {ej,ea,...,ex_1}\ {e;} C Er and the
following disaggregate K-C and K-Cpy inequalities

F(2%) > 2+ 2y%(H) + (K -2) (2y"(F) — |F|) (13)

F'(a¥) > 24+ 2"(H) + (K —1)(2y"(F) — |F|) (14)
are also valid for KWRPP(G).

Theorem 6 Disaggregate K-C and K-Cy inequalities (11) and (12) are facet-inducing for
KWRPP(G) if 1 € My U My. Disaggregate K-C and K-Cyo inequalities (13) and (14) are
facet-inducing for KWRPP(G) if 1 € M;.

Proof: Again, we will prove the result only for K-C inequalities. Let us suppose k = 1. Con-
sider the (1 vehicle) WRPP instance defined on a graph G’ , based on graph G, where the re-
quired edges are only those in set F' and those in sets Er(M;), i =0,1,2,..., K. If we consider
the K-C configuration on graph G’ defined by the partition {My, My, Ma, ..., My _1, Mk},
the standard K-C inequality F'(z) > 2(K—1) + (K —2)|F] is facet inducing for WRPP(G’)
and there are m linearly independent tours wi,ws,...,w,, for the WRPP on G’ satisfying
F(z) = 2(K—1) + (K—2)|F|. On the other hand, given that 0 caff( WRPP(G)), there are
m linearly independent tours z1, 23, ..., 2y for the WRPP on G which traverse all the edges
in ER at least once. Hence, the vectors represented in rows (a), (b), (¢) and (g) of the ma-
trix shown in Figure 7 are feasible MM K-WRPP solutions satisfying the inequality as an
equality.

For each e € F'U H, the vector w} in rows (d) and (e) represents a WRPP tour on G’
traversing all the required edges in F'UH except e and satisfying the inequality as an equality.
It is easy to see that we can find such a tour for inequalities (11) (inequalities (13)) when
the depot is in My U Mg (M;). For each edge e € Er \ (FUH), the vector w;™* in rows (f)
represents a tour similar to those in set {wy,ws, ..., wy,} which traverses all the edges in
FUH exactly once and edge e. It can be seen that the rows of the matrix shown in Figure 7
represent feasible MM K-WRPP solutions on G and they are linearly independent. ¢

Note 4 In the definition of the partition { Mo, My, Mo, ..., Mk _1, Mk} for disaggregate K-C
and K-Cpz inequalities, we do not assume that the required edges are only in set (My: M)
and in sets F(M;). The role of ‘required’ edges for vehicle k is played by edges in sets F

12



XU | X | XY | Vi | YR | Vi | Vi | Yig | Y

W oz o 1 o001 0
- 221
W Wi .0 1000 1|0
o Wi oz 100 0 0 1
() u Z 0 -1 | 1 0 0 1 0
@>% 0 |z |1 0| 10 0|1
" ﬁ z 00 100 1 1] o
) Wi A Z1 1 0 0 0 I 1-1

Figure 7: MM K-WRPP solutions satisfying inequalities (11) and (13) with equality.

and H. Hence, these inequalities also apply for the K-vehicles Windy Postman Problem (in
which all the edges in G are required).

As with parity inequalities, we can consider aggregate K-C inequalities related to a subset
of vehicles. If, for example, all the required edges in F'UH are serviced by a subset of vehicles,
then the sum of the routes performed by these vehicles satisfies the standard K-C inequality.
Given a partition {My, M1, Ma,...,Mg_1, Mg} of V and two subsets F' and H as above,
for each subset Q = {ki,ka,...,kp} of P vehicles we will call P-aggregate K-C inequalities
to the following ones, where set H is defined as {ej,ea,...,ex_1} such that each e; € E(M;)
or {e1,e2,...,ex_1}\{ei}, depending on wether the depot is located in My U Mk or in any

other set M;:
S O F@Er) =) ok H) + (K-2)( > 2MF) - |F)) (15)

keQ keQ keQ
S OF@Er) =2+ ) 2 (H) + (K-2)( > 2" (F) - |F)) (16)
keQ keQ keQ

and, similarly, we will call P-aggregate K-Cps inequalities to

S OF M) = 2w H) + (K-1) () 29M(F) - |F)) (17)

keQ keQ keQ
SOF(EF) > 24> 2k H) + (K-1) (D 28(F) - |F)) (18)
keQ keQ keQ
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Theorem 7 P-aggregate K-C and K-Cyy inequalities (15) to (18) are valid for KWRPP(G).
Proof: It is similar to that of Theorem 5 and is omitted here for the sake of brevity. ¢

Theorem 8 P-aggregate K-C and K-Coa inequalities (15) and (17) (the depot 1 € MoU Mg )
are facet-inducing for KWRPP(G). P-aggregate K-C' inequalities (16) are facet-inducing for
KWRPP(G) if, and only if, K # 3 or |F| # 2. P-aggregate K-Cpy inequalities (18) are
facet-inducing for KWRPP(G) if, and only if, K # 2 or |F| # 2.

Proof: Let us prove that P-aggregate K-C inequalities are facet inducing. The proof for
the P-aggregate K-Cps inequalities is similar. For the sake of simplicity, let us suppose that
K=3and P=2 (k; =1, ks = 2). Consider, as in the proof of Theorem 6, the (1 vehicle)
WRPP instance defined on a graph G’, where the required edges are only those in set F' and
in sets Er(M;), i = 0,1,2,..., K. Let wy,ws,...,w, be m linearly independent tours for
the WRPP on G satisfying F'(z) = 2(K—1) + (K —2)|F| and let 21, 22, . . ., 2z, be m linearly
independent tours for the WRPP on G. On the other hand, vectors w in rows (d) and (e)
for each e € F'U H, and vectors w;* in rows (f) and (g) for each edge e € Er \ (FUH) are
defined as those in Theorem 6. The vectors represented in the rows of the matrix shown in
Figure 8 are feasible MM K-WRPP solutions satisfying the inequality as an equality. To
prove that this matrix is of full rank, we subtract rows in (e) from rows in (d), obtaining a
new row block (d’) shown at the bottom of Figure 8.

Let us assume the depot 1 € My. If we compute F(2?) on the columns corresponding
to the variables labeled X? and divide this sum by a = F(w;) = 2|H| + (K —2)|F| =
2(K—-1)+ (K—2)|F|, we obtain a column with all its entries in (b) equal to 1. By subtracting
this column from those corresponding to Y72, we obtain a 0 block in the rows in (b), and
block B=I-1 in (d’) is also transformed into a new matrix B*, whose columns are those in B
minus the column F(—w})/c. We proceed as in Theorem 1 to show that B* is of full rank.
To prove this, it suffices to see that matrix B shown in Figure 9 is of full rank if, and only if,

K #2.

If the depot 1 € M;, the same process with o« = F(w;) = 2 4+ 2|H| + (K —2)|F| =
2+2(K—2)+(K—2)|F| leads to prove that inequalities (16) are facet-inducing for KWRPP(G)
if, and only if, K # 3 or |F| # 2.

Finally, it can be seen that, when K = 3 and |F| = 2, P-aggregate K-C inequality (16)
can be obtained as the sum of the P disaggregate K-C inequalities (13) associated with the P
vehicles in set 2. The same result is obtained for P-aggregate K-Cps inequalities (18) when
K=|F|=2. ¢

3.2 Honeycomb and Honeycomby, inequalities

Honeycomb (HC) inequalities are known to be valid and facet-inducing inequalities for the
WGRP ([10]) and they are a generalization of K-C inequalities. In a K-C configuration,
a R-set (or a cluster of R-sets) is divided into two parts (Mo and Mg). The Honeycomb
inequalities generalize this configuration simultaneously both in the number of parts a R-set
is divided into and in the number of R-sets we divide. Nevertheless, we restrict ourselves
here to Honeycomb configurations in which only one R-set (or cluster of R-sets) is divided
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Figure 8: MM K-WRPP solutions satisfying (15) as an equality.

F H F(—w})/a
_a—2(K-2)

Figure 9: Matrix B of Theorem 8.

into several parts. They are defined by

e a partition {Wy,..., W, My,...,Mg_1} of V, with L > 2, K > 3, such that
(WiU...UWyg), My,...,Mg_; are clusters of one or more R-sets, d(W;) contains a
positive and even number of required edges for all ¢ and the graph induced by the
required edges on the vertex set {W7,..., W} is connected.

e a tree T spanning the sets Wy,..., Wr, My,..., Mg_1 such that the degree in T of
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every vertex set W; is 1, the degree of vertex sets M, is at least 2 and the number of
edges of the unique path in the tree connecting any distinct W;, W;, d(W;, W), is 3 or
more.

Note that when L = 2 the tree T is a path and we have a K-C configuration. If L > 3,
then K > 4 is needed for d(W;, W;) to be 3 or more. The costs of such a HC configuration
are C(Mi,Mj) = d(Mi,Mj), C(Mi,Wj) = d(MZ,W]) and C(Wi,Wj) = d(Wl,W]) — 2. The
corresponding Honeycomb inequality is then

F(z)= Y (oumij + ajexji) > 2(K—1)+ Y ay (19)
(i7j)€E (Z,])GSR

where oj =c(M,, My) if i€ M, and j€ M, (a;j=c(Mp, W) if i€ M, and j €W, and so on)
and &g is the set of required edges joining two distinct sets W;, W;. Note that, for edges in
ERr, aij = oy, and therefore we use only «a;; in the RHS of the inequality. Figure 10(a) shows
a Honeycomb configuration. The bold lines represent the required edges and the thin lines
represent edges in the spanning tree 7. The RHS for this example is 2(8-1)+(14+4+1+6).

Honeycombgy (HCp2) inequalities are associated with a similar configuration (see figure
10(b)). In this case, nodes W; are classified into two types, nodes of type O (those that are
incident with edges in T" with coefficients 0 and 2) and nodes of type Z, in such a way that there
is at least one node of each type. We will assume that d(W;, W) > 3 if W; and W} are nodes of
the same type, while d(W;, W;) > 2 otherwise. The costs are now c¢(W;, W;) = d(W;, W;)—
if W; and W; are nodes of the same type, c(W;, W;) = d(W;, W;)—1 if W; and W; are nodes
of different types, ¢(W;, My) =0 and c(M,, W;)=2 if W; is of type O and (W;, M,) €T,
the other edges in T have cost 1 and for all the remaining edges the cost is the shortest path
cost in T'. With these coefficients, the HCpy inequality is expressed as in (19). The RHS for
the inequality in Figure 10(b) is 2(8-1)+(1+5+246).

M, ! My

b

Figure 10: Honeycomb and Honeycombgy Configurations

Let F(x) > 2(K—1) + ar be a HC or a HCg inequality associated with a configuration
as above, where ag = Z(i jeen Yij- The corresponding aggregate HC or HCyy inequality is
then

ZF ) > 2(K—1) + ag, (20)
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and, as it has been mentioned in Section 2, is valid for the MM K-WRPP.

Just like for KC inequalities, we describe in what follows the disaggregate version of the
HC inequalities. Consider a partition {W1,...,Wr, Mi,...,Mg_1} of V (where subgraphs
G(W;), G(M;) are connected) and a tree T spanning the sets Wy,..., W, My,..., Mg_; and
satisfying the same degree conditions described above. Let F' C £r be such that each subset
d(W;) N F contains a positive and even number of edges and the graph induced by edges in F’
on the vertex set {Wi,..., W} is connected. Let H = {e1,e3,...,ex_1} C ER be a subset
of edges such that each e; € E(M;). For each vehicle k£ we will call disaggregate HC and
HCys inequalities to:

P@b) > 28 (H) + 3 ay(2f - 1) (21)
e=(i,j)eF

Theorem 9 Disaggregate HC and HCy inequalities (21) are valid for KWRPP(G).

Proof: We will prove the theorem for disaggregate HC inequalities. The proof for disaggre-
gate HCqs is similar. If vehicle k services all the edges in FUH, then y* =1 foralle € FUH
and the RHS of inequality (21) is 2(K—1) +aj, where afp = 37 ; 5o 5. In this case, vehicle
k must traverse the edges in F, with cost a/,, and visit all the sets M;, with cost at least
2(K —1), therefore F(z*) > 2(K —1) + o/, holds.

If vehicle k services all the edges in F'U H except one of them in H, then vehicle k£ must
traverse the edges in F', with cost o/,, and visit the sets M; except, perhaps, one of them,
with cost at least 2(K —2). Then F(2*) > 2(K —2) + o/, which, in this case, is the RHS of
(21).

If vehicle k services all the edges in F'U H except one of them, say e,s, in F', then the RHS
of inequality (21) is 2(K—1) + /s — 2. In this case, vehicle k£ must traverse the remaining
edges in I at least once, with cost a}% — ag, and visit all the sets M;. Given that sets W,., W
are incident with an odd number of edges in F'\ {e,s}, the cheapest way to do this is to traverse
the path in T connecting W, and Wy, with cost «a,.s + 2, and visit the remaining K — o, — 2
sets M; using edges in T twice. Hence, F(z*) > ap — s + (s +2) + 2(K — s — 2) =
2(K—1) 4 oy — 2ays.

It is easy to see that the inequality is also satisfied when vehicle k services any other
number of edges in F'U H. ¢

Like for disaggregate K-C inequalities, if the depot is in a set M;, for example 1 € My,
we define H = {ea, e3,...,ex_1} and the disaggregate HC and HCy2 inequalities are

F(xk) > 24 Zyk(H) + Z Qi (ny — 1) (22)
e=(i,j)€F
It is easy to see that inequalities (22) are valid for the MM K-WRPP.

Finally, for each subset Q = {k1,ko,...,kp} of P vehicles we will call P-aggregate HC
inequalities to the following ones, where set H is defined as {e1, ea,...,ex_1} such that each
e; € E(M;) or {eq,ez,...,ex—1}\{ei}, depending on wether the depot is located in a set W

or in a set M;:
NFEH) =D 2 H) + D (D 2wk -1) (23)

keQ ke e=(i,j)eF keQ
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YF@EM) =24 ) 2fH) + D) ai( D 20F - 1) (24)

keQ keQ e=(i,j)EF ke

Similarly, we can define P-aggregate HCpo inequalities depending on the location of the
depot. Their general expression is exactly the same as (23) and (24), being the only difference
the definition of coefficients av;;.

Theorem 10 P-aggregate HC (and HCys) inequalities (23) and (24) are walid for
KWRPP(G).

Proof: It is similar to that of Theorem 9 and is omitted here for the sake of brevity. ¢

4 Max-length constraints

In Benavent et al. [7], a heuristic algorithm for the MM K-WRPP is proposed that provides
quite tight upper bounds. In this section we describe how we use these upper bounds for
introducing inequalities that are satisfied by any optimal solution. However, these inequalities
are not valid for the MM K-WRPP because they may not be satisfied by some feasible
solutions. Let ub be a known upper bound for a given MM K-WRPP instance. Given a set
of required edges F, let z(WGRP(F')) be the optimal cost of the Windy General Routing
Problem instance defined on the graph G, considering the depot as the only required vertex
and F' as the set of required edges. Let us denote nv(F') = [2(WGRP(F))/ub], then, in
every optimal MM K-WRPP solution, at least nv(F') vehicles will be needed to serve all
the edges in F' so a single vehicle will serve at most p — nv(F') + 1 of these edges, and the
inequalities

ny <p—nv(F)+1, V vehicle k (25)

ecF
have to be satisfied by any optimal solution. We call them disaggregate mazx-length inequalities
associated with set F'.

Now, given any set of vertices S C V'\ {1}, let us consider the set of edges Fg = Er(S)U
0r(S). Then, at least nv(Fs) vehicles will cross the edge cutset §(.5) in any optimal solution.
Therefore, the optimal solutions of the MM K-WRPP will satisfy the following aggregate
maz-length inequality:

R
S aH(3(5)) > 2 no(Fs) (26)
k=1

These inequalities can be generalized by considering subsets of vehicles instead of all
of them. Thus, if Q@ = {ki,ko,...,kp} is a subset of P vehicles we will call P-aggregate
maz-length inequalities to:

> 2" (6(5)) = 2(no(Fs) — (K — P)) (27)
ke

Inequalities (27) must be satisfied by any optimal solution because, even if all the vehicles
not in Q cross the edge cutset 6(.5), at least nv(Fg) — (K — P) vehicles in the subset  will
be needed to service all the edges in Fg.
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5 The Branch-and-Cut algorithm

In this section we present an enhanced branch-and-cut algorithm, based on the procedure
for the MM K-WRPP described in [6]. This new version incorporates separation algorithms
for the inequalities described in this paper as well as an upper bound obtained by the meta-
heuristic algorithm presented in Benavent et al. [7].

5.1 Initial relaxation

The initial LP relaxation contains equations (2), assuring that each required edge is serviced
by exactly one vehicle, symmetry equations (4), min-max inequalities (1), traversing inequal-
ities (3), an inequality for each vehicle forcing it to leave the depot, and a set of constraints
proposed in [13] that avoid symmetric solutions (see [6]). The first of these anti-symmetry
constraints assigns a required edge to the first vehicle. In [6], this edge is chosen as the one
farthest from the depot using an average distance. Now, as suggested by Desaulniers [11], we
choose the edge e = (7, j) as the one that maximizes min{l1; + ¢;; + 1,1 + ¢ji + li1 }, where
luy is the cost of the shortest path from vertex u to vertex v. By means of this assignment,
we guarantee that the lower bound at the end of the root node will be greater or equal than
the cost of any route servicing only one required edge.

Finally, several aggregate max-length constraints (26) are added. Let us denote by C;
the connected component in graph G'r containing the depot. For each connected component
Ci, i # 1, we define F = Er(C;). If nv(F) > 1, we add the aggregate max-length inequality
associated with F. Moreover, we consider sets formed by more than one connected compo-
nent. Given any Cj, its farthest adjacent connected component Cj, j # 1, is selected, and the
aggregate max-length inequality associated with F' = ER(C;)UER(C}) is added if nv(F) > 1.
We continue enlarging F' in this way until only C is left to add.

5.2 Separation Algorithms

In this section, we present the separation algorithms that have been used to identify the fol-
lowing types of inequalities that are violated by the current LP solution at any iteration of the
cutting plane algorithm: P-aggregate parity inequalities, disaggregate and P-aggregate K-C
and K-Cys inequalities and disaggregate, P-aggregate and aggregate max-length inequalities.
The separation algorithm for aggregate K-C lifted inequalities is the same as for aggregate
K-C with minor changes. Separation procedures for the other types of inequalities were
presented in [6].

Given an LP solution (z!, 7!, 72,72, ... ,ER, yk) ¢ RCIEHERDR o define the P-aggregate
vector 7% associated with a subset Q = {ki,k2,...,kp} of P vehicles as % = 3, ., 7" and
its associated weighted graph G = (VQ,EQ,TQ,yQ), where VQ,EQ are the sets of vertices
and edges of the subgraph of G induced by the edges e € E such that 7% = T% + f?z > 0,
plus the depot node, if necessary.

Note that in the case P = IA(, ie. Q={1,2,... ,IA(}, G is the ‘aggregate’ graph used as
input to the separation procedures described in Corberan et al. [6] to find aggregate connec-
tivity, R-odd cut, KC, KCp2, HC and HCps inequalities violated by (z',7', 72,72, ...,zR, gR).
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The graphs G" corresponding to all the other cases, Q = {ki, ko, ..., kp} with P < K, are
the graphs used for the separation of the disaggregate (P = 1) and P-aggregate (1 < P < K )
inequalities, respectively. We want to point out that both disaggregate and P-aggregate
inequalities of a given family can be separated with the same procedure changing only the

corresponding input graph a

The separation of P-aggregate parity inequalities is, therefore, done as described in [6] for
the disaggregate parity inequalities.

5.2.1 Separation of disaggregate and P-aggregate K-C and K-Cj,; inequalities

In this section we describe the separation of disaggregate KC and K-Cpz inequalities (11) to
(14) and P-aggregate KC and K-Cypg inequalities (15) to (18).

Given an LP solution (z',7',2%,%2,...,7%,75%) and a subset Q of P < K vehicles, we
build the corresponding support graph ég and label as ‘required’ the depot and the edges
e € FEg such that @? > 1 — ¢y, where ¢, is a given parameter. Then, we apply the heuristic
algorithm described in Plana [15] for the WGRP (based on the one presented in [8] for the
undirected GRP) to obtain the sets My, My, M, ..., Mg. Set F is formed by the edges
in Mo U Mg labeled ‘required’. If the depot 1 € My U My, we select for each set Mj,
j=1,..., K —1, the edge e; € E(Mj;) that maximizes yﬁ}j. We define H = {ej,e9,...,ex-1}
and check the corresponding inequality (11), (12), (15) or (17) for violation. On the other
hand, if the depot 1 € M;, i # 0,i # K, we define the set H as above except for edge e;,
and check the corresponding inequality (13), (14), (16) or (18) for violation. If no violated
inequality is found, we try to shrink the KC configuration by merging some sets M; as in the
heuristic algorithm described in [15].

Several values for €, have been tried. After some computational testing with values 0.2,
0.4 and 0.65, we decided to finally set ¢, = 0.2.

5.2.2 Separation of max-length inequalities

Recall that max-length inequalities are interesting only when nv(F') > 1 for a set of required
edges F, and computing nv(F') involves solving exactly a WGRP. In order to avoid duplicate
computations, we maintain two lists of sets of required edges, denoted L and Lo. List L
includes the sets F' of required edges for which nv(F') > 1, while Ly includes those for which
nv(F) = 1. Initially L1 = Ly = () and the lists are updated each time nv(F) is computed for
a given set F'.

Disaggregate max-length inequalities (25) are separated as follows. Given an LP solution
(El,yl,#,y%...,fk,yk), for each vehicle k, k = 1,...,IA(, let {e1,e2,...,e4} C ER be an
ordered set of required edges such that g’g’j > 0.9 and y’gl > g’§2 > ..., > y’gq. Then, let
F = {e1,e,...,e5} where, f is the maximal number such that >, p 9% > [F| — 1+ € (we
set € = 0.5, initially). Iteratively, for each required edge € with 0.5 < y§ < 0.9, we consider
the set ' = F U {€}. Now, lists L and Ly are scanned looking for sets related to F'. Three
cases are possible: (a) there is a set F' € L; such that FF D F’, in which case we know that
nv(F) > 1, (b) there is a set F’ € Ly such that F C F’, so nv(F) = 1, and (c) neither (a)
nor (b) holds and nv(F) is computed solving the WGRP associated with F. In the case (a),
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if F O F', an estimation of ~the real value nv(F) is made and if it is found likely that nv(F)
is greater than nv(F"), nv(F') is exactly computed solving the associated WGRP, otherwise,

nu(F) = nv(F’) is assumed. Finally, we set € = 0 and repeat the process for finding F' again,
but without adding last edge e.

In the case that a subset F is found for which the corresponding inequality (25) is violated,
then we also check if an aggregate max-length inequality (26) is violated for the set S’ of
vertices incident with the edges in F.

Aggregate max-length inequalities (26) are also separated using the following heuristic.
Starting with vertex selected at random (in such a way that each vertex has a probability of
being chosen proportional to its distance to the depot), we build a sequence of vertex subsets

by adding each time a new vertex in such a way that for the resulting subset S, Zkkzl zF(5(5))
is minimum. For each generated subset, the set of edges Fg = Eg(S) U dg(S) is built and
lists Ly and Lo are used as before to estimate the value of nv(Fgs). If the corresponding
inequality (26) is violated, it is added to the LP. Furthermore, if nv(Fs) > 1 holds, then the
corresponding P-aggregate max-length inequality (27) is also checked for violation for the
subset of vehicles Q for which ZF(5(S)) < 2.

5.3 The cutting plane algorithm

At each iteration of the cutting plane algorithm the separation procedures are called in
a specific order and the violated inequalities found are added to the LP relaxation. The
separation algorithms for aggregate inequalities are called in a similar way as described in

[6]:
1. R-odd cut and connectivity separation heuristics.
2. Exact connectivity separation if the corresponding heuristics have failed.

3. Exact R-odd cut separation if no violated inequalities have been found by the
corresponding heuristics.

4. Heuristic algorithms for separating K-C, K-C lifted and K-Cgo inequalities if no
violated connectivity inequalities have been found.

5. If the total number of violated inequalities found is less than 20 and no violated
connectivity inequalities have been found, run heuristic algorithms for separating HC
and HCgpo inequalities.

The separation algorithms for disaggregate and P-aggregate inequalities have been im-
plemented as follows. First, for each vehicle k, we use the heuristic and, if necessary, the
exact separation procedures for disaggregate connectivity and parity inequalities. Heuristics
for identifying violated disaggregate K-C and K-Cgy inequalities are applied only when no
violated connectivity inequalities are found, since these algorithms assume the corresponding
support graph to be connected.

In what refers to the separation of P-aggregate inequalities, we do not know which is
the best way to choose the set of vehicles to be aggregated. Given that applying the sep-
aration procedures for P-aggregate inequalities for each possible combination of vehicles is
computationally expensive, we proceed as follows.
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For any pair of vehicles {k1, k2 }, we apply the separation procedures for P-aggregate parity
inequalities only when no violated disaggregate parity inequality has been found neither for &y
nor kg. Moreover, for any subset of 3 vehicles (if K> 4) we apply the separation procedures
for 3-aggregate parity inequalities only when no violated disaggregate nor 2-aggregate parity
inequality associated with any of the 3 vehicles has been found. We proceed in a similar way
for subsets of 4 vehicles (if K> 5). The same strategy is used for separating P-aggregate
K-C and K-Cys inequalities, with the additional condition that, for a given set €2 of vehicles,

the corresponding support graphs ék, k € Q, must be connected.

Finally, the separation algorithms for the aggregate, disaggregate and P-aggregate max-
length inequalities described in Section 5.2.2 are executed.

The above cutting plane procedure is applied at each node of the search tree until no new
violated inequalities are found. When this happens we branch using the Strong Branching
strategy [4] implemented in Cplex (see [6]).

6 Computational results

We present here the computational results obtained on the same set of instances used in [6]
that can be found in http://www.uv.es/corberan. The B&C procedure has been coded in
C/C++ using the Cplex 9.0 MIP Solver with Concert Technology 2.0. All the tests were run
on an Intel Core 2 at 2.40GHz with 2GB RAM with a time limit of 1 hour.

A MM K-WRPP instance consists of a WRPP instance and a given number of vehicles.
The characteristics of the 144 WRPP instances used are shown in Table 1 grouped into 24
subsets of 6 instances each, sharing the same underlying graph but having different costs.

These instances have up to 50 vertices, 184 edges, 78 required edges and 8 R-sets. For each
WRPP instance, 4 MM K-WRPP instances with 2, 3, 4 and 5 vehicles have been tested.

Tables 2 to 5 show the computational results obtained by the algorithm proposed in [6]
and the enhanced branch-and-cut algorithm presented here for instances with 2 to 5 vehicles,
respectively. First column shows the name of the set of instances. Columns 2, 3 and 4 show
the number of optima, the average gap at the root node and the average final gap obtained by
the branch-and-cut procedure described in [6] with a time limit of 30 minutes. Columns 5, 6
and 7 show the corresponding results for the new branch-and-cut, and columns 8 and 9 report
the average CPU time in seconds and the average number of nodes of the search tree. The
average final gap has been computed only for the instances that were not optimally solved
within the specified computing time, while the average time and number of nodes correspond
to those that have been solved to optimality. Last row shows, for both algorithms, the total
number of solved instances, the average gap at the root node for all the 144 instances and
the average final gap for those instances that could not be solved in the specified time limit.
All the gaps have been computed with respect to the cost of the best known solution at the
time of the experiments and are expressed in percentages.

We consider that, in general, the results are very good. We have been able to solve to
optimality all the 144 instances with 2 vehicles, 130 instances with 3 vehicles, 124 with 4
vehicles and 113 with 5 vehicles within a CPU time limit of 1 hour. Overall, a big advance
has been achieved when compared with the results presented in [6]. Such improvement is
mainly due to the incorporation of separation procedures for the new inequalities presented
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V] |E|  |Er| R-sets

C01 11 13 7 4
C02 14 33 12 4
Co03 28 57 26 4
Co4 17 35 22 3
C05 20 35 16 5
C06 24 46 20 7
co7 23 47 24 3
Co8 17 40 24 2
C09 14 26 14 3
C10 12 20 10 4
C11 9 14 7 3
C12 7 18 5 3
C13 7 10 4 3
C14 28 79 31 6
C15 26 37 19 8
C16 31 94 34 7
C17 19 44 17 5
C18 23 37 16 8
C19 33 54 29 7
C20 50 98 63 7
C21 49 110 67 6
C22 50 184 74 6
C23 50 158 78 6
C24 41 125 95 7

.0

Global 25.13 58.92 28.08 5.04

Table 1: Instance characteristics

here: aggregate K-C lifted, disaggregate K-C and K-Coz, P-aggregate parity, K-C and K-Cog,
and max-length inequalities. This is quite apparent if we compare the average gaps at the
root node obtained with both procedures. On the other hand, the improvement achieved in
the final results is also due to the use of a very tight upper bound provided by the heuristic
algorithm described in [7].

With 2 vehicles, all the small size instances have been solved in a few seconds and we have
also solved all the 30 medium size instances (C20 to C24) in less than 20 minutes. A total
of 57 instances have been solved at the root node (before branching) and the average gap
obtained at the root node is 1.21%. The corresponding average gap with the B&C algorithm
in [6] was 3.37%, and note that 5 instances could not be exactly solved.

Regarding the results obtained for the instances with more than 2 vehicles, reported in
tables 7, 7 and 7, we have obtained 10 new optimal solutions for the ones with 3 vehicles, 19
with 4 vehicles and 13 with 5 vehicles. Also significant reductions in the average gaps can be
observed. It should be noted that the difficulty of the instances increases with the number of
vehicles in the case of the largest instances. However, this is not true for the smallest ones
(sets CO1, C11, C12 and C13), that get easier when the number of vehicles reaches a certain
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value. In fact, the number of optimally solved instances at the root node is 39, 59 and 81 for
3, 4 and 5 vehicles, respectively.

B&C in [6] Enhanced B&C

# of Root node Final | # of Root node Final Time B&C

opt. gap gap | opt. gap gap (scs.)  nodes
Co1 6 0.88 - 6 0.00 - 1.84 0.00
C02 6 5.59 - 6 3.89 - 3.73 5.17
C03 6 2.53 - 6 0.85 - 7.66 4.17
Co4 6 5.15 - 6 0.96 - 7.96 1.00
C05 6 5.04 - 6 2.01 - 5.51 2.67
C06 6 2.24 - 6 0.84 - 5.28 2.17
Co7 6 3.03 - 6 1.58 - 5.86 6.83
Co8 6 4.02 - 6 2.13 - 7.95 10.67
C09 6 4.93 - 6 0.79 - 2.56 1.67
C10 6 6.78 - 6 1.75 - 2.43 1.00
C11 6 5.78 - 6 2.99 - 1.11 0.50
C12 6 4.59 - 6 0.00 - 0.59 0.00
C13 6 0.00 - 6 0.00 - 0.50 0.00
Cl14 6 3.07 - 6 0.74 - 14.58 19.00
C15 6 3.05 - 6 2.18 - 6.70 2.00
C16 6 3.54 - 6 1.85 - 20.27 16.33
C17 6 3.24 - 6 0.88 - 4.24 4.00
C18 6 4.40 - 6 1.83 - 8.50 6.33
C19 6 2.28 - 6 1.36 - 9.30 8.17
C20 6 2.83 - 6 0.66 - 77.56 69.33
C21 6 1.68 - 6 0.44 - 96.30 103.83
C22 4 1.31 0.72 6 0.22 - 370.52 346.67
C23 4 2.82 5.64 6 0.30 - 285.42  267.00
C24 5 2.15 0.84 6 0.76 - 130.52 137.00

Global 139 3.37 2.71 144 1.21 0.00

Table 2: Computational results on the MM 2-WRPP instances

7 Conclusions and future research directions

In this paper we have continued the work on the MM K-WRPP started in [6]. We have im-
proved the description of its associated polyhedron presenting new families of facet-inducing
inequalities. One of the main contributions of this paper is that, in addition to inequalities
involving variables associated with a single vehicle or all of them, we have presented new fami-
lies of inequalities using variables corresponding to any subset of vehicles (called P-aggregate).
Up to our knowledge, this is the first time that such type of inequalities has been introduced
for multivehicle problems. Moreover, an enhanced branch-and-cut algorithm, based on the
one presented in [6], has been implemented incorporating separation procedures for the new
families of inequalities. The algorithm has been tested on the same set of instances used in
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the previous work and the computational results are very good and show the contribution of
the new inequalities.

Regarding future work, we plan on finding under which conditions Honeycomb inequali-
ties, presented in Section 3.2, are facet-inducing for KWRPP(G). We also want to study if
there are aggregate, disaggregate and P-aggregate versions of Path-Bridge inequalities from
the WRPP that are valid and facet-inducing for the MM K-WRPP polyhedron. Finally,
it would be interesting, from the computational point of view, to analyze the best way to
choose the subsets of vehicles in order to find violated P-aggregate inequalities.

B&C in [6] Enhanced B&C

# of Root node Final | # of Root node Final Time B&C

opt. gap gap | opt. gap gap (scs.)  nodes
Co1 6 0.00 - 6 0.00 - 1.60 0.00
C02 6 10.56 - 6 7.04 - 9.12 8.33
C03 6 7.06 - 6 3.86 - 17.68 9.67
C04 6 7.27 - 6 4.08 - 12.78 2.,17
C05 6 7.63 - 6 7.09 - 6.15 3.50
Co06 6 7.29 - 6 4.16 - 14.17 9.83
Cco7 6 5.81 - 6 4.07 - 21.07 37.33
Co8 6 7.47 - 6 5.07 - 17.72  26.00
C09 6 7.85 - 6 2.08 - 5.04 9.83
C10 6 5.20 - 6 1.51 - 2.58 2.00
C11 6 3.58 - 6 0.00 - 0.90 0.00
C12 6 3.50 - 6 0.44 - 0.84 0.17
C13 6 0.00 - 6 0.00 - 0.52 0.00
Cl4 6 7.08 - 6 4.81 - 35.89 37.67
C15 6 4.61 - 6 2.96 - 12.95 9.67
C16 5 7.63 4,92 6 4.56 - 103.20 153.67
C17 6 6.03 - 6 4.44 - 9.43 7.33
C18 6 4.66 - 6 2.68 - 9.51 4.17
C19 6 4.67 - 6 2.31 - 32.10 35.33
C20 3 6.20 5.22 4 2.85 0.84 192.70 150.25
C21 1 11.27 11.59 3 2.58 0.40 345.62 255.33
C22 0 5.78 5.56 3 1.14 0.61 524.27 271.00
C23 0 5.47 5.32 2 1.54 0.60 1178.06 474.00
C24 3 8.60 6.65 4 3.10 0.49 242.62 265.25

Global 120 6.05 6.82 130 3.02 0.58

Table 3: Computational results on the MM 3-WRPP instances

Acknowledgments: The authors wish to thank the Ministerio de Ciencia e Innovacion of
Spain (projects MTM2006-14961-C05-02 and MTM2009-14039-C06-02) for its support.
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B&C in [6] Enhanced B&C

# of Root node Final | # of Root node Final Time B&C

opt. gap gap | opt. gap gap (scs.) nodes
Co1 6 0.00 - 6 0.00 - 1.47 0.00
C02 6 11.95 - 6 6.69 - 6.26 7.00
Co03 6 5.64 - 6 5.16 - 27.45 27.50
Co4 6 6.66 - 6 3.34 - 29.09 69.83
C05 6 2.52 - 6 2.44 - 7.80 7.67
C06 6 6.09 - 6 3.29 - 30.81 55.17
Co7 6 6.20 - 6 4.93 - 39.40 64.83
Co08 4 12.05 12.52 6 7.08 - 53.65 87.00
C09 6 5.18 - 6 2.27 - 4.52 1.00
C10 6 3.95 - 6 1.66 - 2.23 0.33
C11 6 3.84 - 6 0.00 - 0.86 0.00
C12 6 4.23 - 6 0.00 - 0.55 0.00
C13 6 0.00 - 6 0.00 - 0.53 0.00
Cl4 5 9.11 10.22 6 5.69 - 542.08  626.50
C15 6 2.83 - 6 1.93 - 20.65 28.00
C16 0 11.40 9.45 6 6.95 - 299.04  380.00
C17 6 4.27 - 6 3.12 - 8.87 5.83
C18 6 1.25 - 6 1.20 - 8.61 0.83
C19 6 4.07 - 6 3.22 - 42.82 44.83
C20 0 15.37 15.14 4 5.79 1.57 844.76  293.50
C21 0 18.57 18.40 3 4.64 1.82  1277.80  540.00
C22 0 11.47 11.31 0 3.76 3.09 - -
C23 0 24.17 24.08 0 5.14 4.07 - -
C24 0 17.28 16.68 3 5.93 1.56 2046.87 1111.50

Global 105 7.84 14.73 | 124 3.51 2.81

Table 4: Computational results on the MM 4-WRPP instances
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B&C in [6] Enhanced B&C

# of Root node Final | # of Root node Final Time B&C

opt. gap gap | opt. gap gap (scs.)  nodes
Co1 6 0.00 - 6 0.00 - 1.40 0.00
C02 6 10.61 - 6 3.60 - 4.61 4.33
C03 6 1.13 - 6 1.13 - 17.66 8.33
C04 6 6.99 - 6 3.29 - 18.15  34.33
C05 6 0.35 - 6 0.35 - 6.63 1.00
C06 5 3.90 6.62 6 0.86 - 76.70  98.00
co7 6 6.71 - 6 5.60 - 175.66 261.67
C08 4 13.98 20.81 6 4.43 - 149.16  301.00
C09 6 2.67 - 6 0.00 - 3.77 0.00
C10 6 3.61 - 6 1.59 - 2.04 0.33
Cl11 6 3.84 - 6 0.00 - 0.95 0.00
C12 6 4.23 - 6 0.00 - 0.59 0.00
C13 6 0.00 - 6 0.00 - 0.52 0.00
C14 3 8.48 10.51 5 4.52 1.49 270.47  225.60
C15 6 0.63 - 6 0.21 - 14.14 5.00
C16 1 13.35 15.13 2 6.36 4.54 317.03  205.50
C17 6 2.66 - 6 1.45 - 8.54 7.00
C18 6 0.00 - 6 0.00 - 8,31 0.00
C19 3 2.87 2.97 6 2.17 - 574.51 232.33
C20 0 30.01 20.92 1 8.70 5.20 245.88  72.00
C21 0 22.53 22.41 0 7.13 3.75 - -
C22 0 23.48 23.39 0 5.69 5.08 - -
C23 0 25.72 25.66 0 7.51 6.28 - -
C24 0 25.06 24.80 3 9.63 5.23  1680.39 874.00

Global 100 8.87 17.32 | 113 3.09 4.90

Table 5: Computational results on the MM 5-WRPP instances
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