

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Erbium – Third Person Character

Creator

Trabajo Fin de Grado

Grado en Ingeniería Informática

Autor: Mikhail Albershtein

Tutor: Albert Albiol, Manuela

2º Tutor: María Victoria Torres Bosch

2019-2020

Erbium – Third Person Character Creator

2

Erbium – Third Person Character Creator

3

Abstract
Video game development has always been an issue that a lot of programmers are

interested in. With the technologies growing at an incredible speed it became easier to

dive into creating video games for everyone. However, with the increased demand for

new mechanics and more patronizable games, programmers must make sure that their

code supports these new features. There is a lot of educational resources for creating

games, however, only a few are teaching how to write quality code.

This thesis is centered on developing a framework that helps programmers to create 3rd

person characters for Unity by applying the best practices for coding. To develop the

framework, design patterns have been applied, which allows us to build quality software.

Keywords: Video game development, Unity, design patterns, clean code

Resumen
El desarrollo de videojuegos siempre ha sido un área sobre la que mucha gente se ha

interesado. Con las tecnologías creciendo a gran velocidad, se ha hecho más fácil la

creación de videojuegos. Sin embargo, con el aumento de la demanda de nuevas

mecánicas y videojuegos más personalizables, la programación de videojuegos se ha

hecho más exigente. Aunque existen una gran cantidad de recursos educativos para

ayudar en programación de videojuegos, sólo unos pocos enseñan cómo escribir código

de calidad.

Este trabajo final de grado se centra en el desarrollo de un framework que facilita a los

progamadores la creación de personajes de 3a persona para Unity aplicando las mejores

prácticas para el código. En el desarrollo del framework, se han aplicado patrones de

diseño que permiten la obtención de un código de calidad.

Palabras claves: Desarrolo de videojuegos, Unity, patrones de diseño, clean code

Resum
El desenvolupament de videojocs sempre ha sigut un àrea sobre la que molts

programadors han mostrat interès. Gràcies al ràpid creixement de les tecnologies, ha

sigut cada vegada més fàcil la creació de videojocs. Però, amb l'augment de la demanda

de noves mecàniques per a videojocs i més personalització d'aquests, la programació de

Erbium – Third Person Character Creator

4

videojocs s'ha fet més exigent. Encara que hi ha una gran quantitat de recursos educatius

per a ajudar a la creació de videojocs, sols uns pocs d'aquests recursos ensenyen a crear

codi de qualitat per a videojocs.

El present treball final de grau se centra en el desenvolupament d’un framework que

facilita la creació de personatges de 3ra persona per a Unity aplicant les

millors pràctiques per al codi. Per a la construcció del framework s’han aplicat patrons de

disseny que aconsegueixen l’obtenció d’un codi de qualitat.

Paraules clau: Videojocs, Unity, patrons de disseny, clean code

Erbium – Third Person Character Creator

5

Erbium – Third Person Character Creator

6

Table of Contents
Chapter 1 12

Introduction ... 12

1 Motivation ... 12

2 Objectives .. 13

3 Structure of Document ... 13

Chapter 2 14

State of the Art .. 14

1 Game Engines .. 14

2 Unity .. 14

2.1 Unity Editor .. 15

2.2 Game Object .. 16

2.3 Unity Scripting API .. 18

2.3.1 Mono Behaviour .. 19

2.3.2 Using Other Components in Code ... 19

3 Third-Person Character Controller ... 19

4 Public Implementations ... 20

Chapter 3 22

Analysis .. 22

1 Requirements ... 22

2 Development Plan .. 23

3 Technologies .. 23

3.1 Unity .. 24

3.2 Rider .. 24

3.3 GitKraken & GitHub .. 24

Erbium – Third Person Character Creator

7

3.4 Trello ... 25

3.5 NSubstitute .. 26

Chapter 4 28

Implementation .. 28

1 Structure of the Project .. 28

2 Character ... 29

2.1 The Facade Pattern Applied to Character... 29

3 Movement ... 33

3.1 State Design Pattern Applied to Movement ... 33

3.2 Performance... 38

3.3 Interfaces as Behaviours .. 40

4 Animations .. 41

4.1 Animations in Unity... 41

4.2 Animation Module .. 42

5 Combat ... 45

5.1 Animations in Combo Attacks .. 45

5.2 Registering a Hit ... 48

Chapter 5 52

Testing and Documentation .. 52

1 Testing .. 52

2 Documentation ... 54

Chapter 6 56

Conclusions .. 56

1 Achievement of Objectives ... 56

2 Development Process ... 57

3 Future Work .. 57

Erbium – Third Person Character Creator

8

Glossary 58

Bibliography 59

Erbium – Third Person Character Creator

9

List of Figures

Figure 1 Unity Editor .. 16

Figure 2 Game Object ... 17

Figure 3 Inspector of the cube .. 18

Figure 4 Kanban board ... 23

Figure 5 Unity Logo ... 24

Figure 6 Rider Logo ... 24

Figure 7 GitKraken and GitHub Logos .. 25

Figure 8 Trello Logo ... 25

Figure 9 Trello at the begging ... 26

Figure 10 Trello near the end ... 26

Figure 11 NSubstitute ... 26

Figure 12 Stats ... 31

Figure 13 Character Game Object Components ... 32

Figure 14 Player Game Object ... 32

Figure 15 State design pattern UML enemy example .. 34

Figure 16 State design patter flow diagram enemy example .. 35

Figure 17 Movement state flow .. 36

Figure 18 IMovementState UML ... 37

Figure 19 GC allocation before optimization ... 40

Figure 20 GC allocation after optimization ... 40

Figure 21 Animator editor ... 42

Figure 22 Animator architecture ... 43

Figure 23 Trigger of the End of the Combo Gap .. 46

Figure 24 Combo state machine ... 47

Erbium – Third Person Character Creator

10

Figure 25 Animation State Data .. 48

Figure 26 Hurtbox and hitbox in Street Fighter .. 49

Figure 27 Leg hitboxes ... 50

Figure 28 Hitbox during the animation .. 51

Figure 29 Unity test window ... 52

Figure 30 Github wiki page ... 55

Erbium – Third Person Character Creator

11

Erbium – Third Person Character Creator

12

Chapter 1
Introduction

A lot of programmers start learning how to code because of video games. Thankfully

nowadays it is much easier to learn how to develop one. We have access not only to free

game engines but also to a lot of literature, videos, courses, and other educational

resources. However, video games are becoming more and more complex and the

information on the internet quickly becomes irrelevant. So it is important not only to

create a cutting edge solution but one that lasts longer and is customizable, because at

the end that is what matters – developers want to create their video games and share

their experience with the public.

1 Motivation

When the technologies became easier to obtain and learn, game developers did not

stand in the way. They allowed people to get into the world of creating a video game by

realizing their game engines to the public. This, of course, led to a lot of people being

interested in creating their video games and the impact was huge. The amount of new

people coming to this area is still growing. Nowadays, the game engines have become

so powerful that they are being used not only for video games but also in movies,

simulations and even in mobile apps. It seems good from the outside, but when you try

to use them you quickly understand that they are overwhelming. They have grown so

much and have so many things that it is frustrating for the beginners to get started.

Big companies that are developing the most popular game engines are trying to help

beginners by not only providing documentation, guides, tutorials and so on but also

making the development workflow easier. For example, Unity with their DOT system or

Unreal Engine with the Blueprint System is meant to make it easier and faster for a

developer to get into creating stuff rather than learning all the details or how to code.

Although they achieved their goal of reducing the complexity of the first steps in the

learning of the engine, we still have to understand that the game engine is fundamentally

a big and complex system and a developer has to know all the tools that the engine is

providing to create his or her project.

I started being interested in game development two years ago when I introduced myself

to Unity, which is by far the most popular free game engine. I was motivated to learn but

I was even more motivated to create my projects. It led me to the biggest problem I faced

– everyone had their way to structure the code and the project. I had a lot of problems

maintaining and expanding the previous ideas that were implemented by other people.

Erbium – Third Person Character Creator

13

That is my main motivation – to create a framework for a Unity third person character

that is easy to maintain, expand, and personalize.

2 Objectives

The main objective behind this project is to create a modular framework for Unity third-

person characters that are easy to implement, maintain, expand, change, and add new

features to. The goal is not to create a framework that would fit every situation, but to

create a solid structure that would allow the developer to create prototypes of the

mechanics. The main aim is a solid structure and design of the overall project.

Moreover, the testing of the code in game engines is not that simple as it is in normal

software. For this reason, there is a need to investigate the available technologies for

testing the code.

Next, because of the nature of being open source, it is necessary to a have solid

documentation that describes not only the main structure of the code but also goes in-

depth on how the code is integrated with the Unity components.

Finally, when the project is done, the final objective is to maintain the project by keeping

it up to date with the latest Unity versions. In the future, I will create modules for the

main project that will provide new features.

3 Structure of Document

This document is composed of 5 sections:

1. Introduction. The motivation and objectives of the project are presented. This

section describes the purpose and the goals of this project

2. State of the art. This section introduces some approaches in the area of for game

engines that are related to the main goal of this work. We focus the analysis on

Unity in particular, and the third person character controller’s solution in the

popular web sites for beginners

3. Analysis. The analysis of the problem and the technologies that are going to help

to reach the goal are introduced in this section. We are going to discuss unity,

the design of the project, technologies, and the main flow of data

4. Implementation. In this section, the main aspects of the implementation of the

framework and the problems that occurred during the implementation are

presented.

5. Conclusions. This section is about the achievement of objectives that are defined

in the introduction section and future work.

Erbium – Third Person Character Creator

14

Chapter 2
State of the Art

Creating video games has always been difficult in terms of technologies. If 30 years ago

people were limited by the amount of memory they had and the technologies they were

using, today we are facing the same problems but on a much bigger scale. Luckily, we

have a lot of high professional tools available to everyone.

To create a video game, we have a lot of technologies, and not the only the game engine

itself, among others: audio editor, 3D model editor, animation editor, image editor,

material editor and the list goes on. But game engines became so powerful that they

could have all of these functions, not on the same level though, but if we would need to

correct, for example, an animation we could do that in the editor itself.

1 Game Engines

Game development is a hard, time-consuming, and slow process that requires a high

knowledge of the subject and a lot of professional from different areas. Programming

the video game is a big field in this area and a programmer needs to have some

knowledge about math, physics, algebra, and other related subjects.

Game engines are the tools that allow the developer to transform their ideas into reality.

The companies that created them did not release it for the public audience, it has been

used strictly in their own company and sold to the other big companies. That led to

almost non-existing of the small indie games and it was harder to become a specialist.

But that changed. In 2005 Over the Edge (which is now called Unity Technologies [14])

released Unity – a game engine that anybody can download for free. It was not growing

fast by the begging, but with the release of iPhone and the raised popularity of mobile

games, Unity quickly added IOS support for its game engine. It was a big step for Unity

becoming the most popular free game engine, as Samuel Axon mentions that in his

article Unity at 10: For better—or worse—game development has never been easier"[1].

Nowadays Unity is not the only one in the market. There is also Unreal Engine 4, freshly

released open-source Godot and CryEngine. While Unreal Engine 4 is being more

popular for big companies, but it has a higher difficult learning curve and Godot is still

fresh and CryEngine doesn’t have a big establish community, Unity still is a good choice

with constant updates and the largest community.

2 Unity

Erbium – Third Person Character Creator

15

As we discussed previously, Unity is one of the most popular game engines now that are

open for the public. For all these years being developing by professional teams, it became

a huge tool for developers with a lot of features. The engines itself is suited for almost

every game genre and not only video games. Unity is also being used for movies, cars

[4] and in the virtual reality projects. All that means that you can create a unique video

game for a huge variety of platforms: starting from small web games and finishing with

the newest consoles and phones.

Unity is not only a code framework or a variety of libraries, it provides visual tools which

meant to be integrated with the code and enable simpler, faster, and easier development

process. It is not only for programmers but also for other people that are not familiar

with coding: artists, game designers, level designers, UI/UX artists and so on. The big part

of the development is to integrate the code with the provided features of the engine and

finding the balance between the code and the manual manipulation of the assets.

Unity provides a working environment for both 2D and 3D games[15] (That includes semi

2.5D and isometric) with the variety of tools and already build in features: graphics, audio,

physics, AI and other functions that the developer does not have to worry about

implementing those, which in fact, what makes a game engine a game engine. But Unity

is not as simple as that, by its age, it became necessary for new features that not only

adding new graphics support but also the features that make development easier: debug,

asset view, visual scripting, new input system[3] and so on.

2.1 Unity Editor

Unity Editor is the main application that a developer will use. It is the base that connects

all the features with all the code and provides that for manipulation for the user. Even for

a programmer that essential to understanding how to use the editor and integrate his

code with the unity components by a provided scripting API.

Erbium – Third Person Character Creator

16

Figure 1 Unity Editor

We can see at figure 1 main windows of the editor:

• Scene – here the developer can move around the world and interact with the

objects that are in this world (move, scale and rotate them)

• Hierarchy – manager of the Game Objects (every object that is in the game) and

the hierarchy among them

• Project – file manager of the current project

• Game – the main game window where a developer can play the game in the

current state

• Inspector – displays details about the current selected Gameobject including its

components and properties.

• Console – a normal console that is showing the errors and other logs in the

runtime and compiles errors

There are also a lot of more other windows that serve for different purposes: Animation

for modifying animation, Test Runner for running test, Profiler for analyzing performance

and so on. For custom solutions, Unity provides developers to create their editor

windows and extensions with tools.

2.2 Game Object

Game Object is a fundamental block of any game in Unity. Everything that you can see

in the game, and even what you do not see (any kind of managers) is a game object.

Erbium – Third Person Character Creator

17

Figure 2 Game Object

In this picture, you can see a game object in the scene window. As we can see, that’s a

cube which is one of the defaults meshes in Unity. You can rotate, scale, and position the

mesh with your mouse selecting one or multiple axes. In the scene view, unity displays

axis and other gismos (as you can see in figure 2, in the center of the cube there are 3

arrows).

Erbium – Third Person Character Creator

18

Figure 3 Inspector of the cube

Figure 3 shows us the inspector of a game object with components. Each game object

consists of components that describe its behaviour and functionality. For managing

components, we have a special window – inspector. Beyond components, it provides

organization manipulations for game objects – changing its name, tag, layer and more

which is being used to identify and group game objects for special logic(for example, by

the layer we can determine what game object is considered as a floor)

As we can see in figure 3, this game object has different components:

• Transform – Describes where and how the object is being placed in the world

by 3 vectors – position, rotation, and scale. It is the most important component

for any object and by default, any object has it (except UI elements which are

being placed in a special canvas)

• Cube – component that tells what mesh needs to be rendered

• Mesh Render - the component that allows attaching model to a game object. It

allows add materials, allows lighting, probes, and other different settings.

• Box Collider - Collider is a component that generates borders for the component

to interact with other objects (physically or just to check if other components are

overlapping). Colliders can be different shapes: box, sphere, capsule, and complex

ones, such as mesh collider. There are two types of colliders: physical and a

trigger. Physical one does not allow other objects to go through it, on the other

hand, a trigger is being used for logic, for example, activate weather when a player

exits a building.

2.3 Unity Scripting API

At the begging Unity was supporting two programming languages for the coding:

JavaScript (UnityScript) and C#. Starting from 2017.2 Unity Script is depreciated [6] which

led to the only one available option – C#. Usually, in game development, the most

popular programming language is C++ for one good reason – performance. That is

extremely important that a video game is well optimized and run with a high stable frame

rate. Optimization in video games is not only optimizing the code, there is a lot of

techniques that can help achieve that. But still, Unity is being punished by the community

for picking C# instead of C++. However, Unity Technologies and Unity Community

provides good solutions for optimizing C# code – from basics like Object Pooling,

caching references, special scripting API usages to things like ECS(Entity component

system)[9], which is a complete turn-around from a typical OOP to a Data-Oriented that

can performance heavy logics much better. However, ECS is still developing and the basic

way of writing code in Unity is still at the top of popularity, and because of this reason

for this project I used normal OOP behaviour.

Erbium – Third Person Character Creator

19

2.3.1 Mono Behaviour

To give the Game Object functionality we must attach components to it. There are built-

in components, like Rigidbody for physics calculation, Mesh Render to attach a model to

the game object and so on. We can create our components through code using the

available API.

Mono Behaviour is a class that a developer can expand. By expanding this class to the

script, this script is becoming a component and available to be attached to a game object.

This class provides methods which include life-cycle methods which you can customize.

There are around 40 life-cycle steps, but the most important ones are:

• Awake/OnEnable/Start – method is called when the game object is created or

became real in the world (depending on the chosen method)

• Update/FixedUpdate – method being called every frame or every 0.02 seconds

depending on the method

• OnDestroy/OnDisable – method is called before the game object destroys

2.3.2 Using Other Components in Code

Already prebuilt components not only providing functionality to a game object in the

world, but they also provide API for using them in code. In the custom script all the

components that are attached to the game object, could be used getting the references

to those by special Mono Behaviour methods. By that, it is possible to apply, for example,

physics forces in a custom script.

3 Third-Person Character Controller

Character controller is not only one component but with other features that allow

building a basic structure for basic mechanics (taking damage, camera movement,

animations and so on). It can be applied not only for the third person but rather for any

object that is being controlled by the player or AI.

Unity provides one Character Controller [12] which is just a component for game objects.

It provides some basic movement functionality and some minor features. But by the

nature of being a prebuilt component in unity, it is difficult to change or even override

default functionality. It could be used for a normal character only, like humanoid

characters. And the other inconvenience about this component is that it is not physics-

based, and if a developer would want to add physics to the character, it will lead to

removing the Character Controller component.

Unreal Engine 4, on the other hand, has a lot of character controllers out of the box:

third-person, first-person, vehicle, air-vehicle and so on. It also provides integration with

other prebuilt functions of the engine such as damage system, navigation, multiplayer

Erbium – Third Person Character Creator

20

and many more. They could be modified or extended but there is a problem with it.

Extending a controller to add new functionality in UE4 is easy, thanks to a big functional

API and blueprints, but modifying the existing functionality requires a lot of knowledge

of the engine. A character controller is one of the core systems of Unreal, so to modify it,

a developer must go deeply in the source code and carefully change it.

Because Unity does not provide controllers, developers should come up with their ideas

and structures for logics for the characters. It has its advantages and disadvantages. If

the developer has a lot of experience and knowledge, he can create the structure with

the features he needs. But if the developer does not have those quantities, he needs to

spend a lot of time of refactoring the code later and researching some implementations.

Even though you can find some character controllers created by other developers in the

asset store provided by Unity[13], there are somethings that you have to consider: mainly

they all are not free and because of that, they tend to have with a lot of functionality

which leads to the complexity of the code. All that leads to the problem that we face with

Unreal Engine 4 – difficulties with changing the source code.

4 Public Implementations

As we discussed previously, beginners do not have experience or a good customizable

default character controller in Unity. The character tempts to be the first thing that

developers try to create. Usually, beginners tend to search for the tutorials on the popular

video-course websites, such as YouTube or Udemy. Those platforms provide a bunch of

quality tutorials, free and paid as well.

I was learning by them as well such. By my experience, I found some problems with the

tutorials online, even though the quality was good.

The problems I encouraged were:

• Non-generic solution – mainly all these courses/tutorials are around building a

final video game, where the controller is meant to be done the only way

• Not customizable – that is the main problem that I faced. By the end of the

course, you will have an almost identical project. But video games were meant to

be unique and people will try to add new features. But there is a problem with it

– the code was not ready to be expanded or modified. You will most likely find

yourself rebuilding a lot of systems that it would not break and would function

with a new feature.

• Undocumented project – the other problem is being that there is no

documentation for those projects. If you want to find the purpose of a feature of

why it was implemented the way it is, you mostly fill try to find it in a video which

is not the quickest and easier way.

Erbium – Third Person Character Creator

21

There is a good chance that you will encourage a lot of bad practices in terms of the

writing of clean code, SOLID principles [10], untestable code, files with thousands of lines

of code and so on. That was my main motivation - develop a clean solution for quick

prototyping mechanics.

Erbium – Third Person Character Creator

22

Chapter 3
Analysis

This chapter presents the requirements that have been identified for the framework

together with the plan of the project to develop the framework. Finally, the chapter

introduces the technologies used in the project.

1 Requirements

Here we will discuss the requirements that were established from the analysis of the

encouraging problems and the features that need to be in the default version of the

project.

• Movement – Movement is one of the fundamental parts of the character. It is

essential to create a framework that allows developers to easily create/manipulate

different types of movement.

o Jumping – In almost every action video game character can jump, so it is

important to include this feature in the project.

o Crouching – Crouching, like jumping, exists in most video games, for that

reason, it is supposed to be one of the default movements.

o Sliding – Sliding is another type of movement popular in video games,

where the character slides on the ground for a few seconds

• Camera – The camera is one of the most important tools to transfer the

experience to the player. It Is essential to provide a separated structure that allows

a developer to connect and adapt to the camera.

• Damage system – It is likely that video games have some sort of damage/health

system. The project must provide a basic implementation of the health system.

• Combo attacks – Combo attack is an important part of action games. Because of

being one of the fundamental parts of game design, the combo system must be

customizable both for a programmer and a game designer. Because of that, it is

important to create a customizable system for attacks.

• Clean code – It is a high priority to create code that is easy to read with

established clean code principles

• Uniform code style – Uniform standards provide good quality of the code for

the entire project

• Design patterns that allow expanding – There is a lot of design patterns out

there, but we can divide them into 3 categories: creational, structural and

behavioural. To reach the established goals, there is a must of choosing the best-

fit design pattern for different problems in the project.

Erbium – Third Person Character Creator

23

• Testing – Unity provides a testing environment that is a good choice to create

tests for the default features of the project.

• Documentation – It is essential to create quality documentation for the basic and

overall structure of the code.

2 Development Plan

Before starting to develop the project, I decided to divide the development into two main

parts: the actual development and the documentation. At the begging, I estimated that

those two parts would consume the same amount of time, but in the end, my rough

estimations were not correct, and the documentation and testing required more time.

Figure 4 Kanban board

For task management, I used Kanban board workflow. As figure 4 shows, I had 5 columns:

1. Features – This column has all the features of the project.

2. To-Do – This column represents all the tasks that need to be done. They are

closely related to the actual work. They are labels with colour to distinguish them:

red for bugs, yellow for documentation, purple for tests and so on.

3. In Progress – This column has all the tasks that are in progress.

4. Done – This column has all the tasks that are done.

5. Feature Done – This column represents all the feature from the first column that

has been done.

To create this project, I established the following steps:

• Establish the technology stack that will be used

• Create basic UML diagram of overall project structure

• Establish design patterns that would fit the project

• Find assets to use

• Start developing process.

3 Technologies

Apart from Unity Engine, to create a framework we would need:

• Code editor

• Version Control

• Task Manager

• Additional libraries

Erbium – Third Person Character Creator

24

3.1 Unity

Figure 5 Unity Logo

Unity is the engines that I will be using with provided default features and scripting API.

I will not use other assets available from the asset store, only the model, animations, and

textures from Mixmao.

3.2 Rider

Figure 6 Rider Logo

Rider is an IDE for .NET from JetBrains that has all the typical JetBrains IDE features

refactoring, indexed search, autocomplete and unity API integration. Although Unity by

default suggests using Visual Studio, I found Ridder much more powerful and easy to

use. JetBrains provides integration for Unity by default in Rider with plenty of features to

help us: showing performance-critical contexts, static analysis of unity API with

suggestions of replacing high costly methods and so on. Besides that, Rider provides, in

my opinion, the best coding experience in the market due to overall JetBrains established

ideas.

3.3 GitKraken & GitHub

Erbium – Third Person Character Creator

25

Figure 7 GitKraken and GitHub Logos

I want to publish the project to the public, and what is the better place for developers

than GitHub. The documentation will be also there in the wiki page of GitHub. GitKraken

is a GUI for git that helps using git.

GitHub is the most popular site for open source projects. It does not provide only version

control, but also a wiki editor for each repository found issues by other users and other

things that makes maintaining the project easier. GitKraken, on the other hand, is just a

graphical user interface for GIT version control. It integrates without problems with

GitHub. It allows us to keep track of our commits and branches with the visual

representation of the changes we make.

3.4 Trello

 Figure 8 Trello Logo

For planning and managing the tasks and the whole development process, I used Trello,

which is a Kanban-style website. Although it is usually being used in group projects, it is

still very useful even for a solo project. Not only it helps you have a plan of the

development process, but it can also help you estimate the time, track bugs and issues

and think about the structure of the project before starting.

Erbium – Third Person Character Creator

26

Figure 9 Trello at the begging

Figure 10 Trello near the end

3.5 NSubstitute

Figure 11 NSubstitute

Erbium – Third Person Character Creator

27

To create tests, I need a library for mocking the objects. I decided to use NSubstitue

because it does not have problems with unity integration. This library allows us to mock

classes and methods for testing purposes.

In Unity testing environment, it is very helpful for mocking the inputs of the player. When

we must test the player character, we need to make sure the inputs of a player control

the character. But during tests, we cannot use the inputs. NSubstitute allows us to mock

the input Unity API to test the player properly.

Erbium – Third Person Character Creator

28

Chapter 4
Implementation

In this section, I will discuss the overall design of the framework and the problems that

occurred during the development of the framework.

1 Structure of the Project

Before explaining each component, we should take an overall look at the structure of the

framework. To achieve expansion, we should consider a modular approach. By reducing

the amount of logic every system can do, it gives us a lot of potentials to reuse and

replace the components.

The framework is made of 4 main components:

• Character

• Movement

• Animations

• Combat

Figure 9: Structure of the project

As we can see at figure 9 Combat, Animations, Movement components are connected to

the Character component. It is the base of the whole system and it is the script that needs

to be on the game object of the character. We are going to dive deeper into each one of

them.

Erbium – Third Person Character Creator

29

Each component has different structure behind it and has a specific role. The movement

system oversees moving the character, it has different states for each kind of movement.

The animation system translates the actions of the character to the animator system in

Unity to play the correct animation and to connect animation with the other systems. The

combat system allows the character to deal and receive damage, it is working closely

with the movement component and the animation component.

2 Character

Character is a base class that is attached to the main game object of the character. The

script can be attached to any character – the player or the AI. Depending on the character

the input should be specified – camera and normal input for the player and behaviour

trees for AI.

Character script does not have heavy logic, but it manages all the subsystems of the

character and keeping the general state. The class does not move or animate the

character directly, it is passing that responsibility to the correspondent modules. That is

a perfect fit for a facade – the structural design pattern. Introduced in the popular book

of Erich Gamma [5], the author of many books about design and design patterns in

software. He defines facade as an object that provides a single and simplified interface

to facilitate access to a subsystem.

2.1 The Facade Pattern Applied to Character

Imagine running a cloth store, but you must deliver the cloth from the warehouse to the

store, selling the products, managing the marketing strategy, everything by yourself. It

would be easier to create teams that are managing a specific area. That is what facade is

doing - managing all the modules.

Facade provides basic interface solution for the user without complicating it with the

logic behind each interaction. In place of doing the logic all by itself, it calls the

subsystem. It might be more proficient to work with the module directly, but a facade

does not only simplify the talk with a module, but the main purpose of the facade is also

to control a bunch of modules.

You can see a game engine as a facade that managing a lot of facades. The top layer

facade – the editor, is a very simplified version of a facade. Game Engine does not need

to know how to render a polygon, how to increase the pitch of the audio track or

configure the gravitation scale. It manages that all the component work well with each

other and providing the functionality of each to the user.

A good smell of implementing the facade is when in one class you have different

functionality and it gets complex. The idea is to separate each functionality by the

modules. The complexity of each module gets more and more complex and applying a

Erbium – Third Person Character Creator

30

facade typically leads to dividing classes into more classes and you might be interested

in combing the facade with other design patterns, such as factory, singleton, adapter and

others. The risk of the facade is that the class can become too big and you might consider

dividing the facade into other facades.

Figure 10: Character class diagram

As we can observe from the image above, the character implements two interfaces:

ICharacter and IDamageDealear. IDamageDealear allows the character to deal with

damage (more on that later) and ICharacater has methods to access all the modules that

a character must have:

1. public interface ICharacter {
2. IMovement getMovement();
3. IHealthComponent getHealthComponent();
4. IAnimatorFacade getAnimatorFacade();
5. IArmour getArmour();
6. IAttackManager getAttackManager();
7. void changeMovement(MovementEnum movementEnum);
8. void die();
9. Stats getStats();
10. }

The character does not have a lot of methods for the functional purpose, more so, almost

every method is a GETTER for other subsystems to have the correct reference to other

modules.

By having a character class as a facade, we can simply add and remove the components

and modules of the character and customize it without changing a lot of code. Although

by changing the subsystems we must make sure that it will not break other components.

Erbium – Third Person Character Creator

31

That is a risk we should take by moving the logic under the modules. We cannot remove

the communication between the modules at all, but module design makes it much easier

to change, add, remove, and test the code then have a major class that does everything.

Even though sometimes it seems like adding a new module for one small thing is overkill

but it can be beneficial in a long run, for example, make the sound when a character

lands – it is much easier add the method for that in a class that’s in charge of making a

character jumping but it would be a better solution creating a sound module for the

character, so later we could add and modify more sounds and control the sound

behaviour much easier.

The character has the following modules:

• IMovement – the module that allows the character to move in the world

• IHealthComponent – the module that allows the character to receive damage

• IAnimatorFacade – the module that connects the code to the animator system

of Unity

• IArmour – the module that calculates the received damaged depending on the

damaging nature and the character’s amour

• IAttackManager – the modules that allow the character performing attacks and

combo attacks

• Stats – the modules that contain all the information about the current state of

the character, like current health, speed, jumping force and so on

We are going to discuss every module individually in the next topics, but now we should

focus on that Stats module.

Figure 12 Stats

As we can see from figure 12, this class does not have a single method, all it does is

contains the data that could be changed in runtime. The purpose of this class is to unify

Erbium – Third Person Character Creator

32

all the data of the character so when the value of an attribute changes it will affect all the

systems that are using this variable. But even though this class does not have

functionality beyond that, it extends the unity API class – MonoBehavior, so the developer

can see and change the value in the editor as shown in figure 13 in Stats.

Figure 13 Character Game Object Components

Because the character is using a rigidbody for moving, the character’s game object must

have one. But it also needs more components to properly function. For the game object

hierarchy, I decided to divide the main logic of the main functionality with the art part of

the character (model, animations, sounds and other components). We can see it as a

facade but with hierarchy model: we have the main object which has the general

functionality and all the main components, then under this game object, we have

different systems: model game object, colliders game objects and other as shown in

figure 14. Depending on their role they communicate with the main game object through

the code or the Unity systems.

Figure 14 Player Game Object

Erbium – Third Person Character Creator

33

Parent game object (Player) has 4 important components: Player script, Stats Script,

rigidbody and physical collider. Mesh game object has the mesh component as well as

Animator Facade and Character Animator scripts (More on that later). Hurtbox game

object is defining the area of where the character can receive a hit and registers it.

Currently, a character can be damaged to the head and the body.

Now let us dive deeper into the character interfaces. As a base interface, we have

ICharacter which has all the getters, that we discussed previously, along with move and

die methods. The child of these interfaces is IPhyscialCharacter that obligates the

character to work with Rigidbody. The purpose of these interfaces is that it allows the

character to use CharacterController instead of working with physics. Then, the children

of PhysicalCharacter is IPlayer, that allows the character to use the camera as an input. If

we are working with an AI character, we would have to need to use an AI interface with

the functionality for deciding the direction for the movement and other needed

behaviour. As we saw previously on the UML diagram, the character class also

implements IDamageDealer interface which allows the character to deal with the

damage.

3 Movement

Movement is one of the most important parts of this project. It deals with moving a

character in a world with the ability to quickly change the state of that movement: a

player can jump, slide, run, walk, crouch and so on.

Normally, movement is integrated deeply with the basic functionality in the character

class. Although this approach makes everything much easier at the begging and

sometimes it’s beneficial to keep it that way for integrating with other systems (for

example: starting the animation of a jump when a player pressed the space bar, making

a landing sound effect, emitting the dust particles when a character is running and so

on). However when you would want to implement a new way to move your character

(wall-running, flying, etc..) you would likely to find yourself in a situation where you would

rewrite a bunch of code or put a lot of ifs, which would affect the code readability,

maintenance and overall the code quality.

By the idea of giving developer freedom to build his code yet by providing a base

structure for implementing the movement module, I decided to search up design

patterns for this problem. Although they are a bunch of patterns that allow expansion, I

decided that the best fit would be a state design pattern.

3.1 State Design Pattern Applied to Movement

Erbium – Third Person Character Creator

34

Figure 15 State design pattern UML enemy example

For the sick of the example let us imagine an enemy in a video game. It can stand still,

chase the player, attack him, search for him, interact with other enemies and so on. We

can see the pattern there; the enemy has different states and we could separate the states

from the main system. That is the main purpose of the state design pattern: a system has

states that are constantly changing between each and one independently. Each state

does not depend on the others, it interacts with the main system and changes depending

on the behaviour. The change of the state could be done internally (in the state machine)

or it could be triggered by the external systems. Imagine an enemy standing still

(standing state) and it hears a player, the state now is searching, and the change was

triggered by the external system – sense system, as shown in figure 16. But when an

enemy is close enough, he will change his state to the attacking (internal change).

Erbium – Third Person Character Creator

35

Figure 16 State design patter flow diagram enemy example

By implementing this design pattern, we could achieve a lot of advantages:

• Single Responsibility Principle – a principle from SOLID that obligates classes

to do only one thing. That goes perfectly with the state design pattern – all the

states are describing how the system would act in a different state, and each state

has its responsibility.

• Open-close Principle – a second principle from SOLID – a class should be open

for extensions and close for modifications. This pattern is a perfect match for

this principle – it is easy to create new extensions without modifying the

previous states.

• Eliminating conditions – by implementing this design pattern we eliminate a lot

of conditions and our code becomes simpler.

• Eliminating repeated code – we can create an abstract class that implements

the state interface and has methods and attributes that could be useful for

every state.

• Modular approach – this design patterns allows us not only to encapsulate the

entire state module, but we can easily add and remove states.

State design patterns are not only a solid option by its own but it is a great choice for

video games because it would fit a lot of situations, not only the general state of a

character but also subsystems that could benefit from this design pattern.

Erbium – Third Person Character Creator

36

Movement in video games could be just a basic walk-run cycle but in a lot of modern

video games we could see a lot of different types of movements: wall-running, ladders,

flying, swimming and the list goes on. In each type the character could have different

behaviours: disabling camera movement, disabling attacks, increasing the gravity and so

on. It is not only hard to keep track of everything that is going on, but we also must pay

a lot of attention to the changes between the states and how they would change the

character parameters.

Figure 17 Movement state flow

As we can see in figure 17 each state has different behaviour for changing. However even

with that many change possibilities state design pattern allow us to reduce ifs statements

a lot, by polymorphism and sharing the same behaviour in the abstract state (we can see

that every “ground” movement can transit to the midair – to fall from the ground, we can

encapsulate this logic to the abstract base class).

IMovementState is the main interface for movements. It describes the lifecycle of each

state:

SetUp

This method is happening right after the current state has been changed. In this method,

we usually configure a character and all related systems for this specific state. For

example: telling the animator to play correct animation, increasing the gravity, disabling

camera rotation and so on. This typically is done in a constructor but for the performance

reasons (which will be explained later) it is being used here.

Erbium – Third Person Character Creator

37

Move

The main method which is being called every frame. Here is we execute the main logic

of the state.

ChangeState

This is the method for external and internal changes of the state.

CleanUp

Before the current state changes, this method is being called. The main purpose of this

is to set all the attributes that were changed in SetUp to the default values and do some

finishing actions if the state requires those. It could be done in a destructor but for the

performance reasons, it was expanded to a new method.

Figure 18 IMovementState UML

Every state extends the AMovementState class, which is abstract. The idea behind it was

to share all attributes for every state to work: rigidbody, character, transform of the

character, animator facade and stats. It provides two methods that are being used in

almost every state but with the option to override them.

Internal change of the state is being called in the states. Let us imagine that the character

is walking off the cliff and starts falling. We must check every frame if the player is on the

ground. If he is not, then we must change the state to midairMovement. But it is

Erbium – Third Person Character Creator

38

important to remember to call the cleanup and setup methods. That is why we invoke

changeMovement in the ICharacter class.

1. public override void move(Vector3 direction) {
2. if (isFalling()) {
3. changeMovement(MovementEnum.Midair);
4. return;
5. }
6. var velocity = accelerateAndMove(direction);
7. rotate(direction);
8. updateAnimParameters(velocity);
9. }

 We can see that every frame in the ground movement we check if the character is falling,

if so, then it changes the current state to MidAiarMovement, if not then move the

character on the ground. But changeMovement calls the method of a character because

before we need to execute cleanUp and setup methods:

1. public void changeMovement(MovementEnum movementEnum) {
2. movement.cleanUp();
3. movement = movements[movementEnum];
4. movement.setUp();
5. }

External change of state works similarly, the only difference is that it directly calls the

character’s method.

3.2 Performance

Performance in the video game is crucial and states have problem with it. In a usual

representation, we create a new instance of a state each time we change it. In video

games, we always want to create and load all the instances before entering the game

loop so in a run-time we would not have to spend the computation power to create

instances. And the second reason is that C# uses garbage collector and we do not want

to create a lot of garbage because that will increment the computation needed for the

game to deal with garbage spikes (cleaning the garbage) which is critical for the

performance.

For that reason, I created a MovementEnum - enumerator with all the possible states:

1. public enum MovementEnum {
2. Ground,
3. Midair,
4. Crouch,
5. Slide,
6. Attack
7. }

Erbium – Third Person Character Creator

39

The character has a dictionary that has an enumerator value as a key, and a movement

state instance as a value. In the constructor, every state is initializing and being stored in

the dictionary. In the change state method, all we must do is change the current

movement to one from the dictionary. In the end, we have all movement instances in the

memory and changing the current movement by simply accessing it from the dictionary.

However, that leads to another problem with the garbage collector. In C#, a dictionary

with the enumerator as a key generates a lot of garbage due to boxing [7] of the

enumerator while comparing the values. To solve that we need to implement our

comparator, that avoids boxing.

1. struct FastEnumIntEqualityComparer<TEnum> :
IEqualityComparer<TEnum>

2. where TEnum : struct {
3. static class BoxAvoidance {
4. static readonly Func<TEnum, int> _wrapper;
5.
6. public static int ToInt(TEnum enu) {
7. return _wrapper(enu);
8. }
9.
10. static BoxAvoidance() {

11. var p =

Expression.Parameter(typeof(TEnum),null);

12. var c =

Expression.ConvertChecked(p,typeof(int));

13.

14. _wrapper =

Expression.Lambda<Func<TEnum,int>>(c, p).Compile();

15. }

16. }

17.

18. public bool Equals(TEnum firstEnum, TEnum secondEnum) {

19. return BoxAvoidance.ToInt(firstEnum) ==

20. BoxAvoidance.ToInt(secondEnum);

21. }

22.

23. public int GetHashCode(TEnum firstEnum) {

24. return BoxAvoidance.ToInt(firstEnum);

25. }

26. }

 By doing this optimization we achieve decrement in the garbage allocation per frame

around 200b in average (even more when we rapidly change states), which is not much

but as the system gets more complex that could be a significant issue. It is not only the

code; it is also all the sounds/particles/models and more things that could be created in

a state.

Erbium – Third Person Character Creator

40

Figure 19 GC allocation before optimization

Figure 20 GC allocation after optimization

3.3 Interfaces as Behaviours

When I was working on the movement states I reached the point where I needed to

implement some generic behaviour (is the character able to jump in this state? is the

character able to fall in this state? and so on...). I did not want to implement those

behaviours in AbstractMovement because I want this class to be light and be well-

rounded, but those behaviours are meant to me be customizable for every state. I was

inspired by the Haskell naming conventions[11], where you can easily guess what this

method could do just by looking at the function’s declaration. I wanted something similar

but for the states. I found a possible solution - to express the capability of a state through

interfaces. That way we can see what the state can do just by looking at the class

definition. It would not say us how the certain behaviour is being used though, but we

would know that this state has this behaviour in some form or shape. It allows us to be

more organized and easily understand the code.

Let us take CrouchinMovement as an example:

1. public class CrouchingMovement : AbstractMovement, IFallable,
IJumpable

Just by looking at the definition when can tell what this movement can do. Let us have a

deeper look into that:

• AbstractMovemet – that says that it is a movement class, not a subject of interest

here

• IFallable - we can see that from that movement we can fall. We are not obligated

to create the same behaviour for every class that implements IFallable, it just

helps us understand the possible behaviours that class can do.

Erbium – Third Person Character Creator

41

• IJumpable – that says that a character can jump from this state.

Those interfaces are simple and usually have one or two methods to obligate us to create

the functionality of this behaviour.

1. public interface IFallable {
2. bool isFalling();
3. }

4 Animations

Animations are another big part of videogames and Unity provides not only an API but

also a special editor for tech artists and animators. If we take for example a rigidbody,

that is a component designed to be interacted with only in code. But animator, on the

other hand, is designed for both types of work: the editor and through coding. Because

of that we must keep a good balance between automation with our code and giving the

freedom for artists to animate characters.

4.1 Animations in Unity

One of the most fundamental things in the animations is a transition from one animation

to another. Unity takes all the hard work of calculating the mesh movement, bone

rotation and other things for itself. But we are in charge to create an animation state

machine. The way we do it is not that hard (for a simple state machine) – create

parameters and put conditions into the transitions between the animations. All of that

we can do in the animator editor. However, to actualize those parameters we must

connect animator with the code. They are many debates of how we should organize our

character: we can have a general state machine of a character in Unity animator editor,

that connects a; the actions and the animations very closely or we could divide our state

machine – one for animation and one for the character. That way we have more control

over the character and be independent of the animations, but it could lead to bugs with

the animations and overall players’ feedback of their input.

Erbium – Third Person Character Creator

42

Figure 21 Animator editor

In the image above we can see the animator editor window. In window 2 we can see all

the animation states and the transitions between them. To add conditions to a transition

we should pick one and, as shown in window 3, add conditions and configure the

transition time. To make a condition we need parameters that could be Boolean, float,

trigger, or integer. We could set them up in the window 1 from the image above in the

animator editor. To update those parameters, we need to use them in code through the

animator API.

4.2 Animation Module

Unity provides us with a good API for an animator to update the parameters, but often

happens that we must have some logic with our animations: disable animation transition

for a jump animation, enabling root motion, activating particles in the middle of

animation and so on. Also, the animation could be triggered for any class of a character,

so it is important to have it organized and try to separate it from the logic part as much

as possible.

For that reason, I decided to create two classes: one class for directly connect the

animator parameters with the code, and one facade that connects this class with the rest

of the systems and have some animation logic if that is needed. In figure 22 we can see

it as a simplified version of a layered architecture: we have the persistence layer and

database layer, but instead of database it is working with the animator.

Erbium – Third Person Character Creator

43

Figure 22 Animator architecture

That structure has many advantages:

• Easy to test - it is much easier to create tests for independent systems and we

can be surer about each functionality

• Consistency – each layer is doing only what that layer is supposed to do, it helps

us be more organized and be more consistent across all the layers.

• Easy to change – when everything is separated by layers it is much easier to

change something in one layer and be sure that it would not affect the layer

below it. But we must be sure when we are changing the bottom layer it will affect

the topper lever, that is why we need to get usage of integration tests.

• Easy to expand – when we will need to add new animation logic it will be clear

of how to implement it without major side effects.

IAnimatorFacade could be a normal class but ICharacterAnimator should extend the unity

object API class – MonoBehavior because it is getting the animator directly through the

game object.

However, sometimes there is a need to offer the heavy-based functionality to the

animators so they could make the logic in the editor or get some data from the animator.

There are two options to do it:

1. Extend ICharacterAnimator – If we already are working with the animator, we

could extend the basic functionality of this class so it could have some logic.

2. Created a second system – create a system that would work directly with the

animator offering heavy functionality for both ends: animator and the rest of the

systems.

Erbium – Third Person Character Creator

44

Each option has its advantages: extending ICharacterAnimation would not only be better

in terms of optimization - we would have fewer monobehaviours and code in general,

and structural -we would have only one class that is working with the animator so we will

always know where the problem is. Or the second approach - to create a second system

which has no advantages in terms of optimization but, in my opinion, it is a better

solution for the overall structure of the project. I decided to sacrifice a little bit of

performance for a cleaner solution. ICharacterAnimation would continue working only

with parameters of the animator and a new system would oversee the persistence layer

that has to be close to the animator itself.

IAnimatorStateFacade is this system, it is working not only with the animator but also

with the rest of the systems. That was the main reason to take this solution over the other.

That allows us to separate working with the animator. To demonstrate it I am going to

discuss the first problem I faced that led to reorganizing the animation system.

Typically, the character’s movement is done in the code because that way we have much

more freedom to customize it and change every detail, while the animation is being

played on the model. This way we decide how, where and when the character moves.

That is a good solution for generic walking, running and other primitive types of

movements. However, sometimes we need our animation to move the character. That is

what is called RootMotion. What it does is moving the mesh along with the animation.

Every parameter, such as scale, speed, timing and so on, is importing from the animation.

That is a good option for short, barely interactable animations – cut scenes, attacks,

interacting with items and so on. Although, with the structure of game objects of a

character there is a little problem with it.

1. public class ThirdPersonCameraDirection : IMovementDirection {
2. public Vector3 getDirection() {
3. Vector3 forward =

CameraManager.getCameraForwardDirectionNormalized();

4. Vector3 right =
CameraManager.getCameraRightDirectionNormalized();

5. return forward * InputManager.getVerInput() + right
* InputManager.getHorInput();

6. }
7. }

In a normal movement state, we determine directional vector by inputs and the camera

rotation and then we calculate direction based on these parameters. However, in

RootMotion movement state we cannot do that because we cannot control the speed

and position of the character, we must check every frame for the position of a character

in the animation.

It means that now an animator controls the movement state during RootMotion

animation. We could create that functionality in ICharacterAnimator and connect it to the

Erbium – Third Person Character Creator

45

movement system but, in the end, for the sake of more separated logic I decided to

sacrifice the performance in this area.

1. private void OnAnimatorMove() {
2. makeSureCharacterIsNotNull();
3. var movement = character.getMovement();
4. if (!animator || !(movement is AttackingMovement) ||

!(movement is IRootMotion))

5. return;
((IRootMotion)movement).setRootMotionAdditionalPosition(animator

.deltaPositio);

6. }

5 Combat

Combat is very important for a majority type of games; it is not only important to

implement the system by its own but also to provide good feedback to the player of the

actions that he is doing. They are many ways we could do the combat system, but I

implemented the simpler one yet covering a lot of combat styles. The character could do

fast and strong attacks, mixing them in between. With only 6 animations there will be a

total of 8 different combos with a maximum of 3 attacks in a row:

• FAST-FAST-FAST

• FAST-STRONG-STRONG

• FAS-STRONG-FAST

• FAST-FAST-STRONG

• STRONG-FAST-FAST

• STRONG-FAST-STRONG

• STRONG-STRONG-STRONG

• STRONG-STRONG-FAST

5.1 Animations in Combo Attacks

 To activate a combo attack we use InputManager which calls the combat system –

AttackManager. It checks wherever the character is in a state he could perform his attack

(GroundMovement or AttackingMovement) and changes it to AttackingMovement if

needs to. Then tells IAnimatorFacade to trigger the animation depending on the attack

(fast or strong). And because the attack animation is a number one feedback for the

player to feel free in the combat situation we have to not hard-code all the attack

animation behaviour, but rather give freedom to the animator to modify the animation

itself and the combo system.

Combo system works the following way:

1. Character starts his first attack

2. Combo is started

Erbium – Third Person Character Creator

46

3. Each animation has its limit of when the combo could be continued (Combo gap)

4. If the player performs another attack while the animation has not reached its end

of combo gap, the combo continues with a different attack

5. If the player did not press a button in time or he did nothing at all, combo resets

and the next attack will be the first one.

As we can tell it is important to change the combo gap without changing the code

because we want to make sure that each attack is unique and works as a player wants it

to work.

We can put on each animation a trigger which will call a method of

IAnimatorStateFacade to reset the combo, as shown in figure 23. That is how we can

determine on what frame of the animation the combo gap is finished.

Figure 23 Trigger of the End of the Combo Gap

In the end, we have three major frames:

• The first frame – where the characters start his attack and enter the combo gap.

This starts when a transition to this animation starts, not the animation itself.

• The frame of the end of the combo gap – triggers the method to resets a combo

score. We must be careful with the transition to the next combo attack while a

character is in the combo gap – the transition must end before the trigger.

• The last frame – the combo was already reset and the animator transitions to the

upper level (standard non-attack animations).

Erbium – Third Person Character Creator

47

Figure 24 Combo state machine

Inside of our animation state machine, we can define other state machines. A combo

system is a great example of that. We can encapsulate all the states into another state

machine and use it as a normal state in the main state machine, as shown in the image

above. As we can see in the combo state machine, we allow the animator to define the

combo by simply creating the transition between the animations. However, the animator

still must put the end gap trigger and create a DamageInfo – a structure that only

contains the amount of damage and the damage type and assigns to the animation.

To assign the damage to the animation I created an AnimationStateBase script that

extends StateMachineBehavior from Unity API. This script is being placed directly on each

animation and has three lifecycle states:

1. OnStateEnter – executed on the first frame

2. OnStateUpdate – executed each frame of the game

3. OnStateExit – executed on the last frame

That gives us a lot of options to create different behaviours for different animations.

And more so we can explore it more and be able to add as many animation states to a

single animation as we want. To give the animator more freedom another class was

Erbium – Third Person Character Creator

48

created - AnimationStateData the has all those life cycles and is ScriptableObject. That

means that we can create it as an asset and give the animator possibility to change the

values without touching the code and still be able to put it to the animation.

Figure 25 Animation State Data

AnimationStateBase has a list of AnimationStateData and executes every state for all of

them. By creating AnimationStateData we can define behaviours for animations and an

animator can put those behaviours to the animation and configure parameters without

touching the code. DamageInfo is one of the examples – in the first frame, it creates

damage info with the values that animator provided. Another example is Unskippable –

some of the animations could not be skipped until they are finished. By putting this state

on the animation, it makes it unskippable automatically.

5.2 Registering a Hit

They are two types of colliders in video games: physical and a trigger. Physical allows an

object being placed in the world. It defines the edges of the object and would not allow

it to be overlapped by another object. A trigger collider registers that another object has

overlapped it. There are many cases for triggers, but we are going to focus on a very

important one – hurtbox.

Hurtbox and hitbox are essential parts of registering a hit. Hurtbox is trigger colliders

that register a hit from the hitbox. Let us imagine a sword and head of an enemy. A sword

Erbium – Third Person Character Creator

49

would have a hitbox collider that will determine if it touched the head of the enemy –

hurtbox.

Figure 26 Hurtbox and hitbox in Street Fighter

In this image from Street Fighter, we can see red rectangles that represent hitboxes and

green rectangles that represent hurtboxes. As Nahuel Gladstein explains in blog

Gamasutra: “A Hitbox is an invisible box (or sphere) that determines where an attack hits.

A Hurtbox on the other side is also an invisible box (or sphere), but it determines where

a player or object can be hit by a Hitbox"[8]. If a hitbox overlaps with the hurtbox of the

enemy that means, there is a hit, and vice versa for the player. It is one of the things that

define balance in the video game, so it is important not only to create them properly but

also to allows game designers to modify it without touching the code.

Hurtbox is straightforward to implement. We need to create a hurtbox game object with

the trigger collider and a hurtbox script as a child of the main game object. This way

hurtbox would always be in the correct place but still could be modified for a specific

animation. Having many hurtboxes for a single character not only helps us to be more

precise with the registering hits but also it allows us to create different behaviours for

every hurtbox. Usually, in video games, a hit to the head deals more damage than to the

body.

Hitboxes, on the other hand, is a little bit complex because they must be disabled while

the character is not performing the attack. And during the animation, it should be

enabled and could be modified. On the surface, the implementation looks like hurtbox

– a game object under the character game object with a trigger collider and a script. But

to move it along with the attacks we should put it under the bone of body part which

should be dealing with damage (swords, fits, legs, etc..) depending on the animation.

Erbium – Third Person Character Creator

50

Figure 27 Leg hitboxes

In the image above we can see that under each foot we have a hitbox game object, so it

moves always along with the feet. We can see that they are disabled because they must

activate only in the animation.

Jonathan Cooper, the animator in Naughty Dog, breaks down the attack animation into

three main stages of the attack animation: anticipation, attack, and recovery[2].

Anticipation phase is where a character is preparing for the attack. The attack phase is

when the actual contact could happen, and the recovery phase is when a character

recovers from the attack to a normal state. It is important not only to follow those

principles while creating the animation but also enable/disable hitboxes according to

those stages – hitbox should be enabled only during the attack stage. Thankfully to Unity,

the editor of animation allows not only move/rotate bones, but we can change every

parameter of the character during the animation. That is being said, the animator can not

only enable and disable the hitbox but also manipulate the trigger collider of it. It allows

us to make hitbox bigger during a specific frame to create a special effect and change

the in game balance.

Erbium – Third Person Character Creator

51

Figure 28 Hitbox during the animation

In the image above we can see a scene view and an animation view above it. In the

animation view on each frame, we manipulate the bones to move the character and

below all the bones we could see the hitbox parameters. On the first frame we disable

the hitbox game object and it the attack phase of the animation we enable it back and

making it bigger in specific frames. In the scene view, we can see a character during the

animation and a big green cylinder – a trigger collider for the hitbox, that way we can

see how the collider behaves on each frame.

When a hit is registered, hitbox passes the hurtbox to the AttackManager which is

responsible to deal damage, depending on the current animation, to the hurtbox.

1. public void dealDamage(IHurtbox hurtbox) {
2. hurtbox.takeDamage(currentDamageInfo);
3. }

Erbium – Third Person Character Creator

52

Chapter 5
Testing and Documentation

This chapter presents the development of the tests for the framework together with the

documentation in Github.

1 Testing

Testing is important for every software and video games are no exception, but they are

not that easy to test. We must test not only the code but the game world itself.

Figure 29 Unity test window

Unity provides two testing environments: play mode and editor mode. In editor mode,

we can test only the code. In play mode for each test, unity creates a world and game

objects. That is being said in editor mode we can create unit tests for small methods, but

it is difficult to create integration tests because all the code that we write mainly

manipulates the game objects. Almost all the methods used in some way or form use

game object or in game components which leads to shifting to more test being placed

in the play mode environment.

In play mode, we have a setup method that is executed before every test and a teardown

method that is executed after the test is done. In the setup method, we must instantiate

everything a world needs to perform the test: character, managers, floor, enemy, etc.…

And in the teardown, we must eliminate all of them because if we do not do, it would

lead to unpredictable behaviours when the tests change, especially all the singletons and

destroyable objects.

Erbium – Third Person Character Creator

53

1. [SetUp]
2. public void setUpTestScene() {
3. gameObjects = init();
4. GameObject inputManagerGo = initInputManager();
5. InputManager inputManager =

inputManagerGo.GetComponent<InputManager>();

6. playerGo = initPlayer(inputManager);
7. gameObjects.Add(inputManagerGo);
8. gameObjects.Add(playerGo);
9. player = playerGo.GetComponent<IPlayer>();
10. }

In play mode, we can check not only our code but also, which is most important, how the

game objects and its components behave in certain conditions. For example, to check

the landing of a character we must:

• Put our character above the ground.

• Check if his movement state is MidAir.

• Wait half of a second.

• Check if the character is about to land (for that it uses a special ray cast above the

player to check if there is a ground above him).

• Check if the state is still falling.

• Wait for another second.

• Finally, check if the character is on the ground and the movement state is now

GroundMovement.

As we can observe, the tests in the play mode could get difficult to write pretty fast but

that is the most proficient way to test the mechanics and even help to find adequate

parameters for the game.

In the testing mode, we cannot use players or camera input, but the players have some

of the movement functionality that heavily depend on the input. For that and other cases

we need to mock some of the code. Sadly, unity does not provide a library for mocking

in tests but Nsubstitute works well with Unity and has no issues with adding it to the

project. This library allows us to mock the classes. For example, if a method A and returns

a random number, we can use the library for mocking this method and it will always

return 5. It allows us to mimic methods and test only the part of the code that we need.

1. [UnityTest]
2. public IEnumerator moveTest() {
3. IMovementDirection moveDirection = For<IMovementDirection>();
4. var direction = new Vector3(0, 0, 1);
5. player.changeMovementDirection(moveDirection);
6. moveDirection.getDirection().Returns(direction);
7. Vector3 playerInitPosition = playerGo.transform.position;
8. Assert.True(player.getMovement() is GroundMovement);
9. yield return new WaitForSeconds(1f);
10. Vector3 expectedPosition = playerInitPosition + direction *

(player.getStats().speed * 1f);

Erbium – Third Person Character Creator

54

11. Assert.True(Vector3.Distance(expectedPosition,

playerGo.transform.position) <= 2f);

12. Assert.True(player.getMovement() is GroundMovement);

13. }

One of the advantages of dividing the framework into a different system is that it is easy

to test every system independently. In cases where systems are depending on each other,

using NSubstitute help us to achieve that by mocking the functionality that we need.

For each movement type there are at least for tests, one for every lifecycle:

• Test for Setup

• Test for movement

• Test for CleanUp

• Test for Changing

Some of the movement types need additional tests: attacking movement for disabling

input, mid-air movement for landing and others.

Combat has a lot of functionality and is not easy to test due to combo gaps. There are

tests for every combo and single fast/strong attack. While a character is attacking, as we

have seen previously, it uses Root Motion for moving. We must test if the character has

moved during the attack and if the hitboxes were activated.

Animations are tough to test because we can’t test the animation that is being played at

the moment, but we can test all the animation parameter, attached animation systems

and when the transition is happening. However, the most important tests are combat-

related because it is not only using animations with logic in the code, but also the most

important animations for the game. There are tests for each movement to check

whenever the transition has happened and root motion tests for the attacks.

The character system is easy to test, however it has one of the important tests. We have

to make sure that by putting it in the game world, it would have all the subsystems

attached and working.

2 Documentation

The purpose of this project was to create a framework for providing characters and their

mechanics that helps other developers to easily build their video games. But the code

does not mean anything without documentation and user manuals. It is an important

part of the project because writing good documentation is what can separate a good

framework from a bad one.

I had three ideas where create documentation: a pdf file, a website, or a GitHub wiki.

While a pdf file could be accessed online and offline, I think that it did not provide the

best experience for that. A website could be beneficial for the design purpose and

Erbium – Third Person Character Creator

55

organization, but it requires resources to host it and time for building it. Github wiki

seemed like a perfect solution- it is fast to do due to markdown markup; it is close to the

source code and we can add a side menu along with the footer.

The structure of the documentation is not like java-doc where every method is explained.

It describes the overall structure and the principle flows of the framework. Each system

has a related block with pages that explain the main part of the corresponding systems.

There is not only the code explanation but also the ideas behind creating this system in

this specific way.

For the expandable modules, they are guides on how to expand this system with

guidelines to match the same style and ideas of the framework.

Figure 30 Github wiki page

The general rule was to create an easy to follow guide about the project. For that, I

decided the best approach would be put a lot of images that show the small parts of the

code describing the purpose and where and how it is being used, not what it does. That

helped me reduce the number of words which made it easier to read, without sacrificing

much of the content. If the code or method has a weird look then I would go deeper into

the explanation why it was written like that.

Erbium – Third Person Character Creator

56

Chapter 6
Conclusions

The main objective of the framework was to provide a structure that would allow

developers to quickly create and test their new mechanics. The principal focus was on

the connection of movement animations and attacking to the character because in

general, this is the most important area and the most demanding area to be customized.

It was a time-consuming project, and, on many steps, I encouraged a lot of problems

with many ways to solve them. The hardest part was to pick one solution over the another

because it is relatively easy to implement as many design patterns as you know, but as

always in architecture and clean code - we have to find a balance between hardcoded

solutions and overwhelming structures.

1 Achievement of Objectives

At the beginning of this document I defined three main objectives, besides future work,

for this project:

• Create a framework for creating 3rd person character for unity – Although I

did not release the framework in Unity Asset Store yet, so I do not have other

people’s experience feedback, I performed my experiment. I had an assignment

for Animation and Design of Videogames by Muñoz García, Adolfo, where I

needed to create a 2D game and I used Erbium. I adjusted easily, without

consuming relevant time, the code to my needs. Specifically, I spent an hour of

work to transform it from 3D to 2D and then another hour to create unique

mechanics for the character. It worked just fine. Besides translating it into the 2D

world, I built my code around the codebase.

• Testing – I have never used tests before in video games, so I had to investigate

what is the difference between the normal software tests and video games tests.

It turned out that in video games testing are a little different from what we see

on the regular base. We still have normal unit and integration tests for our code

but on the other hand, we still need to test the game by its by with creating test

worlds. Testing allows us to develop the software much faster and much more

secure and games are not exceptions. In total there were 27 integration tests

created for all the systems. Every time there is a new feature, tests are going to

make sure that each system is working properly. By implementing tests, the

development process got easier because it told me if I had a bug early when it is

still easy to fix.

• Documentation – Every framework or library needs documentation. Especially

when structures are becoming more and more complex. Even though design

Erbium – Third Person Character Creator

57

patterns are made for more stable and easier code, without the proper knowledge

and documentation it is difficult to understand code. Erbium does not have a

super complicated system although it still needs good documentation. Github

has provided us with a good platform for creating documentation for our project,

which has not been only easy to make but it is one click away from the codebase

2 Development Process

Thanks to the knowledge about the agile methodology learned at the degree in

Informatics Engineering at the Polytechnic University of Valencia, the development

process was not frustrating or estimated badly, even though I did not have a team, many

agile principals could be beneficial for solo projects. Mainly I used Trello for sticking to

the plan of the development. It did not only allow me to control my time limits but also

to track down the bugs. In the end, 17 bugs were tracked and fixed. However, the

estimation on the writing code and creating the documentation was 80%/20% but

because I had no experience writing in markdown style the time it took to write

documentation was larger, around 70%/30%.

Tests are another great thing that helped the process. Once I finished implementing a

feature, I could be sure that it did not break anything.

3 Future Work

Erbium is the base framework and I want to expand it with different common modules

such as the ability for wall-running, aim system, swimming and so on. I will not add them

to the main framework, instead, the idea is to create a bunch of compatible modules with

the framework itself and with each other. I have already the module ideas on the Trello

page of this project with some rough estimations. They will not violate the principles

established at the begging: being expandable, customizable, and clean overall. They are

principles that would be the main priority for those modules. However, the first thing,

before developing modules, is releasing it on the Unity Asset Store, receiving feedback,

and fixing the problems that would be encouraged.

Erbium – Third Person Character Creator

58

Glossary

• Animator – Unity editor for animations

• API – Application Public Interface

• Cryengine – Game engine by crytech

• ECS – Entity Component System

• GameObject – Any object in the Unity world

• GC – The Garbage Collector

• Getter – A method for getting a reference to an object

• Godot – Game engine by Juan Linietsky, Ariel Manzur

• MonoBehavior – A class from unity API that could attach to the game object

• Unity – Game engine by Unity technologies

• Unreal Engine 4 – Game engine by Epic Games

Erbium – Third Person Character Creator

59

Bibliography

[1] Ars Staff. (2016, September 27). Unity at 10: For better—or worse—game

development has never been easier. Retrieved June 17, 2020, from Ars Technica

website: https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-

worse-game-development-has-never-been-easier/

[2] Cooper, J. (2019). GAME ANIM. ISBN 1138094870

[3] Damm, R. (2019, October 14). Introducing the new input system. Retrieved June

17, 2020, from Unity Technologies Blog website:

https://blogs.unity3d.com/2019/10/14/introducing-the-new-input-system/

[4] Edelstein, S. (2018, May 17). How gaming company Unity is driving automakers

toward virtual reality. Retrieved from Digitaltrends.com website:

https://www.digitaltrends.com/cars/unity-automotive-virtual-reality-and-hmi/

[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. (1994). Design

Patterns: Elements of Reusable Object-Oriented Software. Boston, MA: Addison

Wesley Professional. ISBN 0201633612

[6] Fine, R. (2017, August 11). UnityScript’s long ride off into the sunset - Unity

Technologies Blog. Retrieved June 17, 2020, from Unity Technologies Blog

website: https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-into-

the-sunset/?_ga=2.53872556.506042004.1530922883-2145738851.1524228284

[7] Hargreaves-MSFT, S. (n.d.). Twin paths to garbage collector nirvana. Retrieved

June 21, 2020, from Shawn Hargreaves Blog website:

https://web.archive.org/web/20190216001802/https://blogs.msdn.microsoft.co

m/shawnhar/2007/07/02/twin-paths-to-garbage-collector-nirvana/

[8] Gladstein, N. (2018, May 14). Hitboxes and Hurtboxes in Unity. Retrieved June

17, 2020, from Gamasutra.com website:

https://www.gamasutra.com/blogs/NahuelGladstein/20180514/318031/Hitboxe

s_and_Hurtboxes_in_Unity.php

https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-development-has-never-been-easier/
https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-development-has-never-been-easier/
https://blogs.unity3d.com/2019/10/14/introducing-the-new-input-system/
https://www.digitaltrends.com/cars/unity-automotive-virtual-reality-and-hmi/
https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-into-the-sunset/?_ga=2.53872556.506042004.1530922883-2145738851.1524228284
https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-into-the-sunset/?_ga=2.53872556.506042004.1530922883-2145738851.1524228284
https://web.archive.org/web/20190216001802/https:/blogs.msdn.microsoft.com/shawnhar/2007/07/02/twin-paths-to-garbage-collector-nirvana/
https://web.archive.org/web/20190216001802/https:/blogs.msdn.microsoft.com/shawnhar/2007/07/02/twin-paths-to-garbage-collector-nirvana/
https://www.gamasutra.com/blogs/NahuelGladstein/20180514/318031/Hitboxes_and_Hurtboxes_in_Unity.php
https://www.gamasutra.com/blogs/NahuelGladstein/20180514/318031/Hitboxes_and_Hurtboxes_in_Unity.php

Erbium – Third Person Character Creator

60

[9] Meijer, L. (2019, March 8). On DOTS: Entity Component System. Retrieved June

17, 2020, from Unity Technologies Blog website:

https://blogs.unity3d.com/2019/03/08/on-dots-entity-component-system/

[10] Martin., R. C. (2003). The Principles of OOD. Retrieved June 17, 2020,

from Butunclebob.com website:

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

[11] Programming guidelines - HaskellWiki. (n.d.). Retrieved June 21, 2020,

from Haskell.org website: https://wiki.haskell.org/Programming_guidelines

[12] Unity Technologies. (n.d.-a). Unity - Scripting API: CharacterController.

Retrieved June 17, 2020, from Unity3d.com website:

https://docs.unity3d.com/ScriptReference/CharacterController.html

[13] Unity Technologies. (n.d.-b). Unity Asset Store Character Controllers.

Retrieved June 17, 2020, from Unity.com website:

https://assetstore.unity.com/packages/templates/systems/ultimate-character-

controller-99962?q=character%20controller&orderBy=0

[14] Wikipedia contributors. (2020a, April 29). Unity Technologies. Retrieved

June 17, 2020, from Wikipedia, The Free Encyclopedia website:

https://en.wikipedia.org/w/index.php?title=Unity_Technologies&oldid=9538667

46

[15] Wikipedia contributors. (2020b, June 10). Unity (game engine). Retrieved

June 17, 2020, from Wikipedia, The Free Encyclopedia website:

https://en.wikipedia.org/w/index.php?title=Unity_(game_engine)&oldid=961750

756

https://blogs.unity3d.com/2019/03/08/on-dots-entity-component-system/
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://wiki.haskell.org/Programming_guidelines
https://docs.unity3d.com/ScriptReference/CharacterController.html
https://assetstore.unity.com/packages/templates/systems/ultimate-character-controller-99962?q=character%20controller&orderBy=0
https://assetstore.unity.com/packages/templates/systems/ultimate-character-controller-99962?q=character%20controller&orderBy=0
https://en.wikipedia.org/w/index.php?title=Unity_Technologies&oldid=953866746
https://en.wikipedia.org/w/index.php?title=Unity_Technologies&oldid=953866746
https://en.wikipedia.org/w/index.php?title=Unity_(game_engine)&oldid=961750756
https://en.wikipedia.org/w/index.php?title=Unity_(game_engine)&oldid=961750756

