
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Adaptation of High Performance and High
Capacity Reconfigurable Systems to OpenCL

Programming Environments
MASTER DEGREE FINAL WORK

Master Degree in Computer Engineering

Author: Davide Russo

Tutor: Flich Cardo, José

First External Tutor: Cilardo, Alessandro

Director Experimental: Tornero Gavilá, Rafael

Course 2019-2020

Resumen
En este trabajo se va a realizar la adaptación de un sistema reconfigurable de

cómputo basado en tecnologías de FPGAs hacia entornos de programación en
OpenCL. El sistema reconfigurable forma parte de un prototipo de cálculo del
proyecto Europeo MANGO que incluye 96 FPGAs. Con el fin de optimizar el
uso y de obtener sus máximas prestaciones, se hace imprescindible una adapta-
ción a entornos de programación de sistemas heterogéneos como OpenCL, lo cual
simplifica su programación y uso. En este trabajo se realizarán todas las activida-
des necesarias para una correcta implementación de la capa software y hardware
necesaria para su uso en OpenCL así como una evaluación de las prestaciones
obtenidas y de la flexibilidad ofrecida por la solución aportada.

Este trabajo se ha llevado a término durante una estancia de cinco meses en
la Universitat Politécnica de Valéncia. Esta estancia está vinculada a un acuerdo
entre la Universitat Politécnica de Valéncia y la Università degli Studi di Napoli
Federico II.

Palabras clave: Sistema de cómputo heterogéneos; PCI express; OpenCL; Xilinx
runtime; Custom platform FPGA

Abstract
In this work, we adapt a reconfigurable computer system based on FPGA

technologies to OpenCL programming environments. The reconfigurable system
is part of a compute prototype of the MANGO European project that includes 96
FPGAs. To optimize the use and to obtain its maximum performance, it is es-
sential to adapt it to heterogeneous systems programming environments such as
OpenCL, which simplifies its programming. In this work, all the necessary activ-
ities for correct implementation of the software and hardware layer required for
its use in OpenCL will be carried out, as well as an evaluation of the performance
obtained and the flexibility offered by the solution provided.

This work has been performed during an internship of 5 months. The intern-
ship is linked to an agreement between UPV and UniNa (Università degli Studi
di Napoli Federico II).

Keywords: Heterogeneous computing system; PCI express; OpenCL; Xilinx run-
time; Custom platform FPGA

iii

Contents

Contents v

List of Figures vii

List of Tables ix

Acronyms xi

1 Introduction 1

1.1 Heterogeneous system for HPC application 1

1.2 Standard vs custom FPGAs platform 2

1.3 MANGO infrastructure . 3

1.4 Goals and Motivations of this Work 4

1.5 Structure of the Document . 4

2 Background 7

2.1 FPGA introduction . 7

2.1.1 Architecture . 7

2.1.2 Taxonomy . 7

2.1.3 Logic Block Architecture . 11

2.1.4 Routing Architecture . 15

2.1.5 I/O Architecture . 18

2.1.6 Programming . 18

2.1.7 Xilinx vs Intel Altera FPGAs 21

2.2 Partial Reconfiguration . 28

2.2.1 Vivado Partial Reconfiguration design flow 29

2.3 OpenCL introduction . 30

2.3.1 Platform Model . 30

2.3.2 Memory Model . 31

2.3.3 Execution Model . 32

2.3.4 Programming Model . 35

v

vi CONTENTS

2.3.5 OpenCL Framework . 36

2.3.6 OpenCL Devices and FPGAs 36

2.4 SDAccel Platform . 37

2.4.1 Hardware Platform . 38

2.4.2 Software Platform . 50

2.4.3 Generating Platform files . 52

2.5 Tools . 54

2.5.1 Xilinx Vivado Design Suite 54

2.5.2 Xilinx SDAccel Development Environment 55

2.5.3 proFPGA prototyping system 58

3 Contribution 61

3.1 Specification . 61

3.1.1 Reference design specification 61

3.1.2 Our design specification . 61

3.2 Design . 62

3.2.1 Hardware Platform . 62

3.2.2 Software Platform . 77

3.2.3 Generating Platform files . 80

3.2.4 Installing the Platform . 82

3.2.5 Programming the FPGA . 83

3.3 Testing . 84

3.3.1 Testing the correctness of the Platform installation 84

3.3.2 Partial Reconfiguration workaround 85

3.3.3 Area performance evaluation 85

3.3.4 PCIe speed performance evaluation 87

3.3.5 A real application: nnsim . 89

4 Conclusions 97

Bibliography 99

List of Figures

1.1 Results for Classic DNNs . 2

1.2 MANGO Prototype . 3

2.1 FPGA architecture . 8

2.2 SRAM cell . 8

2.3 Use of static memory cells . 9

2.4 Floating gate transistor . 10

2.5 Configurable Logic Block . 12

2.6 Basic Logic Element . 12

2.7 Illustration of tile based heterogeneity 14

2.8 Hierarchical-style FPGA . 16

2.9 Island-style FPGA . 17

2.10 A typical FPGA design flow starting from RTL specifications 20

2.11 LUT configuration . 23

2.12 Xilinx SLICEL I/O connection . 23

2.13 Xilinx SLICEL architecture . 24

2.14 LUT configuration . 25

2.15 Xilinx DSP architecture . 25

2.16 Xilinx FPGA enabled by SSI Technology 26

2.17 ALM Block Diagram . 27

2.18 Example of 4-LUT . 27

2.19 Intel Altera DSP block . 28

2.20 Intel Altera DSP configuration . 28

2.21 Rounting of Intel Altera FPGAs . 29

2.22 The logical view of OpenCL Platform Model 31

2.23 The logical view of OpenCL Memory Model 32

2.24 Entire system . 37

2.25 Creation Platform flow . 38

vii

viii LIST OF FIGURES

2.26 Logical view of SDAccel Hardware Platform 39

2.27 Tools used to manage the SDAccel Hardware Platform 39

2.28 Hardware Platform creation and validation flow diagram 41

2.29 Simplified representation of IP partitioning for controlled SLR cross-
ing . 43

2.30 Top-Level Logic Hierarchy for Expanded Region 43

2.31 Layers of the Software Platform . 50

2.32 Platform folder structure . 52

2.33 The logical view of the proFPGA prototyping system hardware-side 58

2.34 The software architecture of the proFPGA prototyping system . . . 60

3.1 Logical view of position of components in the FPGA 62

3.2 Use of SmartConnect IP . 64

3.3 Top-Level Logic Hierarchy of our design 65

3.4 AXI Interconnect DMA/PCIe to SDAccel OpenCL Programmable
region IP . 66

3.5 AXI Interconnect SDAccel OpenCL Programmable region IP to DDR
and to bypass . 67

3.6 Memory address in the design . 68

3.7 Logic module for profiling . 69

3.8 XCL HAL folder structure . 80

3.9 Custom Platform folder structure . 81

3.10 Static region resource utilization chart 87

3.11 Results of test of reading . 88

3.12 Results of test of writing . 88

3.13 Logical view of nnsim’s software architecture 89

List of Tables

2.1 Meaning of Device ID bits . 52

2.2 Meaning of Subsystem ID bits . 52

3.1 Meaning of Device ID bits of custom Platform 77

3.2 Meaning of Subsystem ID bits of custom Platform 77

3.3 Static region resource utilization value 86

3.4 nnsim’s kernels performance estimate part 1 92

3.5 nnsim’s kernels performance estimate part 2 92

ix

Acronyms

AER Advanced Error Reporting.

AI Artificial Intelligence.

ALM Adaptive Logic Module.

ALUT Adaptive LUT.

API Application Programming Interface.

APM AXI Performance Monitor.

ASIC Application Specific Integrated Circuit.

AXI Advanced eXtensible Interface.

BAR Base Address Register.

BD Big Data.

BLE Basic Logic Element.

BRAM Block RAM.

C2H DMA Write Channel.

CAD Computer-Aided Design.

CIC Cascaded Integrator-Comb.

CLB Configurable Logic Block.

CLI Command-Line Interface.

CMOS Complementary Metal-Oxide Semiconductor.

CPU Central Processing Unit.

CU Compute Unit.

DDR Double Data Rate.

DL Deep Learning.

xi

xii Acronyms

DLL Delay-Locked Loop.

DMA Direct Memory Access.

DMBI Device Message Box Interface.

DNN Deep convolutional Neural Network.

DSA Device Support Archive.

DSP Digital Signal Processing.

EEPROM Electrically Erasable Programmable Read-Only Memory.

EPROM Erasable Programmable Read-Only Memory.

FF Flip-Flop.

FFT Fast Fourier Transform.

FIFO First In First Out.

FIR Finite Impulse Response.

FPGA Field Programmable Gate Array.

FSM Finite-State Machine.

GN General-purpose Node.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

H2C DMA Read Channel.

HAL Hardware Abstraction Layer.

HDL Hardware Description Language.

HLS High-Level Synthesis.

HN Heterogeneous Node.

HPC High-Performance Computing.

I/O Input/Output.

IBUF Input Buffer.

IC Integrated Circuit.

IDE Integrated Design Environment.

IP Intellectual Property.

Acronyms xiii

LAB Logic Array Block.

LUT Look-Up Table.

MAC Multiply-Accumulate.

MIG Memory Interface Generator.

MPSoC Multiprocessor SoC.

OBUF Output Buffer.

OCL Region OpenCL Region.

OpenCL Open Computing Language.

Pblock Physical Block.

PCIe PCI Express.

PE Processing Element.

PLL Phase-Locked Loop.

PR Partial Reconfiguration.

PROM Programmable Read-Only Memory.

RAM Random Access Memory.

RM Reconfigurable Module.

RP Reconfigurable Partition.

RPR Regular Partial Reconfiguration.

RTL Register Transfer Level.

SDC Synopsys Design Constraints.

SDRAM Synchronous Dynamic Random Access Memory.

SIMD Single Instruction Multiple Data.

SLR Super-Logic Region.

SoC System-on-a-Chip.

SPI Serial Peripheral Interface.

SPMD Single Program Multiple Data.

SRAM Static Random Access Memory.

SRL Shift Register Logic.

xiv Acronyms

SSI Stacked Silicon Interconnect.

SysMon System Monitor.

System ILA System Integrated Logic Analyzer.

Tcl Tool Command Language.

TSV Through-Silicon Vias.

USB Universal Serial Bus.

WA Write Address.

WE Write Enable.

xbinst Xilinx Board INSTallation.

xbsak Xilinx Board Swiss Army Knife.

XCL HAL Xilinx OpenCL Hardware Abstraction Layer.

xclbin Xilinx OpenCL Compute Unit Binary.

XDC Xilinx Design Constraints.

XDMA Xilinx DMA Subsystem for PCIe.

xocc Xilinx OpenCL Compiler.

XPR Expanded Partial Reconfiguration.

CHAPTER 1

Introduction

1.1 Heterogeneous system for HPC application

Traditional computing systems always relied on the use of Central Processing
Units (CPUs) for the computation of applications. This was a valid solution while
power and energy were not a concern. However, as performance and size of these
systems grew the influence of the power consumption and energy dissipation
became apparent and CPUs were no longer regarded as the only one computing
components in the system.

This led to the emergence of heterogeneous computing. In such a system, dif-
ferent types of computing devices, each with different power consumption values
and performances can be used all together. They rely on different architectures
and therefore they are better suited for specific and particular programming ap-
proaches and problems definitions.

The first boost we had in High-Performance Computing (HPC) systems was
the adoption of Graphics Processing Units (GPUs) as computing devices, typi-
cally regarded to be used in desktop systems for graphics processing. The com-
puting capabilities of GPUs as they have many small cores with floating point
capabilities, made those devices perfect for massive parallel applications being
efficiently computed on them. Although power consumption of GPUs can be on
par with CPUs they exhibit one or two orders of magnitude (if not more) when
compared with CPUs.

Indeed, nowadays, new applications from the recent Artificial Intelligence
(AI) boost with Deep convolutional Neural Network (DNN), and the fusion of
Big Data (BD) and HPC led the GPUs to be seen as commodity components and
key players in such large installations.

While the CPU and GPUs are combined and they are the elected components,
we can see the emergence of other heterogeneous components which can be used
for more specific application domains or where power and energy are of real
concern. This is the case of manycores (one clear example is the Intel Xeon Phi
which later was discontinued) and the Field Programmable Gate Arrays (FPGAs).
FPGAs are flexible devices where its architecture can be programmed and thus,
the hardware inside the FPGA can be perfectly adapted to the algorithm used

1

2 Introduction

(a) Performance (b) Performance/Watt

Figure 1.1: Results for Classic DNNs

to solve a problem. Indeed, FPGAs are massively used in embedded systems
domains and critical application domains such space, avionics, and automotive.

For HPC systems there are new efforts and early adoptions of FPGAs-based
systems for HPC computation problems. Although FPGAs are flexible, they are
not so powerful as GPUs in floating point operations. However, FPGAs can be
very profitable in specific application domains for HPC where floating point is
not of vital need and reduced precision algorithms can be used instead. In this
project we bet for the use of FPGAs as a equal partner in the set of computing
devices and focus on their adoption for HPC systems.

in favour of what has been said, a study carried out by Intel is reported [5].
This study compares FPGAs and GPU, supported by several algorithms of DNN.
In this thesis work, the results of what is called Classic DNNs in the study are
reported in the following Figures 1.1.

As we can see, the threshold in the case of performance, represented by the
GPU, is not reached by the two FPGAs. While in the case of Strafix 10, the power
consumption is much higher.

The use of FPGAs in HPC systems is increasingly widespread due to this
power consumption advantage: this advantage is multiplied by the huge num-
ber of FPGAs that can replace GPUs in a heterogeneous HPC system, drastically
reducing power consumption.

1.2 Standard vs custom FPGAs platform

Once we adopted the use of FPGAs for HPC systems, we need to care about the
flexibility offered by these systems for the average programmer. Indeed, it is well
known the complexity and the difficulties that FPGA programming has imposed
to the end users. This is out of question as is clear the average programmer does
not have any expertise on computer architecture and any design expertise. In-
deed, an FPGA can be programmed easily but the resulting performance will be
quite poor as the flexibility of components connection inside the FPGA are not
exploited.

1.3 MANGO infrastructure 3

deeply heterogeneous acceleration Node (HN)

GN

HN

GN

GN

HN

HN

HN

GN

GN

GN

GN

GN

GN

GN

HN

HN

HN

GN

HN

GN

HN

GN

HN

GN

General-purpose
compute Node (GN)

CPU GPU

SSD DDR

PCIe

Figure 1.2: MANGO Prototype

To solve this bridge gap between FPGA programming and end user exper-
tise, the Open Computing Language (OpenCL) programming paradigm came
into play (other solutions exist also). OpenCL defines a programming approach
where FPGAs can be programmed easily and with the required abstraction of its
complexities and optimization opportunities. In Chapter 2.3 we fully describe the
OpenCL framework.

OpenCL can be directly used by most FPGA boards available in the mar-
ket. Indeed, the FPGA manufacturing companies (mostly Xilinx and Intel/Al-
tera) offer their boards with current software and hardware support for the use
of OpenCL programming frameworks. Xilinx and Intel/Altera market different
FPGA-based acceleration platforms, but the flow used is very similar. The key
goal of the flow lays in enabling a hardware platform and a set of software li-
braries to diminish programming complexities and facilitate the application of
acceleration to software developers. However, and here is where our project is
focused to, other FPGA systems implemented by third party companies do not
have such support for OpenCL as they are focused on other fields, mostly Ap-
plication Specific Integrated Circuit (ASIC) prototyping. This is the case of the
products offered by the proDesign company, which offers an interesting solution
where one can build a complete large FPGA solution with components as if they
were part of a LEGO game. FPGA boards, Double Data Rate (DDR) memories,
and Input/Output (I/O) components can be plugged in different ways based on
the computing needs.

1.3 MANGO infrastructure

The MANGO prototype is shown in Figure 1.2. As we can see there is two types
of node:

4 Introduction

• Heterogeneous Node (HN): to instantiate different hardware architectures
coded directly in Hardware Description Language (HDL) programming lan-
guages. Each HNs consist of 12 FPGAs and 22GB of DDR-3 and DDR-
4 memory mounted on top of 4 proFPGA motherboards from ProDesign
GmbH. This cluster is also heterogeneous, since it is composed of differ-
ent types of FPGAs: Xilinx Kintex Ultrascale KU115, Xilinx Virtex 7 Series
V2000T, Xilinx Zynq 7000 SoC Z100 and Intel Stratix 10 SG280.

• General-purpose Node (GN): to run a low-level runtime library and ex-
tended a runtime management system to manage both the different com-
putational units implemented on a given architecture and the architecture
itself. Each GNs consist of an high-end Intel Xeon E5 V3, a GPU, 64 GB of
DDR4 of memory, 1 TB SSD hard disk and a PCI Express (PCIe) connectiv-
ity.

Every HN is connected to a GN through PCIe Gen3 x8 lanes, thus every GN
can access two different HNs, for a total of 24 FPGAs and 44 GB of DDR3/4
memory.

The MANGO prototype was originally made of 16 clusters each with 12 FP-
GAs and 8 DDR memories. However, after project end, the prototype was split
and UPV received half of the prototype, which still has reasonable performance
capabilities. In this section we briefly describe the MANGO prototype located at
UPV premises and which is the target of our project.

1.4 Goals and Motivations of this Work

Contrary to the Intel and Xilinx approach, the FPGAs delivered within the MANGO
prototype are not equipped with any kind of circuitry to provide a high-performance
communication link with the host or to facilitate the programming of these de-
vices to software developers.

The goal of this thesis work is to create a Platform, including both hardware
and software, on a FPGA implemented by a third-party company. The Platform
will be used by the MANGO project and will therefore use its infrastructure. In
particular the FPGA target is the Xilinx Kintex UltraScale KU115 provided by
proDesign.

To reach the final goal, several sub-objectives will be achieved, including en-
abling the OpenCL and High-Level Synthesis (HLS) high-level programming
models for the MANGO prototype.

1.5 Structure of the Document

The project of this thesis is to solve a purely technical problem. Therefore, in the
Chapter 2 will be exposed all the knowledge useful to a reader to understand
what has been addressed. The chapter is extremely substantial because, as also

1.5 Structure of the Document 5

said in Chapter 1, the proposed problem embraces many technologies, including
FPGA, OpenCL and Platform concept.

In the Chapter 3 the whole process of development of the custom Platform and
all the design choices made and the why of certain choices will be explained. In
addition, it will be explained in the same Chapter, the tests carried out to evaluate
the correct functioning of the Custom Platform and evaluate its performance.

In Chapter 4, the final conclusions are presented, along with some suggestions
on how the results could be further improved.

CHAPTER 2

Background

As said, several technologies are used in this thesis work. This chapter introduce
the knowledge about these technologies, therefore most of reported information
are taken from technical official documentation.

2.1 FPGA introduction

FPGAs are pre-fabricated silicon devices that can be electrically programmed to
become almost any kind of digital circuit or system. Compared to ASIC technol-
ogy, FPGAs provide advantages in terms of reduced reprogramming time and,
consequently, cost. In fact, while for ASICs reprogramming time takes months
and millions of dollars, for FPGAs it takes only a few moments. The flexible
nature of an FPGA has a significant cost in terms of area, delay and power con-
sumption.

2.1.1. Architecture

As shown in figure 2.1, FPGAs consist of a series of programmable logic blocks
of different types: general logic blocks, memory blocks and multipliers. These
elements are interconnected by a programmable routing fabric. The matrix is
surrounded by programmable I/O blocks that connect the chip to the outside
world. The term programmable indicates the ability to program a function in the
chip after silicon manufacturing is completed.

2.1.2. Taxonomy

2.1.2.1. Static Memory Programming Technology

The static memory cells, represented in Figure 2.2, are the basis of the Static Ran-
dom Access Memory (SRAM) programming technology. Nowadays this technol-
ogy is the most used by Xilinx, Lattice and Altera. In these devices, static memory
cells are distributed throughout the FPGA to provide configurability. The SRAM
cells allow to

7

8 Background

Figure 2.1: FPGA architecture

• select lines to multiplexers that steer interconnect signals, by the circuit
shown in Figure 2.3a.

• store the data in the Look-Up Tables (LUTs) that are typically used in SRAM-
based FPGAs to implement logic functions, by the circuit shown in Figure
2.3b.

The main advantages of SRAM programming technology are reprogramma-
bility and the use of standard Complementary Metal-Oxide Semiconductor (CMOS)
process technology. The first is guaranteed by the fact that a SRAM cell can be
programmed an indefinite number of times. A dedicated circuit on the FPGA ini-
tializes all SRAM bits at power-up and configures the bits with a user-supplied
configuration. The second advantage is given by the fact that the use of SRAM

Figure 2.2: SRAM cell

2.1 FPGA introduction 9

(a) Multiplexer with Static Memory Cell (b) Static Memory Cells and Lookup Table

Figure 2.3: Use of static memory cells

cells does not require particular phases of Integrated Circuit (IC) processing be-
yond the standard CMOS. As a result, SRAM-based FPGAs can use the latest
CMOS technology available and therefore benefit from the increased integration,
higher speeds and lower dynamic power consumption of new processes with
smaller minimum geometries. However, SRAM-based programming technolo-
gies has the following disadvantages:

• The SRAM cell requires 5 or 6 transistors and the programmable element
used for signal interconnection requires at least a single transistor causing
size problems.

• Use of external devices, such as flash or Electrically Erasable Programmable
Read-Only Memory (EEPROM), to permanently store configuration data
when the device is powered down.

• Because the configuration information must be loaded into the device when
the power is turned on, there is a possibility that the configuration informa-
tion may be intercepted and stolen for use in a competing system.

• Multiplexers are implemented on pass transistor. However, they are not
ideal switches as they have significant ignition resistance and an apprecia-
ble capacitive load. The problem increases as the FPGAs switches to smaller
devices.

2.1.2.2. Flash/EEPROM Programming Technology

This technology is based on the use of floating gate programming technologies,
shown in figure 2.4, which inject the charge onto a gate that floats over the tran-
sistor. This approach is used in flash or EEPROM memory cells.

The operation of the scheme is as follows: the smaller programming tran-
sistor is used to program the floating gate (injecting a charge that remains even
when the power is switched off) while the larger switching transistor serves as a
programmable switch. The switching transistor must also be used to cancel the
device.

The advantages offered by this technology are: non-volatility and efficient
use in terms of area. Compared to SRAM-based programming technology, non-

10 Background

Figure 2.4: Floating gate transistor

volatility eliminates the need for external resources needed to store and load con-
figuration data and therefore also eliminates the need to wait for configuration
data to load when the device is powered on. The flash memory cells approach is
also more area efficient than SRAM-based technology due to the reduced number
of transistors to build the cell.

One of a disadvantages of flash-based devices is that they can not be repro-
grammed an infinite number of times. The accumulation of charge in the oxide
eventually prevents a flash-based device from being erased and programmed cor-
rectly after a certain number of reprogramming. For example the Actel ProASIC3
is only guaranteed for 500 programming cycles. Another significant disadvan-
tage of flash devices is the need for a non-standard CMOS process. Furthermore,
like SRAM-based programming technology, this programming technology suf-
fers from relatively high resistance and capacitance due to the use of transistor
switches.

Nowadays, there are devices on the market that use flash memory in combi-
nation with SRAM programming technology. In particular, on-chip flash memory
is used to provide non-volatile storage, while SRAM cells are still used to control
programmable elements in the design. This solves problems associated with the
volatility of pure SRAM approaches, such as the cost of additional storage de-
vices or the ability to intercept configuration data, while maintaining the infinite
reconfigurability of SRAM-based devices.

With the exception of very low capacity devices, such approaches are no longer
commonly used because of the static power dissipation inherent in such schemes.

2.1.2.3. Anti-fuse Programming Technology

Anti-fuse programming technology is based on anti-fuse as programmable ele-
ment. This structure exhibits very high-resistance under normal circumstances
but a low resistance link can be created. Unlike SRAM or floating gate program-
ming technologies, this link is permanent. Two approaches have been used to
implement anti-fuses: dielectric anti-fuses and metal-to-metal-based anti-fuses.

2.1 FPGA introduction 11

The primary advantage of anti-fuse programming technology is its low area.
With metal-to-metal anti-fuses, no silicon area is required to make connections,
decreasing the area overhead of programmability. Anti-fuses have an additional
advantage: they have lower on resistances and parasitic capacitances than other
programming technologies. The low area, resistance, and capacitance of the fuses
means it is possible to include more switches per device than in other technolo-
gies. Non-volatility also means that the device works instantly once programmed.
This lowers system costs since additional memory for storing the programming
information is not required and it also allows the FPGA to be used in situations
that require operation immediately upon power up. Finally, since programming,
and hence transmitting the bitstream to the FPGA, need only be done once, this
can be done in a secure environment which improves the security of the design
on the FPGA. To further enable this security, current devices offer security modes
which disable accesses through the programming interface once the device is pro-
grammed.

There are also significant disadvantages to this programming technology. In
particular, since anti-fuse-based FPGAs require a non-standard CMOS process,
they are typically well behind in the manufacturing processes that they can adopt
compared to SRAM-based FPGAs. Finally, the one-time programmability of anti-
fuses makes it impossible for manufacturing tests to detect all possible faults.
Some faults will only be uncovered after programming and, therefore, the yield
after programming will be less than SRAM or floating-gate devices.

2.1.3. Logic Block Architecture

The purpose of a logic block in an FPGA is to provide the basic computing and
storage elements used in digital logic systems.

In addition to a basic logic block, modern FPGAs contain a heterogeneous
mix of different blocks, some of which can only be used for very specific func-
tions, such as dedicated memory blocks or multipliers. These structures are very
efficient in implementing specific functions, but are wasted if not used.

In general, published research on logic block architecture tends to model and
explore relatively simple basic logic elements taking into account area, speed and
power. In contrast, commercial logic blocks have undergone an evolution that
typically has led to the development of more complex blocks in an attempt to
gain more functionality.

The most relevant trade-off in the study of logical blocks is the area. The
efficiency of the FPGA area is a key metric because the size of the FPGA dictates
a significant part of its cost, especially for devices with a large logical capacity.

In general, logic blocks are also called Configurable Logic Blocks (CLBs). Each
logic block contains a group of Basic Logic Elements (BLEs), shows in Figure 2.5,
where each BLE is formed by a LUT and an Flip-Flop (FF), as shown in figure 2.6.

12 Background

Figure 2.5: Configurable Logic Block

Figure 2.6: Basic Logic Element

2.1 FPGA introduction 13

2.1.3.1. Heterogeneity

As said, modern FPGA include different types of logical blocks. We give two
definitions:

• soft logic fabric: the array of combinational logic elements, each consisting
of a logic function implemented as a gate or LUT, that is connected through
a programmable routing fabric.

• hard circuit structure: any other circuitry employed in the device which
we define as a structure that allows the implementation of a specific logic
function, such as a dedicated FF inside a logic block.

Modern commercial FPGAs contain dedicated logic within each general pur-
pose block to support arithmetic carry and sum functions and some memory
functions.

We distinguish between two kinds of heterogeneity:

• soft logic fabric: it refers to the heterogeneity within the soft logic fabric
such as the FF and dedicated carry logic that appear alongside the combi-
national logic in every logic block that makes up the soft logic fabric.

• tile-based heterogeneity: distinct tiles containing dedicated hard circuit
structures are added to the array of tiles. For example, multi-bit Block
RAMs (BRAMs) or Multiply-Accumulate (MAC) blocks that appear in mod-
ern FPGAs are common hard circuit structures.

Figure 2.7 illustrates an FPGA with a mixture of different blocks with tile-
based heterogeneity.

Soft Fabric Heterogeneity As said Soft Fabric Heterogeneity contains a set of
heterogeneous elements. Examples of elements are:

• FF: all commercial FPGAs have included FFs in their basic logic elements.
Modern FPGA FFs are typically edge-triggered and include a variety of set,
reset, load, enable and clocking capabilities. Research investigated the area
efficiency of FPGAs with and without dedicated FFs, and clearly established
the significant benefits of including FF circuits within logic elements.

• circuitry for arithmetic operations: Many modern FPGAs include explicit
circuitry for addition/subtraction/carry logic to make adders and subtrac-
tion units smaller and faster.

Memory Since different applications will need memory configured in many dif-
ferent ways, basic memory blocks must be flexible and configurable. All contem-
porary FPGAs include memory blocks and they have grown to cover a significant
fraction of the FPGA die area.

14 Background

Figure 2.7: Illustration of tile based heterogeneity

Contemporary BRAMs provide the dual port functionality, i.e. they allow
simultaneous read and write operations.

Others recent FPGAs have special features such as the ability to support First
In First Out (FIFO) configurations. The cost of this added flexibility requires ad-
ditional memory ports and internal memory complexity. Complex memory op-
eration can be supported with control circuits implemented in soft logic. Often, it
can be costly to combine memory blocks to perform large, complicated memory
functions due to logic and routing overheads.

Computation-Oriented Tiles A popular industrial example of this type of block
is MAC, it is also called Digital Signal Processing (DSP).

If multipliers are not needed by an application, the multiplier tiles located in-
side a target FPGA provide little benefit. One way to deal with this issue is to
create multiple sub-families within a device family that use different ratios of soft
logic to hard-logic. A device family typically consists of a set of FPGAs with the
same basic architecture that contain differing amounts of resources. A designer
can select the device with the most appropriate ratio, minimizing wasted compu-
tational tiles.

Microprocessors Microprocessors are vital components in many digital systems.
Since they are often used in conjunction with FPGA logic, it makes sense to con-
sider their integration into an FPGA logic fabric.

A challenging aspect of including a hard processor on an FPGA is the devel-
opment of the interfaces between the processor, memory system, and the soft fab-
ric. Nowadays, the most used communication protocols is Advanced eXtensible
Interface (AXI).

2.1 FPGA introduction 15

The alternative to a hard processor is a soft processor, built out of the soft
fabric and other hard logic. The latter is generally slower in performance and
larger in terms of area. However, the soft processor can often be customized to
exactly suit the needs of the application to gain back some of the lost performance
and area-efficiency.

2.1.4. Routing Architecture

The programmable routing in an FPGA provides connections among logic blocks
and I/O blocks to complete a user-designed circuit. It consists of wires and pro-
grammable switches that form the desired connections. Additionally, circuits
also contain a number of signals such as clocks and resets that must be widely
distributed across the FPGA. Modern FPGAs all contain dedicated interconnect
networks that handle the distribution of these signals. Typically, these networks
are carefully designed to be low skew for use in distributing clock signals

We distinguish between two kinds of routing:

• global routing: defines the relative position of routing channels in relation
to the positioning of logic blocks, how each channel connects to other chan-
nels, and the number of wires in each channel.

• detailed routing: specifies the lengths of the wires, and the specific switch-
ing quantity and patterns between and among wires and logic block pins.

FPGA global routing architectures can be characterized as either hierarchical
or island-style. Currently, most commercial SRAM-based FPGA architectures use
island-style architectures.

2.1.4.1. Hierarchical-style

Hierarchical routing architectures, shows in Figure 2.8 separate FPGA logic blocks
into distinct groups. Connections between logic blocks within a group can be
made using wire segments at the lowest level of the routing hierarchy. Connec-
tions between logic blocks in distant groups require the traversal of one or more
levels (of the hierarchy) of routing segments.

The advantage of this placement of logical elements is that the predictabil-
ity of block delays is higher. The disadvantages, however, are present in design
mapping and scalability.

For these reasons, most recent commercial FPGA routing architectures do not
use this type of global routing architecture and, instead, use only one level of
hierarchy to create a flat, island-style global routing architecture.

2.1.4.2. Island-style

As shown in Figure 2.9, island-style FPGAs logic blocks are arranged in a two di-
mensional mesh with routing resources evenly distributed throughout the mesh.

16 Background

Figure 2.8: Hierarchical-style FPGA

2.1 FPGA introduction 17

Figure 2.9: Island-style FPGA

The logic blocks have routing channels on all four side. The number of wires
contained in a channel is pre-set during fabrication and generally lengths of wire
segments are different in an attempt to provide the most appropriate length for
each given connection.

The advantage of wires of different lengths near the logic blocks is that effi-
cient connections can be formed. The physical layout for each logic block and
surrounding routing channels can be optimized to form a single tile. This com-
bined logic and routing tile can be replicated in two dimensions to form the FPGA
array. As a result of this regularity, the minimum feasible routing delay between
logic blocks can quickly be estimated.

Others component in this type of routing architecture are:

• switch block: connects wires in adjacent channels through programmable
switches such as pass-transistors or bi-directional buffers.

• connection block: connects the wire segments around a logic block to its
inputs and outputs, also through programmable switches.

18 Background

2.1.5. I/O Architecture

In order to communicate with the outside world, a FPGA needs I/O cells. Given
the huge number of communication protocols, these blocks are extremely hetero-
geneous to meet voltage and speed requirements.

The I/O pad and surrounding supporting logic and circuitry as an I/O cell.
These cells, along with their supporting peripherals, consume a significant por-
tion of an area of FPGA.

2.1.5.1. Basic I/O Standards

The major challenge in I/O architecture design is the great diversity in I/O stan-
dards. For example, different standards may require different input voltage thresh-
olds and output voltage levels. To support these differences, different I/O supply
voltages are often needed for each standard. They may also require a reference
voltage to compare against the input voltages. Other standards require clamp-
ing diodes which allow specific abnormally high or low voltages to be tolerated.
Many standards also rely on differential signaling to improve noise immunity
and enable increased data transmission speeds. Proper termination is also essen-
tial for maintaining signal integrity but different standards have different termi-
nation requirements.

2.1.5.2. High-Speed I/O Support

When we talk about high-speed I/O we mean both the interfacing with the mem-
ory and the communication between two entities. In both cases, additional cir-
cuitry is required to facilitate this high-speed transfer. At a minimum, standards
that make use of differential signaling require two I/O cells to be paired together
with differential transmitters/receivers.

High-speed communication requires more than the high-speed signaling that
these analog features enable. Therefore, contemporary FPGAs frequently include
dedicated digital circuits to support higher-level protocols, such as PCIe

High-speed memory interfaces also need special-purpose hardware to accu-
rately capture data flowing between memory chips and the FPGA. Delay-Locked
Loops (DLLs) and Phase-Locked Loops (PLLs) are used to adjust the phase of a
transfer clock to ensure that data from the external memory is sampled when the
data is valid.

2.1.6. Programming

Nowadays, most FPGA vendors provide a set of design tools that allows auto-
matic synthesis and compilation from design specifications in hardware speci-
fication languages, such as Verilog or VHDL, all the way down to a bit-stream
to program FPGA chips. Examples of tool are Xilinx Vivado and Intel Quartus
Prime.

2.1 FPGA introduction 19

2.1.6.1. Inputs

Inputs to the design flow typically are:

• HDL specification of the design: the most widely used design specification
languages are Verilog and VHDL at the Register Transfer Level (RTL) which
specify the operations at each clock cycle. Nowadays, there is a general
trend to use a high-level languages like C or SystemC, or domain-specific
languages, such as MatLab or Simulink to simplify the programming of
FPGAs. Using these languages, one can specify the behavior of the design
without going through a cycle-accurate detailed description of the design.
A behavior synthesis tool is used to generate the RTL specification in Verilog
or VHDL.

• design constraints: design constraints typically include the expected op-
erating frequencies of different clocks, the delay bounds of the signal path
delays from input pads to output pads (I/O delay), from the input pads to
registers (setup time), and from registers to output pads (clock-to-output
delay). In some cases, delays between some specific pairs of registers may
be constrained. Design constraints may also include specifications of so-
called false paths and multi-cycle paths. False paths will not be activated
during normal circuit operation, and therefore can be ignored; multi-cycle
paths refer to signal paths that carry a valid signal every few clock cycles,
and therefore have a relaxed timing requirement. Finally, the design con-
straints may include physical location constraints, which specify that cer-
tain logic elements or blocks be placed at certain locations or a range of loca-
tions. These location constraints may be specified by the designer, or inher-
ited from the previous design iteration (for making incremental changes),
or generated automatically by the physical synthesis tools in the previous
design iterations.

• specification of target FPGA devices: each FPGA vendor typically pro-
vides a wide range of FPGA devices, with different performance, cost, and
power trade-offs. The selection of target device may be an iterative process.
The designer may start with a low capacity device with a nominal speed-
grade. if synthesis effort fails to map the design into the target device or if
the synthesis result fails to meet the operating frequency, the designer has
to, respectively, either upgrade to a high-capacity device or upgrade to a
device with higher speed-grade. In both the cases, the cost of the FPGA de-
vice will increase. This clearly underscores the need to have better synthesis
tools, since their quality directly impacts the performance and cost of FPGA
designs.

2.1.6.2. Fow

A typical FPGA design flow includes the steps and components shown in Figure
2.10.

We now briefly describe each step in the design flow shown in Figure 2.10:

20 Background

Figure 2.10: A typical FPGA design flow starting from RTL specifications

2.1 FPGA introduction 21

• RTL elaboration: identifies and/or infers datapath operations, such as sums,
multiplications, register files, and/or memory blocks, and control logic, which
is elaborated into a set of Finite-State Machine (FSM) and/or generic Boolean
networks. It is important to recognize the datapath elements due to special
architectural support in modern FPGAs, such as adders with dedicated fast-
carry chains and embedded multipliers.

• Architecture-independent optimization: this includes both datapath opti-
mization, using techniques such as constant propagation, strength reduc-
tion, operation sharing, and expression optimization; and control logic op-
timization, which includes both sequential optimization, such as FSM en-
coding/minimization and retiming, and combinational logic optimization,
such as constant propagation, redundancy removal, logic network restruc-
turing and optimization, and don’t-care based optimization.

• Technology mapping and architecture-specific optimization: maps: (i) the
optimized datapath to on-chip dedicated circuit structures, such as on-chip
multipliers, adders with dedicated carry-chains, and embedded memory
blocks for datapath implementation, and (ii) the optimized control logic to
BLEs. Note that datapath operations can be mapped to BLEs as well if the
dedicated circuit structures are not available or not convenient to use.

• Clustering and placement: determines the location of each element in the
mapped netlist. With hierarchical FPGAs a separate clustering step may be
performed prior to placement to group BLEs into logic blocks.

• Placement-driven optimization and incremental placement: once place-
ment is available, interconnects are defined and may become a performance
bottleneck. Further optimization may be carried out in the presence of inter-
connect delays, including logic restructuring, duplication, rewiring. After
such operations, an incremental placement step is needed to validate the
placement again. The step of placement-driven optimization is optional,
but may improve design performance considerably.

• Routing: global routing and detail routing will be performed to connect all
signal paths using the available programmable interconnects on-chip.

• Bit-stream generation: the final step of the design flow. It takes the mapped,
placed, and routed design as input and generates the necessary bit-stream
to program the logic and interconnects to implement the intended logic de-
sign and layout on the target FPGA device.

2.1.7. Xilinx vs Intel Altera FPGAs

2.1.7.1. Xilinx

The huge variety of FPGAs offered by Xilinx cannot be fully explored in this
Section. Therefore, since a Kintex UltraScale has been used in this thesis work,
the main features of FPGAs based on Ultrascale architecture will be exposed.

22 Background

The UltraScale architecture is one of the architecture proposed by Xilinx for its
FPGAs. UltraScale architecture-based devices address a vast spectrum of high-
bandwidth, high-utilization system requirements by using technical innovations,
including next-generation routing, ASIC-like clocking, 3D-on-3D ICs, Multipro-
cessor SoCs (MPSoCs) technologies, and new power reduction features. The de-
vices share many building blocks, providing scalability across process nodes and
product families to leverage system-level investment across platforms.

Kintex UltraScale is family devices for packet processing in networking and
data centers applications as well as DSP-intensive processing needed in next-
generation medical imaging, 8k4k video, and heterogeneous wireless infrastruc-
ture. Kintex UltraScale devices is a mid-range device that provides signal pro-
cessing bandwidth, next-generation transceivers, and low-cost packaging for an
optimum blend of capability and cost-effectiveness.

There are two types of slices in the UltraScale architecture, with different ratios
of the two types by device: SLICEL and SLICEM.

SLICEL The SLICEL has the LUT and storage element resources, along with
the carry logic and wide multiplexers. One SLICEL is included in a CLB. The
UltraScale architecture CLBs provide advanced, high-performance, low-power
programmable logic with:

• Real 6-input LUT capability.

• Dual 5-input LUT option.

• Distributed memory and Shift Register Logic (SRL) ability.

• Dedicated high-speed carry logic for arithmetic functions.

• Wide multiplexers for efficient utilization.

• Dedicated storage elements that can be configured as FFs or latches with
flexible control signals.

Each slice provides eight 6-input LUTs and sixteen FFs. The slices and their
CLBs are arranged in columns throughout the device, with the size and num-
ber of columns increasing with density. The UltraScale architecture LUTs can be
configured as shown in Figure 2.11.

Each LUT output can connect to slice outputs, or optionally be registered in
a FF or latch. The storage elements can also be driven by direct inputs to the
slice (X and I), or by the results of the internal carry logic or wide multiplexers,
as shown in Figure 2.12. The storage elements have a clock enable input, along
with an initialization signal that can be programmed as either synchronous or
asynchronous, and as set or reset.

Carry logic consists of dedicated carry-lookahead gates, multiplexers, and
routing that are independent of the general-purpose logic resources while provid-
ing both higher density and increased performance. Carry logic is often inferred
for smaller arithmetic functions.

Finally, a SLICEL is represented in Figure 2.13.

2.1 FPGA introduction 23

(a) One Function of 6 Inputs (b) Two Functions of 5 Inputs

Figure 2.11: LUT configuration

Figure 2.12: Xilinx SLICEL I/O connection

SLICEM A SLICEM use the LUTs as distributed 64-bit Random Access Mem-
ory (RAM), by adding a separate Write Address (WA), Write Enable (WE), and
clock signal. The LUT can be configured as either a 64x1 or 32x2 memory, as
shown in Figure 2.14. The direct inputs X and I serve as the data inputs.

The distributed RAM can be combined across the eight LUTs in the SLICEM
to create memories of up to 512 bits. The SLICEM shares a common write address
and write clock across all 8 LUTs. The SLICEM write enable is also shared but can
be used in combination with three other slice inputs for more flexibility.

Each LUT in a SLICEM can also be used as a 32-bit shift register (SRL32). Com-
bining the LUTs allows up to a 256-bit shift register in one SLICEM, compared to
the 16 dedicated FFs per slice.

DSP block The UltraScale devices have many dedicated low-power DSP slices,
combining high speed with small size while retaining system design flexibility.
The DSP resources enhance the speed and efficiency of many applications beyond
digital signal processing, such as wide dynamic bus shifters, memory address
generators, wide bus multiplexers, and memory-mapped I/O registers. The DSP
slice in the UltraScale architecture is defined using the DSP48E2 primitive and
the slice is referred to as either DSP or DSP48E2 in the Xilinx tools. The scheme
of the DSP48E2 slice is shown in Figure 2.15.

The DSP slice functionality include:

• 27x18 two’s complement multiplier with dynamic bypass

24 Background

Figure 2.13: Xilinx SLICEL architecture

2.1 FPGA introduction 25

(a) 64x1 Distributed RAM (b) 32x2 Distributed RAM

Figure 2.14: LUT configuration

Figure 2.15: Xilinx DSP architecture

• Power saving 27-bit pre-adder: optimizes symmetrical filter applications
and reduces DSP logic requirements

• 48-bit accumulator that can be cascaded to build 96-bit and larger accumu-
lators, adders, and counters

• Single Instruction Multiple Data (SIMD) arithmetic unit: dual 24-bit or quad
12-bit add/subtract/accumulate

• 48-bit logic unit: bitwise AND, OR, NOT, NAND, NOR, XOR, and XNOR

• Pattern detector: terminal counts, overflow/underflow, convergent/sym-
metric rounding support, and 96-bit wide AND/NOR when combined with
logic unit

• Optional pipeline registers and dedicated buses for cascading multiple DSP
slices in a column for hierarchical/composite functions like Systolic Finite
Impulse Response (FIR) filters

Applications of the DSP slice include:

• Fixed and floating point Fast Fourier Transform (FFT) functions

• Systolic FIR filters

• MultiRate FIR filters

• Cascaded Integrator-Comb (CIC) filters

• Wide real/complex multipliers/accumulators

26 Background

Figure 2.16: Xilinx FPGA enabled by SSI Technology

SSI technology Since the FPGA chosen for this thesis work uses Stacked Silicon
Interconnect (SSI) technology, we introduce what this technology is.

The growing demand for FPGAs with high capacity and high bandwidth has
led Xilinx to define a new technology to meet these needs with the second gener-
ation of the pioneering 3D SSI technology.

SSI technology uses passive silicon interposers with microbumps and Through-
Silicon Vias (TSV) to combine multiple highly manufacturable FPGA die slices,
referred to as SRLs, in a single package. The technology also allows die of differ-
ent types or silicon processes to be interconnected on the interposer. This type of
construction is referred to as a heterogeneous FPGA. Figure 2.16 shows the side
view of the die stack-up with four FPGA SRLs, silicon interposer, and package
substrate.

2.1.7.2. Intel Altera

Logic fabric The logical fabric of Intel Altera FPGAs consists of logical blocks
called Adaptive Logic Module (ALM). As we can see in Figure 2.17, it consists of
combinational logic, two registers, and two adders. The combinational portion
has eight inputs and includes a LUT that can be divided between two Adaptive
LUTs (ALUTs) using Altera’s patented LUT technology. To implement an arbi-
trary six-input function, ALM is needed, but because it has eight inputs to the
combinational logic block, one ALM can implement various combinations of two
functions.

Building LUTs Since the type of FPGA produced by Intel Altera is SRAM-
based programming technology, a LUT consists of SRAMs to hold the the config-
uration memory LUT-mask and a set of multiplexers to select the configuration
bit to drive the output. Remember, to implement a k-input LUT, i.e. a LUT that
can implement any k-input function, 2k SRAM bits and a 2k : 1 multiplexer are
needed. Figure 2.18 shows an example of 4-LUT, which consists of 16 bits of
SRAM and a 16 : 1 multiplexer implemented as a tree of 2 : 1 multiplexers.

DSP block On Stratix II-IV devices the block DSP, shown in Figure 2.19, con-
sists of four 18x18 bit multipliers (signed or unsigned) and an adder tree with

2.1 FPGA introduction 27

Figure 2.17: ALM Block Diagram

Figure 2.18: Example of 4-LUT

28 Background

Figure 2.19: Intel Altera DSP block

Figure 2.20: Intel Altera DSP configuration

different possible configurations, represented in Figure 2.20. Stratix III-IV calls
these DSPs half-DSPs, and pack two of them into a block DSP. In these devices,
the limiting factor in terms of configurations is the number of I/O in the DSP
block. In addition, all DSPs allow various sum-of-two/four modes for greater
versatility. Here also, adjacent DSP blocks can be cascaded, internal registers
allow high-frequency pipelining and a loopback path allows for accumulation.
These cascading chains reduce resource consumption, but also latency: a sum-of-
two 27-bit multipliers can be clocked at the nominal DSP speed in just 2 cycles.

Routing architecture The routing architecture provides the connectivity between
different clusters of logic blocks, called Logic Array Blocks (LABs), and can be
measured by the number of hops required to get from one LAB to another. The
fewer the number of hops and more predictable the pattern, the better the perfor-
mance and the easier it is for Computer-Aided Design (CAD) tool optimization.

The Stratix and Stratix II families use a three-sided routing architecture as
shown in Figure 2.21. This means that a LAB can drive or listen to all of the wires
on one horizontal channel above it and two vertical channels to the left and right
side of it. The channels contain wires of length 4, 8, 16, and 24, and signals can
get off at any LAB along the length of the wire.

2.2 Partial Reconfiguration

Partial Reconfiguration (PR) takes the flexibility offered by FPGA one step fur-
ther, allowing the modification of an operating FPGA design by loading a partial
configuration file, usually a partial bitstream file. After a full bitstream file con-
figures the FPGA, partial bitstream files can be downloaded to modify reconfig-

2.2 Partial Reconfiguration 29

Figure 2.21: Rounting of Intel Altera FPGAs

urable regions in the FPGA without compromising the integrity of the applica-
tions running on those parts of the device that are not being reconfigured.

There are many reasons why the ability to time multiplex hardware dynami-
cally on a single FPGA is advantageous. These include:

• Reducing the size of the FPGA needed to implement a given function, with
consequent reductions in cost and power consumption.

• Providing flexibility in the choices of algorithms or protocols available to an
application.

• Enabling new techniques in design security

• Improving FPGA fault tolerance

• Accelerating configurable computing

In addition to reducing size, weight, power and cost, PR enables new types of
FPGA designs that would be otherwise impossible to implement.

We can find examples of partial reconfiguration application in networks, cryp-
tography and HPC fields.

2.2.1. Vivado Partial Reconfiguration design flow

The Vivado Partial Reconfiguration design flow is similar to a standard design
flow, with some notable differences. The implementation software automatically
manages the low-level details to meet silicon requirements. It is needed to guide
to define the design structure and floorplan. The following steps summarize pro-
cessing a PR design:

1. Synthesize the static and Reconfigurable Modules (RMs) separately.

2. Create physical constraints (Physical Blocks (Pblocks)) to define the recon-
figurable regions.

3. Set the HD.RECONFIGURABLE property on each Reconfigurable Partition
(RP).

30 Background

4. Implement a complete design (static and one RM per RP) in context.

5. Save a design checkpoint for the full routed design.

6. Remove RMs from this design and save a static-only design checkpoint.

7. Lock the static placement and routing.

8. Add new RMs to the static design and implement this new configuration,
saving a checkpoint for the full routed design.

9. Repeat Step 8 until all RMs are implemented.

10. Run a verification utility (pr_verify) on all configurations.

11. Create bitstreams for each configuration.

2.3 OpenCL introduction

Most information in this Section has been extracted from [12].

OpenCL is an open royalty-free standard for general-purpose parallel pro-
gramming across CPUs, GPUs and other processors, giving software developers
portable and efficient access to the power of these heterogeneous processing plat-
forms.

OpenCL supports a wide range of applications, ranging from embedded and
consumer software to HPC solutions, through a low-level, high-performance,
portable abstraction. By creating an efficient, close-to-the-metal programming
interface, OpenCL will form the foundation layer of a parallel computing ecosys-
tem of platform-independent tools, middleware and applications.

OpenCL is particularly suited to play an increasingly significant role in emerg-
ing interactive graphics applications that combine general parallel compute algo-
rithms with graphics rendering pipelines. OpenCL consists of an Application
Programming Interface (API) for coordinating parallel computation across het-
erogeneous processors; and a cross-platform programming language with a well-
specified computation environment.

2.3.1. Platform Model

The Platform Model for OpenCL is defined in Figure 2.22. The model consists of
a host connected to one or more OpenCL devices. An OpenCL device is divided
into one or more Compute Units (CUs) which are further divided into one or
more Processing Elements (PEs). Computations on a device occur within the PEs.

An OpenCL application runs on a host according to the models native to the
host platform. The OpenCL application submits commands from the host to ex-
ecute computations on the processing elements within a device. The processing
elements within a CU execute a single stream of instructions as SIMD units (exe-
cute in lockstep with a single stream of instructions) or as Single Program Multi-
ple Data (SPMD) units (each PE maintains its program counter).

2.3 OpenCL introduction 31

Figure 2.22: The logical view of OpenCL Platform Model

2.3.2. Memory Model

Work-item(s) executing a kernel, have access to four distinct memory regions:

• Global Memory: this memory region permits read/write access to all work-
items in all work-groups. Work-items can read from or write to any element
of a memory object. Reads and writes to global memory may be cached de-
pending on the capabilities of the device.

• Constant Memory: a region of global memory that remains constant during
the execution of a kernel. The host allocates and initializes memory objects
placed into constant memory.

• Local Memory: a memory region local to a work-group. This memory re-
gion can be used to allocate variables that are shared by all work-items in
that work-group. It may be implemented as dedicated regions of mem-
ory on the OpenCL device. Alternatively, the local memory region may be
mapped onto sections of the global memory.

• Private Memory: a region of memory private to a work-item. Variables
defined in one work-item’s private memory are not visible to another work-
item.

The memory regions and how they relate to the platform model are described
in Figure 2.23.

The application running on the host uses the OpenCL API to create memory
objects in global memory and to enqueue memory commands that operate on
these memory objects.

The host and OpenCL device memory models are, for the most part, inde-
pendent of each other. This is necessary given that the host is defined outside
OpenCL. They, however, at times need to interact. This interaction occurs in one
of two ways: by explicitly copying data or by mapping and unmapping regions
of a memory object.

To copy data explicitly, the host enqueues commands to transfer data between
the memory object and host memory. These memory transfer commands may
be blocking or non-blocking. The OpenCL function call for a blocking memory

32 Background

Figure 2.23: The logical view of OpenCL Memory Model

transfer returns once the associated memory resources on the host can be safely
reused. For a non-blocking memory transfer, the OpenCL function call returns as
soon as the command is enqueued regardless of whether host memory is safe to
use.

The mapping/unmapping method of interaction between the host and OpenCL
memory objects allows the host to map a region from the memory object into its
address space. The memory map command may be blocking or non-blocking.
Once a region from the memory object has been mapped, the host can read or
write to this region. The host unmaps the region when accesses (reads and/or
writes) to this mapped region by the host are complete.

2.3.2.1. Memory Consistency

OpenCL uses a relaxed consistency memory model. In other words, the state
of memory visible to a work-item is not guaranteed to be consistent across the
collection of work-items at all times.

Within a work-item memory has load/store consistency. Local memory is
consistent across work-items in a single work-group at a work-group barrier.

Global memory is consistent across work-items in a single work-group at a
work-group barrier, but there are no guarantees of memory consistency between
different work-groups executing a kernel.

Memory consistency for memory objects shared between enqueued commands
is enforced at a synchronization point.

2.3.3. Execution Model

Execution of an OpenCL program occurs in two parts: kernels that execute on
one or more OpenCL devices and a host program that executes on the host. The
host program defines the context for the kernels and manages their execution.

2.3 OpenCL introduction 33

The core of the OpenCL execution model is defined by how the kernels ex-
ecute. When a kernel is submitted for execution by the host, an index space is
defined. An instance of the kernel executes for each point in this index space.
This kernel instance is called a work-item and is identified by its point in the
index space, which provides a global ID for the work-item. Each work-item exe-
cutes the same code but the specific execution pathway through the code and the
data operated upon can vary per work-item.

Work-items are organized into work-groups. The work-groups provide a more
coarse-grained decomposition of the index space. Work-groups are assigned a
unique work-group ID with the same dimensionality as the index space used
for the work-items. Work-items are assigned a unique local ID within a work-
group so that a single work-item can be uniquely identified by its global ID or
by a combination of its local ID and work-group ID. The work-items in a given
work-group execute concurrently on the processing elements of a single compute
unit.

The index space supported in OpenCL is called an NDRange. An NDRange
is an N-dimensional index space, where N is one, two or three. An NDRange is
defined by an integer array of length N specifying the extent of the index space in
each dimension starting at an offset index F (zero by default). Each work-item’s
global ID and local ID are N-dimensional tuples. The global ID components are
values in the range from F, to F plus the number of elements in that dimension
minus one.

Work-groups are assigned IDs using a similar approach to that used for work-
item global IDs. An array of length N defines the number of work-groups in each
dimension. Work-items are assigned to a work-group and given a local ID with
components in the range from zero to the size of the work-group in that dimen-
sion minus one. Hence, the combination of a work-group ID and the local-ID
within a work-group uniquely defines a work-item. Each work-item is identifi-
able in two ways; in terms of a global index, and terms of a work-group index
plus a local index within its work-group.

2.3.3.1. Context and Command Queues

The host defines a context for the execution of the kernels. The context includes
the following resources:

• Devices: the collection of OpenCL devices to be used by the host.

• Kernels: the OpenCL functions that run on OpenCL devices.

• Program Objects: the program source and executable that implement the
kernels.

• Memory Objects: a set of memory objects visible to the host and the OpenCL
devices. Memory objects contain values that can be operated on by in-
stances of a kernel.

The context is created and manipulated by the host using functions from the
OpenCL API. The host creates a data structure called a command-queue to co-

34 Background

ordinate execution of the kernels on the devices. The host places the commands
into the command-queue which are then scheduled onto the devices within the
context. These include:

• Kernel execution commands: execute a kernel on the processing elements
of a device.

• Memory commands: transfer data to, from, or between memory objects, or
map and unmap memory objects from the host address space.

• Synchronization commands: constrain the order of execution of commands.

The command-queue schedules the commands for execution on a device. These
execute asynchronously between the host and the device. Commands execute rel-
ative to each other in one of two modes:

• In-order Execution: commands are launched in the order they appear in
the command-queue and complete in order. In other words, a prior com-
mand on the queue completes before the following command begins. This
serializes the execution order of commands in a queue.

• Out-of-order Execution: commands are issued in order, but do not wait to
complete before following commands execute. Any order can be enforced
by the programmer through explicit synchronization commands.

Kernel execution and memory commands submitted to a queue generate event
objects. These are used to control execution between commands and to coordi-
nate execution between the host and the devices.

It is possible to associate multiple queues with a single context. These queues
run concurrently and independently with no explicit mechanisms within OpenCL
to synchronize between them.

2.3.3.2. Categories of Kernels

The OpenCL execution model supports two categories of kernels:

• OpenCL kernels are written with the OpenCL C programming language
and compiled with the OpenCL compiler. All OpenCL implementations
support OpenCL kernels. Implementations may provide other mechanisms
for creating OpenCL kernels.

• Native kernels are accessed through a host function pointer. Native kernels
are queued for execution along with OpenCL kernels on a device and share
memory objects with OpenCL kernels. For example, these native kernels
could be functions defined in application code or exported from a library.
Note that the ability to execute native kernels is an optional functionality
within OpenCL and the semantics of native kernels are implementation-
specific. The OpenCL API includes functions to query capabilities of a de-
vice and determine if this capability is supported.

2.3 OpenCL introduction 35

2.3.4. Programming Model

The OpenCL execution model supports data-parallel and task-parallel program-
ming models, as well as supporting hybrids of these two models. The primary
model driving the design of OpenCL is data-parallel.

2.3.4.1. Data-Parallel Programming Model

A data-parallel programming model defines a computation in terms of a sequence
of instructions applied to multiple elements of a memory object. The index space
associated with the OpenCL execution model defines the work-items and how
the data maps onto the work-items. In a strictly data-parallel model, there is a
one-to-one mapping between the work-item and the element in a memory object
over which a kernel can be executed in parallel. OpenCL implements a relaxed
version of the data-parallel programming model where a strict one-to-one map-
ping is not a requirement.

OpenCL provides a hierarchical data-parallel programming model. There are
two ways to specify the hierarchical subdivision. In the explicit model, a pro-
grammer defines the total number of work-items to execute in parallel and also
how the work-items are divided among work-groups. In the implicit model, a
programmer specifies only the total number of work-items to execute in parallel,
and the division into work-groups is managed by the OpenCL implementation.

2.3.4.2. Task Parallel Programming Model

The OpenCL task parallel programming model defines a model in which a single
instance of a kernel is executed independently of any index space. It is logically
equivalent to executing a kernel on a CU with a work-group containing a single
work-item. Under this model, users express parallelism by:

• using vector data types implemented by the device,

• enqueuing multiple tasks, and/or

• enqueuing native kernels developed using a programming model orthogo-
nal to OpenCL.

2.3.4.3. Synchronization

There are two domains of synchronization in OpenCL:

• Work-items in a single work-group

• Commands enqueued to command-queue(s) in a single context

Synchronization between work-items in a single work-group is done using a
work-group barrier. All the work-items of a work-group must execute the bar-
rier before any is allowed to continue execution beyond the barrier. Note that the

36 Background

work-group barrier must be encountered by all work-items of a work-group ex-
ecuting the kernel or by none at all. There is no mechanism for synchronization
between work-groups.

The synchronization points between commands in command-queues are:

• Command-queue barrier. The command-queue barrier ensures that all pre-
viously queued commands have finished execution and any resulting up-
dates to memory objects are visible to subsequently enqueued commands
before they begin execution. This barrier can only be used to synchronize
between commands in a single command-queue.

• Waiting for an event. All OpenCL API functions that enqueue commands
return an event that identifies the command and memory objects it updates.
A subsequent command waiting on that event is guaranteed that updates
to those memory objects are visible before the command begins execution.

2.3.5. OpenCL Framework

The OpenCL framework allows applications to use a host and one or more OpenCL
devices as a single heterogeneous parallel computer system. The framework con-
tains the following components:

• OpenCL Platform layer: the platform layer allows the host program to dis-
cover OpenCL devices and their capabilities and to create contexts.

• OpenCL Runtime: the runtime allows the host program to manipulate con-
texts once they have been created.

• OpenCL Compiler: the OpenCL compiler creates program executables that
contain OpenCL kernels. The OpenCL C programming language imple-
mented by the compiler supports a subset of the ISO C99 language with
extensions for parallelism.

2.3.6. OpenCL Devices and FPGAs

In the context of CPU and GPU devices, the attributes of a device are fixed and
the programmer has very little influence on what the device looks like. On the
other hand, this characteristic of CPU/GPU systems makes it relatively easy to
obtain an off-the-shelf board, i.e. this devices are ready to use without any type
of changes. The major limitation of this type of device is that there is no direct
connection between system I/O and the OpenCL kernels. All transactions of data
are through memory-based transfers.

An OpenCL device for an FPGA is not limited by the constraints of a CPU/GPU
device. By taking advantage of the fact that the FPGA starts off as a blank com-
putational canvas, the user can decide the level of device customization that is
appropriate to support a single application or a class of applications. In deter-
mining the level of customization in a device, the programmer needs to keep in

2.4 SDAccel Platform 37

proFPGA
hardware

infrastracture

Host application

proFPGA
software tool

Process

Design Vivado Bitstream

OpenCL
kernels

SDAccel
Partial

bitstream

OpenCL Enviroment

Hardware Platform

DMA/PCIe
AXI

Interconnect

CU

CU

CU

DDR

DDR

DDR

MC

Software Platform

Driver

Runtime

HAL

Figure 2.24: Entire system

mind that kernel compute units are not placed in isolation within the FPGA fab-
ric.

FPGA devices capable of supporting OpenCL programs can include, but are
not limited to, the following components:

• Direct Memory Access (DMA) engines

• I/O peripherals such as PCIe and Ethernet

• Memory controllers

• Custom interconnects

• OpenCL compute units

• RTL-based accelerators

2.4 SDAccel Platform

Platform, in this thesis work, is understood as the infrastructure, both hardware
and software, capable of accelerating an application. Figure 2.24 shows the entire
system useful to accelerating an application.

38 Background

Generating Platform
files

Creating Hardware
Platform

Creating Software
Platform

Figure 2.25: Creation Platform flow

In Figure 2.25 we show the flow for creating a Platform. In this Section, con-
cepts for both hardware and software will be introduced.

2.4.1. Hardware Platform

The term Hardware Platform represents the physical board interface and the
Programmable region. The Hardware Platform consists of a Vivado Intellectual
Property (IP) Integrator design with a target device and all interface IPs config-
ured and connected to the device I/Os and the Programmable region. It also con-
tains the interface representation of the Programmable region. Figure 2.26 shows
an example of the Hardware Platform. as we can see, the components used are:

• DMA/PCIe Controller: perform direct memory transfers, both DMA Read
Channel (H2C), and DMA Write Channel (C2H). It is used to send com-
mand and data to our design.

• AXI Interconnect: allows any mixture of AXI master and slave devices to
be connected to it, which can vary from one another in terms of data width,
clock domain and AXI sub-protocol (AXI4, AXI3, or AXI4-Lite).

• Memory Controller: manages the flow of data going to and from the DDR.

• DDR: is the memory of the device. The DDR number can be chosen during
the design phase.

• Compute Unit: is the calculation unit dedicated to a single kernel.

The Programmable region and Static region is programmed by different tools,
as shown in Figure 2.27.

The Static Region represents the fixed logic portion of the programmable de-
vice that manages the design state before, during, and after partial reconfigu-
ration of the Programmable region. This logic is not re-implemented with the
Programmable region.

The Programmable region describes the partition region that accepts the hard-
ware functions from the SDAccel Development Environment. The term also de-
scribes the physical resources available on the programmable device to imple-
ment the hardware functions. Special parameters and design considerations are

2.4 SDAccel Platform 39

Host

Static region (Communication infrastructure)

Reconfigurable OpenCL Region (OCL Region)

AXI
Interconnect

AXI
Interconnect

Compute Unit

Compute Unit

Compute Unit

Compute Unit

PCIe Endpoint
PCIe DMA
Controller

AXI
Interconnect

AXI
Interconnect

Memory
Controller

DDR

Xilinx FPGA

DDR

DDR

PCIe

Figure 2.26: Logical view of SDAccel Hardware Platform

Static region

Reconfigurable region

Partial bitstream
file

SDAccel

OpenCL kernels

Hardware
Platform
design

Vivado

Full bitstream
file

Figure 2.27: Tools used to manage the SDAccel Hardware Platform

40 Background

required for signals that cross between the Static region and the Programmable
region.

Building Xilinx FPGA-based OpenCL devices requires FPGA design expertise
and is beyond the scope of SDAccel itself. Devices for SDAccel are created using
the Xilinx Vivado design suite for FPGA designers. SDAccel provides pre-defined
devices as well as allows users to augment the tool with third party created de-
vices. The devices available in SDAccel are for Virtex-7, Kintex-7, and Kintex-
UltraScale devices from Xilinx. These devices are available in a PCIe form factor.
The PCIe form factor assumes that the host processor is an x86 based processor
and that the FPGA is used for the implementation of compute units.

Nowadays, Xilinx advises against Platform development, both on FPGAs of
Xilinx and third-party FPGAs, and has removed any kind of support, including
various documentation, due to the introduction of Alveo acceleration boards.

2.4.1.1. OpenCL Region

An SDAccel device contains a customization area called the OpenCL Region (OCL
Region). Although not defined in the OpenCL standard, the OCL Region is an im-
portant concept in SDAccel. The compute units generated from user kernel func-
tions are placed in this region. These compute units are highly specialized to ex-
ecute a single kernel function and internally contain parallel execution resources
to exploit work-group level parallelism. By placing multiple compute units of
the same type in the OCL Region, developers can easily scale the performance of
single kernels across larger NDRange sizes. By placing multiple compute units
of different types in the OCL Region, developers can leverage task parallelism
between disparate kernels. In this way, the massive amounts of parallelism avail-
able in the FPGA device can be customized and harnessed by the SDAccel de-
veloper. This is different from CPU and GPU implementations of OpenCL which
contain a fixed set of general purpose resources.

The OCL Region contains the customized compute units which implement the
user-defined accelerator kernels. SDAccel automatically adds the necessary inter-
connects for these compute units to communicate with the rest of the Platform.
Also contained on the FPGA device is a Static region including all the necessary
circuitry for communication between host, compute units, and off-chip global
memory. This Static region is a pre-defined base Platform which can be flashed
onto an Erasable Programmable Read-Only Memory (EPROM) on the board. The
FPGA would then be configured with this base Platform upon power-up and is
always there and accessible for the user. As shown in Figure 2.26, communication
to the host is performed over PCIe, a fast, standard interface used to connect and
link with boards.

2.4.1.2. Partial Reconfiguration in SDAccel Hardware Platform

There are two methods for using PR in Hardware Platform designs: Regular
Partial Reconfiguration (RPR) and Expanded Partial Reconfiguration (XPR). The
Hardware Platform development process varies based on which of these meth-
ods is used, as it affects the logic hierarchy and design preparation techniques.

2.4 SDAccel Platform 41

Creating and
Configuring the Logic

Design

Designing for
Performance Profile

Device Planning
Working with SSI

devices

Logic Design using
IP Integrator

Applying Physical
Design Constraints

Implementing the
Hardware Platform

Design

Generate
DSA files

Applying Partial
Reconfiguration

Constraints

Create the Design
Hierarchy

I/O and Clock
Planning

Figure 2.28: Hardware Platform creation and validation flow diagram

The XPR method includes board interface logic and DDR memory that are
a part of the Hardware Platform design as part of the reconfigurable module.
Implementing these along with the kernel from the SDAccel Environment enables
the most effective use of the programmable device resources across the entire
design. This is primarily done to improve the quality of the results, and maximize
the performance of the overall design.

The smaller Static region contains the minimum logic needed to keep the
Hardware Platform online and connected while waiting to be reconfigured with
the hardware function of the Programmable region.

Typically with the XPR method, only the Xilinx DMA Subsystem for PCIe,
basic control interfaces, and clock sources are contained within the Static region.
This region is floorplanned to use as little of the device area as possible in order
to maximize the available area for kernel resources.

This thesis work uses the XPR, so this chapter will focus on this technique.

2.4.1.3. Hardware Platform Design Flow

Figure 2.28 illustrates the Hardware Platform design and validation flow.

Device Planning

Working with SSI Devices If the target device is a SSI device, the designer
must also analyze and plan the data flow across Super-Logic Region (SLR) bound-
aries. Although the increased availability of device resources in SSI devices is
beneficial, the delay penalty for routes crossing between SLRs can be significant,
and make timing closure especially difficult in highly connected designs.

42 Background

AXI data paths used in many Platforms are wide and generally include com-
binatorial paths to implement the AXI-4 Memory Mapped protocol. It is im-
perative that these data paths are well designed and contain as few logic levels
as possible when crossing SLR boundaries. I/O interfaces, IP logic distribution
across SLRs, and clock isolation should also be studied carefully. As the Hard-
ware Platform design is assembled and implemented, multiple iterations of the
floorplan to achieve the required results may be needed.

I/O and Clock Planning The designer needs to pay special attention to
the I/O interfaces and clocking topology used with SSI devices. Clocks within
a single SLR need to be isolated whenever possible. The logic associated with
various I/O interface IP should be floorplanned to reduce SLR crossings. The
designer should also assign I/Os with the objective of optimizing data flow, and
to account for the Programmable region logic coming from the SDAccel Develop-
ment Environment.

Logic Partitioning across SLRs To avoid unnecessary SLR boundary cross-
ing, floorplanning techniques are needed to assign specific IP cores to specific
SLRs. The designer needs to plan the intended logic flow while paying attention
to clock distribution, the expected logic size of the interfaces, and the utilization
of hardened device resources such as PCIe, BRAMs and DSPs.

When planning logic content for the design, the total resources available in
SSI devices should not be the only factor. Each SLR has a specific logic count, and
over packing a single SLR can lead to poor performance for the whole design.
Care has to be taken to balance the resource utilization across all SLRs as much
as possible.

The logic for the Programmable region needs to be planned as well. Opti-
mally, the Programmable region imported from SDAccel would be implemented
within a single SLR. Consistent timing performance is more challenging when
the Programmable region spans more than one SLR.

As previously commented, using an XPR Hardware Platform is preferred to
maximize device resources and to allow the implementation tools flexibility when
placing timing sensitive logic across the SLR boundaries.

Adding Pipeline Registers across SLRs If a critical interface must cross
an SLR boundary, the designer should consider adding pipeline registers to the
interconnect to help prevent performance degradation. These registers can be
floorplanned to assign them to a specific SLR resource, or allowed to float to let
the Vivado tool place them.

Figure 2.29 shows a simplified representation of the logic partitioning de-
scribed above. The red horizontal line represents the boundary between the two
SLRs. The small white squares represent pipeline stages that are floorplanned
for assignment to a specific SLR. The small gray squares in the figure represent
pipeline stages connecting to the Programmable region that are not floorplanned,
and may be placed on either side of the SLR boundary as determined by the Vi-
vado placer.

2.4 SDAccel Platform 43

Figure 2.29: Simplified representation of IP partitioning for controlled SLR crossing

Figure 2.30: Top-Level Logic Hierarchy for Expanded Region

The Static region logic interconnect has to be defined with careful floorplan-
ning of IP logic and signal interfaces and creating any necessary AXI Register SLR
crossings in order to effectively utilize both SLRs.

Logic Design using IP Integrator Vivado IP Integrator feature will use to cre-
ate the hardware platform logic design. This feature of the Vivado Design Suite
provides the necessary board information, interface IP, and the interface to the
programmable region which will be imported from the SDAccel Development
Environment.

Creating the Design Hierarchy The logic hierarchy of the Hardware Plat-
form must be carefully planned to properly support the partial reconfiguration
flow (RPR or XPR) for the Programmable region of the design, to define the static
base region, and to plan the signal flow across SLRs of SSI devices, and to other
elements of the Hardware Platform, such as components on the Platform board
or IP cores in the subsystem design. Proper levels of hierarchy need to be estab-
lished within the Vivado IP Integrator block design.

When using XPR, the expanded region and the Static region logic must be sep-
arately partitioned in the hierarchy of the Hardware Platform. Figure 2.30 shows
the top-level view of the IP Integrator block diagram of an example Hardware
Platform showing the static base region and the reconfigurable expanded region.

With partial reconfiguration, all routing must be contained within the Pro-
grammable region. If the floorplan for the Static region includes any I/O ports
that are used by signals within the expanded region, an Input Buffer (IBUF) or

44 Background

Output Buffer (OBUF) needs to be placed in the Static region logic design to con-
nect it through the Static region to the expanded region.

Creating and Configuring the Logic Design Use the features of the Vivado
IP Integrator to instantiate IP from the Vivado IP catalog, configure and connect
all of the interface IP associated with the Hardware Platform.

Configuring the Programmable region The Programmable region is rep-
resented by the SDAccel OpenCL Programmable region IP core in the block de-
sign. The designer should configure this module to properly represent the inter-
faces between the Programmable region and the static logic design. The OpenCL
compiler uses the IP integrator framework to swap out the default Programmable
region logic (for the training or placeholder kernel) and replace it with the com-
piled kernel generated from the OpenCL device code, and the interconnect topol-
ogy it requires.

The SDAccel OpenCL Programmable region IP is a container for compiled
OpenCL kernels from the SDAccel Development Environment. The number of
training kernels the core contains can be specified. When used with SDAccel, the
OpenCL code and the Xilinx OpenCL Compiler (xocc) determines the number of
kernels in the Programmable region. The IP has one AXI slave interface which
is used to send commands to the OpenCL kernels. It also has one or more AXI
master interfaces which are connected to device RAM. A clock and a reset signal
are also wired to the SDAccel OpenCL Programmable region.

The designer can customize the address and data bit width for the AXI master
interface, but the maximum value that the memory controller can support in or-
der to maximize bandwidth and minimize data width converters on the datapath
should be used.

The SDAccel OpenCL Programmable region can support up to 16 compiled
kernels on an FPGA device, located between the slave and master AXI intercon-
nects. These are essentially placeholders to later accept compiled SDAccel ker-
nels.

The designer must set the Master ID width on the Re-customize IP dialog
box of the SDAccel OpenCL Programmable region in order to support multiple
kernels. The Master ID width field supports values from 1 to 16.

If direct connections are required from the Programmable region to external
FPGA I/Os, either an IBUF or OBUF must be instantiated into the static logic
region.

Working with AXI Interconnect The Programmable region has two AXI
Interconnects. One AXI interconnect is used to connect the SDAccel OpenCL Pro-
grammable region slave control port and to provide a path to read/write DDR
from the PCIe bus. The other one is used to connect two bus masters to the Mem-
ory Controller: the PCIe DMA controller and SDAccel OpenCL Programmable
region IP. The two AXI interconnections provide a path that allows bypassing
the programmable region and directly access the map’s resident RAM.

2.4 SDAccel Platform 45

Configuring the AXI Address Space The device relies on AXI mem-
ory mapped bus for addressing the OpenCL kernel, the device dedicated RAM,
and any other peripherals. There are two AXI masters in the design: the PCIe
Endpoint/DMA Controller and the OpenCL kernel. There are two AXI slave
end points in the design: The AXI-Lite control port of the Programmable region
(ocl_block_0) and the Memory Interface Generator (MIG) controller.

Configuring the Design for SDAccel The Platform design should con-
tain a DMA Subsystem master IP, memory controller interfaces (DDR3, DDR4
IP) for global memory, clocking via the Clocking Wizard IP and resets via the
Processor System Reset IP.

Use the Xilinx DMA Subsystem for PCIe (XDMA) IP, or use a board vendor
specific IP for the DMA functionality. This IP provides PCIe DMA functionality
between the card resident RAM and host RAM.

The XDMA IP requires the addition of two master AXI interfaces:

• One to master data to the Memory Controller.

• One to control the Programmable region (to configure the OCL Region ker-
nels) and to control other peripherals in the Static region.

Using the Decoupler IP The PR Decoupler IP may also be used in the
Static region to hold the design in a safe state while the device is partially re-
configured with the hardware function. A single reset within the IP will put the
entire Programmable region into reset. A pair of registers supply back pressure
on the AXI interfaces to ensure they maintain state. The Decoupler IP can be
instantiated and configured into the Static region design using the IP Integrator.

Configuring Debug Logic Debug logic can be added to the design to
enable hardware validation and debug using the Vivado Hardware Manager. The
System Integrated Logic Analyzer (System ILA) IP should be configured to add
debug logic to the design. It can be used to monitor and validate the running
Hardware Platform on the Xilinx device.

Designing for Performance Profiling The SDAccel OpenCL runtime has in-
tegrated device profiling features to enable real-time performance analysis of the
board as they are being utilized. Performance statistics from the board can be
unified with statistics from the host to get a clearer picture of the performance
of the entire system. This allows the designer to analyze the performance of the
device and then quickly optimize the host code and kernel source.

To take advantage of this capability, the Hardware Platform must have the
following:

• A performance monitor framework must be added to the Hardware Plat-
form.

46 Background

• The framework must follow a specified address mapping.

• The specified format for the data must be followed.

• A shim for the Xilinx OpenCL Hardware Abstraction Layer (XCL HAL)
driver API must be implemented.

A performance monitor framework can be inserted into the Hardware Plat-
form. Xilinx provides a standard IP: AXI Performance Monitor (APM). An APM
is the IP core used to monitor the AXI transactions and provide performance
statistics and events of every monitored AXI connection.

The APM contains two modules: profile metric counters, and trace. The pro-
file metric counters are aggregated counters used to calculate average throughput
and latency for both write and read channels. A single AXI-Lite interface is used
to configure the APM and read the metric counters. Xilinx recommends that us-
ing the sampled metric counters, which are guaranteed to provide samples on the
same clock cycle. This is done by first reading from the sample interval register,
then reading the appropriate sampled metric counters.

The APM trace module provides timestamps of AXI transaction events. These
events are captured in a collection of individual flags and are output by the APM
using an AXI Stream in one of the following ways:

• AXI Lite: slower offload but easier to close timing

• Full AXI: faster offload as it offloads trace at kernel clock rate

Thesis thesis work uses the Full AXI way. In this case, which uses AXI Full and
a single FIFO, APM cores are not contained within their own level of hierarchy.
However, the following IP cores logically constitute an apm_sys, which monitors
transactions for the purposes of recording and reporting system performance de-
tails: xilmonitor_apm, xilmonitor_broadcast, xilmonitor_fifo0, xilmonitor_subset0.

Applying Physical Design Constraints

I/O and Clock Planning One of the key considerations in the design of a
Device Support Archive (DSA) is to identify the I/Os necessary for the board re-
quirements. The Static I/Os are expected to operate and remain live during the
device reprogramming of OpenCL kernels. The physical I/O locations will influ-
ence performance and must be considered as part of the floorplanning process,
especially when SSI devices are used.

It is recommended that the static I/Os are assigned physically outside of the
Programmable region. There may be trade-offs made between the size and shape
of the Programmable region to accommodate an area free of static I/Os and over-
all system performance.

If the floorplan for the Static region includes any I/O ports that are used by
signals within the Programmable region, an IBUF or OBUF needs to be placed in
the Static region logic design to connect it through the Static region to the Pro-
grammable region.

2.4 SDAccel Platform 47

Applying Partial Reconfiguration Constraints The use of Xilinx PR tech-
nology requires the use of several types of physical constraints. These include:

• Definition of the reconfigurable region (Partition Definition)

• Floorplanning with Pblock

• Partition Pin Placement (partPin)

Definition of the Reconfigurable Region The Programmable region of
the Hardware Platform must be identified in order for the tools to process the
logic correctly with PR and in order to create a partial bitstream file. This process
is done differently depending on whether the RPR flow or the XPR flow to define
the Hardware Platform are using.

For the XPR flow, the designer will directly assign the HD.RECONFIGURABLE
property on the hierarchical module that defines the expanded region. The HD.RECONFIGURABLE
property is set to TRUE in the Xilinx Design Constraints (XDC) constraints file on
the expanded region hierarchical block.

Notice the DONT_TOUCH property is also set on the expanded region hier-
archical module to prevent optimization across the boundary of the module.

Floorplanning When using Xilinx PR technology, floorplanning is re-
quired to separate the Static and Programmable regions of the design. The floor-
planning strategy can dramatically affect the performance of the design. It can
be an iterative process to find the optimal floorplan for the specific design and
device.

Floorplanning is performed by assigning logic modules or cells to Pblock
ranges on the device canvas. Floorplanning can be performed interactively by
opening the Synthesized design in the Vivado Integrated Design Environment
(IDE) or with constraints in the XDC file. Occasionally, in order to optimize per-
formance or device resources, multiple Pblocks are used.

Pblocks can be defined as rectangular regions, or by combining multiple rect-
angles to define a non-rectangular shape. Pblocks can also be nested to enable
lower levels of logic to be further constrained to specific regions of the device. If
nested Pblocks are desired, ensure the lower level Pblocks region is completely
within the upper level Pblocks region.

When designing an XPR Hardware Platform, only a small Static region is
needed for the PCIe/DMA base logic. The rest of the Hardware Platform logic,
including the Programmable region, gets implemented as part of a single XPR
region hierarchy. Multiple Pblock rectangles should be used for the expanded re-
gion logic to reserve and use as much of the device as possible. Ensure as many of
the DSP and BRAM device resources are included in the expanded region Pblock
area. The designer will adjust the Pblock shapes to make the Static region as small
as possible near the I/O banks assigned to it. Multiple iterations may be required
to see how tightly the Static region can be packed.

48 Background

Partition Pin Assignment Partition pins need to be assigned for the Pro-
grammable region interface pins to act as anchor points for the interface signal
routing. Two ways can be followed to do this:

• manually define placement ranges for partition pin assignments setting the
property HD.PARTPIN_RANGE for a set of slice.

• automatically assigned by the implementation tools within the Programmable
region, along the border of the Programmable and Static regions.

Implementing Hardware Platform design The design should be synthesized
and implemented to ensure desired performance is achieved. It is often required
to iterate on floorplanning and implementation strategies to ensure optimal per-
formance.

It is often important to implement, analyze, and iterate on the Hardware Plat-
form design to ensure that it continues to meet timing during kernel implemen-
tation. Using a test kernel, implement the design and then check that the design
meets timing by opening the Implemented Design.

Generating DSA files After completing Hardware Platform design using the
Vivado Design Suite, the designer is ready to create a DSA file for use with the
SDAccel Development Environment.

The DSA contains all of the data required to enable the design and programma-
bility of the OpenCL C or C++ kernel directly with the running FPGA.

The DSA is output from the Hardware Platform design project in the Vivado
Design Suite for use with the SDAccel Development Environment.

Setting Vivado Properties for Generating a DSA Prior to creating a DSA
file for the hardware platform, the designer must define various properties in the
hardware platform design so that they are included in the DSA. These include
metadata properties to help identify the DSA, as well as design properties to de-
fine system configuration.

The following three properties are required by the write_dsa Tcl command, and
must be defined prior to generating a DSA. If these properties are not found, the
write_dsa command will issue an error and stop. The values shown are example
values.

1 set_property dsa.vendor "vendor_name" [current_project]
2 set_property dsa.name "dsa_name" [current_project]
3 set_property dsa.boardId "board_id" [current_project]

The following property can be used to override the Serial Peripheral Interface
(SPI) Flash type associated with a DSA, and influences the generation of the MCS
file from the bitstream.

1 set_property dsa.flash_interface_type "spix8" [
current_project]

2.4 SDAccel Platform 49

The following properties have default values but can be defined to specify the
DSA file version, enable the PR flow, or capture the synthesis checkpoint within
the DSA.

1 set_property dsa.version "1.0" [current_project]
2 set_property dsa.uses_pr true [current_project]
3 set_property dsa.static_synth_checkpoint false [

current_project]

The following properties can be used to set the PCIe ID and Board attributes
for the Board section if a board file is not yet available.

1 set_property dsa.pcie_id_vendor "vendor_id" [
current_project]

2 set_property dsa.pcie_id_device "device_id" [
current_project]

3 set_property dsa.pcie_id_subsystem "subsystem_id" [
current_project]

4 set_property dsa.board_name "board_name" [
current_project]

5 set_property dsa.board_interface_type "gen3x8" [
current_project]

6 set_property dsa.board_memories {{ddr3 8GB} {ddr4 16GB}
...} [current_project]

7 set_property dsa.board_interface_name "PCIe" [
current_project]

8 set_property dsa.board_vendor "board_vendor_name" [
current_project]

If defined, these property values will take precedence over the values that
come from the board files. The default value for these properties is an empty
string. Using a local board repository can be avoided by using these properties.

When using an expanded partial reconfiguration hardware platform, the fol-
lowing parameter is also required:

1 set_param dsa.expandedPRRegion 1

Following property enables debug IP capabilities with PR in coordination
with Vivado.

1 set_param chipscope.enablePRFlow true

Generating the DSA Once the design has been implemented, and the re-
quired properties have been set, DSA file can be generated using the write_dsa
command.

The designer can use the validate_dsa command to validate a custom DSA
file to ensure it contains the proper content and metadata needed to support the
Hardware Platform in the SDAccel environment.

Notice that the write_dsa command should be called after implementation
phase and before the bitstream generation phase.

50 Background

Linux kernel mode DMA drive for PCI Express (xcldma)

Xilinx SDAccel runtime software

Host

PCIe

XCL HAL interface

Xilinx DMA Subsystem for PCIe (XDMA)

Device FPGA

Figure 2.31: Layers of the Software Platform

2.4.2. Software Platform

Software Platform consists of the runtime, drivers, and software stack that are
needed to enable interaction with the Hardware Platform.

The SDAccel runtime software is layered on top of a common low-level soft-
ware interface called the Hardware Abstraction Layer (HAL). The HAL driver
provides APIs to runtime software which abstracts the xcldma driver details. The
xcldma driver is a kernel mode DMA driver which interfaces to the memory-
mapped Platform over PCIe. Figure 2.31 shows the layers of the Software Plat-
form.

2.4.2.1. xcldma

The xcldma kernel mode driver is used to manage the device (the accelerator), and
provides essential services such as:

• DMA transfers from host to device and device to host.

• Clients can memory map the device registers which are exposed on PCIe
Base Address Register (BAR).

• Bitstream download capabilities.

• Kernel clock scaling.

• Access to sensors on the device via System Monitor (SysMon) (temperature,
voltage, etc.).

• MIG calibration status reporting.

• Resetting and rebooting the board from Programmable Read-Only Memory
(PROM).

2.4 SDAccel Platform 51

When the Hardware Platform is implemented as a DSA and used with the
SDAccel Development Environment, the HAL driver insulates the SDAccel run-
time software from the implementation details of the xcldma driver.

Since the Platform developed in this thesis work is completely customized
and derived from known reference design, the Device ID and Subsystem ID of
the PCIe IP have also been changed. Therefore, the drivers have been changed
in order to make them compatible with new Device ID and Subsystem ID. The
meaning of each bit of the Device ID and Subsystem ID is described in the Section
2.4.2.3.

2.4.2.2. XCL HAL

XCL HAL Driver API is required by the OpenCL runtime to communicate with
the Hardware Platform. It is used for downloading Xilinx FPGA bitstreams, al-
locating and de-allocating OpenCL buffers, migrating OpenCL buffers between
host memory and Hardware Platform memory, and communicating with the
OpenCL kernel on its control port.

The API supports address spaces which may be used for accessing device
peripherals with their own specific memory mapped ranges.

2.4.2.3. Meaning of bits of Device ID and Subsystem ID

The Vendor ID identifies the vendor of the device. The Device ID identifies a
specific device from that manufacturer/vendor. The Subsystem ID is assigned
by the subsystem vendor from the same number space as the Device ID. The
Subsystem Vendor ID–Subsystem ID combination identifies the card, which is
the kind of information the driver may use to apply a minor card-specific change
in its operation.

The Vendor ID is a fixed number for Xilinx devices and it is 0x10EE.

The Device ID and Subsystem ID are two hexadecimal numbers that can be
set and changed in the XDMA IP. These are massively used by drivers to extract
Platform information, such as memory size. Each digit therefore has a different
meaning.

The meaning of each bit of the Device ID and Subsystem ID depends on the
version of the DSA and therefore the drivers that are used. In this thesis work, the
DSA version is 3.3 and the corresponding drivers are included in version 2017.1
of Xilinx SDAccel.

To know the meaning, therefore, all the components of the drivers have been
studied by doing a static analysis of the code. As an example, Device ID and
Subsystem ID 0x8238 and 0x4432 respectively were used for the analysis. Table
2.1 and 2.2 reports the result of this analysis.

Other meanings are given by the set of bits:

• if Ultrascale or Ultrascale+ is used and DSA is greater than 32 then SysMon
is supported by the driver and will be enabled all related features.

52 Background

Device ID Meaning

8 if FPGA architecture is Ultrascale based (8)
or Ultrascale+ based (9)

2
3
8 family serie of FPGA

Table 2.1: Meaning of Device ID bits

Subsystem ID Meaning
4 if XPR (4) or RPR (other number) is used.
4 number of DDR
3 DSA version2

Table 2.2: Meaning of Subsystem ID bits

• if Device ID is 0x8238 or first two digit of Subsystem ID are 44 and DSA
version is greater than 31 then driver will support multiple clock and re-
clocking feature.

2.4.3. Generating Platform files

Once the DSA file has been created for the Hardware Platform, it needs to be
associated with the Software Platform configuration files and drivers. Xilinx rec-
ommends using the same directory structure as used with the supplied example
Hardware Platforms.

2.4.3.1. Platform Directory Structure

Each Platform should be contained in a directory with a name that corresponds
to the DSA name. Naming the folder after the DSA file is just a recommendation,
but it does help identify the Hardware Platforms from the directory names.

The Platform folder is structured as shown in figure 2.32.

<platform_name>.xpfm

hw/ <platform_name>.dsa

sw/ <platform_name>.spfm

<platform_name>/

driver/ classic/

bin/ classic/

libxcldrv.so

xcldma.zip

xclhal.zip

xbsak

Figure 2.32: Platform folder structure

2.4 SDAccel Platform 53

2.4.3.2. Configuring the Hardware Platform .xpfm File

The <platform_name>.xpfm file defines the location of the hardware and software
components of the Hardware Platform.

2.4.3.3. Populating the Hardware Platform Directory

The Hardware Platform is defined in the DSA file. It is needed to move the DSA
into ./hw folder. The DSA file contains the following information:

• dsa.xml: contains DSA Hardware Platform settings and configuration from
when the write_dsa Tcl command was run, and the DSA file was created.

• <platform_name>.bit: full bitstream file for initial system configuration.

• <platform_name>_clear.bit: for UltraScale architecture only, this is a file
for clearing the full bitstream from the device.

• <platform_name_pblock_name>.bit: placeholder partial bitstream of the
test kernel for the Programmable region logic. The partial bitstream for the
Programmable region is dynamically created by the SDAccel Development
Environment and will replace the one included in the DSA file.

• <platform_name>.dcp: routed version of the Hardware Platform design.

• <platform_name>.png: optional picture of the board to display in Vivado
and SDx projects.

2.4.3.4. Populating the Software Platform Directory

The Software Platform is included in the ./sw folder of the Platform directory
structure. The ./sw folder contains the <platform_name>.spfm file and a ./driver
subdirectory, as shown in 2.32.

The <platform_name>.spfm file defines information for the Software Platform.

The ./driver subdirectory contains the driver configurations defined for the
Software Platform. The libxcldrv.so is a compiled OpenCL library file. To use it, in
Linux environment, the location of this file should be extracted in LD_LIBRARY_PATH
in environment variable. This file depends on the hardware and for a custom
platform is needed generate it. How to generate it will explain in section 3.2.2.2.

The ./bin folder contains the Xilinx Board Swiss Army Knife (xbsak) utility
that fits the platform.

Once the xbsak utility and the libxcldrv.so was generated, the designer must
move them to the /sw/bin/classic and /sw/driver/classic folder respectively.

54 Background

2.5 Tools

2.5.1. Xilinx Vivado Design Suite

Vivado Design Suite is a software suite produced by Xilinx for synthesis and
analysis of HDL designs with additional features for System-on-a-Chip (SoC) de-
velopment and HLS.

Vivado Design Suite is an IDE and it provides an intuitive Graphical User
Interface (GUI). All of the tools and tool options are written in native Tool Com-
mand Language (Tcl) format, which enables use both in the Vivado IDE or Vivado
Design Suite Tcl shell. Analysis and constraint assignment is enabled throughout
the entire design process. For example, user can run timing or power estimations
after synthesis, placement, or routing. The features offered by Vivado Design
Suite are:

• RTL design in VHDL, Verilog, and SystemVerilog

• IP integration for cores

• Behavioral, functional, and timing simulation with Vivado simulator

• Vivado synthesis

• Vivado implementation for place and route

• Vivado serial I/O and logic analyzer for debugging

• Vivado power analysis

• Synopsys Design Constraints (SDC)-based XDC for timing constraints entry

• Static timing analysis

• High-level floorplanning

• Detailed placement and routing modification

• Bitstream generation

Vivado Design Suite uses a concept of opening designs in memory. Opening a
design loads the design netlist at that particular stage of the design flow, assigns
the constraints to the design, and then applies the design to the target device.
This provides the ability to visualize and interact with the design at each design
stage.

2.5.1.1. Use within our Project

Vivado Design Suite was used first to create and modify the circuit design, mod-
ify the physical constraints of the board and then synthesize, implement the new
circuit design and generate the DSA. This tool was used through the GUI.

2.5 Tools 55

2.5.2. Xilinx SDAccel Development Environment

The Xilinx SDAccel Development Environment is part of the SDx Development
Toolchain. This toolchain allows user to create FPGA accelerated designs using
C/C++, OpenCL C, or RTL programming languages. User can create these de-
signs in the SDx GUI environment or through a Makefile flow.

As said, a kernel can be implemented in RTL and developed using the Vivado
IDE tool suite. RTL kernels offer potentially higher performance with lower area
and power, but require development using RTL coding, tools, and verification
methodologies. Existing RTL based IP and algorithms can be wrapped and mi-
grated to the SDAccel framework enabling those HDL based algorithms to be
callable by the runtime and application program. RTL kernels must use the cor-
rect interfaces, protocols, and packaging to be recognized by the SDAccel tool
flow and runtime library. Therefore, implementing and developing a kernel in
RTL requires high expertise in digital design and HDL. To increase the flexibility
of using the custom platform, we can rely on use high-level programming lan-
guages, such as C/C++ and OpenCL. In this way, any developer with high-level
programming know-how, regardless of his or her digital design knowledge, can
accelerate any kernel using the custom platform presented in this thesis. The
reason of this is that the compilation of OpenCL applications into binaries for ex-
ecution on an FPGA does not assume nor require FPGA design knowledge. A
basic understanding, however, of the capabilities of an FPGA is necessary during
application optimization in order to maximize performance. The SDAccel envi-
ronment handles the low-level details of program compilation and optimization
during the generation of application specific CUs for an FPGA fabric. Therefore,
using the SDAccel environment to compile an OpenCL program does not place
any additional requirements on the user beyond what is expected for compilation
towards a CPU or GPU target.

2.5.2.1. SDAccel Compilation flow

In contrast to a CPU or a GPU, an FPGA can be thought of as a blank computing
canvas onto which a compiler generates an optimized computing architecture for
each kernel in the system.

This inherent flexibility of the FPGA allows the developer to explore different
kernel optimizations and CU combinations that are beyond what is possible with
a fixed architecture. The only drawback to this flexibility is that the generation of
a kernel specific optimized compute architecture takes a longer time than what
is acceptable for just-in-time compilation. The OpenCL standard addresses this
fundamental difference between devices by allowing for an offline compilation
flow. This allows the user to generate libraries of kernels that can be loaded and
executed by the host program.

SDAccel Development Environment uses an offline compilation flow to gen-
erate kernel binaries. To maximize efficiency in the host program and allow the
simultaneous instantiation of kernels that cooperate in the computation of a por-
tion of an application, Xilinx has defined the Xilinx OpenCL Compute Unit Bi-

56 Background

nary (xclbin) format. The xclbin file is a binary library of kernel CUs that will be
loaded together into an OpenCL Context for a specific device.

The xclbin file is created using the SDx IDE or the xocc command line utility.
It provides a mechanism for command line users to compile their kernels, which
is ideal for compiling host applications and kernels using a Makefile.

Since a Makefile flow was used is this thesis work, we explain the xocc com-
mand line utility. Most important options of xocc are:

• – platform <arg>: to select an acceleration device suppported by Xilinx and
third-party platform providers.

• –target sw_emu|hw_emu|hw: to select the target of compilation.

Software emulation (sw_emu) or CPU emulation target The main goal of CPU
emulation is to ensure functional correctness and to partition the application into
kernels. Although partitioning and optimizing an application into kernels is in-
tegral to OpenCL development, performance is not the main goal at this stage of
application development in the SDAccel environment.

For CPU-based emulation, both the host code and the kernel code are com-
piled to run on an x86 processor.

Hardware emulation (hw_emu) target The SDAccel development environment
generates at least one custom CU for each kernel in an application. This means
that while the CPU emulation flow is a good measure of functional correctness, it
does not guarantee correctness on the FPGA execution target.

The SDAccel environment has a hardware emulation flow, which enables the
programmer to check the correctness of the logic generated for the custom CUs.
This emulation flow invokes the hardware simulator in the SDAccel environment
to test the functionality of the logic that will be executed on the FPGA compute
fabric.

Hardware (hw) or system target The SDAccel development environment gen-
erates custom logic for every CU in the binary container. Therefore, it is normal
for this build step to run for a longer period of time than the other steps in the
SDAccel application compilation flow. The steps in compiling CUs targeting the
FPGA fabric are as follows:

1. Generate a custom CU for a specific kernel.

2. Instantiate the CUs in the OpenCL binary container.

3. Connect the CUs to memory and infrastructure elements of the target de-
vice.

4. Generate the FPGA programming file.

2.5 Tools 57

The generation of custom CUs for any given kernel code uses the production
proven capabilities of the Xilinx Vivado HLS tool, which is the CU generator in
the SDAccel environment. Based on the characteristics of the target device in the
solution, the SDAccel environment invokes the CU compiler to generate custom
logic that maximizes performance while at the same time minimizing compute
resource consumption on the FPGA fabric. Automatic optimization of a CU for
maximum performance is not possible for all coding styles without additional
user input to the compiler.

After all CUs have been generated, these units are connected to the infrastruc-
ture elements provided by the target device in the solution. The infrastructure
elements in a device are all of the memory, control, and I/O data planes which
the device developer has defined to support an OpenCL application. The SDAc-
cel environment combines the custom CUs and the base device infrastructure to
generate an FPGA binary which is used to program the Xilinx device during ap-
plication execution.

2.5.2.2. Use within our Project

The Xilinx SDAccel Development Environment tool was used for three purposes:

• to generate all necessary files for the platform support package for the FPGA
card. In particular, the FPGA acceleration card plugged into the host ma-
chine needs to have the associated Linux kernel driver, firmware and run-
time libraries installed before it can be used for running user applications.
SDAccel provides Xilinx Board INSTallation (xbinst) tool. It also generates
an installation script to compile and install the driver, firmware and runtime
libraries. The commands launched will be explained in Section 3.2.4.

• to perform the following board administration and debug tasks indepen-
dent of SDAccel runtime library:

– Board administration tasks:

∗ Flash PROM.
∗ Reboot boards without rebooting the host.
∗ Reset hung boards.
∗ Query board status, sensors and PCIe Advanced Error Reporting

(AER) registers.

– Debug operations:

∗ Download SDAccel binary (.xclbin) to FPGA.
∗ DMA test for PCIe bandwidth.
∗ Show status of CUs.

The utility is named xbsak. It was used mainly to test the PCIe bandwidth,
to write and read a string of bit to/from DDR and to query the custom
platform and obtain information about it. The commands used will be ex-
plained in Section 3.3.1.

58 Background

Figure 2.33: The logical view of the proFPGA prototyping system hardware-side

xbsak utility is strongly linked to the hardware and for a custom platform is
needed generate it. In the 3.2.2.2 section will be explained how to generate
the xbsak utility that fits the custom hardware.

• to compile a set of kernels for the custom platform developed in the thesis
work and to optimize these kernels through directives to the pre-compiler,
also called pragma, offered by Xilinx, in order to improve the performance
of the kernel, the data throughput, reduce the latency, or reduce the re-
sources utilized by the kernel.

2.5.3. proFPGA prototyping system

The proFPGA prototyping system consists of a set of modular building blocks.
This allows highly customized prototyping solutions to match the project-specific
resource requirements with a minimum of system complexity.

In order to clearly describe the tools under examination, we will explain the
hardware and the software part separately.

2.5.3.1. Hardware side

The proFPGA prototyping system consists of a set of modular hardware units. In
figure 2.33 we can see a logical view of system.

As we can see, several component are contained:

• Motherboards: provide the proFPGA system infrastructure. They offer
mechanical fixture, power supply, I2C-based system management, clock-
ing infrastructure, and MMI-64 communication for multiple FPGA mod-
ules. Also, motherboards have FPGA module connectors (carrying user
I/O, power supply, service) on the top side and Extension board connectors
(carrying user I/O, power supply) on the bottom side. The user I/O pins of
top-side and bottom-side connectors are directly connected with each other,
providing a transparent connection from the FPGA module on the top-side
to the extension board on the bottom side.

2.5 Tools 59

• FPGA Modules: contain the user design. They offer up to 8 connectors to
extension sites (4x top, 4x bottom). Each FPGA module has access to MMI-
64 communication from the motherboard. FPGA modules have 4 FPGA
module connectors (user I/O, power supply, service) on the bottom side
and up to 4 Extension board connectors (user I/O, power supply) on the
top-side. Because the motherboard transparently converts the FPGA mod-
ule connector into an Extension board connector, each FPGA module can
access up to 8 extension boards.

• Extension Boards: provide hardware functions to user designs inside the
FPGA modules, e.g. Synchronous Dynamic Random Access Memory (SDRAM)
memory, user PCIe connection, debug access. One extension board occu-
pies one or more extension board connectors of one FPGA module, giving
the user design inside the FPGA module exclusive access to the extension
board. The Extension board connectors of the FPGA module are located
on the bottom side. Some extension boards (e.g. the user PCIe adapter)
are stackable. Unused I/O pins from the FPGA module are mapped to a
top-side connector, allowing further extension boards to be added.

• Interconnects: are special extension boards to connect I/O pins of different
FPGA modules. They are available as boards and cables. Interconnect ca-
bles connect two extension sites. Interconnect boards connect two or more
extension sites. Connections are either broadcast (e.g. the 4-way intercon-
nect board) or point-to-point (e.g. all two-way interconnect boards and ca-
bles).

• System Extension Boards: the system functionality may be extended by
special hardware, such as motherboard PCIe adapter board or motherboard-
to-motherboard connector cable. This hardware uses dedicated connectors
on the motherboard.

The modules of the proFPGA prototyping system are assembled into a 3-
dimensional structure. Any location of the extension boards can be identified
by the coordinate systems.

2.5.3.2. Software side

The proFPGA system is delivered with the following applications:

• profpga_run: command line tool to power-up, power-down and to config-
ure the system.

• profpga_builder: GUI to create board configuration setups and to perform
runtime accesses to the system.

• profpga_brdgen: command line tool to generate various VHDL/Verilog
toplevel files, constraint files, board description files and a design based
self-test to test FPGA interconnections at speed.

• profpga_selftest2: command line tool which executes the design based self-
test on the hardware.

60 Background

Figure 2.34: The software architecture of the proFPGA prototyping system

• profpga_freq: command line tool to determine proFPGA clock settings to
generate a specific clock frequency or to achieve a desired data transfer rate
with the proFPGA mux/demux modules.

The communication with the proFPGA system is done through the libprofpga
library where all application above based on.

There are many options how to access the system (e.g. Universal Serial Bus
(USB), Ethernet, PCIe) and there are many parameters and configuration options
(FPGA binary images, clock and reset settings, etc.). All these options and set-
tings are combined in a configuration file which is used by the applications and
libraries.

There are two parts for the communication with the system:

• The transport mechanism between a Host-PC and the proFPGA system,
which is called MMI. This mechanism abstracts the different communica-
tion ways like PCIe, Ethernet and USB and is used for user design commu-
nication and to control the system.

• The libprofpga provides all functionality to configure and control the system
and to observe status information. libprofpga communicates with the hard-
ware via MMI.

Both parts together form the proFPGA communication package which is called
Device Message Box Interface (DMBI). In the figure 2.34, is shown the software
architecture provided by proFPGA.

2.5.3.3. Use within our Project

The software presented was used to scan the infrastructure used, program the
FPGA and generate the physical constraints. The commands used will be ex-
plained in the section 3.2.5.

CHAPTER 3

Contribution

3.1 Specification

In Section 1.4, we described the goal of this thesis work. As said, the goal is to
realize an acceleration Platform for a third-party FPGA. Since Xilinx offers the
source code of different reference design of own Platform with a portion of the
software stack, which provides device drivers and a HAL compatible with them,
we can follow two approaches: create a design from a scratch and use a reference
design as a baseline to extend or adapt to other target requirements. The way
chosen is the second one. The reference design is available here [25].

The specification of our Platform is different from the reference design.

3.1.1. Reference design specification

Below are the specifications of the reference design:

• 4 GB DDR4.

• 4 kernels.

• Flash memory.

• System Management.

• Standard Device ID and Subsystem ID.

• DDR clock frequency at 250 MHz.

• XPR.

3.1.2. Our design specification

Below are the specifications of our design:

• 2 GB DDR4.

61

62 Contribution

DDR

APM
Debug
bridge

AXI
Interconnect
OCL to DDR

AXI
Interconnect
DMA/PCIe

to OCL

OCL

DMA/PCIeClocking

Reset

SRL1

SRL0

Figure 3.1: Logical view of position of components in the FPGA

• 16 kernels.

• No Flash memory.

• No System Management.

• Custom Device ID and Subsystem ID.

• DDR clock frequency at 125 MHz.

• XPR.

3.2 Design

To create the custom Platform, the flow shown in figure 2.25 was followed.

3.2.1. Hardware Platform

In order to create the Hardware Platform, the flow described in section 2.4.1.3
was followed.

3.2.1.1. Device Planning

Working with SSI Devices As already said, the Kintex UltraScale 115 used in
this thesis use the SSI technology. The number of SLRs of this device is 2, as has
been extracted from [22]. In Figure 3.1, we can see how the various components
are positioned in the FPGA, emphasizing which SLR the different components
belong to. The SLRs are called SLR0 and SLR1.

3.2 Design 63

Contrary to what the documentation recommends, that the Programmable re-
gion must be isolated in a single SLR, from Figure 3.1 we can see that the DDR
and SDAccel OpenCL Programmable region IP have been located in the SRL1
SLR, while other components that logically belong to the Reprogrammable re-
gion, such as AXI OCL Region to DDR, APM, Debug bridge, have been located
in the SRL0 SLR. The reason for this is that each SLR has a limited number of
resources and therefore we want to offer as many resources as possible to the
kernel implementation. The DDR is leased to SRL1 SLR because of the physical
constraints of the proFPGA components.

I/O and Clock Planning As we can see from the previous pictures, the I/O
and clock are planned in order to reduce as much as possible the SLR crossing.
Specifically, the circuitry used to provide the clock source is located and isolated
in SRL0. PCIe and DDR are the only I/O way of design. As we can see, both are
isolated and located, respectively, in SRL0 and SRL1.

Logic Partitioning across SLRs To avoid unnecessary SLR crossing, specific
IP cores is assigned to specific SLRs by floorplanning technique that will be ex-
plain later. Since XPR was used, most assignments is performed by Vivado De-
sign Suite.

Adding Pipeline Registers across SLRs In our design, the DDR and the
PCIe are located in different SLR, so a SLRs crossing exist. To prevent perfor-
mance degradation, a SmartConnect IP is added. The crossing is represented by
Figure 3.2.

As we can see, the elements highlighted in pink is the DDR, the PCIe and
the SmartConnect IP. The path is used to send the data from the XDMA IP to
DDR and/or APM and crosses both the Static and the Reconfigurable region.
SmartConnect IP is plugged to end-point IP, i.e. APM and DDR MIG.

3.2.1.2. Logic Design using IP Integrator

Creating the Design Hierarchy Since XPR is used in this thesis work, new hi-
erarchy is created as shown Figure 3.3. The Figure show the top-level module of
our design. As we can see, the hierarchy is divide in base_region, in other words
the Static region, and expanded_region, i.e. the Programmable region.

Creating and Configuring the Logic Design Due to Vivado IP Integrator, the
reference design has been modified to remove the DDRs, Flash memory and other
useless component in our hardware infrastructure. Also, IP core configuration
has been modified to fit our specification.

Configuring the Programmable region The number of kernel is set to 16,
compared to the reference design in which it was set at 4. To fit the specification,
number of slave DDR is 1. In reference design this value was 4. The address
and data bit width for the AXI master interface. It is the maximum value that the

64 Contribution

ba
se

_r
eg

io
n

dm
a_

pc
ie

_p
ci

e_
m

gt

re
f_

cl
k

re
gs

lic
e_

co
nt

ro
l_

M
_A

X
I

re
gs

lic
e_

da
ta

_M
_A

X
I

ex
pa

nd
ed

_r
eg

io
n

c0
_s

ys

dd
rm

em
_0

_C
0_

D
D

R
4

re
gs

lic
e_

co
nt

ro
l_

M
_A

X
I

re
gs

lic
e_

da
ta

_M
_A

X
I

S
_B

S
C

A
N

pr
_i

so
la

tio
n_

ex
pa

nd
ed

dm
a_

pc
ie

_M
_A

X
I

dm
a_

pc
ie

_M
_A

X
I_

LI
T

E

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

02
_A

X
I

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

03
_A

X
I

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

05
_A

X
I

re
gs

lic
e_

co
nt

ro
l_

M
_A

X
I

re
gs

lic
e_

da
ta

_M
_A

X
I

in
te

rc
on

ne
ct

in
te

rc
on

ne
ct

_a
xi

m
m

_d
dr

m
em

0_
M

00
_A

X
I

in
te

rc
on

ne
ct

_a
xi

m
m

_h
os

t_
M

01
_A

X
I

re
gs

lic
e_

da
ta

_M
_A

X
I

u_
oc

l_
re

gi
on

_M
_A

X
I

m
em

c

c0
_s

ys

dd
rm

em
_0

_C
0_

D
D

R
4

in
te

rc
on

ne
ct

_a
xi

lit
e_

M
01

_A
X

I

in
te

rc
on

ne
ct

_a
xi

m
m

_d
dr

m
em

0_
M

00
_A

X
I

pc
ie

_7
x_

m
gt

dd
r_

ca
lib

_s
ta

tu
s

A
X

I G
P

IO

S
_A

X
I

G
P

IO

ga
te

_p
r

A
X

I G
P

IO

S
_A

X
I

G
P

IO

G
P

IO
2

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

M
04

_A
X

I

M
05

_A
X

I

re
gs

lic
e_

co
nt

ro
l

A
X

I R
eg

is
te

r
S

lic
e

S
_A

X
I

M
_A

X
I

re
gs

lic
e_

da
ta

A
X

I R
eg

is
te

r
S

lic
e

S
_A

X
I

M
_A

X
I

c0
_d

dr
4

c0
_s

ys

u_
oc

l_
re

gi
on

S
D

A
cc

el
 O

pe
nC

L
P

ro
gr

am
m

ab
le

 R
eg

io
n

M
_A

X
I

S
_A

X
I

ap
m

_s
ys

in
te

rc
on

ne
ct

_a
xi

lit
e_

M
02

_A
X

I

in
te

rc
on

ne
ct

_a
xi

lit
e_

M
03

_A
X

I

in
te

rc
on

ne
ct

_a
xi

m
m

_h
os

t_
M

01
_A

X
I

re
gs

lic
e_

da
ta

_M
_A

X
I

u_
oc

l_
re

gi
on

_M
00

_A
X

I

ex
pa

nd
ed

_r
es

et
s

pr
_s

up
po

rt
_e

xp
an

de
d

S
_B

S
C

A
N

in
te

rc
on

ne
ct

_a
xi

lit
e

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

in
te

rc
on

ne
ct

_a
xi

m
m

_d
dr

m
em

0

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I

S
01

_A
X

I
M

00
_A

X
I

in
te

rc
on

ne
ct

_a
xi

m
m

_h
os

t

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I
M

00
_A

X
I

M
01

_A
X

I

dd
rm

em
_0

D
D

R
4

S
D

R
A

M
 (

M
IG

)

C
0_

S
Y

S
_C

LK

C
0_

D
D

R
4

C
0_

D
D

R
4_

S
_A

X
I_

C
T

R
L

C
0_

D
D

R
4_

S
_A

X
I

ax
ic

c_
dd

rm
em

_0
_c

tr
l

A
X

I C
lo

ck
 C

on
ve

rt
er

S
_A

X
I

M
_A

X
I

fe
at

ur
ei

d

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

02
_A

X
I

dm
a_

pc
ie

D
M

A
/B

rid
ge

 S
ub

sy
st

em
 fo

r
P

C
I E

xp
re

ss
 (

P
C

Ie
)

M
_A

X
I

M
_A

X
I_

LI
T

E

pc
ie

_m
gt

ca
p

pc
ie

3_
us

_i
nt

_s
ha

re
d_

lo
gi

c

ba
se

_t
ie

of
fs

ba
se

_c
lo

ck
in

g

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

03
_A

X
I

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

06
_A

X
I

re
f_

cl
k

re
f_

cl
k

Figure 3.2: Use of SmartConnect IP

3.2 Design 65

Figure 3.3: Top-Level Logic Hierarchy of our design

memory controller can support, i.e. 31. A very important option is Use Partial
Reconfiguration. This option enable the RPR flow. It is clear that in our case it is
disabled because the project specifications require the use of XPR.

Working with AXI Interconnect As the flow describe, two AXI Intercon-
nects was used. The first was used to connect DMA/PCIe to SDAccel OpenCL
Programmable region IP, as shown Figure 3.4. The second AXI Interconnect,
shows in Figure 3.5, was used to:

• provide a path that bypasses the Programmable region, linking directly the
DDR.

• link the Programmable region and DDR

The entities highlighted in pink in Figure 3.4 are the PCIe and the SDAccel
OpenCL Programmable region IP.

The entities highlighted in pink in Figure 3.5 are the PCIe and the DDR MIG.
in this case the IP Interconnect IP carries out the Programmable Region bypass.
In fact, the IP Interconnect IP has two inputs: one coming from SDAccel OpenCL
Programmable region IP and the other from DMA/PCIe.

Configuring the AXI Address Space For addressing OpenCL kernel, AXI
Interconnect use a memory map methodology. This means that all the registers
of the various components of our design are mapped in memory, i.e. in the same
address space but at different addresses for each IP. Therefore, writing or reading
to one of these addresses means communicating with that particular component.
Figure 3.6 shows the current address space ranges for a custom Platform.

As we can see, this address space is divided in two main groups:

• expanded_region/u_ocl_region: allows user kernels to access 2GB of DDR
memory, starting from offset 0x0.

• base_region/dma_pcie: allows the host to communicate with different com-
ponents in the design. This group is also divided in two categories:

– base_region/dma_pci/M_AXI: thanks to the DMA IP core, 64-bit ad-
dress space is used to allow efficient memory data transfers to the host
from and to the device memory. The DMA IP core can access 2 GB of
DDR device memory. In this way, both the kernel and host can access
the same memory address space, implementing what is called Global
Memory in the OpenCL Memory Model.

66 Contribution

ex
pa

nd
ed

_r
eg

io
n

c0
_s

ys

re
gs

lic
e_

co
nt

ro
l_

M
_A

X
I

re
gs

lic
e_

da
ta

_M
_A

X
I

S
_B

S
C

A
N

ba
se

_r
eg

io
n

dm
a_

pc
ie

_p
ci

e_
m

gt

re
f_

cl
k

re
gs

lic
e_

co
nt

ro
l_

M
_A

X
I

re
gs

lic
e_

da
ta

_M
_A

X
I

in
te

rc
on

ne
ct

_a
xi

lit
e

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

dm
a_

pc
ie

D
M

A
/B

rid
ge

 S
ub

sy
st

em
 fo

r
P

C
I E

xp
re

ss
 (

P
C

Ie
)

M
_A

X
I

M
_A

X
I_

LI
T

E

pc
ie

_m
gt

ca
p

pc
ie

3_
us

_i
nt

_s
ha

re
d_

lo
gi

c

fe
at

ur
ei

d

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

02
_A

X
I

pr
_i

so
la

tio
n_

ex
pa

nd
ed

dm
a_

pc
ie

_M
_A

X
I

dm
a_

pc
ie

_M
_A

X
I_

LI
T

E

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

02
_A

X
I

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

03
_A

X
I

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

05
_A

X
I

re
gs

lic
e_

co
nt

ro
l_

M
_A

X
I

re
gs

lic
e_

da
ta

_M
_A

X
I

c0
_s

ys

re
gs

lic
e_

da
ta

_M
_A

X
I

u_
oc

l_
re

gi
on

_M
_A

X
I

u_
oc

l_
re

gi
on

S
D

A
cc

el
 O

pe
nC

L
P

ro
gr

am
m

ab
le

 R
eg

io
n

M
_A

X
I

S
_A

X
I

m
00

_c
ou

pl
er

s

M
_A

X
I

S
_A

X
I

m
01

_c
ou

pl
er

s

M
_A

X
I

S
_A

X
I

m
02

_c
ou

pl
er

s

M
_A

X
I

S
_A

X
I

m
03

_c
ou

pl
er

s

M
_A

X
I

S
_A

X
I

s0
0_

co
up

le
rs M

_A
X

I
S

_A
X

I

xb
ar

A
X

I C
ro

ss
ba

r

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

pr
_s

up
po

rt
_e

xp
an

de
d

S
_B

S
C

A
N

ba
se

_t
ie

of
fs

ba
se

_c
lo

ck
in

g

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

03
_A

X
I

in
te

rc
on

ne
ct

_a
xi

lit
e_

st
at

ic
_M

06
_A

X
I

re
f_

cl
k

re
f_

cl
k

Figure 3.4: AXI Interconnect DMA/PCIe to SDAccel OpenCL Programmable region IP

3.2 Design 67

in
te

rc
on

ne
ct

in
te

rc
on

ne
ct

_a
xi

m
m

_d
dr

m
em

0_
M

00
_A

X
I

in
te

rc
on

ne
ct

_a
xi

m
m

_h
os

t_
M

01
_A

X
I

re
gs

lic
e_

da
ta

_M
_A

X
I

u_
oc

l_
re

gi
on

_M
_A

X
I

m
em

c

c0
_s

ys

dd
rm

em
_0

_C
0_

D
D

R
4

in
te

rc
on

ne
ct

_a
xi

lit
e_

M
01

_A
X

I

in
te

rc
on

ne
ct

_a
xi

m
m

_d
dr

m
em

0_
M

00
_A

X
I

c0
_s

ys

dd
rm

em
_0

_C
0_

D
D

R
4

ex
pa

nd
ed

_r
es

et
s

u_
oc

l_
re

gi
on

S
D

A
cc

el
 O

pe
nC

L
P

ro
gr

am
m

ab
le

 R
eg

io
n

M
_A

X
I

S
_A

X
I

in
te

rc
on

ne
ct

_a
xi

lit
e

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

in
te

rc
on

ne
ct

_a
xi

m
m

_d
dr

m
em

0

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I

S
01

_A
X

I
M

00
_A

X
I

in
te

rc
on

ne
ct

_a
xi

m
m

_h
os

t

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I
M

00
_A

X
I

M
01

_A
X

I

re
gs

lic
e_

da
ta

_M
_A

X
I

ax
ic

c_
dd

rm
em

_0
_c

tr
l

A
X

I C
lo

ck
 C

on
ve

rt
er

S
_A

X
I

M
_A

X
I

dd
rm

em
_0

D
D

R
4

S
D

R
A

M
 (

M
IG

)

C
0_

S
Y

S
_C

LK

C
0_

D
D

R
4

C
0_

D
D

R
4_

S
_A

X
I_

C
T

R
L

C
0_

D
D

R
4_

S
_A

X
I

pr
_s

up
po

rt
_e

xp
an

de
d

S
_B

S
C

A
N

re
gs

lic
e_

co
nt

ro
l_

M
_A

X
I

ap
m

_s
ys

in
te

rc
on

ne
ct

_a
xi

lit
e_

M
02

_A
X

I

in
te

rc
on

ne
ct

_a
xi

lit
e_

M
03

_A
X

I

in
te

rc
on

ne
ct

_a
xi

m
m

_h
os

t_
M

01
_A

X
I

re
gs

lic
e_

da
ta

_M
_A

X
I

u_
oc

l_
re

gi
on

_M
00

_A
X

I

S
_B

S
C

A
N

Figure 3.5: AXI Interconnect SDAccel OpenCL Programmable region IP to DDR and to
bypass

68 Contribution

Figure 3.6: Memory address in the design

– base_region/dma_pcie/M_AXI_LITE: a 32-bit address space is used to
access the other design components. In this way, the host can access
the kernel control port by using 128KB address range when writing at
I/O memory address 0x0. The whole space address dedicated to user
OpenCL kernels is 128 kB. As we can see, since the number of kernel
is 16, each kernel has a space address of 8 kB. Also, the host can access
the kernel clock configuration ports through 4KB of allocated space
for performing frequency scaling on the two available kernel clocks
when writing at I/O memory address 0x0005_0000 and 0x0005_1000,
respectively. In the same way that the one described here, the rest of
components of the design have their own memory range and offsets to
access them in the memory space defined.

Configuring the Design for SDAccel The other important IP cores for this
kind of project are PCIe and DDR. The most important options of PCIe configu-
ration is:

• third-generation.

• location set to XOYO.

• lane width set to 8.

• link speed set to 8 GT/s

• PR over PCIe.

• Device ID and Subsystem ID set to, respectively, 8237 and 4133.

3.2 Design 69

Figure 3.7: Logic module for profiling

• AXI Lite Master Interface size set to 4 MB, AXI Lite Master Interface address
set to 0x0.

• number of H2C set to 2.

• number of C2H set to 2

The most important options of DDR MIG configuration is:

• he DDR provided by proDesing has a reference clock input of 125 MHz.
Therefore the reference input clock speed was set to 125 MHz.

• memory part set to EDY4016AABG-DR-F.

• data with set to 512.

• address with set to 31

Using the Decoupler IP In the reference design, Decoupler IP is not used.
Therefore in our design, Decoupler IP is not used.

Configuring Debug Logic In our design, a debug bridge is used. In order to
use the debug bridge in Programmable region, therefore with XPR, we did same
changes of reference design, described in [14]. In particular, an external interface
was created in top level module expanded_region of type xilinx.com:interface:bscan_rtl:1.0.
This interface was linked to debug bridge IP core.

Designing for Performance Profiling To profiling the system performance, an
APM IP core was added. Figure 3.7 shows logical module which include the IP.

As we can see, the APM IP is linked to SDAccel OpenCL Programmable re-
gion IP and to DDR.

3.2.1.3. Applying Physical Design Constraints

I/O and Clock Planning As already said about PCIe location, we was forced to
use X0Y0 location to use the PR. In fact, as it is written in [24], the only location
that allows the use of PR is X0Y0. This area is outside the Programmable region.

Applying Partial Reconfiguration Constraints

70 Contribution

Definition of the Reconfigurable Region To use the XPR flow, the HD.RECONFIGURABLE
PROPERTY is set TRUE and the DONT_TOUCH property was used to prevent
optimization of the expanded_region. Below is reported the part of code of XDC
file.

1 set_property DONT_TOUCH true [get_cells xcl_design_i/
expanded_region/u_ocl_region]

2 set_property DONT_TOUCH true [get_cells xcl_design_i/
expanded_region]

3 set_property HD.RECONFIGURABLE true [get_cells
xcl_design_i/expanded_region]

Floorplanning Floorplanning is performed to assign logic modules to Pblock.
Below is reported the part of code of XDC file.

1 # Expanded region pblock
2 create_pblock pblock_expanded_region
3 add_cells_to_pblock [get_pblocks pblock_expanded_region

] [get_cells [list xcl_design_i/expanded_region]]
4 resize_pblock [get_pblocks pblock_expanded_region] -add

{SLICE_X0Y300:SLICE_X142Y599
SLICE_X0Y180:SLICE_X133Y299
SLICE_X0Y120:SLICE_X122Y179
SLICE_X97Y60:SLICE_X122Y119 SLICE_X0Y0:SLICE_X95Y119
SLICE_X97Y30:SLICE_X118Y59

SLICE_X97Y0:SLICE_X117Y29}
5 resize_pblock [get_pblocks pblock_expanded_region] -add

{BITSLICE_CONTROL_X0Y8:BITSLICE_CONTROL_X1Y15}
6 resize_pblock [get_pblocks pblock_expanded_region] -add

{BITSLICE_RX_TX_X0Y52:BITSLICE_RX_TX_X1Y103}
7 resize_pblock [get_pblocks pblock_expanded_region] -add

{BITSLICE_TX_X0Y8:BITSLICE_TX_X1Y15}
8 resize_pblock [get_pblocks pblock_expanded_region] -add

{DSP48E2_X22Y12:DSP48E2_X22Y239
DSP48E2_X0Y0:DSP48E2_X21Y239}

9 resize_pblock [get_pblocks pblock_expanded_region] -add
{GTHE3_CHANNEL_X1Y20:GTHE3_CHANNEL_X1Y39

GTHE3_CHANNEL_X0Y8:GTHE3_CHANNEL_X0Y39}
10 resize_pblock [get_pblocks pblock_expanded_region] -add

{GTHE3_COMMON_X1Y5:GTHE3_COMMON_X1Y9
GTHE3_COMMON_X0Y2:GTHE3_COMMON_X0Y9}

11 resize_pblock [get_pblocks pblock_expanded_region] -add
{IOB_X2Y104:IOB_X2Y519 IOB_X0Y0:IOB_X1Y519}

12 resize_pblock [get_pblocks pblock_expanded_region] -add
{LAGUNA_X22Y240:LAGUNA_X23Y479

LAGUNA_X20Y120:LAGUNA_X21Y479
LAGUNA_X0Y0:LAGUNA_X19Y479}

13 resize_pblock [get_pblocks pblock_expanded_region] -add
{MMCME3_ADV_X0Y1:MMCME3_ADV_X1Y1}

3.2 Design 71

14 resize_pblock [get_pblocks pblock_expanded_region] -add
{PCIE_3_1_X0Y1:PCIE_3_1_X0Y5}

15 resize_pblock [get_pblocks pblock_expanded_region] -add
{PLLE3_ADV_X0Y2:PLLE3_ADV_X1Y3}

16 resize_pblock [get_pblocks pblock_expanded_region] -add
{PLL_SELECT_SITE_X0Y8:PLL_SELECT_SITE_X1Y15}

17 resize_pblock [get_pblocks pblock_expanded_region] -add
{RAMB18_X15Y72:RAMB18_X17Y239

RAMB18_X0Y0:RAMB18_X14Y239}
18 resize_pblock [get_pblocks pblock_expanded_region] -add

{RAMB36_X15Y36:RAMB36_X17Y119
RAMB36_X0Y0:RAMB36_X14Y119}

19 resize_pblock [get_pblocks pblock_expanded_region] -add
{RIU_OR_X1Y4:RIU_OR_X1Y7 RIU_OR_X0Y0:RIU_OR_X0Y7}

20 resize_pblock [get_pblocks pblock_expanded_region] -add
{SYSMONE1_X0Y1:SYSMONE1_X0Y1}

21 resize_pblock [get_pblocks pblock_expanded_region] -add
{XIPHY_FEEDTHROUGH_X0Y1:XIPHY_FEEDTHROUGH_X7Y1}

22 set_property CONTAIN_ROUTING 1 [get_pblocks
pblock_expanded_region]

23 set_property EXCLUDE_PLACEMENT 1 [get_pblocks
pblock_expanded_region]

24 set_property SNAPPING_MODE ON [get_pblocks
pblock_expanded_region]

25

26 # Lower SLR pblock
27 create_pblock pblock_lower
28 add_cells_to_pblock [get_pblocks pblock_lower] [

get_cells [list xcl_design_i/expanded_region/
u_ocl_region]]

29 add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect_axilite]]

30 add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_host]]

31 add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s00_axi2sc]] -quiet

32 add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_r/egion/
interconnect/interconnect_aximm_ddrmem0/inst/
s00_entry_pipeline]] -quiet

33 #add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s00_nodes]] -quiet

72 Contribution

34 #add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
m00_exit_pipeline]] -quiet

35 #add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
m00_nodes]] -quiet

36 #add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
m00_sc2axi]] -quiet

37 add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s01_nodes/s01_ar_node/inst/inst_mi_handler]] -quiet

38 add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s01_nodes/s01_aw_node/inst/inst_mi_handler]] -quiet

39 add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s01_nodes/s01_b_node/inst/inst_si_handler]] -quiet

40 add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s01_nodes/s01_r_node/inst/inst_si_handler]] -quiet

41 add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s01_nodes/s01_w_node/inst/inst_mi_handler]] -quiet

42 #add_cells_to_pblock [get_pblocks pblock_lower] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
switchboards]] -quiet

43 resize_pblock [get_pblocks pblock_lower] -add {
SLICE_X123Y180:SLICE_X133Y299
SLICE_X119Y60:SLICE_X122Y299
SLICE_X118Y30:SLICE_X118Y119
SLICE_X97Y0:SLICE_X117Y119}

44 resize_pblock [get_pblocks pblock_lower] -add {
DSP48E2_X22Y12:DSP48E2_X22Y47
DSP48E2_X18Y0:DSP48E2_X21Y47}

45 resize_pblock [get_pblocks pblock_lower] -add {
LAGUNA_X16Y0:LAGUNA_X19Y119}

46 resize_pblock [get_pblocks pblock_lower] -add {
RAMB18_X15Y72:RAMB18_X17Y119
RAMB18_X12Y0:RAMB18_X14Y47}

3.2 Design 73

47 resize_pblock [get_pblocks pblock_lower] -add {
RAMB36_X15Y36:RAMB36_X17Y59
RAMB36_X12Y0:RAMB36_X14Y23}

48 resize_pblock [get_pblocks pblock_lower] -add {
CLOCKREGION_X0Y2:CLOCKREGION_X4Y4
CLOCKREGION_X0Y0:CLOCKREGION_X3Y1}

49 set_property SNAPPING_MODE ON [get_pblocks pblock_lower
]

50

51 # Upper SLR pblock
52 create_pblock pblock_upper
53 add_cells_to_pblock [get_pblocks pblock_upper] [

get_cells [list xcl_design_i/expanded_region/memc/
axicc_ddrmem_0_ctrl]]

54 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
m00_exit_pipeline]] -quiet

55 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
m00_nodes]] -quiet

56 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
m00_sc2axi]] -quiet

57 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s00_nodes/s00_ar_node/inst/inst_mi_handler]] -quiet

58 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s00_nodes/s00_aw_node/inst/inst_mi_handler]] -quiet

59 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s00_nodes/s00_b_node/inst/inst_si_handler]] -quiet

60 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s00_nodes/s00_r_node/inst/inst_si_handler]] -quiet

61 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s00_nodes/s00_w_node/inst/inst_mi_handler]] -quiet

62 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/

74 Contribution

interconnect/interconnect_aximm_ddrmem0/inst/
s01_nodes/s01_ar_node/inst/inst_mi_handler]] -quiet

63 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s01_nodes/s01_aw_node/inst/inst_mi_handler]] -quiet

64 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s01_nodes/s01_b_node/inst/inst_si_handler]] -quiet

65 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s01_nodes/s01_r_node/inst/inst_si_handler]] -quiet

66 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
s01_nodes/s01_w_node/inst/inst_mi_handler]] -quiet

67 add_cells_to_pblock [get_pblocks pblock_upper] [
get_cells [list xcl_design_i/expanded_region/
interconnect/interconnect_aximm_ddrmem0/inst/
switchboards]] -quiet

68 resize_pblock [get_pblocks pblock_upper] -add {
SLICE_X119Y300:SLICE_X142Y599}

69 resize_pblock [get_pblocks pblock_upper] -add {
RAMB18_X15Y120:RAMB18_X17Y239}

70 resize_pblock [get_pblocks pblock_upper] -add {
RAMB36_X15Y60:RAMB36_X17Y119}

71 resize_pblock [get_pblocks pblock_upper] -add {
CLOCKREGION_X0Y5:CLOCKREGION_X4Y9}

72 set_property SNAPPING_MODE ON [get_pblocks pblock_upper
]

73

74 # APM pblock
75 create_pblock pblock_apm
76 add_cells_to_pblock [get_pblocks pblock_apm] [get_cells

[list xcl_design_i/expanded_region/apm_sys/
xilmonitor_apm/inst/
GEN_PROFILE_Trace_Mode.profile_trace_mode_inst]]

77 add_cells_to_pblock [get_pblocks pblock_apm] [get_cells
[list xcl_design_i/expanded_region/apm_sys/

xilmonitor_subset0]]
78 add_cells_to_pblock [get_pblocks pblock_apm] [get_cells

[list xcl_design_i/expanded_region/apm_sys/
xilmonitor_fifo0]]

79 resize_pblock [get_pblocks pblock_apm] -add {
CLOCKREGION_X3Y0:CLOCKREGION_X3Y1}

80 set_property SNAPPING_MODE ON [get_pblocks pblock_apm]

3.2 Design 75

81 set_property PARENT pblock_lower [get_pblocks
pblock_apm]

82

83 # DDR4 IP channel 0 pblock
84 create_pblock pblock_ddrmem_0
85 add_cells_to_pblock [get_pblocks pblock_ddrmem_0] [

get_cells [list xcl_design_i/expanded_region/memc/
ddrmem_0]]

86 resize_pblock [get_pblocks pblock_ddrmem_0] -add {
CLOCKREGION_X2Y6:CLOCKREGION_X2Y9}

87 set_property SNAPPING_MODE ON [get_pblocks
pblock_ddrmem_0]

88 set_property PARENT pblock_upper [get_pblocks
pblock_ddrmem_0]

Partition Pin Assignment Partition Pin Assignment was used to assigned
the Partition pins to Programmable region interface. We used the manually way
to do it, therefore below is reported the part of code of XDC file

1 set_property HD.PARTPIN_RANGE {
SLICE_X119Y60:SLICE_X122Y299
SLICE_X123Y180:SLICE_X133Y299} [get_pins {
xcl_design_i/expanded_region/*}]

3.2.1.4. Implementing Hardware Platform design

To meet all timing requirement, different strategy of synthesis and implementa-
tion was used. Strategy that didn’t give timing issue was Flow_PerfOptimized_high
for synthesis and Performance_ExtraTimeOpt for implementation.

3.2.1.5. Generating DSA files

Setting Vivado Properties for Generating a DSA Tcl script was created to set
all necessary properties. Below is reported the prepare_dsa.tcl script.

1 # Set DSA project properties
2 set_property dsa.vendor "UPV" [current_project]
3 set_property dsa.board_id "prod-accel-profpga-ku115" [

current_project]
4 set_property dsa.name "1ddr-xpr" [current_project]
5 set_property dsa.version "3.3" [current_project]
6 set_property dsa.uses_pr true [current_project]
7 set_property dsa.flash_interface_type "spix8" [

current_project]
8 set_property dsa.flash_offset_address "0x4000000" [

current_project]

76 Contribution

9 set_property dsa.description "This platform targets the
Prodesign Development Board for Acceleration with

Kintex UltraScale KU115 FPGA. This high-performance
acceleration platform features one channel of
DDR4-2400 SDRAM, the expanded partial
reconfiguration flow for high fabric resource
availability, and Xilinx DMA Subsystem for PCI
Express with PCIe Gen3 x8 connectivity." [
current_project]

10

11 set_property dsa.pcie_id_vendor "0x10ee" [
current_project]

12 set_property dsa.pcie_id_device "0x8237" [
current_project]

13 set_property dsa.pcie_id_subsystem "0x4133" [
current_project]

14 set_property dsa.board_interface_type "gen3x8" [
current_project]

15 set_property dsa.board_memories {{ddr4 2GB}} [
current_project]

16 set_property dsa.board_interface_name "PCIe" [
current_project]

17 set_property dsa.board_vendor "prodesign-europe.com" [
current_project]

18

19 set_param dsa.expandedPRRegion 1
20

21 set_param chipscope.enablePRFlow true

Generating DSA Once the circuit was implemented and the properties was set,
the DSA was generated. To generate the DSA, we opened the implemented de-
sign and we didn’t start the generation bitstream task. This because during the
generating process, write_bitstream command was called. The following com-
mand was used to

• generate the DSA:

1 write_dsa -include_bit

where -include_bit is used to include the bitstream for the current design in
the DSA.

• validate the DSA:

1 validate_dsa

3.2 Design 77

Device ID Meaning
8 FPGA architecture is Ultrascale based
2
3
7 family series of FPGA

Table 3.1: Meaning of Device ID bits of custom Platform

Subsystem ID Meaning
4 XPR is used.
1 1 DDR is used
3 DSA version3

Table 3.2: Meaning of Subsystem ID bits of custom Platform

3.2.2. Software Platform

Since the new custom Platform was created, Device ID and Subsystem ID was
changed. The values chosen are 0x8237 and 0x4133 respectively. These values are
compliant with the specification of this thesis work. Tables 3.1 and 3.2 explain the
meaning of these values.

In order to make compatible the drivers, appropriate changes have been made.

3.2.2.1. xcldma

In this section, will be explain how xcldma driver was changed. For each change
made, you can see the code in the original version, of course provided by Xilinx,
and in the modified version.

All the changes were made on the xdma-core.c file.

Add custom Platform Device ID To make the connection between the driver
and the custom platform, the Device ID has been added to the kernel mode driver
in the pci_device_id data structure.

1 static const struct pci_device_id pci_ids [] = {
2 { PCI_DEVICE (0x10ee , 0x7134), },
3 { PCI_DEVICE (0x10ee , 0x7138), },
4 { PCI_DEVICE (0x10ee , 0x8134), },
5 { PCI_DEVICE (0x10ee , 0x8138), },
6 { PCI_DEVICE (0x10ee , 0x8238), },
7 { PCI_DEVICE (0x10ee , 0x8237), },
8 { PCI_DEVICE (0x10ee , 0x8234), },
9 { PCI_DEVICE (0x10ee , 0x8338), },

10 { PCI_DEVICE (0x10ee , 0x8438), },
11 { PCI_DEVICE (0x10ee , 0x8638), },
12 { PCI_DEVICE (0x10ee , 0x923f), },
13 { PCI_DEVICE (0x10ee , 0x943f), },

78 Contribution

14 { PCI_DEVICE (0x10ee , 0x963f), },
15 { 0, }
16 };

System Monitoring support Since the custom platform does not include the
hardware useful for providing platform contour information, SysMon features
are not enabled.

1 bool is_sysmon_supported(const struct xdma_dev *lro)
2 {
3 if(lro ->pci_dev ->device == 0x8237 && lro ->pci_dev ->

subsystem_device == 0x4133) return false;
4 u16 series = lro ->pci_dev ->device;
5 u16 dsanum = lro ->pci_dev ->subsystem_device;
6 series >>= 12;
7 series &= 0xf;
8 dsanum &= 0xff;
9 printk(KERN_DEBUG "SYSMON: Series: %u, dsanum: 0x%x.\

n", series , dsanum);
10 return (series > 7) && (dsanum >= 0x32);
11 }

Multiple clock supported Since the custom platform has two clocks, one 250
MHz and the other 500 MHz, the driver must enable the functionality to support
both clocks.

1 bool is_multiple_clock(const struct xdma_dev *lro) {
2 if ((lro ->pci_dev ->device != 0x8238) && (lro ->pci_dev

->device != 0x8237))
3 return false;
4 if (((lro ->pci_dev ->subsystem_device & 0xff00) != 0

x4400) && ((lro ->pci_dev ->subsystem_device & 0
xff00) != 0x4100))

5 return false;
6 return ((lro ->pci_dev ->subsystem_device & 0xff) >= 0

x31);
7 }

3.2.2.2. XCL HAL

In this section, will be explain how XCL HAL driver was changed. The changes
concern the memory size and the name of the platform.

Add Platform name In this case the name of the platform and its Device ID-
Subsystem ID pair has been added.

3.2 Design 79

1 std:: string XDMAShim :: getDSAName(unsigned short
deviceId , unsigned short subsystemId)

2 {
3 std:: string dsa("xilinx :?:?:?");
4 const unsigned dsaNum = (deviceId << 16) |

subsystemId;
5 switch(dsaNum)
6 {
7 case 0x71380121:
8 dsa = "xilinx:adm -pcie -7v3:1ddr :2.1";
9 break;

10

11 //cut
12

13 case 0x82374133:
14 dsa = "UPV:prod -accel -profpga -ku115:1ddr -xpr

:3.3";
15 break;
16

17 //cut
18

19 default:
20 break;
21 }
22 return dsa;
23 }

Modify DDR size As stated in the specifications, the memory size is 2 GB. In
this part of the code, you can see how the Device ID 0x8237 is associated with the
value 0x080000000, which means 2147483648 bits and therefore 2 GB.

1 int XDMAShim :: xclGetDeviceInfo2(xclDeviceInfo2 *info)
2 {
3 std:: memset(info , 0, sizeof(xclDeviceInfo2));
4 info ->mMagic = 0X586C0C6C;
5 info ->mHALMajorVersion = XCLHAL_MAJOR_VER;
6 info ->mHALMajorVersion = XCLHAL_MINOR_VER;
7 info ->mMinTransferSize = DDR_BUFFER_ALIGNMENT;
8 info ->mDMAThreads = mDataMover ->channelCount ();
9

10 //cut
11

12 if((info ->mDeviceId == 0x8238) ||
13 (info ->mDeviceId == 0x8638) ||
14 (info ->mDeviceId == 0x923F) ||
15 (info ->mDeviceId == 0x943F) ||
16 (info ->mDeviceId == 0x963F))
17 {

80 Contribution

18 info ->mDDRSize = 0x100000000;
19 } else if(info ->mDeviceId == 0x8237) {
20 info ->mDDRSize = 0x080000000;
21 } else {
22 info ->mDDRSize = 0x200000000;
23 }
24

25 //cut

How to generate the xbsak utility The XCL HAL driver folder is organized as
shown in figure 3.8.

xclhal/

driver/

xcldma/

user/

include/

include/

tools/ xbsak/

Figure 3.8: XCL HAL folder structure

The driver subfolders contain both the source files of the driver itself and the
source files of the xbsak utility. The dependency between these two objects is
given by the libxcldrv.a file. So first you need to generate the libxcldrv.a file. To
do this just run the Makefile contained in the /driver/xcldma/user/ folder after
modifying the driver to make it compatible with your custom platform. In this
way, will be generated also the libxcldrv.so file. Now just run the Makefile in the
/tools/xbsak/ folder.

3.2.3. Generating Platform files

As flow shown in figure 2.25 explain, the last step to create the Platform is to
generate the Platform files in the right structured folder. In that case, the Platform
folder was created as figure 3.9 shows.

The DSA file was copied in /hw folder, while the drivers was copied into
/sw/driver folder.

3.2.3.1. Configuring the .xpfm File

The UPV_prod-accel-profpga-ku115_1ddr-xpr_3_3.xpfm file was copied from an avail-
able example platform in SDAccel and was changed in order to make it compati-
ble with the custom Platform. The result is:

3.2 Design 81

UPV_prod-accel-profpga-ku115_1ddr-xpr_3_3.xpfm

hw/ UPV_prod-accel-profpga-ku115_1ddr-xpr_3_3.dsa

sw/ UPV_prod-accel-profpga-ku115_1ddr-xpr_3_3.spfm

UPV_prod-accel-profpga-ku115_1ddr-xpr_3_3/

driver/ classic/

bin/ classic/

libxcldrv.so

xcldma.zip

xclhal.zip

xbsak

Figure 3.9: Custom Platform folder structure

1 <?xml version="1.0" encoding="UTF -8"?>
2 <sdx:platform sdx:vendor="UPV"
3 sdx:library="prod -accel -profpga -ku115"
4 sdx:name="1ddr -xpr"
5 sdx:version="3.3"
6 sdx:schemaVersion="1.0"
7 xmlns:sdx="http: //www.xilinx.com/sdx">
8 <sdx:description >
9 This platform targets the Xilinx Development Board

for Acceleration with Kintex UltraScale KU115 FPGA
. This high -performance acceleration platform
features four channels of DDR4 -2400 SDRAM , the
expanded partial reconfiguration flow for high
fabric resource availability , and Xilinx DMA
Subsystem for PCI Express with PCIe Gen3 x8
connectivity.

10 </sdx:description >
11

12 <sdx:hardwarePlatforms >
13 <sdx:hardwarePlatform sdx:path="hw" sdx:name="

UPV_prod -accel -profpga -ku115_1ddr -xpr_3_3.dsa"/>
14 </sdx:hardwarePlatforms >
15

16 <sdx:softwarePlatforms >
17 <sdx:softwarePlatform sdx:path="sw" sdx:name="

UPV_prod -accel -profpga -ku115_1ddr -xpr_3_3.spfm"/
>

18 </sdx:softwarePlatforms >
19

20 </sdx:platform >

82 Contribution

Besides the Platform attribute, such as name and description, ti is possible to
see the DSA path and the Software platform path in the Platform folder.

3.2.3.2. Configuring the .spfm File

To create the UPV_prod-accel-profpga-ku115_1ddr-xpr_3_3.spfm was followed the
same flow as the previous file. The result is:

1 <?xml version="1.0" encoding="UTF -8"?>
2 <sdx:platform sdx:vendor="UPV"
3 sdx:library="prod -accel -profpga -ku115"
4 sdx:name="1ddr -xpr"
5 sdx:version="3.3"
6 sdx:schemaVersion="1.0"
7 xmlns:sdx="http: //www.xilinx.com/sdx">
8 <sdx:description >
9 This platform targets the Xilinx Development Board

for Acceleration with Kintex UltraScale KU115
FPGA. This high -performance acceleration
platform features four channels of DDR4 -2400
SDRAM , the expanded partial reconfiguration flow
for high fabric resource availability , and

Xilinx DMA Subsystem for PCI Express with PCIe
Gen3 x8 connectivity.

10 </sdx:description >
11 <sdx:systemConfigurations >
12 <sdx:configuration sdx:name="linux_x86"
13 sdx:displayName="Linux on

x86">
14 <sdx:description >Linux on x86</

sdx:description >
15 </sdx:configuration >
16 </sdx:systemConfigurations >
17 </sdx:platform >

3.2.4. Installing the Platform

Once created the Platform, to use it you need to install it, i.e. to compile and install
the driver, firmware and runtime libraries. In order to do that xbinst utility was
used and the following command has been launched in the platform folder:

1 sudo xbinst -f UPV_prod -accel -profpga -ku115_1ddr -
xpr_3_3.xpfm -d .

where:

• -f UPV_prod-accel-profpga-ku115_1ddr-xpr_3_3.xpfm: to point to the .xpfm
file generated previously.

3.2 Design 83

• -d .: to specify the output directory. In this case is the folder where the
command was launched.

This phase generate a folder, called xbinst, which includes driver, firmware
and runtime libraries. Also, it contains an installation script. To run this script,
the command launched was:

1 sudo ./ install.sh

Once the script finishes, a new script was generated. Its name is setup.sh. This
script is used to set the environment variables of OpenCL and the path of library.
You have to source this script every time you want to use the Platform.

3.2.5. Programming the FPGA

To program the FPGA, proFPGA tools was used. In particular, the following
commands was performed:

• profpga_builder: to scan the hardware infrastructure and generate the file
configuration which contains all used components. The tool is not used by
GUI, but trough the command

1 profpga_builder --config -only --scan =169.254.0.2

where the options have the following meaning:

– –config-only: to generate the file configuration.

– –scan=169.254.0.2: to scan the system with the specified IP address.

• profpga_run: to program the FPGA with a specified bitstream file. The
bitstream file must be added to the configuration file by editing it in the
part concerning the target FPGA. The used command was

1 profpga_run IP_169 .254.0.2. cfg --up

where the IP_169.254.0.2.cf argument is the configuration file name and the
–up option is needed to initialize and configure the system based on the
configuration file.

• profpga_brdgen: to generate the right psychical constraint about the hard-
ware system. This software is used to understand where is mapped PCIe
and DDRs. The used command was

1 profpga_brdgen IP_169 .254.0.2. cfg --xdc

where the IP_169.254.0.2.cf argument is the configuration file name and the
–xdc option is needed to generate the .xdc constraint file used by Vivado.

84 Contribution

3.3 Testing

3.3.1. Testing the correctness of the Platform installation

In order to test if the Platform was installed correctly, the xbsak utility was used.
Particularly, the following commands was performed:

• to display a list of connected device:

1 ./xbsak list

• since the custom platform is the only one connected to host, to get informa-
tion about it:

1 ./xbsak query -d 0

where -d 0 means that the first one of the list of device is queried.

• to test the PCIe bandwidth:

1 ./xbsak dmatest -d 0 -b

where -b specifies the test block size in KB. Default value is 65536.

• to write and read to/from DDR:

1 ./xbsak mem --write -a 0x1000 -i 256 -e 0xAA

where:

– –write: to perform a write.

– -a 0x1000: specifies the starting address.

– -i 256: specifies the size in bytes.

– -e 0xAA: specifies what to write.

1 ./xbsak mem --read -a 0x1000 -i 256 -o read.out

where:

– –read: to perform a read.

– -a 0x1000: specifies the starting address.

– -i 256: specifies the size in bytes.

– -o read.out: specifies the file name where direct the output.

• since the custom platform has a APM, to display the status of any APM and
returns the value of the APM counters:

1 ./xbsak status --apm

3.3 Testing 85

3.3.2. Partial Reconfiguration workaround

During the testing of custom Platform, the Partial Reconfiguration doesn’t work.
Particularly, the problem is about the calibration signal of DDR: after the down-
loading of partial bitstream, the calibration signal is low.

To workaround this problem, SDAccel Development Environment was mod-
ified. Specifically, SDAccel Development Environment generates the full bit-
stream and no the partial bitstream. To do so, the script ocl_util.tcl located in
/path/to/Xilinx/folder/Xilinx/SDx/2017.1/scripts/ocl has been modified. Below is re-
ported the changes made (row ∼ 3350).

1 # pass -cell to write_bitstream to only generate the
partial bit files for expanded pr

2 set more_option [get_property {
STEPS.WRITE_BITSTREAM.ARGS.MORE OPTIONS} [get_runs
impl_1]]

3 set_property -name {STEPS.WRITE_BITSTREAM.ARGS.MORE
OPTIONS} -value"$more_option -cell
$parent_rm_inst_path" -objects [get_runsimpl_1]

1 # pass -cell to write_bitstream to only generate the
partial bit files for expanded pr

2 set more_option [get_property {
STEPS.WRITE_BITSTREAM.ARGS.MORE OPTIONS} [get_runs
impl_1]]

3 #set_property -name {STEPS.WRITE_BITSTREAM.ARGS.MORE
OPTIONS} -value "$more_option -cell
$parent_rm_inst_path" -objects [get_runs impl_1]

4 set_property -name {STEPS.WRITE_BITSTREAM.ARGS.MORE
OPTIONS} -value"$more_option -no_partial_bitfile"
-objects [get_runs impl_1]

3.3.3. Area performance evaluation

The most important advantage of using XPR is the percentage of resources used
by the Static region. The reason why you want the percentage of resources used
by the Static region to be low is that you want to offer as many resources as possi-
ble to the Reconfigurable region and SDAccel so that you can have more space for
kernel implementation and optimization. Table 3.3 shows the values, taken from
the Vivado utilization report (report_utilization command), available on Kintex Ul-
traScale 115 FPGA and those used by the static region of the proposed solution.
Figure 3.10 reports the chart of resource utilization.

An estimate of the total percentage of resources used by the Static region has
been made by making the ratio between the sum of total resources and the sum
of resources occupied by the Static region. The result is that about 2.44% of the
resources are used by the Static region.

86 Contribution

Resource Utilization Available Utilization %
CLB LUTs 29502 663360 4.45%

CLB Registers 30126 1326720 2.27%
CARRY8 459 82920 0.55%
F7 Muxes 648 331680 0.20%
F8 Muxes 18 165840 0.01%
F9 Muxes 0 82920 0.00%

CLB 4722 82920 5.69%
LUT as Logic 26799 663360 4.04%

LUT as Memory 2703 293760 0.92%
LUT Flip Flop Pairs 12341 663360 1.86%

Block RAM Tile 49 2160 2.27%
DSPs 0 5520 0.00%

Bonded IOB 0 702 0.00%
HPIOB 0 598 0.00%
HRIO 0 104 0.00%

HPIOBDIFFINBUF 0 480 0.00%
HPIOBDIFFOUTBUF 0 480 0.00%

HRIODIFFINBUF 0 96 0.00%
HRIODIFFOUTBUF 0 96 0.00%

BITSLICE_CONTROL 0 192 0.00%
BITSLICE_RX_TX 0 1248 0.00%

BITSLICE_TX 0 192 0.00%
RIU_OR 0 96 0.00%

GLOBAL CLOCK BUFFERs 14 1248 1.12%
PLLE3_ADV 1 48 2.08%

MMCME3_ADV 2 24 8.33%
GTHE3_CHANNEL 8 64 12.50%
GTHE3_COMMON 2 16 12.50%

IBUFDS_GTE3 1 32 3.13%
OBUFDS_GTE3 0 32 0.00%

OBUFDS_GTE3_ADV 0 32 0.00%
PCIE_3_1 1 6 16.67%

SYSMONE1 0 2 0.00%
LAGUNA Registers 0 34560 0.00%

BSCANE2 0 8 0.00%
DNA_PORTE2 0 2 0.00%

EFUSE_USR 0 1 0.00%
FRAME_ECCE3 0 1 0.00%

ICAPE3 0 2 0.00%
MASTER_JTAG 0 2 0.00%

STARTUPE3 0 1 0.00%

Table 3.3: Static region resource utilization value

3.3 Testing 87

Figure 3.10: Static region resource utilization chart

As for the Reconfigurable region, this type of analysis is useless because the
datapath of the Reconfigurable region depends on the number and type of kernel
we want to accelerate.

3.3.4. PCIe speed performance evaluation

In order to testing the speed of PCIe communication from the host to the custom
Platform, the xbsak tool was used. In particular, the command used is

1 ./xbsak dmatest -d 0 -b xxx

where xxx is from 0x10 to 0x100000, which means that we started form a block
size of 16 KB and ended with a block size of 1048576 KB.

The used command tests all channel in the design. In our design we have 2
channel for writing and 2 channel for reading. In Figure 3.11 and 3.12, we report
the result of this evaluation.

We can deduce from the charts presented that the maximum performance of
the PCIe, both in reading and writing and for all channels, can be achieved with
a block size greater than 8192 KB.

This analysis is useful to try to optimize communication between host and
device through the PCIe: a hypothetical kernel, in order to achieve good perfor-
mance, must perform block transfers larger than 8192 KB.

The theoretical maximum bandwidth for communication via a third-generation
8-line PCIe is 15.8 GB/s for full-duplex communication [28]. Therefore, for half-
duplex communication the theoretical maximum bandwidth is 7.9 GB/s. The
reason for the difference between the theoretical value and the value collected in
this test phase may be different, including:

88 Contribution

Figure 3.11: Results of test of reading

Figure 3.12: Results of test of writing

3.3 Testing 89

• kernel mode driver is set to work with interrupt. Xilinx recommends to
prefer the polling mode to increase performance.

• limited number of DMA channel.

• Maximum Payload Size is set to 512 bytes. This number should be as large
as possible. To check this value, the following command is performed:

1 $ lspci -d :8237 -xxxvvv

3.3.5. A real application: nnsim

nnsim is a neural network framework written in C, which allows to define, train,
and infer neural network models. Its main purpose is to serve as a tool for teach-
ing both machine learning and Deep Learning (DL) concepts and computer ar-
chitecture.

nnsim includes kernel written in OpenCL can be accelerate with the custom
Platform developed in this thesis work. Examples of function written in OpenCL
are matrix multiplication, softmax, relu, maxpooling and demaxpooling.

nnsim’s software architecture is abstractable as shown in Figure 3.13. We can
see two levels: the first level is front-end to the end user, while the second level
is interfacing with various computing units such as GPU, CPU and FPGA. In
this case, the front-end represents the host, which manages the data transfer, the
creation of OpenCL. Context, and also, from a Command-Line Interface (CLI), it
is possible to choose which computing unit to use.

Front-end

Back-end

clBLAScuBLAS

GPUCPUFPGA

MPI

MKL

Figure 3.13: Logical view of nnsim’s software architecture

What has been done, then, is to use the flow and the tools offered by Xil-
inx, specifically SDAccel Development Environment, and described in this thesis

90 Contribution

work to deploy hardware accelerators capable of executing the functions written
in OpenCL compliant with our custom Platform. To do this it needs to create the
xclbin file and the bitstream file.

To easily create the xclbin file and bitstream file, a Makefile was written, shown
below, which takes the kernel source code and, using the xocc compiler, produces
the xclbin file and some estimates of resources used by kernels. The bitstream was
used to program the FPGA by proFPGA tools and the xclbin was used to create
the OpenCL Context in the host.

1 DEVICE := upv_prod_accel_profpga_ku115_1ddr
2 SDX_PLATFORM = UPV:prod -accel -profpga -ku115:1ddr -xpr

:3.3
3 NUMBER_OF_DEVICES := 1
4 EMCONFIG_FILE = ./ emconfig.json
5

6 XCLBIN := ./$(DEVICE)/$(TARGET)/binary
7 BUILD_DIR := ./$(DEVICE)/$(TARGET)
8 BUILD_DIR_KERNELS := $(BUILD_DIR)/kernels
9

10 #common tools
11 RM = rm -f
12 RMDIR = rm -rf
13

14 # compiler tools
15 XOCC ?= $(XILINX_SDX)/bin/xocc
16

17 #emulation tools
18 EMCONFIGUTIL = $(XILINX_SDX)/bin/emconfigutil --od .
19

20 # kernel compiler global settings
21 XOCC_OPTS = -t $(TARGET) --platform ./UPV_prod -accel -

profpga -ku115_1ddr -xpr_3_3/UPV_prod -accel -profpga -
ku115_1ddr -xpr_3_3.xpfm --save -temps --report
system -O3 --jobs 8

22 LDCLFLAGS += --xp prop:solution.hls_pre_tcl=synth.tcl
23

24 #
25 # OpenCL kernel files
26 #
27

28 BINARY_CONTAINERS += $(XCLBIN)/nnsim_binary_container.
xclbin

29 BINARY_CONTAINER_KERNEL_OBJS += $(XCLBIN)/nnsim_kernels
.xo

30

31 #
32 # host files
33 #
34

3.3 Testing 91

35 #
36 # primary build targets
37 #
38

39 .PHONY: all clean cleanall
40 all: $(BINARY_CONTAINERS) $(EMCONFIG_FILE)
41

42 clean:
43 -$(RM) $(BINARY_CONTAINERS) $(EMCONFIG_FILE)
44 -$(RM) *.rpt *.xtxt
45 -$(RMDIR) _xocc*
46 -$(RMDIR) .Xil
47

48 cleanall:
49 -$(RMDIR) $(DEVICE)
50

51 .PHONY: incremental
52 incremental: all
53

54 #
55 # binary container: binary_container_$(DEVICE).xclbin
56 #
57

58 $(XCLBIN)/nnsim_kernels.xo: fpga_kernels.cl
59 @mkdir -p $(@D)
60 -@$(RM) $@
61 $(XOCC) $(XOCC_OPTS) --temp_dir $(BUILD_DIR_KERNELS)

-c -I"$(<D)" -o"$@" "$<"
62 -@$(RMDIR) .Xil
63

64 $(XCLBIN)/nnsim_binary_container.xclbin: $(
BINARY_CONTAINER_KERNEL_OBJS)

65 @mkdir -p $(@D)
66 -@$(RM) $@
67 $(XOCC) $(XOCC_OPTS) --temp_dir $(BUILD_DIR_KERNELS)

-l $(LDCLFLAGS) -o"$@" $(+)
68 -@$(RMDIR) .Xil
69

70 #
71 # emulation configuration file
72 #
73

74 $(EMCONFIG_FILE):
75 $(EMCONFIGUTIL) --platform ./UPV_prod -accel -profpga -

ku115_1ddr -xpr_3_3/UPV_prod -accel -profpga -
ku115_1ddr -xpr_3_3.xpfm --nd $(NUMBER_OF_DEVICES)

76 -@$(RMDIR) TempConfig .Xil

92 Contribution

Below, in Table 3.4 and 3.5, are the area and frequency estimates calculated by
SDAccel Development Environment.

Kernel name FF LUT DSP BRAM
k_hadamard_product 3904 3230 27 2
k_im2col 31201 22874 64 2
k_maxpooling 10936 8094 60 2
k_demaxpooling 19197 15670 38 2
k_matmul 5339 4300 41 2
k_matadd_col 5920 5053 62 2
k_matmul_elwise 4320 3213 43 2
k_vect_scalar_prod 3817 3762 39 2
k_matsub 6269 4359 62 2
k_matadd 4208 3279 29 2
k_mat_reduce_rows 4483 4133 42 2
exp_generic_float_s 1899 1782 6 1
k_matrix_softmax 8695 8451 56 3

Table 3.4: nnsim’s kernels performance estimate part 1

Kernel name Total
resources

Utilization
%

Estimated
frequency

(MHz)
k_hadamard_product 7163 0,16% 342,4658
k_im2col 54141 1,23% 342,4658
k_maxpooling 19092 0,43% 342,4658
k_demaxpooling 34907 0,79% 342,4658
k_matmul 9682 0,22% 342,4658
k_matadd_col 11037 0,25% 342,4658
k_matmul_elwise 7578 0,17% 342,4658
k_vect_scalar_prod 7620 0,17% 342,4658
k_matsub 10692 0,24% 342,4658
k_matadd 7518 0,17% 266,6667
k_mat_reduce_rows 8660 0,20% 266,6667
exp_generic_float_s 3688 0,08% 342,4658
k_matrix_softmax 17205 0,39% 322,5807

Table 3.5: nnsim’s kernels performance estimate part 2

To test the correct operation of the tool with the support of the Custom Plat-
form, the following command has been launched.

1 ./nnsim -net nets/mnist/mlp_tiny -dataset datasets/
mnist/ -lr 0.01 -m 0.9 -mbs 64 -ne 1 -trs 64 -tes 64
-opencl_fpga -fit_decoupled

The number of iterations, in this case, is 1. The output is shown below.

1 Start init
2 Platform name: Xilinx

3.3 Testing 93

3 Device name: UPV:prod -accel -profpga -ku115:1ddr -xpr :3.3
4 End init
5 WARNING: label text file not found , not using label

texts ...
6 Configuration (training):
7 Gradient descend method : minibatch
8 Minibatch size : 64
9 Learning rate : 0.0100 (constant)

10 Momentum : 0.9000
11 Gradient value clipping : 0.0000 not used
12 Loss function : cross entropy (ce)
13 L1 regularization : no
14 L2 regularization : no
15 Lambda : 0.0000
16 Block pruning lambda : 0.0000
17 Block pruning row size : 1
18 Block pruning col size : 1
19 Truncation threshold : 0.0000
20 Synthetic optimization function : None
21 Training dataset size : 64
22 Test dataset size : 64
23 Number of epochs : 1
24 Dataset directory : datasets/mnist/
25 Plot : None
26 Fused im2col : no
27 Load model : --
28 Save model : --
29 Generate confusion matrix image : no
30 Fit decoupled : yes
31 Preload images : no
32 Broadcast images : no
33 Disjoint training set : no
34 Chunk size (in items) : 64
35

36 # cut
37

38 Node: peak1.gap.upv.es epoch: 1/ 1 TRAIN: 64/ 64
[**********] - > Cost: 2.2464 Acc: 10.9375 | VAL: 0/
64 -> Cost: 0.0000 Acc: 0.0000 | 0.02 MFLOPS - ETF:
00:00:00 - batches 1 - time: process 670 us |
compute 152120617 us

39 Node: peak1.gap.upv.es epoch: 1/ 1 TRAIN: 64/ 64
[**********] - > Cost: 2.2464 Acc: 10.9375 | VAL: 64/
64 -> Cost: 2.2532 Acc: 23.4375 | 1.72 MFLOPS - ETF:
00:00:00 - batches 0 - time: process 519425 us |
compute 583441 us --fit time stats:

40 Shuffling : 6
41 Forward : 1167127
42 Loss : 73

94 Contribution

43 Back : 44319
44 Update : 151492612
45 Bcast : 0
46 AllReduce : 0
47 Reduce : 0
48 Test : 0
49 Compute accuracy : 8
50 Total : 152705523
51

52 Time Init : 486 (0.00)
53 Time Process : 520095 (0.34)
54 Time Compute : 152704058 (100.00)
55 Time Stats : 519526 (0.34)
56 Total : 152705523 (100.0)
57 Timing stats. Node: peak1.gap.upv.es
58 --timing stats for functions:
59 matmul (fpga): 5 calls , 70266 us (0.02), 14053.2002

us/call
60 matadd_col (fpga): 3 calls , 1490304 us (0.49),

496768.0000 us/call
61 matmul_elwise (fpga): 2 calls , 52 us (0.00), 26.0000

us/call
62 vect_scalar_prod (fpga): 8 calls , 282659453 us (

92.74) , 35332432.0000 us/call
63 matsub (fpga): 5 calls , 20372212 us (6.68),

4074442.5000 us/call
64 matadd (fpga): 4 calls , 189 us (0.00) , 47.2500 us/

call
65 mat_reduce_rows (fpga): 2 calls , 1100 us (0.00),

550.0000 us/call
66 matrix_relu (fpga): 3 calls , 698 us (0.00), 232.6667

us/call
67 matrix_relu_der (fpga): 2 calls , 405 us (0.00),

202.5000 us/call
68 matrix_softmax (fpga): 3 calls , 192432 us (0.06),

64144.0000 us/call
69 xentropy (cpu): 2 calls , 73 us (0.00), 36.5000 us/

call
70 mat_copy (cpu): 2 calls , 463 us (0.00), 231.5000 us/

call
71 init_params (cpu): 1 calls , 1267 us (0.00), 1267.0000

us/call
72 zero_vec (cpu): 6 calls , 323 us (0.00), 53.8333 us/

call
73 total time : 304789237 us
74

75 Parameter statistics:
76 Layer 1 weight statistics

3.3 Testing 95

77 max = 0.126193 min = -0.139922 histogram = [2, 44, 313,
1051, 1943, 2204, 1519, 607, 139, 18,] sparsity 0

%
78 Layer 1 bias statistics
79 max = 0.000000 min = 0.000000 histogram = [7, 0, 0, 0,

1, 0, 0, 1, 0, 1,] sparsity 70 %
80 total sparsity 0 %
81

82 --fit time stats:
83 Shuffling : 0
84 Forward : 583422
85 Loss : 31
86 Back : 0
87 Update : 0
88 Bcast : 0
89 AllReduce : 0
90 Reduce : 0
91 Test : 0
92 Compute accuracy : 4
93 Total : 585227
94

95 Time Init : 742 (0.13)
96 Time Process : 840 (0.14)
97 Time Compute : 583422 (99.69)
98 Time Stats : 154 (0.03)
99 Total : 585227 (100.0)

100 ===
101 TEST RESULT
102 total cost = 2.2532 accuracy = 23.4375 %
103 ===
104

105 Global timing stats
106 Prep time : 152087142 us
107 Training time: 152705534 us (00:02:32)
108 Test time (final): 585240 us
109 Quantization time: 0 us
110 Total time : 305377916 us
111 -----------------------------
112 Total runtime : 306253603 us

As we can see, a complete execution takes about 5.1 minutes where the train-
ing time is about 2.32 minutes. An attempt was made to optimize performance,
and it was thought to modify the kernels by adding the pragma provided by
SDAccel Development Environment to add pipeling and unrolling, but the generic
nature of the tool does not allow to know the exact size of the data at compilation
time, or rather at kernel sisnthesis time, and for this reason the circuit can not be
optimized.

CHAPTER 4

Conclusions

In this thesis work, an FPGA platform useful for the acceleration of kernels writ-
ten in OpenCL, a high-level programming language, has been implemented. The
goal in particular was to use the Xilinx OpenCL runtime on FPGA provided by a
third party company as proFPGA.

The proposed solution allows the synthesis in an electronic circuit of any type
of written kernel both with high level languages, such as C, C++ and OpenCL
and with RTL languages. The choice of high-level languages also allows an av-
erage programmer to use this infrastructure. The main contribution of this thesis
has been presented in Chapter 3. In this chapter the whole infrastructure devel-
opment cycle has been described, starting from the Hardware Platform to the
kernel mode driver modification. A reference design was used for the implemen-
tation of the custom platform, and modified to meet the required specifications.
Also, Chapter 3 also includes several tests done on the platform. In particular, the
correct functioning of the platform, the occupied area, the PCIe communication
speed and the integration with a neural network simulator have been tested.

97

Bibliography

[1] TOP500. https://www.top500.org/.

[2] GREEN500. https://www.top500.org/green500/.

[3] Intel Corporation, Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim,
Debbie Marr, Randy Huang, Jason Gee Hock Ong, Yeong Tat Liew, Kr-
ishnan Srivatsan, Duncan Moss, Suchit Subhaschandra, Guy Boudoukh.
Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks?.
ACM/SIGDA International Symposium, February 2017

[4] MANGO project. http://www.mango-project.eu/.

[5] Ian Kuon, Russell Tessier, Jonathan Rose. FPGA Architecture: Survey and
Challenges. Foundations and Trends in Electronic Design Automation Vol. 2,
2008

[6] Deming Chen, Jason Cong and Peichen Pan. FPGA Design Automation: A
Survey. Foundations and Trends in Electronic Design Automation Vol. 1,
2006

[7] Xilinx. UltraScale Architecture - Configurable Logic Block User Guide. UG574
(v1.5) February 28, 2017

[8] Xilinx. UltraScale Architecture - DSP Slice User Guide. UG579 (v1.9) September
20, 2019

[9] Xilinx. Xilinx Stacked Silicon Interconnect Technology Delivers Breakthrough
FPGA Capacity, Bandwidth, and Power Efficiency. WP380 (v1.2) December
11, 2012

[10] Intel Altera. FPGA Architecture White Paper. July 2006, ver. 1.0

[11] Florent De Dinechin, Bogdan Pasca. Reconfigurable arithmetic for HPC. High-
Performance Computing using FPGAs, Springer, 2013.

[12] Khronos OpenCL Working Group. The OpenCL Specification. Version: 1.2
Document Revision: 19 Last Revision Date: 11/14/12

[13] Xilinx. SDAccel Environment - Optimization Guide. UG1207 v2017.1 June 20,
2017

[14] Xilinx. Vivado Design Suite - User Guide Partial Reconfiguration. UG909 v2017.1
April 5, 2017

99

https://www.top500.org/
https://www.top500.org/green500/
http://www.mango-project.eu/

100 BIBLIOGRAPHY

[15] Xilinx. Vivado Design Suite - User Guide Using the Vivado IDE. UG893 v2017.1
April 5, 2017

[16] Xilinx. SDAccel Environment - Tutorial Introduction. UG1021 v2017.1 June 20,
2017

[17] Xilinx. SDAccel Environment - User Guide. UG1023 v2017.1 June 20, 2017

[18] PRO DESIGN Electronic GmbH. proFPGA Hardware User Manual. Version
3.6 / 2018-03-02 Documented release 2018A

[19] PRO DESIGN Electronic GmbH. proFPGA Software User Manual. Version
3.14 / 2018-03-15 Documented release 2018A

[20] PRO DESIGN Electronic GmbH. proFPGA Builder User Manual. Version 1.15
/ 2018-03-08 Documented release 2018A

[21] Xilinx. SDAccel Environment - Platform Development Guide. UG1164 v2016.4
March 9, 2017

[22] Xilinx. UltraScale Architecture and Product Data Sheet: Overview. DS890 (v3.12)
June 25, 2020

[23] Xilinx. Vivado Design Suite - Tcl Command Reference Guide. UG835 v2017.1
April 5, 2017

[24] Xilinx. UltraScale and UltraScale+ FPGAs Packaging and Pinouts - Product Spec-
ification. UG575 (v1.14) March 18, 2020

[25] KU115BOARD_SDAccel. https://github.com/zakinder/SDAccel/tree/
master/KU115BOARD_SDAccel.

[26] Xilinx. AXI Interconnect v2.1 - LogiCORE IP Product Guide. PG059 December
20, 2017

[27] Xilinx. DMA/Bridge Subsystem for PCI Express v3.1 - Product Guide. PG195
June 7, 2017

[28] Jason Lawley, Xilinx. Understanding Performance of PCI Express Systems.
WP350 (v1.2) October 28, 2014

https://github.com/zakinder/SDAccel/tree/master/KU115BOARD_SDAccel
https://github.com/zakinder/SDAccel/tree/master/KU115BOARD_SDAccel

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Heterogeneous system for HPC application
	Standard vs custom FPGAs platform
	MANGO infrastructure
	Goals and Motivations of this Work
	Structure of the Document

	Background
	FPGA introduction
	Architecture
	Taxonomy
	Logic Block Architecture
	Routing Architecture
	I/O Architecture
	Programming
	Xilinx vs Intel Altera FPGAs

	Partial Reconfiguration
	Vivado Partial Reconfiguration design flow

	OpenCL introduction
	Platform Model
	Memory Model
	Execution Model
	Programming Model
	OpenCL Framework
	OpenCL Devices and FPGAs

	SDAccel Platform
	Hardware Platform
	Software Platform
	Generating Platform files

	Tools
	Xilinx Vivado Design Suite
	Xilinx SDAccel Development Environment
	proFPGA prototyping system

	Contribution
	Specification
	Reference design specification
	Our design specification

	Design
	Hardware Platform
	Software Platform
	Generating Platform files
	Installing the Platform
	Programming the FPGA

	Testing
	Testing the correctness of the Platform installation
	Partial Reconfiguration workaround
	Area performance evaluation
	PCIe speed performance evaluation
	A real application: nnsim

	Conclusions
	Bibliography

