

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/150344

Corberán, A.; Oswald, M.; Plana, I.; Reinelt, G.; Sanchís Llopis, JM. (2012). New results on
the Windy Postman Problem. Mathematical Programming. 132(1-2):309-332.
https://doi.org/10.1007/s10107-010-0399-x

https://doi.org/10.1007/s10107-010-0399-x

Springer-Verlag

New results on the Windy Postman Problem

Angel Corberán1∗, Marcus Oswald2, Isaac Plana3,

Gerhard Reinelt2, José M. Sanchis4

1 Dept. d’Estad́ıstica i Investigació Operativa, Universitat de València, Spain
2 Inst. of Computer Science, University of Heidelberg, Germany

3 Dept. de Matemàtiques per a l’Economia i l’Empresa, Universitat de València, Spain
4 Dept. de Matemática Aplicada, Universidad Politécnica de Valencia, Spain

Abstract

In this paper, we study the Windy Postman Problem. This is a well-known Arc Routing
Problem that contains the Mixed Chinese Postman Problem (MCPP) as a special case. We
extend to arbitrary dimension some new inequalities that complete the description of the
polyhedron associated with the Windy Postman Problem (WPP) over graphs with up to
four vertices and ten edges. We introduce two new families of facet-inducing inequalities and
prove that these inequalities, along with the already known odd zigzag inequalities, are mod-4
inequalities. Moreover, a branch-and-cut algorithm that incorporates two new separation
algorithms for all the previously mentioned inequalities and a new heuristic procedure to
obtain upper bounds are presented. Finally, the performance of a branch-and-cut algorithm
over several sets of large WPP and MCPP instances, with up to 3000 nodes and 9000 edges
(and arcs in the MCPP case), shows that, to our knowledge, this is the best algorithm to
date for the exact resolution of the WPP and the MCPP.
Key Words: Polyhedral Combinatorics, Facets, Arc Routing, Windy Postman Problem,
Mixed Chinese Postman Problem.

1 Introduction

In this paper, we discuss the Windy Postman Problem (WPP). This problem can be defined as
follows. Given an undirected and connected graph G = (V, E) with two non-negative costs cij

and cji associated with each edge {i, j} ∈ E corresponding to the cost of traversing it from i to j
and from j to i, respectively, the WPP is to find a minimum cost tour on G traversing each edge
at least once. This problem was introduced by Minieka ([14]). It is NP-hard in general ([2, 13])
and can be solved in polynomial time if G is Eulerian ([20]), if the cost of the two opposite
orientations of every cycle in G is the same ([13]) or if G is a series-parallel graph ([22]).

In [12, 20], a cutting-plane algorithm for the WPP based on a previous polyhedral study
was proposed that, as far as we know, was the first polyhedral approach that had been applied
to the resolution of an NP-hard Arc Routing Problem. The authors proved that the odd-cut
inequalities and the k-wheel inequalities are facet-inducing, although only the separation of the
first ones was implemented in their cutting-plane algorithm. This algorithm was tested on 36
WPP instances with 52 ≤ |V | ≤ 264 and 78 ≤ |E| ≤ 489 and it provided an optimal solution for

∗corresponding author: angel.corberan@uv.es

1

31 instances. More recently, a new family of facet-inducing inequalities for the Windy General
Routing Problem, the odd zigzag inequalities, which also applies to the WPP, has been presented
in [7]. These inequalities generalize the 3-wheel inequalities proposed in [20] for the WPP.

The WPP contains the mixed version of the well-known Chinese Postman Problem (MCPP)
as a special case arising when, for each edge {i, j} ∈ E, either cij = cji or max{cij , cji} = ∞.
As with the WPP, this NP-hard problem ([17]) can be handled with a formulation using two
variables associated with each edge ([6, 18]) and therefore can be considered a WPP in which
some variables have infinite cost. Hence, the results presented here for the WPP can be directly
applied to the MCPP.

In the next section, we define the problem, introduce the notation that will be used in this
paper and present some known results. In Section 3, we present the full description of the
polyhedra associated with the WPP over graphs with up to four vertices and ten edges and
we generalize the new inequalities found, obtaining two new families of facet-inducing inequal-
ities, the even-even and odd-odd zigzag inequalities. We prove that these inequalities and the
odd zigzag inequalities are mod-k inequalities in Section 4. The branch-and-cut algorithm for
the resolution of the WPP is described in Section 5. Finally, the computational experiments
performed on a set of large WPP and MCPP instances are described in Section 6.

2 Problem formulation and known results

Let G = (V, E) be the graph for which a minimum cost WPP tour has to be determined. For
S ⊆ V , let δ(S) denote the set of edges with one end-point in S and the other in V \ S and let
E(S) be the set of edges with both end-points in S. For S1, S2 ⊆ V , (S1, S2) denotes the set of
edges with one end-point in S1 and the other in S2. A vertex is called even (odd) if it is incident
with an even (odd) number of edges. A subset S ⊂ V is called even (odd) if it contains an even
(odd) number of odd vertices.

Let xij be the number of times edge {i, j} is traversed from i to j in a WPP tour. For
F ⊆ E, we define x(F) =

∑
{i,j}∈F (xij + xji), and for (S1, S2), we define

x(S1 : S2) =
∑

i∈S1, j∈S2

xij .

Note that x(S1, S2) = x(S1 : S2) + x(S2 : S1).

The IP formulation of the WPP in [12, 20] is:

min
∑

{i,j}∈E

(cijxij + cjixji)

xij + xji ≥ 1 ∀{i, j} ∈ E, (1)∑

{i,j}∈δ(i)

(xij − xji) = 0 ∀i ∈ V, (2)

xij , xji ≥ 0 ∀{i, j} ∈ E, (3)
xij , xji integer ∀{i, j} ∈ E, (4)

where conditions (1) imply that each edge will be traversed at least once and conditions (2) force
the (directed) graph represented by the tour to be symmetric, i.e., a graph in which the indegree

2

of every vertex is equal to its outdegree. The above system includes an equation associated with
each vertex. The |V | equations (2) will be referred to as the symmetry equations and any |V |−1
of them are linearly independent.

Let WPP(G) ⊆ Z2|E| be the convex hull of vectors satisfying (1) to (4). In [11], it is shown
that WPP(G) is an unbounded polyhedron, with dimension 2|E|−|V |+1, and that the following
inequalities are, under mild conditions, facet-inducing:

– trivial inequalities (3),

– traversing inequalities (1),

– odd-cut inequalities

x(δ(S)) ≥ |δ(S)|+ 1, ∀ S ⊂ V, |δ(S)| odd, (5)

– k-wheel inequalities.

Because of the symmetry equations (2) the odd-cut inequalities can be written with fewer non-
zero elements as:

x(S : V \ S) ≥ |δ(S)|+ 1
2

, ∀ S ⊂ V, |δ(S)| odd. (6)

A new family of facet-inducing inequalities for the Windy General Routing Problem, the odd
zigzag inequalities, which also applies to the WPP, has been presented in [7]. These inequalities
generalize the 3-wheel inequalities.

In [10], it is shown that all the facet-inducing inequalities for WPP(G), with the exception
of (3) and (1), are weak configuration inequalities. A valid inequality αx ≥ β for WPP(G) is
called a weak configuration inequality if there is a partition B = {B1,B2, . . . ,Br} of V such that
the subgraphs G(Bk) are connected and the variables associated with edges in the sets E(Bk) have
coefficient zero in the inequality. This definition is based on that of configuration inequalities
by Naddef & Rinaldi ([15]). They only differ in the fact that, in a configuration inequality,
all the variables xuv, associated with the edges {u, v} with u ∈ Bi and v ∈ Bj , have equal
coefficients in the inequality, while a weak configuration inequality can have variables xuv and xst,
with u, s ∈ Bi and v, t ∈ Bj , with different coefficients. This is the case with the odd zigzag
inequalities and the inequalities presented later in this paper. Naddef & Rinaldi ([15]) also
introduced the notion of the configuration graph GC = (VC , EC). This is the graph resulting from
shrinking vertex sets Bk, k = 1, . . . , r, into a single vertex each. In [10], a “lifting” theorem is
proven stating that if a weak configuration inequality is facet-inducing for WPP(GC), then it is
also facet-inducing for WPP(G).

Because we present in this paper a separation algorithm for the odd zigzag inequalities,
we describe them briefly in the context of the WPP. This class of valid inequalities is violated
by fractional solutions containing a “zigzag” associated with variables with value 0.5 such as
the one shown in Figure 1a. Consider a partition of the set of vertices V into 4 parts, M1,
M2, M3, and M4, where each M i contains an odd number of odd vertices. We define H =
(M1,M2)∪ (M3,M4) (horizontal edges) and D = (M2,M3)∪ (M1,M4) (diagonal edges). Note
that H ∪ D = δ(M1 ∪M3). Let us assume we have a subset of edges F ⊂ (H ∪ D) satisfying
|H \ F|+ |D ∩ F| = |D \ F|+ |H ∩ F|, or, equivalently,

|H|+ |D| = 2|H ∩ F|+ 2|D \ F| (7)

(see Figure 1b, where edges in F are represented in bold lines).

3

The configuration graph GC associated with the odd zigzag inequalities is defined by the
partition of V and the set F above, and by the following pair of coefficients associated with each
edge eij (see Figure 1b):

(αij , αji) =





(0, 2), ∀eij ∈ H \ F , i ∈ M1 ∪M3, j ∈ M2 ∪M4,

(2, 2), ∀eij ∈ H ∩ F ,

(1, 3), ∀eij ∈ D ∩ F , i ∈ M1 ∪M3, j ∈ M2 ∪M4,

(1, 1), otherwise.

In [7], the following proposition is proved:

Proposition 1 For M1, M2, M3, and M4 as above the odd zigzag inequality requires

x(δ(M1 ∪M2)) + 2x(M2 : M1) + 2x(M4 : M3) + 2x(Fzz)

≥ |(M1,M3)|+ |(M2,M4)|+ |(M1,M4)|+ |(M2,M3)|+ 2|H ∩ F|+ 2,
(8)

for each x ∈ WPP(G), where x(Fzz) denotes the variables associated with the edges in F in the
direction given by the zigzag, i.e., in the direction (M1 → M2), (M2 → M3), (M3 → M4), and
(M4 → M1), are valid for the WPP.

The set F can be understood in the following way. Let us consider two edges e13 ∈ (M1,M3)
and e24 ∈ (M2,M4). Then the edges in EC \ {e13, e24} can be oriented to obtain a (directed)
symmetric graph. Given any such orientation, F is defined by all the required edges that have
been oriented in the direction opposite to the zigzag. In particular, set F in Figure 1b is defined
from the orientation associated with the fractional solution shown in Figure 1a. Note that such
a set F satisfies condition (7). Other sets F can be defined to obtain valid inequalities but only
the one shown in Figure 1b has an associated inequality violated by the fractional solution in
Figure 1a.

½¼

¾»
M3

½¼

¾»
M4

º

¹

·

¸

M1

º

¹

·

¸

M2

¶

µ

³

´

¶

µ

³

´

¹¸

º·

¹¸

º·

¾
¾

6

?

6

??

-
-

-¡
¡

¡
¡

¡
¡µ¡

¡
¡

¡
¡

¡ª @
@

@
@

@
@I

1.5

1
1
1

0.5

0.5

0.5

0.5

1
1.5

1.5

1.5
1

½¼

¾»
M3

º

¹

·

¸

M1

½¼

¾»
M4

º

¹

·

¸

M2

¶

µ

³

´

¶

µ

³

´

¹¸

º·

¹¸

º·

¡
¡

¡
¡

¡
¡ @

@
@

@
@

@ ¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

0 2
0 2
2 2

2 2

0 2

1

1

1

3

1

1

1

1

1

1

1

1

½¼

¾»
M3

º

¹

·

¸

M1

½¼

¾»
M4

º

¹

·

¸

M2

¶

µ

³

´

¶

µ

³

´

¹¸

º·

¹¸

º·

¡
¡

¡
¡

¡
¡ @

@
@

@
@

@ ¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

0 1
0 1
1 1

1 1

0 1

1

0

1

2

0

0

1

0

1

0

1

0

(a) (b) (c)

Figure 1: A fractional solution and an odd zigzag configuration with set F in bold lines.

Like odd-cut inequalities, odd zigzag inequalities can also be written in sparse form. To
illustrate this, consider the inequality (8) represented in Figure 1b. Due to the symmetry
equation associated with node M1, the term x(V \M1 : M1) in the inequality can be replaced
by x(M1 : V \M1) to obtain an equivalent inequality. Proceeding in a similar way with node M2

and then dividing by two, we obtain the equivalent inequality (whose coefficients are shown in

4

Figure 1c) requiring

x(M1 ∪M2 : M3 ∪M4) + x(M2 : M1) + x(M4 : M3) + x(Fzz)

≥ 1
2
(|(M1,M3)|+ |(M2,M4)|+ |(M1,M4)|+ |(M2,M3)|) + |H ∩ F|+ 1,

(9)

for each x ∈ WPP(G).

3 Small WPP polyhedra and new zigzag inequalities

In studying the separation of odd zigzag inequalities, we found some fractional solutions having
four edges with value 1.5 forming a non-directed path joining two odd nodes with two even nodes
(such as those in Figures 4a, 4b, 5a, and 6a). Given that these fractional solutions cannot be
separated by an odd zigzag inequality, we looked for similar classes of facet-inducing inequalities.
In order to find them, we computed the complete linear description of the polyhedra associated
with the WPP defined on graphs with four vertices and up to ten edges.

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

µ´
¶³

µ´
¶³

¡
¡

¡
¡

¡¡ @
@

@
@

@@

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

µ´
¶³

µ´
¶³

¡
¡

¡
¡

¡¡ @
@

@
@

@@

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

µ´
¶³

µ´
¶³

¡
¡

¡
¡

¡¡ @
@

@
@

@@

(a) (b) (c)

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

¡
¡

¡
¡

¡¡

¡
¡

¡
¡

¡¡ @
@

@
@

@@

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¡
¡

¡
¡

¡¡ @
@

@
@

@@

@
@

@
@

@@

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

µ´
¶³

µ´
¶³

¡
¡

¡
¡

¡¡ @
@

@
@

@@

(d) (e) (f)

Figure 2: Graphs with four nodes and nine edges

We first considered the complete graph with six edges. Then we added edges to obtain
all the possible graphs with seven, eight, nine, and ten edges, respectively. For each graph,
the full description of its associated WPP polyhedron, WPP(G), was obtained using PORTA
[5]. Trivial and traversing facets appear in the description of all the polyhedra and we do
not mention them in what follows. Graphs with seven edges are fully described by odd-cut
inequalities, while graphs with six and eight edges are described by odd-cut and odd zigzag
inequalities. All non-isomorphic graphs with nine edges are depicted in Figure 2, where odd-
degree nodes are represented by a double circle. The polyhedra associated with graphs in Figures
2a, 2b, and 2c are fully described by odd-cut inequalities; for the graph in Figure 2d, odd-cut
and odd zigzag inequalities are needed; and for the graph in Figure 2e, no more inequalities
are needed. However, the description of the polyhedron associated with the graph in Figure 2f

5

(and Figure 3a) contains new facet-defining inequalities that do not correspond to any of the
classes previously mentioned. Similarly, among the ten different graphs with four vertices and
ten edges, only the description of the polyhedron associated with the graph shown in Figure 3b
contains new facet-defining inequalities.

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

µ´
¶³

µ´
¶³

¡
¡

¡
¡

¡¡ @
@

@
@

@@

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

µ´
¶³

µ´
¶³

¡
¡

¡
¡

¡¡

¡
¡

¡
¡

¡¡ @
@

@
@

@@

(a) (b)

Figure 3: WPP instances whose polyhedra have new facet-inducing inequalities.

Hence, new facet-inducing inequalities were found only for the instances shown in Figure 3.
For the instance shown in Figure 3a, the two fractional solutions in Figure 4 can be obtained.
Two similar fractional solutions can also be found for the instance depicted in Figure 3b. Note
that in Figure 4b the arrangement of the nodes has been changed in order to better illustrate the
inequalities that will be described in the following sections. One of the two variables associated
with each of the edges {1, 2}, {2, 3}, {3, 4}, and {4, 1} has value 1.5 in these solutions. In the
solution shown in Figure 4a, these edges are traversed in directions (1, 2), (2, 3), (4, 3), and (1, 4),
while in the solution depicted in Figure 4b they are traversed in the directions (1, 2), (2, 3), (3, 4),
and (1, 4). Each of these two solutions violates an inequality from the class described in the
following. Each type of inequality is determined by the position of the two odd-degree nodes
and by the traversal of the four edges {1, 2}, {2, 3}, {3, 4}, and {4, 1}. Note that the four edges
with value 1.5 do not form a directed path. For the sake of simplicity, for each type of inequality,
we will say that an edge is oriented “in the direction of the zigzag” if it is traversed as described
above.

½¼

¾»
3

½¼

¾»
1

½¼

¾»
4

½¼

¾»
2¹¸

º·

¹¸

º·

-

¾

¡
¡

¡
¡

¡
¡ª

@
@

@
@

@
@R

1.5

1.5

1.51.5666

@
@

@
@

@
@ 6

?

0.5

0.5

6

?

0.5

0.5

111

½¼

¾»
3

½¼

¾»
1

½¼

¾»
4

½¼

¾»
2¹¸

º·

¹¸

º·

-

¡
¡

¡
¡

¡
¡ª

-@
@

@
@

@
@@I

@
@

@
@

@
@I

@
@

@
@

@
@I@@

@
@

@
@@R

1.5

1.5

1.5
1.5

6

?

0.5

0.5

6

?

0.5

0.5 11
1

(a) (b)

Figure 4: Fractional solutions

3.1 Even-even zigzag inequalities

This class of valid inequalities is violated by fractional solutions similar to those shown in Figures
4a and 5a. The name of the inequalities refers to the degree of the two shores of the edge cutset
δ(M1 ∪M3). In this case, the number of edges in this cutset must be even.

6

Consider a partition of the set of vertices V into four parts, M1, M2, M3, and M4, where
M2 and M4 contain an odd number of odd vertices while M1 and M3 contain an even number
of odd vertices. Let us define a subset of edges F ⊂ δ(M1 ∪M3) satisfying
∣∣(M1,M2∪M4)\F ∣∣+∣∣(M2∪M4,M3)∩F ∣∣ =

∣∣(M1,M2∪M4)∩F ∣∣+∣∣(M2∪M4,M3)\F ∣∣ (10)

(see Figure 5b, where edges in F are represented in bold lines).

The configuration graph GC associated with the even-even zigzag inequalities is defined by
the partition of V and the set F above, and by the following pair of coefficients associated with
each edge eij ∈ EC (see Figure 5b):

(αij , αji) =





(0, 2), ∀eij ∈ (M1, M2 ∪M4) \ F , i ∈ M1, j ∈ M2 ∪M4,

(2, 2), ∀eij ∈ (M1, M2 ∪M4) ∩ F , ∀eij ∈ (M2,M4),
(1, 3), ∀eij ∈ (M3, M2 ∪M4) ∩ F , i ∈ M3, j ∈ M2 ∪M4,

(1, 1), otherwise.

Note that the pairs with different coefficients correspond to the edges in the left hand side of (10).
The corresponding even-even zigzag inequality then requires

x(δ(M3)) + 2x(M2,M4) + 2x(M2 : M1) + 2x(M4 : M1) + 2x(Fzz)

≥ ∣∣(M1, M3)
∣∣ + 2

∣∣(M2,M4)
∣∣ +

∣∣(M2,M3)
∣∣ +

∣∣(M3,M4)
∣∣ + 2

∣∣δ(M1) ∩ F∣∣ + 2
(11)

for all x ∈ WPP(G), where x(Fzz) denotes the variables associated with the edges in F in the
direction of the zigzag, i.e., (M1 → M2), (M2 → M3), (M4 → M3), and (M1 → M4).

½¼

¾»
M3

º

¹

·

¸
M1

½¼

¾»
M4

¹¸

º·

º

¹

·

¸
M2

¶

µ

³

´

¾

-

-

-

¾

1
1
1.5

1
1.5

6

?

0.5

0.5

66

1 1

6

?

0.5

0.5

¡
¡

¡
¡

¡
¡ª

1.5@
@

@
@

@
@R

1.5

@
@

@
@

@
@I

1

½¼

¾»
M3

º

¹

·

¸
M1

½¼

¾»
M4

¹¸

º·

º

¹

·

¸
M2

¶

µ

³

´
¡

¡
¡

¡
¡

¡
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

0 2
0 2
2 2

1

1

0

2

2

2

1

1

1

1

1

1

2

2

1 3
1 1

(a) (b)

Figure 5: A fractional solution and an even-even zigzag configuration with set F in bold lines.

The set F can be chosen in the following way. Let the edges in EC , with the exception of
two given edges e13, f13 ∈ (M1,M3), and a given edge e24 ∈ (M2,M4), be oriented to obtain
a (directed) symmetric graph. Given any such orientation, F is defined to be the set of all the
edges that have been oriented in the opposite direction to the zigzag. In particular, the set F
in Figure 5a is defined from the orientation associated with the fractional solution. Note that
such a set F satisfies (10).

Theorem 1 Even-even zigzag inequalities (11) are valid for WPP(G) for any choice of sets M i

and F satisfying the above conditions.

Proof: Let (α, β) ∈ Z2|E|+1 denote the vector of coefficients and the right-hand side of the
inequality and let x be a WPP tour. In what follows, given a vector y ∈ R2|E|, we will call

7

α-cost of y to αy. Because each WPP tour must traverse every edge in one of its two possible
directions, x has at least an α-cost of β−2. We can suppose that x traverses all the edges in the
left hand side of (10) in the direction corresponding to their lower coefficient, i.e., from M1∪M3

to M2∪M4 (otherwise we have an extra α-cost of two and we are done). Let k be the number of
such edges. Since the nodes M2 and M4 are odd, the tour x cannot traverse each edge exactly
once and an extra matching on these two nodes is needed. Note that all these matchings have
α-cost of at least two (and hence we are done), with the exception of the matching with α-cost
zero defined by two edges not in F traversed from M1 to M2 and from M1 to M4, respectively.
So we can suppose that x traverses at least k + 2 times from M1 ∪M3 to M2 ∪M4 and, hence,
it traverses also k + 2 times from M2 ∪M4 to M1 ∪M3. Given that the number of edges in the
right hand side of (10) is k, x indicates the traversal of the edges in M2 ∪M4 to M1 ∪M3 at
least two extra times, with an α-cost of at least two. ¨

Theorem 2 The even-even zigzag inequalities (11) are facet-inducing for WPP(G) if

(i) GC \ F is a complete graph,

(ii) there are three edges e13, f13 ∈ (M1,M3) and e24 ∈ (M2,M4), and

(iii) the edges in EC \ {e13, f13, e24} can be oriented to induce a (directed) symmetric graph
where all the edges in δ(M1 ∪M3) \ F are oriented in the direction of the zigzag and all
the edges in F are oriented in the opposite direction.

Proof: We first show that the inequalities are facet-inducing for WPP(GC). We need to
find twice the number of edges in EC minus three linearly independent WPP tours satisfy-
ing αx = β. Each tour is a vector x∈Z2|EC | with two components xij , xji associated with each
edge e = {i, j} ∈ EC .

We first select the six components corresponding to the given edges e13, f13, and e24. Let
xd ∈ Z2|EC | denote the incidence vector of the symmetric subgraph induced by the orientation
mentioned in the theorem. Note that the six selected components in xd are zero and that
αxd = β − 6.

Since GC \F is a complete graph, it is possible to select another four components associated
with four edges not in F , e12 ∈ (M1,M2), e14 ∈ (M1,M4), e23 ∈ (M2, M3), and e43 ∈ (M4,M3),
in the direction given by the zigzag. It can be seen that, for each unselected variable xij , a tour
based on vector xd can be constructed satisfying αx = β and such that it uses the variable xij

one more time than xd plus some of the selected components. Moreover, we can build seven more
linearly independent WPP tours from xd by adding to it only some of the selected components,
also satisfying αx = β. If we subtract xd from all the tours and arrange them in rows, we obtain
a full-rank matrix. Hence the even-even zigzag inequalities are facet-inducing for WPP(GC).
Due to the lifting theorem of [10], they are also facet-inducing for WPP(G). ¨

Even-even zigzag inequalities can also be written in sparse form. Due to the symmetry
equation associated with node M3, the term x(V \M3 : M3) in the inequality can be replaced
by x(M3 : V \M3) to obtain an equivalent inequality that when divided by two requires

x(M3 : V \M3) + x(M2,M4) + x(M2 : M1) + x(M4 : M1) + x(Fzz)

≥ 1
2
(|(M1,M3)|+ 2|(M2,M4)|+ |(M2,M3)|+ |(M3,M4)|) + |δ(M1) ∩ F|+ 1,

(12)

for each x ∈ WPP(G).

8

3.2 Odd-odd zigzag inequalities

In this section, we present another family of inequalities that is violated by fractional solutions
like those shown in Figures 4b and 6a. Again, the name of the inequalities refers to the degree
of the two shores of the edge cutset δ(M1∪M3). In this case, the number of edges in this cutset
is odd.

Consider a partition of V into 4 parts, M1, M2, M3, and M4, where M2 and M3 contain an
odd number of odd vertices while M1 and M4 contain an even number of odd vertices. Note that
δ(M1 ∪M3) contains an odd number of edges. Let us define a subset of edges F ⊂ δ(M1 ∪M3)
satisfying

|(M1, M2 ∪M4) \ F|+ |(M3, M4) \ F|+ |(M2, M3) ∩ F|+ 1

= |(M1, M2 ∪M4) ∩ F|+ |(M3,M4) ∩ F|+ |(M2,M3) \ F| (13)

(see Figure 6b, where edges in F are represented in bold lines).

The configuration graph GC associated with the odd-odd zigzag inequalities is defined by
the partition of V and the set F above, and by the following pair of coefficients associated with
each edge eij ∈ EC (see Figure 6b):

(αij , αji) =





(0, 1), ∀eij ∈ (M1,M2 ∪M4) \ F , i ∈ M1, j ∈ M2 ∪M4,

(0, 1), ∀eij ∈ (M3,M4) \ F , i ∈ M3, j ∈ M4,

(2, 1), ∀eij ∈ (M2,M3) ∩ F , i ∈ M2, j ∈ M3,

(1, 1), otherwise.

Again, the pairs with different coefficients correspond to the edges of the left hand side of (13).
The corresponding odd-odd zigzag inequality is then

x(M2 ∪M4 : M1 ∪M3) + x(M1,M3) + x(M2, M4) + x(M3 : M2) + x(Fzz)

≥ |(M1,M3)|+ |(M2,M4)|+ |(M2, M3) \ F|+ |F|+ 1
(14)

for all x ∈ WPP(G), where x(Fzz) denotes the variables associated with the edges in F in the
direction of the zigzag, i.e., (M1 → M2), (M2 → M3), (M3 → M4), and (M1 → M4).

½¼

¾»
M3

º

¹

·

¸
M1

½¼

¾»
M4

¹¸

º·

º

¹

·

¸
M2

¶

µ

³

´

¾
¾

-

-
¾

1
1

1.5

1.5
1

6

?

0.5

0.5
?

6

1

1 6

?

0.5

0.5

6

1

¡
¡

¡
¡

¡
¡ª

1.5

¡
¡

¡
¡

¡
¡¡µ

1

@
@

@
@

@
@R

1.5

@
@

@
@

@
@I

1

½¼

¾»
M3

º

¹

·

¸
M1

½¼

¾»
M4

¹¸

º·

º

¹

·

¸
M2

¶

µ

³

´
¡

¡
¡

¡
¡

¡¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡¡

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

0 1

1 1
1 1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

0 1
1 1

(a) (b)

Figure 6: A fractional solution and an odd-odd zigzag configuration with set F in bold lines.

The following two theorems are given without proofs because they can be proved in an
analogous way to Theorems 1 and 2.

9

Theorem 3 Odd-odd zigzag inequalities (14) are valid for WPP(G) for any choice of sets M i

and F satisfying the above conditions.

Theorem 4 Odd-odd zigzag inequalities (14) are facet-inducing for WPP(G) if

(i) GC \ F is a complete graph,

(ii) there are three edges e13 ∈ (M1,M3), e24 ∈ (M2,M4), and e14 ∈ (M1,M4) ∩ F , and

(iii) the edges in EC \ {e13, f24, e14} can be oriented to induce a (directed) symmetric graph
where all the edges in δ(M1 ∪M3) \ F are oriented in the direction of the zigzag and all
the edges in F are oriented in the opposite direction.

4 Zigzag inequalities and mod-k inequalities

In this section, we prove that zigzag inequalities are mod-4 cuts. A mod-k cut (see [4]) is a
rank-1 Chvátal inequality in which the multipliers are restricted to the set {0, 1

k , . . . , k−1
k }.

Proposition 2 Odd, even-even, and odd-odd zigzag inequalities are mod-4 cuts.

Proof: Let us begin with odd zigzag inequalities. Consider the odd zigzag configuration and
add the following equations and inequalities multiplied by 1

2 :

– The odd-cut inequality associated with M1

x(M1 : V \M1) ≥ 1
2(|(M1,M2)|+ |(M1,M4)|+ |(M1,M3)|+ 1),

– the odd-cut inequality associated with V \M3

x(V \M3 : M3) ≥ 1
2(|(M1,M3)|+ |(M2,M3)|+ |(M3,M4)|+ 1),

– the traversing inequalities corresponding to the edges in (M2,M4)
xij + xji ≥ 1, ∀{i, j} ∈ (M2,M4),

– the traversing inequalities corresponding to the edges in F
xij + xji ≥ 1, ∀{i, j} ∈ F ,

– the trivial inequalities corresponding to the variables associated with the edges in F in the
direction given by the zigzag,

– the trivial inequalities corresponding to the variables associated with the edges in (M1 ∪
M3,M2 ∪M4) \ F in the opposite direction to the zigzag, and

– the symmetry equation corresponding to M2

x(M2 : V \M2)− x(V \M2 : M2) = 0.

We obtain an inequality with integer coefficients and right hand side

1
2
·
(

1
2

(|(M1,M2)|+ |(M1,M4)|+ |(M1,M3)|+ 1
)
+

1
2

(|(M1,M3)|+ |(M2,M3)|+ |(M3,M4)|+ 1
)

+ |(M2,M4)|+ |F|
)
.

From condition (7), it can be seen that this right hand side is equal to

1
2

(
|(M1, M3)|+ |(M2,M4)|+ |(M1,M4)|+ |(M2,M3)|+ 2|H ∩ F|+ 1

)
,

10

and, since the left hand side is integer and |(M1,M3)|+ |(M2,M4)|+ |(M1,M4)|+ |(M2,M3)|
is an even number, the right hand side can be rounded up to

1
2

(
|(M1, M3)|+ |(M2,M4)|+ |(M1,M4)|+ |(M2,M3)|+ 2|H ∩ F|+ 2

)
,

which is exactly the odd zigzag inequality (9) in sparse form.

To obtain the even-even zigzag inequalities in sparse form (12), we add the following inequal-
ities multiplied by 1

2 : the odd-cut inequalities associated with M2 and with M4, the traversing
inequalities associated with edges in (M1,M3), (M2,M4), and F , the trivial inequalities cor-
responding to the variables associated with the edges in F in the direction given by the zigzag
(here, (M1 → M2), (M2 → M3), (M4 → M3), and (M1 → M4)), the trivial inequalities corre-
sponding to the variables associated with the edges in (M1 ∪M3,M2 ∪M4) \F in the opposite
direction to the zigzag, and the symmetry equation corresponding to set M3 and then we round
up the right hand side.

The odd-odd zigzag inequality (14) is obtained by adding the following inequalities multiplied
by 1

2 : the odd-cut inequalities associated with M2, with V \ M3, and with set M3 ∪ M4,
the traversing inequalities associated with edges in (M1,M3), (M2,M4), and F , the trivial
inequalities corresponding to the variables associated with the edges in F in the direction given
by the zigzag (here, (M1 → M2), (M2 → M3), (M3 → M4), and (M1 → M4)), and the trivial
inequalities corresponding to the variables associated with the edges in (M1∪M3,M2∪M4)\F
in the opposite direction to the zigzag. ¨

Note that, since the odd-cut inequalities are mod-2 inequalities with respect to the original
formulation (1)-(4), zigzag inequalities are mod-4 inequalities or, put in another way, mod-2
inequalities of rank two.

5 Branch and cut for the WPP

We have implemented a branch-and-cut algorithm for the WPP in which, besides the well-known
heuristic and exact procedures for separating violated odd-cut inequalities (see, e.g., [8]), new
separation algorithms for zigzag inequalities are incorporated. It is not known whether or not
the problem of separating an arbitrary vector from the windy postman polyhedron using zigzag
inequalities is polynomially solvable, but we conjecture that this problem is NP-hard. Hence, we
have designed heuristic algorithms for identifying violated odd, even-even, and odd-odd zigzag
inequalities. Moreover, a polynomial time algorithm for identifying maximally violated mod-k
inequalities has been added, as well as a heuristic algorithm for producing feasible solutions from
the fractional LP solutions.

5.1 Zigzag separation procedures

First procedure

This algorithm is designed to separate a fractional solution x∗ ∈ R2|E| similar to those shown
in Figures 1a, 5a, and 6a. For the sake of simplicity, we suppose here that most of the components
of x∗ are integral, with the exception of some pairs with values (1.5, 0) and (0.5, 0.5). Figure 7
shows a directed graph associated with such a fractional solution in which the number next to
an arc {i, j} denotes the value of its corresponding variable x∗ij .

11

1

1
1

1.5

1

1

1

1

1

1

1

1.5

0.5

2

1

0.5

1.5

0.5

1.5 2

1

11

1

1

1

1

1

1

1

1

1

1

0.5

1.5

1

1

2

0.5

0.5
1

0.51

1
0.5

1

1.5

1.5

0.5

1
1

1

1

0.5

1

0.5

1

1 1

1

1

1

0.5

0.5
1

1

1
1

1.5

1

0.5
1

1

1

1

0.5

2
1

1

1

1

1

1

0.5

1

1

1

0.5

1.5

1.5

0.5

1

1

1

1

1.5

10.5

1

0.5

1.5

1

1

1

1
1

0.5

1

0.5

1

1

1
1

1

1
1

1.5

1.5

1.5

0.5

0.5

1

2

1

1

0.5

1

1

1

1

1

1

2

1

11

0.5

0.5
1

1
2 1

1

1
1

1

1
1

1 1

1

1

21

1
0.51

1

1

0.5

1

1

1

1

1

1

1

1

1

1

1

0.5

2.5

1

0.5

1.5

0.5

1
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19
20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

373839

40

41

42

43

44
45

46

47

48

49

50

51

52

53

54

55

56
57

58

59

60

61

62

63

64

65

66

67

68

Figure 7: Fractional solution.

We are looking for a zigzag configuration such that the corresponding inequality is violated
by x∗. Zigzag inequalities associated with a configuration that has an edge {i, j} linking different
sets Mk and satisfying x∗ij + x∗ji ≥ 2 are, according to our experience, typically not violated.
Hence, we require first that each such edge belongs to one of the sets Mk. To accomplish this,
nodes i and j are shrunk for all such edges in a first step. Moreover, edges {i, j} traversed
exactly once, i.e., satisfying x∗ij = 1 and x∗ji = 0 or x∗ij = 0 and x∗ji = 1, do not seem to affect the
violation of the inequality and are therefore deleted. All the resulting isolated nodes are also
removed.

At this point we should have one (or more) subgraphs like the one depicted in Figure 8
containing only the edges {i, j} satisfying (x∗ij , x

∗
ji) = (1.5, 0), depicted as arcs in solid lines,

or (x∗ij , x
∗
ji) = (0.5, 0.5) represented by two opposite arcs in dotted lines. For each of these

subgraphs we proceed as follows. Each node incident with just two edges is iteratively shrunk
into one of its adjacent nodes. We then also shrink all the pairs of nodes linked by two parallel
edges. Figure 9a shows the graph obtained after applying this procedure to the one in Figure 8.

After the above procedure, we have a cycle formed by edges with values (1.5, 0) whose nodes
are linked by edges with values (0.5, 0.5), which we call chords (see Figure 9a). Note that each
chord divides the cycle into two parts. We iteratively select two chords and label their end-nodes
as seeds (since they are the seeds for sets Mk). We check if these two chords cross each other,
i.e., each of the two halves defined by a chord contains exactly one of the seeds associated with
the other chord. If so, the remaining chords are studied. For each one of these chords, if one of
the two halves defined by it contains three seeds then we shrink the other half (which contains
just one seed). If this can be done for all the chords, we obtain a graph like the one shown
in Figure 9b, which corresponds to a zigzag configuration. However, if a chord defines halves

12

Figure 8: Shrunk fractional solution.

with two seeds each, the procedure fails and we proceed with selecting another pair of chords.
Finally, the zigzag configuration on the original graph is built and its corresponding inequality
is checked for violation by x∗.

(a) (b)

Figure 9: Cycle with chords and an odd-odd zigzag configuration.

Since zigzag inequalities can also be violated by solutions having fractional values different
from 1.5 and 0.5, the above procedure is applied to any fractional solution x∗ ∈ R2|E| having
fractional values as follows:

1) Edges {i, j} such that x∗ij +x∗ji > 1 are shrunk, with the exception of those described in 2),

2) edges {i, j} such that 1.25 < x∗ij + x∗ji < 1.75 and x∗ij < 0.2 or x∗ji < 0.2 are considered as
satisfying (x∗ij , x

∗
ji) = (1.5, 0) or viceversa,

3) for the remaining edges, x∗ij + x∗ji = 1, those with x∗ji < 0.1 are considered as satisfying
(x∗ij , x

∗
ji) = (1, 0) and are deleted and the ones with 0.1 < x∗ij < 0.4 or 0.1 < x∗ji < 0.4 are

shrunk, and

4) all the other edges are treated as satisfying (x∗ij , x
∗
ji) = (0.5, 0.5).

13

Second procedure

Unlike the previous algorithm, which is capable of finding odd, even-even, and odd-odd
violated zigzag inequalities, the procedure described in this section is designed to separate only
odd zigzag inequalities. The idea of the algorithm is that the fractional solutions similar to the
one shown in Figure 1a satisfy the odd-cut inequalities corresponding to the (odd) sets Mk,
k = 1, 2, 3, 4, with equality. It works as follows.

During the execution of the branch-and-cut algorithm, all the odd-cut inequalities found are
stored. We consider all the stored inequalities satisfied by x∗ with equality. We then select shores
S ⊂ V of these inequalities such that all pairs of variables associated with edges in (S, V \ S)
have values (1, 0), with the exception of the variables associated with the three edges that have
values (1.5, 0), (0, 1.5), and (0.5, 0.5) respectively. Three such sets are iteratively selected. If
they have no nodes in common, these three sets and the rest of V are the candidates to be
the sets Mk of the odd zigzag configuration. Finally, if the sets can be arranged in such a way
that the arcs defined by the variables with value 1.5 form a directed cycle, then we have an odd
zigzag configuration, whose associated inequality is checked for violation by x∗.

5.2 Separation of mod-k inequalities

In addition to these problem-specific inequalities we have also incorporated the separation of
more general maximally violated mod-k inequalities according to procedures described in [3, 4].
The basic work consists of solving a system of congruences where the system is composed of all
the binding inequalities of the last LP plus an inequality for each symmetry equation.

In our algorithm we have used the implementation from [16] for the separation of maximally
violated mod-2 inequalities. We apply the separation procedure to a system including not only
inequalities of the original formulation, but also others that have been added as cutting planes.
Therefore, the inequalities generated are not only mod-2 cuts, but could be mod-k for arbitrary
k, since they would be mod-2 with respect to a formulation that already includes other mod-k
inequalities. Given that zigzag inequalities are mod-4 inequalities, it is likely that some of the
maximally violated mod-k inequalities are zigzag inequalities that, as they are facet-inducing,
may be useful for the branch-and-cut algorithm.

The system of congruences to be solved for the separation of mod-k inqualities usually has
very many solutions (possibly leading to the same inequalities). Therefore an important practical
issue is the selection of cuts to be added to the LP. A nice description of different strategies can
be found in [19]. We have basically used the one described in [16].

Because mod-k separation is computationally very expensive and we have faster separation
algorithms for zigzag and odd-cut inequalities (which are mod-2 inequalities), we call this routine
only at the root node.

5.3 Initial relaxation and cutting-plane algorithm

The initial LP relaxation contains the odd-cut inequalities associated with the odd-degree ver-
tices and with the connected components of the subgraph of G induced by the odd-degree
vertices, if |S| is odd. At each iteration of the cutting-plane algorithm the separation procedures
are called in the following order:

1) Odd-cut inequalities separation heuristics,

14

2) when no violated odd-cut inequalities are found in step 1, odd-cut inequalities exact sep-
aration algorithm is called,

3) when no violated odd-cut inequalities are found in steps 1 and 2, zigzag inequalities sepa-
ration procedures are executed, and

4) (only at the root node) when no violated inequalities are found in steps 1–3, mod-k cuts
separation procedure is applied.

If violated inequalities are found in any of the steps 1–4, they are added to the current LP
and, after it is solved, the loop starts from step 1 again. However, the mod-k cuts separation
procedure is not allowed to be executed in two consecutive iterations of the loop, so, if after
adding violated mod-k cuts inequalities no more violated odd-cut or zigzag inequalities are found
in steps 1–3, the loop terminates.

The cutting-plane procedure is applied at each node of the branch-and-cut tree until no new
violated inequalities are found or a stopping criterium, called tailing-off, is satisfied. In our
implementation the cutting-plane generation stops when the increase in the objective function
during the last five iterations is less than 0.0004%. At the root node this percentage has been
set to 0.0002%.

5.4 Upper bounds

In order to get good upper bounds that decrease the size of the search tree, a heuristic algorithm
based on the information given by the fractional solution x∗ obtained after processing each node
has been implemented.

The algorithm first builds a directed multigraph G∗ associated with x∗ in the following way.
G∗ contains exactly bx∗ijc copies of an arc (i, j) when x∗ij ≥ 1, and one copy of arc (i, j) when
0.75 ≤ x∗i,j < 1. In addition, for each edge {i, j} such that x∗ij and x∗ji are less than 0.75, we add
one arc (i, j) or (j, i) to G∗. We add the arc (i, j) if x∗ij > 0.5 and x∗ji ≤ 0.5 or the arc (j, i) if
x∗ji > 0.5 and x∗ij ≤ 0.5. Otherwise we add the arc associated with the direction of lower cost.

Consider now the directed graph Gaux resulting from replacing each edge in the original
graph G by two opposite arcs. We assign infinite capacity and weights cij , cji to these arcs. We
add to Gaux one arc (j, i) for those pair of nodes i, j such that exactly one copy of arc (i, j) and
no copy of arc (j, i) exist in G∗. These arcs are usually called artificial arcs (since they represent
the possibility of reorienting its corresponding opposite arc) and have capacity two and weight
1
2(cji− cij). Now a minimum cost flow (fij) is computed on Gaux with demands and supplies at
each vertex defined by the difference between the number of arcs entering i and leaving i in G∗.

For each arc (i, j) that is not artificial in Gaux, fij additional copies of arc (i, j) are added
to G∗. In addition, for each artificial arc (j, i) with non zero flow we proceed as follows:

– If fji = 2, then arc (i, j) in G∗ is replaced by its opposite arc (j, i), and,

– if fij = 1, then arc (i, j) in G∗ is replaced by an edge {i, j}.

At this point, G∗ can be a mixed graph. We then solve a minimum-cost matching problem
defined on a complete graph whose nodes are the ones incident with an odd number of edges
in G∗, and the edge costs are computed from the shortest paths in the original graph as follows.
Given two nodes i and j, we find the shortest path from i to j and compute the sum of the

15

average costs 1
2(cuv + cvu) of its edges {u, v}. The same value is computed for the shortest path

from j to i and the minimum of these two values is selected as the cost of the edge linking i
and j. Then, for each edge in the optimal matching, we add to G∗ a copy of each original edge in
the corresponding shortest path. Each edge is oriented in the direction given by its smallest cost
and another similar flow problem is solved (see also [21]). This procedure produces a directed
graph representing a feasible solution for the WPP. This solution is improved by applying three
simple procedures described in [1]. The first two look for cycles in the solution graph such that
after deleting them or reversing the direction of their arcs, a better solution is obtained. The
third one looks for directed paths that can be replaced by a shortest path to obtain a better
solution.

6 Computational experiments

We present here the computational results obtained on different sets of instances. The branch-
and-cut procedure has been coded in C/C++ using the CPLEX 9.0 MIP Solver with Concert
Technology 2.0. Default settings for CPLEX were not used. Specifically, CPLEX presolve and
heuristic algorithms and cut generation are turned off, the optimality gap tolerance is set to zero,
and strong branching and depth-first search are selected. Tests were run on an Intel Pentium
IV 2.80GHz and 2GB RAM with a time limit of 10 hours. All the data instances are publicly
available ([9]).

6.1 Data instances

We have tested the branch-and-cut procedure on large, randomly generated WPP and MCPP
instances. Type A instances correspond to pure random graphs, while type B instances are
associated with graphs that try to imitate street networks.

Three parameters are considered to generate a WPP instance: the number of vertices n,
n ∈ {500, 1000, 1500, 2000, 3000}, the average vertex degree d, d ∈ {3, 4, 5, 6}, and an integer
number a used to generate asymmetric costs, a ∈ {10, 20, 50}. First, the vertex set V is con-
structed by randomly generating n points in a grid of size 1000 × 1000. For the instances of
type A, the edge set E is obtained by randomly generating n d

2 pairs of vertices. The cost of
edge {i, j} is defined to be cij = bbij + 0.5c, where bij denotes the Euclidean distance between i
and j. If the resulting graph (V,E) is not connected, edges in d edge-disjoint trees spanning the
connected components of the graph are also added to E. At this point, we have an undirected
graph. In order to obtain asymmetric edge costs, the following strategy is applied. First, the
value ca is computed as the ath percentile of the edge costs (a ∈ {10, 20, 50}). Then, for each
edge e = {i, j} ∈ E, we let k1 and k2 be two integer values randomly selected in the interval
[−ca, ca] and set cij = max{1, cij + k1}, and cji = max{1, cji + k2}. This strategy is similar
to the one proposed in [20] except that, in this last paper, the values chosen for ca are five,
eight, and ten. In this way, we have generated 60 pure random WPP instances named WA0531
to WA3065, where for example “WA” refers to a WPP instance of type A , the first two digits
are the number of vertices divided by 100, the third digit is the vertex degree and the last digit
is the value of parameter a divided by 10.

For the type B instances we proceed as above, except for the generation of edges. Here, for
each vertex i ∈ V , the d edges connecting i to its d closest neighbors are added to E. The idea is
to avoid long edges crossing the graph that would not appear in real networks. If the resulting
graph is not connected, edges in d edge-disjoint trees spanning the connected components are

16

also added to E. Furthermore, each edge {i, j} ∈ E such that there is a vertex k satisfying
cij ≥ 0.98(cik + ckj) is removed from E to avoid “almost parallel” edges. We have obtained 60
WPP instances of type B named WB0531 to WB3065.

Similarly, 60+60 MCPP instances have been generated. The undirected graphs are generated
as above, again with n ∈ {500, 1000, 1500, 2000, 3000} and d ∈ {3, 4, 5, 6}. To obtain mixed
graphs, each edge is transformed into an arc with probability p ∈ {0.25, 0.5, 0.75}. When a
given edge is decided to be changed into an arc, we choose one of its two possible orientations
with probability 0.5. If the resulting graph is not strongly connected, some arcs joining different
strongly connected components are changed back into edges. The 120 MCPP instances are
named MA0532 to MB3067, where for example “MA” refers to a MCPP instance of type A , the
first two digits are the number of vertices divided by 100, the third digit is the vertex degree
and the last digit is the first significative digit of parameter p.

6.2 Computational results

Tables 1 and 2 show the characteristics of the instances above and the computational results
obtained on them. They contain the problem type and the number of instances of each set, the
number of nodes, and the average, minimum, and maximum number of edges (and arcs in the
case of mixed instances). In both tables the next column shows the number of instances solved
to optimality for each set. For the instances solved within the time limit of 10 hours, columns
“Time” and “BC Nodes” present the average computing time (in seconds) and the number of
tree nodes explored. The last column shows the average gap between the final lower bound and
the best feasible solution found for those unsolved instances for which a feasible solution was
found. In four out of 33 unsolved instances (all of them WPPs with 3000 nodes), the algorithm
ran out of memory before finishing the computation for the root node (and without execution
of the heuristic algorithm).

of # of # of Edges # of Inst. solved Time BC Gap
Set Instances Nodes Aver. Min Max to Optimality (sec.) Nodes (%)

WA05 12 500 1160.5 813 1518 12 10.4 3.7 –
WB05 12 500 1212.8 874 1555 12 13.5 0.6 –
WA10 12 1000 2316.8 1641 3018 12 168.1 27.1 –
WB10 12 1000 2433.9 1743 3110 12 159.5 2.5 –
WA15 12 1500 3493.1 2478 4530 11 1595.3 75.3 0.01
WB15 12 1500 3654.6 2631 4670 12 1457.6 24.3 –
WA20 12 2000 4644.6 3303 6036 12 2203.6 68.7 –
WB20 12 2000 4826.3 3467 6129 8 5700.0 62.7 0.12
WA30 12 3000 6961.3 4986 9066 6 4920.3 225.8 0.01
WB30 12 3000 7140.8 5176 9085 2 15160.6 110.0 0.19

Table 1: Computational results on WPP instances

As can be seen in Table 1, our algorithm solved all but one of the WPP instances up to
1500 nodes. It was also capable of solving to optimality most of the 2000 nodes WPP instances
and some of the 3000 nodes ones. On the other hand, instances of type B (generated trying to
imitate real networks) proved to be more difficult than those generated completely at random.
The results shown in this table also confirm that our algorithm is capable of solving very large
WPP instances with up to 3000 nodes and 9000 edges. As far as we know, these are the largest
instances ever solved.

17

of Edges # of Arcs # of Inst. solved Time BC Gap
Set Aver. Min Max Aver. Min Max to Optimality (sec.) Nodes (%)

MA05 615.1 351 1112 542.4 193 1082 12 3.6 0.7 -
MB05 626.3 320 1131 583.8 202 1174 12 7.7 0.4 -
MA10 1235.3 693 2235 1083.9 340 2253 12 3891.2 139.8 -
MB10 1260.1 636 2293 1182.1 416 2327 11 89.9 4.0 0.01
MA15 1851.7 1011 3423 1627.2 576 3329 11 911.7 38.1 0.02
MB15 1880.2 964 3540 1750.5 615 3475 12 2373.4 22.8 -
MA20 2462.6 1355 4528 2182.8 733 4515 11 751.0 41.4 0.01
MB20 2499.8 1243 4552 2329.3 850 4583 10 1392.1 10.6 0.18
MA30 3704.8 1999 6795 3254.3 1097 6603 8 877.0 15.9 0.09
MB30 3746.3 1992 6799 3384.5 1206 6742 9 685.3 7.0 0.97

Table 2: Computational results on MCPP instances

Table 2 reports about the computational results obtained on the MCPP instances. The
number of instances and the number of nodes correspond to those of Table 1. The performance
of the branch-and-cut procedure is even better on these types of instances with only 12 out of
120 instances remaining unsolved. The algorithm solved instances with 3000 nodes and up to
9000 arcs and edges to optimality, and the average gap obtained on the unsolved instances was
less than 1%. Note that, in this case, instances of type A and B seem to be of similar difficulty.
Another interesting observation is that, for a given number of arcs and edges, instances with a
similar number of arcs and edges seem to be harder than those with an unequal proportion of
arcs or edges.

odd odd odd-odd even-even mod-k
Set cut zigzag zigzag zigzag

WA05 339.8 0.2 0.5 0.2 8.3
WB05 895.1 12.5 1.9 0.8 0.0
WA10 769.4 0.1 1.2 0.1 4.2
WB10 2327.9 25.1 3.8 0.8 4.2
WA15 1827.8 0.5 0.2 0.8 0.0
WB15 5312.5 35.9 6.3 2.7 4.2
WA20 1833.2 1.3 0.2 0.3 0.0
WB20 7917.6 50.4 5.4 3.8 12.5
WA30 2568.5 0.0 1.0 0.2 0.0
WB30 14584.0 42.5 10.5 7.5 25.0

Table 3: Average number of valid inequalities on WPP instances

The average number of valid inequalities found by the separation algorithms for the optimally
solved instances can be seen in Tables 3 and 4. Note that the number of valid inequalities found
for the WPP instances is larger than for the MCPP instances. Also, instances of type B present
a larger number of cuts than those of type A, which are generated completely at random. As
expected from the description of small polyhedra discussed in Section 3, odd zigzag inequalities
appear more frequently than the other types of zigzag inequalities. Given that there are no
violated odd-cut inequalities when the mod-k inequalities separation algorithm is called, the
inequalities in the last column must be either zigzag inequalities or unknown valid inequalities.
Note that the number of violated zigzag and mod-k inequalities found is small. These results can
be explained by considering that, given that they are computationally demanding algorithms, the

18

zigzag inequalities separation procedures are invoked only when no odd-cut inequalities are found
and the mod-k inequalities separation routine only at the end of the root node. Additionally,
the use of a tailing-off strategy can reduce the number of times these procedures are called even
further.

odd odd odd-odd even-even mod-k
Set cut zigzag zigzag zigzag

MA05 165.4 0.0 0.1 0.0 4.2
MB05 481.4 6.2 1.0 0.5 0.0
MA10 1714.8 0.6 0.6 0.1 0.0
MB10 1271.0 12.3 3.0 3.1 0.0
MA15 981.2 0.1 0.1 0.5 4.5
MB15 2996.3 29.6 7.7 4.5 12.5
MA20 973.8 0.3 0.9 0.2 4.5
MB20 2901.7 13.1 2.6 2.6 0.0
MA30 883.8 0.9 0.1 0.9 0.0
MB30 2323.4 19.1 2.9 0.9 11.1

Table 4: Average number of valid inequalities on MCPP instances

On the other hand, we want to point out that our algorithm is not significantly faster than
the variant that only separates odd-cut inequalities (i.e., basically the approach proposed in
[12]). We have compared both versions and, on average, although the number of nodes of the
branch-and-cut tree explored by our algorithm is lower, the total computing times are similar.
However, we would like to point out that our first research aim was the investigation of the
polyhedral structure of WPP polyhedra and the definition of new facet-defining inequalities.
Our second aim was to develop separation heuristics for the new inequalities and to assess their
usefulness for practical computations. Therefore, in order to study with more detail the effect
of zigzag inequalities and mod-k inequalities, we have done some additional experiments.

For these experiments, the cutting-plane algorithm from the branch-and-cut procedure has
been run using three different separation strategies and without tailing-off. In the first strategy,
only odd-cut inequalities are separated. In the second one, we also use the zigzag inequalities
separation procedures every ten iterations or when no violated odd-cut inequalities are found.
The last one searches also for violated mod-k inequalities when no other violated inequality is
found, allowing the addition of a maximum of 500 mod-k inequalities each time. The results of
these experiments are shown in Tables 5 to 8.

Table 5 shows the number of WPP instances solved to optimality with each one of the three
strategies. As can be seen, using the separation of zigzag inequalities helps the algorithm solve
29 additional instances to optimality, while mod-k inequalities have contributed to solving to
optimality two more instances. On Table 6 the contribution of the zigzag inequalities and mod-k
inequalities is measured in terms of the reduction, in percentage, of the gap between the final
lower bound and the optimal solution. This average gap has been computed for the instances
that could not be solved at the root node with the first strategy. The number of such instances
is shown in the column “# of instances”. It can be observed that a reduction of the gap of
39.95% is achieved by using zigzag inequalities, while the use of mod-k inequalities provides an
additional reduction of about 2.5%. We want to point out that the reduction of the gap using
zigzag inequalities in the instances of type B is more than four times the reduction obtained in
the instances of type A. This agrees with the results presented in Tables 3 and 4 that show that
the number of zigzag inequalities found in instances of type B is larger than in those of type A,
which had been generated completely at random.

19

Set odd-cut zigzag mod-k
WA05 5 6 7
WB05 6 10 10
WA10 4 4 4
WB10 6 9 9
WA15 3 3 3
WB15 2 10 11
WA20 0 2 2
WB20 0 6 6
WA30 0 1 1
WB30 0 4 4
Total 26 55 57

Table 5: Number of WPP instances solved to optimality at the root node

of Gap Reduction Gap Reduction
Set Instances zigzag zigzag+mod-k

WA05 7 16.81% 28.57%
WB05 6 67.03% 67.03%
WA10 8 11.18% 15.63%
WB10 6 75.54% 80.98%
WA15 9 11.33% 11.33%
WB15 10 90.93% 93.40%
WA20 12 10.85% 11.79%
WB20 12 54.94% 54.94%
WA30 12 21.28% 21.28%
WB30 12 39.59% 39.59%

Average 39.95% 42.46%

Table 6: Gap reduction at the root node using zigzag and mod-k inequalities on WPP instances

Tables 7 and 8 show the corresponding results for the MCPP instances. It can be seen that
almost half of the instances can be solved at the root node using only odd-cut inequalities,
which confirms that instances on mixed graphs are easier than those on “windy” graphs. The
contribution of zigzag and mod-k inequalities in terms of the gap reduction is similar to that on
“windy” graphs, although its effect on the number of instances solved is less significant, maybe
because the number of instances already solved by means of odd-cut inequalities is larger.

From the above results, we can say that the new separation procedures clearly show the
potential of the inequalities, although the additional time needed for separation does not lead
to a reduction of the total time employed by the branch-and-cut procedure. Faster separation
heuristics would be desirable, but we think that the new inequalities increase the chance of
solving previously unsolved problems.

Acknowledgments

The authors want to thank the three referees for their careful reading of the manuscript and for
their many comments and suggestions that have contributed to improve the paper content and
readability. In particular, several remarks regarding the discussion of mod-k inequalities were
pointed out by one of the referees.

20

Set odd-cut zigzag mod-k
MA05 10 10 10
MB05 9 11 11
MA10 6 7 7
MB10 6 8 8
MA15 6 6 6
MB15 6 10 10
MA20 5 5 5
MB20 6 7 7
MA30 5 6 6
MB30 5 6 6
Total 64 76 76

Table 7: Number of MCPP instances solved to optimality at the root node

of Gap Reduction Gap Reduction
Set Instances zigzag zigzag+mod-k

MA05 2 0.00% 39.59%
MB05 3 66.67% 66.67%
MA10 6 21.94% 27.50%
MB10 6 62.22% 62.51%
MA15 6 1.34% 8.79%
MB15 6 95.37% 97.01%
MA20 7 0.05% 1.14%
MB20 6 51.35% 51.35%
MA30 7 14.35% 14.35%
MB30 7 46.87% 46.87%

Average 36.02% 41.58%

Table 8: Gap reduction at the root node using zigzag and mod-k inequalities on MCPP instances

A. Corberán, I. Plana and J.M. Sanchis wish to thank the Ministerio de Educación y Ciencia of
Spain (projects MTM2006-14961-C05-02 and MTM2009-14039-C06-02) for its support.

References

[1] E. Benavent, A. Carrotta, A. Corberán, J.M. Sanchis & D. Vigo (2007): “Lower Bounds
and Heuristics for the Windy Rural Postman Problem”. European Journal of Operational
Research 176, 855–869.

[2] P. Brucker (1981): “The Chinese Postman Problem for mixed graphs”. Proc. Int. Workshop.
Lecture Notes in Computer Science 100, 354–366.

[3] A. Caprara & M. Fischetti (1996): “{0, 1
2}-Chvátal-Gomory cuts”. Mathematical Program-

ming 74, 221–235.

[4] A. Caprara, M. Fischetti & A.N. Letchford (2000): “On the separation of maximally vio-
lated mod-k cuts”. Mathematical Programming 87, 37–56.

21

[5] T. Christof & A. Loebel (1998): “PORTA – A Polyhedron Representation Algorithm.”
www.informatik.uni-heidelberg.de/groups/comopt/software/PORTA/.

[6] N. Christofides, E. Benavent, V. Campos, A. Corberán & E. Mota (1984): “An Optimal
Method for the Mixed Postman Problem”. In P. Thoft-Christensen (Ed.) System Modelling
and Optimization. Lecture Notes in Control and Information Sciences 59, Springer.

[7] A. Corberán, I. Plana & J.M. Sanchis (2006): “Zigzag inequalities: A new class of facet-
inducing inequalities for Arc Routing Problems”. Mathematical Programming 108, 79–96.

[8] A. Corberán, I. Plana & J.M. Sanchis (2007): “A Branch & Cut Algorithm for the Windy
General Routing Problem and special cases”. Networks 49, 245–257.

[9] A. Corberán, I. Plana & J.M. Sanchis (2007): “Arc Routing Problems: Data Instances.”
www.uv.es/corberan/instancias.htm.

[10] A. Corberán, I. Plana & J.M. Sanchis (2008): “The Windy General Routing Polyhedron: A
Global View of many Known Arc Routing Polyhedra”. SIAM J. Discrete Mathematics 22,
606–628.

[11] M. Grötschel & Z. Win (1988): “On the Windy Postman Polyhedron”. Report No. 75,
Schwerpunktprogram der Deutschen Forschungsgemeinschaft, Universität Augsburg, Ger-
many.

[12] M. Grötschel & Z. Win (1992): “A Cutting Plane Algorithm for the Windy Postman
Problem”. Mathematical Programming 55, 339–358.

[13] M. Guan (1984): “On the Windy Postman Problem”. Discrete Applied Mathematics 9,
41–46.

[14] E. Minieka (1979): “The Chinese Postman Problem for Mixed Networks”. Management
Science 25, 643–648.

[15] D. Naddef & G. Rinaldi (1991): “The Symmetric Traveling Salesman Polytope and its
Graphical Relaxation: Composition of Valid Inequalities”. Mathematical Programming 51,
359–400.

[16] M. Oswald, G. Reinelt & H. Seitz (2009): “Applying mod-k cuts for solving linear ordering
problems”. TOP 17, 158–170.

[17] C.H. Papadimitriou (1976): “On the complexity of edge traversing”. Journal of the Asso-
ciation for Computing Machinery 23, 544–554.

[18] T.K. Ralphs (1993): “On the Mixed Chinese Postman Problem”. Operations Research
Letters 14, 123-127.

[19] K. Wenger (2004): “Generic Cut Generation Methods for Routing Problems”. PhD Disser-
tation, University of Heidelberg, Germany.

[20] Z. Win (1987): “Contributions to Routing Problems”. PhD Dissertation, University of
Augsburg, Germany.

[21] Z. Win (1989): “On the Windy Postman Problem on Eulerian Graphs”. Mathematical
Programming 44, 97–112.

[22] F.J. Zaragoza Mart́ınez (2008): “Series-Parallel Graphs are Windy Postman Perfect”. Dis-
crete Mathematics 308, 1366–1374.

22

