Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 835312, 21 pages
http://dx.doi.org/10.1155/2014/835312

Research Article

Hindawi

Identification of Stochastic Timed Discrete Event

Systems with st-IPN

Doyra Mariela Muiioz,' Antonio Correcher,” Emilio Garcia,” and Francisco Morant®

! Grupo de Automdtica Industrial, Universidad del Cauca, Popaydn, Colombia
2 Instituto de Automdtica e Informatica Industrial, Universitat Politécnica de Valéncia, Camino de Vera Street,

s/n, 46022 Valencia, Spain

Correspondence should be addressed to Doyra Mariela Munoz; mamunoz@unicauca.edu.co

Received 18 October 2013; Revised 14 April 2014; Accepted 28 April 2014; Published 9 July 2014

Academic Editor: Yingwei Zhang

Copyright © 2014 Doyra Mariela Muioz et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents a method for the identification of stochastic timed discrete event systems, based on the analysis of the behavior
of the input and output signals, arranged in a timeline. To achieve this goal stochastic timed interpreted Petri nets are defined. These
nets link timed discrete event systems modelling with stochastic time modelling. The procedure starts with the observation of the
input/output signals; these signals are converted into events, so that the sequence of events is the observed language. This language
arrives to an identifier that builds a stochastic timed interpreted Petri net which generates the same language. The identified model
is a deterministic generator of the observed language. The identification method also includes an algorithm that determines when

the identification process is over.

1. Introduction

Industrial systems usually have a sequential evolution, so they
behave as discrete event systems (DES). A DES is a discrete-
state, event-driven system; that is, its state evolution depends
entirely on the occurrence of asynchronously discrete events
over time [1]. A DES describes the system behavior by
means of the occurrence of events from an initial state. In
an industrial system two kinds of events can be observed.
Input (I) events are related to control commands or external
interactions with the system and output (O) events are related
to sensor measures. In this proposal, the external signals
not related with control commands define the operating
modes, which affects the controller and allows modelling the
system under different strategies; in [2] the authors use a
similar concept to differentiate production patterns in batch
processes, called multimode; they propose to separate the
original space of a mode into two different parts (the common
and the specific) and a monitoring process is carried out in
each block; the multiblock monitoring method proposed is
used for fault diagnosis purposes in multimode multivariate
continuous processes; some of its proposals could be applied
in stochastic DES regarding times identification, so it will

probably reduce the sizes of time matrices and the complexity
of the identification method.

Regarding DES, one problem which is being studied
recently is system identification. This problem can be defined
as follows: given a set of observed ordered timed I/O signals,
determine a model such that, given a set of ordered I signals,
the model approximates a set of the observed O signals. When
a model of the system is not available, identification can be
effectively used to obtain a model that can be then used to
formally prove if the system meets the requirements and to
improve its dependability [3].

Therefore, the first step in an identification process is to
define the characteristics and the format of the model to fit.
DES modelling starting form I/O signals has been addressed
by many authors using different approaches.

Petri nets (PNs) have been recognized as a suitable model
to describe DES [4], particularly when a system is asyn-
chronous [5-8]. Hiraishi [9] presented an algorithm for the
construction of a free labeled Petri net model from the knowl-
edge of a finite set of its firing sequences. In [10], the authors
define a class of continuous-time discrete event dynamic sys-
tems (DEDS) with two types of discrete-valued I/O signals:

http://dx.doi.org/10.1155/2014/835312

conditions signals and event signals called condition/event
systems (C/E systems) and they define models of C/E systems
too that are based on an extension of PNs (C/E PNs). C/E
systems provide an intuitive modelling framework amenable
to block diagram representation. The way of thinking and
modelling a system is like a set of modules with a particular
dynamic behavior and their interconnection via signals. This
way of modeling is intuitive, and the modules can be pretai-
lored and used over and over again. Each module is equipped
with I/O signals which are of two types: condition I/O carry-
ing state information and event I/O carrying state transition
information. This way of system extension with I/O signals
clearly reflects the duality of PNs, namely, the clear distinction
between states and states transitions with their own graphical
representation, semantics, and formal properties.

Rausch and Hanisch [11] proposed formalism for compo-
sition of I/O PNs to new systems which they called net con-
dition/event systems (NCEs). I/O PNs are coupled by means
of condition signals and event signals. The composition is
performed in the same way as known from the composition
of continuous systems in state space representation. This
model can simulate the systems behavior by firing maximal
steps and can also compute the complete state graph for the
system, similar to the state graph for timed place/transition
nets under the maximum firing strategy.

The general idea of NCEs is modelling a system as a set
of modules with a particular dynamic behavior and their
interconnection via signals [12]. Condition and event inputs
can be connected with some transitions inside the module by
condition and event arcs. Module places can be connected to
the condition outputs by condition arcs, and transitions can
be connected to the event outputs by event arcs. This concept
provides a basis for a compositional approach to build larger
models from smaller components [12].

Once the model has been defined, the following step is
defined as the DES identification method. In the literature
there exist a lot proposals related to DES identification
methods, these can be compared by their complexity in
terms of the system characteristics, identification process,
and the model or algorithm applied [13], as well as by the
identification model objective. From the theory of DES some
identification methods have been developed using different
techniques such as finite state machines (FSM), Automata,
and PN; currently, the most popular models are PNs and
Automata [7, 14].

The simplest methods are based on data from I/O, where
concurrent states are not identified and its execution is off-
line [13]. If the identification process is incremental, then
the algorithm must be executed on-line, but its complexity
is higher, because it can be polynomial or exponential,
depending on the approach used for modeling. Furthermore,
if the identification goal is the analysis of the model structure,
the model must be developed to verify PN properties like
being alive, conservative, achievable, among others. One of
the most well-studied PNs problems is estimating the state
of a given PN, based on its event sequence observation; in
[15] the problem of finding the least-cost transition firing
sequence(s) for a given interpreted PN (IPN) based on the
observation of labels sequence is addressed. The PN possesses

Mathematical Problems in Engineering

both observable transitions (which are associated with a pos-
sibly nonunique label) and unobservable transitions (whose
firings do not generate any label observations). This paper
assumes that each transition in the given IPN is associated
with a nonnegative cost that captures its likelihood (e.g.,
in terms of the workload or the power amount needed to
execute a certain transition). Given the observation of a labels
sequence, the task is to find the transition firing sequence
which (i) is consistent with both the observed label sequence
and the PN structure and (ii) has the least total cost.

Recent literature presents results and trends to solve the
identification problem. These trends can be grouped accord-
ing to [13], in three groups: IPN identification by I/O signals
(I/O IPN identification), nondeterministic finite automaton
(NDFA), and application of integer linear programming (IPL)
for IPN identification (ILP + IPN).

I/O IPN identification is related to the generation of
DES, based on the observation of output signals [16]; an on-
line algorithm computes an IPN model Q;, describing the
behavior of an unknown system Q. Every time a cyclic behav-
ior is detected, the previous computed model is updated.
This approach considers that each input to the system is
reflected in the output. It means that, even if the system
is not completely instrumented, the information provided
by the sensors is enough to detect any change of state [17].
The algorithm receives a sequence of output signals obtained
from observations during the system operation. These output
signals must be binary vectors representing the current state
of every one of the sensors measuring the output behavior
of the system. In [17] the authors present an evolution of
the method which is able to deal with concurrent systems
by means of detecting concurrent transitions. The identified
models are useful for structural diagnosis.

Regarding NDFA method, its approach is to build a
model that approximates the original system language. The
observed language of the closed loop DES is to be translated
into a finite state machine by an appropriate identifica-
tion algorithm. In [18, 19] a nondeterministic autonomous
automaton with output (NDAAQ) is chosen as an appropriate
model to reproduce the observed language of closed loop
DES. This approach identifies a closed loop DES based on
the interaction of the controller with deterministic behavior
and the physical process with nondeterministic behavior,
combining internal and external events. It presents a proposal
for division of the system into smaller subsystems. Also
[20] addresses the problem of identification and diagnosis in
DES based on timed Automata; the algorithm identifies and
detects failures in the actuators in low complexity systems.
An evolution of the method of [20] is proposed by Jarvis in
[21]. This paper deals with the identification of timed event
systems with timed Automata models. Some disadvantages
of this trend are that it does not model the concurrence of
states. Moreover, in complex systems there is a combinatorial
explosion of states.

ILP + IPN uses an ILP approach and it computes an
IPN. The model is built by using observed events and the
available output vector ([22-26]). The identification problem
is to determine a set of places P of cardinality m, a set of
transitions T of cardinality n, and the function of labeling

Mathematical Problems in Engineering

and the PN defined as an ILP problem. Silent transitions are
those that identify faults. A contribution of these methods
is given in [3] that deals with the identification problem for
deterministic systems as of timed A — free PN, starting from
the timed observed sequences. This method generates a net
language, whereas the timer information is used to identify
language strings that are not accepted by the net; therefore,
the algorithm does not need to know the language of the
full net. The solution is based on ILP and knowledge of the
timed net structure. It allows, together with the observation
of events, determining whether a transition time has expired.
The algorithm is carried out through two subroutines, one
to observe the language on-line and another for the off-
line ILP. Furthermore, [27] contributes with a technique that
reduces the number of sets of inequalities and the number
of inequalities in each set to identify the IPN as an ILP
problem. The other contribution in this area is given in [28],
presenting a method that uses ILP with IPN, to prevent
exhaustive generation of reachable states; it is considered
nondeterminism in the model, since different observable
transitions share the same label; it has a timing structure
of events leading to the imposition of new restrictions and
provides the most accurate diagnosis. It is a very efficient
method in small models but to find an optimal solution in
complex models has very high computational requirements.
These trends can be compared regarding to criteria such
as kind of system to identify, resulting model and compu-
tational cost, we can say that: The I/O IPN identification
cannot be used with timed systems; it can be applied to
complex systems; the obtained models are less complex
than those obtained using the Automata based methods and
computational cost is normal. The NDFA trend applies to
timed systems, and it works best on simple systems; it gen-
erates nondeterministic models and the computational cost
is normal; furthermore, there is a combinatorial explosion of
states. And regarding IPL + IPN, some proposals are for timed
systems and some present nondeterminism so these methods
cannot be applied today to identify real complex DES because
of the high computational complexity of the algorithm.
Timed event systems identification with output symbols
has been also treated in [21] using a technique from com-
putational learning theory in the context of timed Automata
and in [3] with free labeled nets; in this paper it is assumed
that a delay is associated with each transition and the timer
variables are used to determine if a potentially enabled
transition; on the basis of the observed firings, a subset of
the net language is build, while the timing information is
exploited to determine a subset of counterexamples, that is,
a set of strings that do not belong to the net language.
Considering the advantages and disadvantages of the
existing identification methods, this paper proposes an iden-
tification method of timed discrete event complex systems,
which identifies a deterministic language generator. The
language generator is defined as a stochastic timed IPN (st-
IPN). The proposal to model a system as st-IPN is inspired
in some concepts of the modelling formalism by NCES,
specifically on conditions and I/O events with the purpose of
labeling the transitions and places. We have added properties

to generate a DES modelling approach with the purpose of
performing diagnostics on complex systems.

This paper is organized as follows. Section 2 describes
the background on PN; Section 3 defines a st-IPN; Section 4
presents the identification method; Section 5 shows an appli-
cation case; finally, the concluding remarks and discussion are
showed in Section 6.

2. Background on PN

Petri nets (PNs) are widely used for modeling DES [29]. PN
provides compact models and captures main DES charac-
teristics as concurrence, asynchronism, causal relationships,
mutual exclusions, and so forth. This paper will model DES
with PN, so some basics of PN are presented.

Definition 1 (Petri net (PN)). A Petri net structure N is
a bipartite digraph represented by the five-tuple N =
(P, TR, Pre, Post, M,)), where P is a set of places with cardi-
nality n and TR is a set of transitions with cardinality m, and
Pre : Px TR — N, Post : TR x P — N are the pre- and
postincidence matrices, respectively, which specify the arcs
connecting places and transitions. Matrix I = Post — Pre is
the m x n incidence matrix of the net. The marking function
M : P — Nrepresents the number of tokens residing inside
each place, and M, is the initial marking [26, 30].

For pre- and post-sets, the dot notation is used. e tr = {p €
P : Pre(p, tr) > 0} [26].

Definition 2 (Reachability set of a PN). Let N be a PN.
Transition tr; is enabled at marking M it Vp; € otr;, M(p;) >
I(p;, tr;). The enabled transition tr; can be fired reaching a

j
new marking M, that can be computed by M, ., = M, +

— —
I - trj, where tr; is a [TR| vector of zeroes, except in entry j,
that is equal to 1. An enabled sequence o = tr;tr, ---try is
denoted as M[o > M. The reachability set of a PN is the
set of all possible reachable markings from M, firing only
enabled transitions; this set is denoted by R(N, M,) [31].

The system inputs will be the control commands and
the outputs will be the sensor readings. At each time instant
each input will have a particular value and so the outputs. In
order to organize the signals, this paper encodes the different
I/O vectors using its binary representation; therefore, it
is defined an input (output) symbol as the set of control
commands (sensor readings) values at a time instant in binary
representation.

Definition 3 (I/O symbol). Assuming binary values in input
and output signals, u, is a binary representation of s, s stands
for the input symbol, and s = 0---[2™] — 1, with u, = [0];
cos Upmp = [1], the same applies to ¥j» y; is a binary
representation of j, j stands for the output symbol, and j =
0--+12" = 1, with yy = [0];.. ¥y = [11.

For example, given a set of control commands Cc =
{cci e,k if ccp = 1 and cc, = 0 then the input symbol is
represented by u,.

Note that is possible that the controller will not generate
all the input symbols, since some control commands cannot
be enabled simultaneously. In the same way, the system will
not generate all the output symbols if there is no failure.

Definition 4 (interpreted Petri net). An IPN is a tuple
Q = (N,UY, A ¢) (see [32]), where N is a PN. U =
{ug, uy, ..., typm_y } is the input alphabet, u, is an input sym-
bol, and m is the number of inputs; Y = {yy, ¥15. .., Yjor-1}
is the output alphabet, y; is an output symbol, and 7 is the
number of outputs; A : TR — U is a labeling transition
function that assigns an input symbol to each transition. ¢ :
R(N,M,) — Y is an output function that assigns an output
symbol to each reachable marking.

From the definition given in [33], an event is a pair
(us, y;). A new event is generated when there is a change in
u,, in ¥j» or in both.

The system alphabet Q relates I/O symbols; that is, Q =
U-Y; therefore w” = u,y; € U-Yifu; € Uand y; € Y, where
e=1---[2"|x|2"|.

If U - Y is the system alphabet and U (Y) is the input
(output) alphabet, then P; : (U-Y)* — U™ (resp., Py :
U-Y)" — Y7), where Py(uy;) = u if u; € U,
Py(ugy;) == e ifuy ¢ U. (Py(uyy;) = y; if y; €Y,
Py(ugyy) =€ if yy ¢Y).

Definition 5 (timed event). A timed event w' is an I/O symbol
at time T;,

W = (usyj) T, ¢))

where u;y; is an 1/O symbol at time 7;. The time elapsed from
T,to 7, ist' (see [34]) and £’ = |7;| — |7,_, .

Definition 6 (firing language (see [35])). A firing sequence

in an IPN (Q) is a transition sequence ¢ = trtr,---try---
tr tr tr
such that M, — M, — ---M, —> ---. Given a firing

sequence o, a marking M, € R(N,M,) is reached from
M, if there exists a o; such that My[o; > M. The set of
all firing sequences is called the firing language Z(F) =

tr tr, tr,
{olo = trjtry---trg--- A M, — M, = - M, BLN

-+ |My, M, M,, € R(N,M,)}. Each transition tr; is fired at
time 7; (1, < 7, < -+ < 7); therefore o is an arranged
sequence in a timeline, where each transition happens at time
7.

Z(F) generates a timed event sequence (based
on Definition 5), called system language Z(Q) =
{A(tr)e(M,), A(try)p(M,), ..., Atr)o(M,)} whose events
are arranged at the same timeline as Z(F).

We define the projection P, : Z(Q) — Z,(Q)
(resp. Py : L(Q) — L0y(Q)), where P, (Mt)g(M,)) =
AMtry) if Altry) € U and Py(A(trp)e(My)) = e if
Mtry) ¢ U. (Py(Mtr)e(My)) = (M) if o(M,) € Y and
Py(Atr)@(M,r)) = eif o(My) ¢ Y). Therefore consider the
following.

Mathematical Problems in Engineering

(i) The input language is the generated language by the
input symbols, is:

Zin (Q ={Py (9)s € Z(Q} ()

Note that there could be several transitions with the
same label if A is not isomorphic.

(ii) The The output language is the generated language by
the output symbols, is:

Zou (Q = {Py (5)s € Z (Q} ©)

Note that there could be several places with the same
label if ¢(M,,) is not isomorphic.

For identification purposes, it is convenient to use isomorphic
¢ functions. Isomorphic mappings will lead to equivalences
between output symbols and net markings. Therefore, it
will be immediate to infer the net state from a particular
combination of output symbols.

Note that the evolution on an IPN could be nondetermin-
istic if ¢ is nonisomorphic. For example, a nondeterministic
evolution will occur if there exists at least one place with at
least two transitions with the same label that lead to different
places. Nevertheless, the language generated by many systems
(see [18]) is represented by a nondeterministic NDA when
the system state is described by means of its outputs. For
some applications, such as diagnosis, nondeterminism is
an undesirable characteristic. Next section will present an
extension of IPN that will avoid the nondeterminism in this
case.

3. Definition of Stochastic Timed Interpreted
Petri Net (st-IPN)

This section presents the definition of st-IPN. st-IPN defini-
tion includes the concept of “differential of output signals”
(dy), which represents the historical behavior of the output
signals. This concept will improve the understanding of the
process states. For example, in a fluid tank it is possible
to differentiate between the filling or emptying tasks. This
knowledge takes a great importance for identification pur-
poses.

Definition 7 (differential of output symbol, dy). Given an
output symbol y; € Y and y;_, € Y; dy; is defined as

dy; (y; % i) — {-1,0,1}, (4)

where dy;(a,b) = ¢, a € Y is an output symbol at time 7,
b € Y is an output symbol at time 7;_;, and ¢ € {-1,0, 1}; for
an output symbol y;; ¢ = a — b, so dy; possible values are
O0x0 > 0;0x1 » 1;51x0 —» -1;1x1 — 0.

st-IPN combines an IPN and a timed PN. IPN is defined
in Definition 4 and the timing concepts are based on [3]
where the authors define a timed PN with a delay associated
with each transition, represented by §(tr). This delay rep-
resents the time that must elapse from the enabling of the

Mathematical Problems in Engineering

transition until it fires. Timer variables are used to determine
if a potentially enabled transition tr is timed-out, that is, if its
firing time is elapsed and tr has not yet fired. If 5(tr) # 0, then
tr is said to be timed, while if §(tr) = 0, then tr is said to be
immediate.

Definition 8 (timer variables (based on [3])). Given a tran-
sition sequence ¢ = trytr,---tr.---, a timer variable ty, 1

associated with each timed transition tr;, where y, is enabled
it M; > pre; ty, Is disabled; that is, ty, =0, before the firing
of o.

Moreover, it is important to introduce the concept of
operation mode which is related to external events signals that
affects the controller, such as SCADA commands, operator
requirements, among others. The operation modes can be
grouped in a set OM = {0;,0,,...}.

A stochastic system is affected by a number of aspects
such as the variability in the material flow, the fluctuation
of power supply, and the deterioration of machinery and
devices. These variations change the enabling and the firing
times. It is assumed that each transition time follows a
stochastic distribution that can be different for each operation
mode.

Considering that this variability is not always normally
distributed, st-IPN includes a density function of transition
firing time for each transition and for each operation mode.

Definition 9 (stochastic timed interpreted Petri net (st-IPN)).
A st-IPN is a structure represented by

StQ = (Q’ Q, 6) > (5)

where Q = (N,U,Y, A, 9) is an IPN where N,U,Y have the
same meaning as in Definition 4, but input function A is
definedas A : TR — U-6 (alabeling function that assigns an
input symbol and a timer density function to each transition)
and ¢ is defined as ¢ : R(N, M,) — y;/dy;; ¢ is isomorphic
over y;/dy;.

Q=U-Y :={w = (u;y;)} is the system alphabet.

0 = TRxOM — f(trpeom) is a density function
of transition firing time for each operation mode OM =

{o1,05,...}

A transition tr; € TR with A(tr;) = u; - ty, is enabled at
operation mode o; if and only if M; > pre and if Prob(t,, ,) >

trj,0;
(1 — «), where Prob(ttrj) = If(ttrjxoi) and 1 — « is the
confidence level. Therefore, a transition is enabled if each
input place meets the marking requirements and the time
elapsed has reached a certain confidence interval.

When tr; is fired, a new marking is reached, such
that ¢(M;) = y;/dyj; thereby, each place of the st-IPN
represents not only the current system state, but also includes
information about directionality.

(i) Generated language: Stochastic timed event sequence
generated from the evolution of a st-IPN, so Z(stQ) =

{s € U-Y)" : Prob(s | p(M,)) = (1 — a)}, where

0 < T A

1 .
s = w,w,...,wk at times 7, < 77 < ---

symbol of the language generated is a concatenation
of an input symbol and an output symbol (' = uy;)
at time 7;.

3.1. Properties. Given an I/O event sequence s, where
s = (ukyk)’ (ux’ yx)’ (ul’)’1)> tee (uv’ yv)’ (uxyx)’ (ulyS)’ with
Vi # ¥, if @ is an isomorphic output function between the
set of markings and the set of output symbols, then the net
that generates the sequence is nondeterministic because input
symbols u; can be followed by two different output symbols,
y; and y,.. One of the consequences of a net nondeterministic
is that it generates event sequences that are not part of the
system language. The generation of event strings not included
in the system language must be avoided if the generator is
going to be used as a diagnosis model. The Proposition 10
proof that a st-IPN from s is deterministic.

Proposition 10. Let stQ be a st-IPN defined as in Definition 9.
If ¢ is isomorphic, then stQ is deterministic.

Proof. Let s be the sequence described in the previous
paragraph. Let us split the symbol y, into two y. and y!';
s o= ey ey (), (9, (e yy), (1 y3); the
differential of output symbols in y! is dy. = y. - y, and in
ylisdy! = y!' - y,;as y, # y, then dy.. #dy!’; therefore, the
output function is different in the two states, thus eliminating
the nondeterminism and increasing the number of states. So,
¢ is isomorphic between the set of markings and the set of
output symbols y;/dy;. O

The inclusion of dy in the model allows the computing of
a maximum number of states.

Definition 11 (maximum number of states, Q,,.). The system
state is determined by the output symbols and their historical
behavior; therefore, the maximum number of identifiable
states is related to these output signals; thus

Quax = 2" % 3", (6)

where # is the number of output symbols.

For example in a system with only one binary sensor,
Quax = 12" x 13]' = 6;ina system with two binary sensors,
2 2
Qumax = 1217 X |3]° = 36.

Proposition 12. Let stQ be a st-IPN and & (stQ) the language
generated by stQ and let s = ' - -- " at times 7,,..., 7, (@' =
ugy;) be an event sequence. If s € Z(stQ) and p(M;) = ¢(M;,)
then s* € L(stQ).

Proof. Because a st-IPN is deterministic (see Proposition 10),
if o(M;) = @(M;) then M; = M, so s can be generated
infinitely. O

Proposition 13. Let stQ,, stQ, be st-IPNs, with incidence
matrices 1, and I, and initial markings M, and M2, and let
ZL(stQ,), Z(stQ,) be the language generated by stQ, and

stQ,, respectively, with ¢, (M) = ¢,(M) and Mé = Mg.
ZL(stQ) = L(stQ,) if I, = I,

Proof. The system evolves the following PN state equation:
Mk+1 = Mk +1 'Uk,
Yildy = 9 (My).

Let us suppose that Z(stQ,;) = Z(stQ,) = Z(stQ) but
I #1,.

Let us consider an event sequence s = «’,w’,..., " €
Z(stQ) at times 7, < 7; < --- < 7y that is generated by a
firing sequence o = trytr, - - - try.

7)

tr tr, try

IfI,#1, then 3k > 0 | My — M| -5 - -5 My

, i) try 2 .
My — M — --- — M, for each st-IPN, respectively,
and M/ = M but, M} #M;. As ¢ is isomorphic then
P(My) # p(M;).

As Z(stQ,) = ZL(stQ,) then £, ((stQ;) = &, (stQ,).

If Lou(tQ) = {p(Mo), p(M)),...,p(Mp)} and
LonstQ) = {p(My), 9(M}),..., p(M)} by (2) and (3)
respectively.

Then p(My) = p(M;) -+ p(My) = p(M}).

Therefore M,i = Mﬁ Whereof I, = I,, which contradicts
the initial condition. O

It is concluded that the st-IPN that generates a language
is unique.

Proposition 14. Let ¢ : R(N,M,) — Y/dY be an output
function and let s € Z(stQ), s = W--wfbea sequence that
models a cycle (p(M;) = ¢(M,)); Zf‘ dy; = 0, for each, j =
1,...,n where n is the number of sensors.

Proof. The system evolves the following st-IPN state. Equa-
tion (7) is as follows.

s = {0} = (Atr)e(M,) - -- Altry)p(M,)} observed
at times 7, -+ 7;; then £, (stQ) = {o(M,),..., (M)} by
(3), that is, £, (stQ) = {y;/dy;, ..., yi/dyi}.

In compliance with the condition that in a cycle p(M;) =
@(M,), (i #k), the behavior of each output signal can be as
follows. (i) It does not change; then, the value of dy; is always

zero during the cycle; therefore Zf dy; = 0; (ii) it changes;
therefore the value of (M;) can be 1 or 0, if it starts in 1; the
value along the cycle willbe 1 — 0 — 1; therefore, dy; :

00— -1—>1: Z? dy; = 0.If it starts in 0, the value along
the cycle willbe 0 — 1 — 0; therefore, dyj 0 - 1 —

-1: Zi dy; = 0. That is to say, after 2n + 1 steps (n: number
of outputs whose value has changed), the output values must
return at their initial values when reaching M;. O

According to their definition st-IPNs are an extension
of PNs which include input and output signals in places
and transitions (IPNs) and stochastic firing times for each
transition (st-IPNs). The link with I/O signals and the
capacity of including stochastic time variations make st-IPNs
a powerful tool to model real systems.

Mathematical Problems in Engineering

| External events |

L@oller

Ug = CCp - CCp -+ CCp 1+ CCp)

Plant

Event
generator

Vi =Sty STy

i
wp = (U6 y1,7)7i

Identifier

FIGURE 1: Event Generator.

4. DES Identification Method

4.1. System to Identify. The generation of internal and external
events in a timeline defines the behavior of the system
(see Figure 1). A set of external events defines an operation
mode that affects the controller and an internal event is the
concatenation of control commands and sensor readings in
at time instant.

The system consists of the closed loop connection of
a dynamic system (plant) and a control law (controller).
Once the operation mode is defined (by the external events),
the controller executes a control strategy by generating a
sequence of control commands. This sequence input gets into
the plant and activates the actuators. The system reacts and
generates a sensor readings sequence (Figure 1). Therefore the
behavior of the system can be described in terms of event
sequences.

During a system evolution like a production cycle, it is
possible to get information of the system state (by analyzing
these sequences), with the language theory ([1]). Each inter-
nal event is a letter of the alphabet and a letter sequence is
a word that models the system performance. Therefore, the
system can be described as a regular language generator.

4.1.1. Definition of a Subsystem. To decrement the complexity
of the model, the system is split into subsystems. A subsystem
is a part of a system which has a particular behavior. The
division into subsystems is carried out according to physical
or functional criteria, because the system model to identify
is unknown and is not possible to define the subsystems in
other ways.

For each subsystem the inputs will be the control com-
mands and the outputs will be the sensor readings. Control
commands can be classified as global or local. A control
command is global when it is applied to more than one
subsystem and it is local when it is applied only to one
subsystem. Therefore the control commands set is Cc = Cc,U
Cc;, where Ce, = {ccy,... ,ccmg} and m, is the number of
global control commands; Cc; = Uccy,,, ;I = 1-+-¢, c is the
index of the subsystem and m; is the number of local control
commands in subsystem /.

Mathematical Problems in Engineering

Each sensor reading is assigned to a subsystem, so the set
of sensor readings will be Sr = Usr;,, , where 7, is the number
of sensors in subsystem land [=1---c.

4.1.2. Restrictions over the System. The system has the follow-
ing restrictions.

(i) The system is closed loop controlled and its working
is cyclic. Moreover, each subsystem can only be in one
state at a time.

(ii) The exchanged signals between the system and the
controller are discrete with only two possible values
(binary coding).

(iii) Its behavior is defined by the generation of internal
and external events in a timeline.

(iv) An external event affects the controller; an internal
event is the concatenation of control commands and
sensor readings at time instant. An external event
sequence is a timed sequence which generates a
system operation mode.

(v) An internal event can only be generated by a subsys-
tem at a time.

4.1.3. System Operation. Given an operation mode, the
controller executes a control strategy then a timed inter-
nal event sequence is generated; that is, at each time the
controller generates a set of control commands u; =
{ccl,...,ccmg,ccl,l,...,ccl,ml}. This set is the input set to
system which changes its state and generates an output set
{y; = sty1,..., 81y, } containing sensor readings. u; € U; U =
{ugsttys s tpomgem_ Y and y; € Y3 Y = {yg, y15- . Yo -

(a) Event Generator. It is a procedure that concatenates the
I/O symbols at time 7; when any signal changes (control
command or sensor reading) from 7;_, to 7; and it generates
an event as @' = (ugy;)T;.

Applying this concept to system defined in definition of
Section 4.1, an event in a subsystem / will be noted with the
subscript I, so an event in a subsystem [is noted as wj. Con-
sider wy = (uy, oy,)T u, € UsUp = {ugg, thy g5 oo Uy pongomp)
and y; ; € Y5 Y, = {10, ¥,1>- - -> Vijom -1} (see Figure 1).

Note that when there are changes in control commands
or sensor readings shared by over one subsystem, the event is
generated in all the subsystems involved.

4.2. Identification Process. This section presents the identifi-
cation method of the DES presented in Section 4.1.

Problem 15. Given an event sequence of size e, w’w’ - - - @,
generated from generator defined in Section 4.1.3(a) in a
system defined as in Section 4.1, find the st-IPN that generates
the same sequence.

The first step in the identification process will be the
division of the system into subsystems.

Each subsystem will be identified as a st-IPN. For this
purpose the identification process requires monitoring the

Complex system

Division of system

Cc

Setting the initial conditions

@] = ()70
o (Myy) = y5/dy;
Online

System

Event generator

us’yj
i

wy = (U)1,,)T;

Construction and update
of st-IPNs

FIGURE 2: Identification process.

signals exchanged between the system and the controller
(I/O signals). These signals enter the event generator, which
concatenates the signals and generates an internal event.

The event arrives to the identifier, which continuously
builds the st-IPN which is able to generate the same event,
in the same sequence and at the same time.

4.3. Identification Algorithm. The identification algorithm is
shown in Figure 2. First, the system to identify has to be
split into subsystems. Then, the initial conditions must be
set, which consist of the initial event and the initial state. Let
us assume that the system is split into ¢ subsystems, so each
subsystem will be noted with the index! (I =1---¢).

The starting event for each subsystem is @] = (1, y; 70>
where u;,, y,; stand for the starting values of control
commands and sensor readings, respectively, I = 1---c at
time 7,. Therefore each subsystem starts with a st-IPN with
one place. The inputs and output functions will be ¢,(M; ;) =
Wi /0, and Ayt) =y t?,o and t{),o = 0 is the initial value of
the timer; that is, the subsystem [starts without transitions.

Following the establishment of an operation mode
0; (0; € OM), the event detection procedure generates events
when any change happens in the I/O signals. It reads the
input symbol and waits for the sensor setting. The next step is
checking if there has been a change in one of the symbols of
the I/O pair, in order to generate an event in that case.

The st-IPN identification algorithm starts with a new
event (see Figure 3); then it compares the event with the
previous one in order to classify it as a change in an input,
in an output, or in both.

The identification algorithm (Algorithm1) follows the
flow diagram presented in Figure 3. It identifies a change in
a subsystem state when there is a difference between y, ;/dy, ;
and the current output symbol in subsystem I. In this case, the
system executes Algorithm 2, (Case 1). This algorithm creates

i1
w = (ul,s)’l,j)TH

Mathematical Problems in Engineering

i
wp = (U,

Construction of st-IPNs

True

Compute

t; = It = It

(M)
At l
False i1
Us # U
True False
Compute Pre, post Compute
¢ (Mya) = y,;/dy, (no event) o (Myja) = yldy,

Mtryg) =ug-t;

True False False

@ (M) € ¢y (M)

True False

True

Compute Compute Compute

ti =7l = 74| ti = lril = |7l t =7l = |74l

)ll(trl,ql) =yt /\l(trl,ql) =u -t /\z(tl‘l,ql) =uUp-t;

Compute
ti =il = Il

Mtryg) = w8

Update: pre;, post;, §(tr)

Al(trl’ql) € A,l(tl‘)

Pre, post

Update: pre;, post;, §,(tr)

FIGURE 3: Algorithm 1 flowchart.

new transitions and places when necessary and it also updates
the current st-IPN marking.

Otherwise, a change only in the input symbol will involve
a transition, so Algorithm 2, (case 2) includes this new
transition (if it does not exist) in the st-IPN and updates the
current state of the st-IPN.

4.4. Including Time Information. This section explains how to
exploit the time to solve the identification problem.

Time that must elapse from the enabling of the transition
until it fires is accumulated in time data arrays §,, (tr;,) =

{t,{ o tf qz}’ where o; € OM, g, I stand for the indexes of the

transition and subsystem, respectively, and k is the number of
samples.

The goal to monitoring the process data is finding a
statistical model that describes statistical behavior of each
transition; therefore, the system must be observed for long
time to have enough data for the statistical analysis, until
the process converges. The convergence criterion is based on
finding a reliable estimate.

The estimation error of population mean is the estimator
we use to study the convergence of the method. It has denoted
the maximal accepted difference between the population
mean and the sample mean as d,,,.

Sample size determination is the act of choosing the
number of times that the process to identify is observed. The
sample size is increased until the process has been identified
totally and has converged.

Mathematical Problems in Engineering

A, (tr); 6, (trlq,)'kﬁ%
Initial Conditions: ¢; (M

Q=
read uy, y; j

end if

Inputs: wf = (u,’syl’j) T w;;l =
Output: Pre; Post;; (p, (M) A (tr); 8

Ay (tryp)s Pre, =[1],Postl [0]; 9, (trlql)

(1) Tful () #u () and y] () # 570)
execute Algonthm 2 CASE = 1

(2) elseifuj (:) = u;'(:) and ,'Vz]() #y,’}l()
execute Alg0r1thm 2CASE=1

(3) else 1f”zs() #uls (:) and y,’;j(:)
execute Algorithm 2 CASE = 2

(%mﬂhﬁ%wﬁ

(trl qz)
{‘Pl (Mz 1)}) (tr) =
=0;k =

=y, 0

ALGORITHM 1: st-IPN Identification.

Case 1.

read (1)

kl' =k+1
G=q+lh
w = {ccy,...

n;= {1105

» €y CCpps -

I

2 t;,ql = |n| = |7

Inputs: v, 3 v, ;s ks g5 @, (Ml,kl); @ (M); A, (tr)
Outputs: Pre;; Post;; ¢ (Ml)kl); @ (M); A, (tr)

o> CCpy IS

W o (Mg) = yiil (35 - 215") = vi e,

(tr); §,, (tr,,ql)

(3) Al (trl,ql’) Sl t;',ql
(4) Update Pre;; Post;; ¢ (M); A,
Case 2.
read (I)
kl' =k
q=q+15
w, = {ccl,...,ccmg, CCp> -+ o5 CCp 5
W, = |7 = [7ia
2) A (trz,q;) =uty,

(3) Update Pre;; Post;; ¢; (M); A, (tr); 8, (trl qz)
The updating of Pre;; Post;; ¢; (M); A, (tr), o (tr,,ql) can be seen in Figure 4.

ALGORITHM 2: Subroutine Case.

The number of samples needed for fitting a distribu-
tion (n) can be computed as [36-38] n = (st(x/z)2 X
$?/d?. Moreover, the significance level («) can be defined as
Prob(|X - ul = d x u) = a,d being the difference between the
population mean and the sample mean and S” is the sample
quasi-variance. e is the risk of having an error larger thand,,,,.
Generally « is set in 0.05 [39] and st,, , is the factor determin-
ing the length of a confidence interval of population mean.

From to equation of n, d is

d= (Stvc/z) x (8)

S
vn

Algorithm 3 is executed each time a time array gets a new
value, so its size has increased. It computes d and compares it
with the defined upper limit (d,,). That is, where, if n < 30,
Sty2 = t,_1 is computed as a Student’s ¢ distribution and, if
n > 30, sty, = z,, is computed as a normal distribution.
Once d,,, is reached, Algorithm 3 is no longer applied to this
transition and operation mode, because its distribution can
be identified with the available data. Moreover, no more data
is included in the time vector.

Algorithm 3 first determines if there is enough data to fit
a distribution, once d,,, is reached, that is, the size sample
is sufficient, then it is necessary to find the probability
density function (PDF) that fits the data. The methods of

10

Mathematical Problems in Engineering

Output: n;
forl:==1toc
for g, := 1 to |q)|
® Mg = 60i7(trlxqz)|;
(2) compute X, S;

end if
@) Ilfd<d,,
(ii) end if

end for
end for

Input: 80[, (trl’ql) = {tiq}, .. .,tfql} withk >5,a,d

(3) if 4, < 30 compute st = £,,_;
(i) else compute st = z,,

(4) d = (styyn) X S/ g

execute Algorithm 4

op>

ALGORITHM 3: Stochastic Identification.

test, CD
Output: F; (X)

forj=1,...,|CD|

H,y : Fy (X) ~ Fj (x;);
H, : Fy(X) + F) (x;).

else j=j7+1.
(v) endif
end for

Input: §,, (trl’ql) = {tiq}, . .,tfql}, (”l,q,)> a,, for contrast

search p-value, in table of Kolmogorov-Smirnov.

(i) Design goodness-of-fit test

(ii) Estimate parameters of Fg (X).
(iii) Apply Kolmogorov-Smirnov test
(a) Compute p-value = sup,_;_,
(iv) If p-value < p-value, ,
then F, = Fg (X); break

Fn (x;) - Fg (’9)'

ALGORITHM 4: Data fitting.

estimating the PDF fall into two main categories. One is
parametric method that assumes the form of the PDF of
the population which is known a priori and the collected
process sample is used to determine the parameters of
the assumed PDF and another category is nonparametric
methods. In this procedure we analyze a set CD of specific

continuous distributions known; CD = {Fé (x;)}. Among the
most commonly used continuous distributions it includes the
normal distribution N(g, 02), the exponential distribution
Exp(A), and the uniform distribution U(a,b) - - -.

Algorithm 4 computes the distribution type and its
parameters. Algorithm 4 uses the goodness-of-fit test (see
[40]) to define the distribution type with a Kolmogorov-
Smirnov test. First it computes the distribution parameters
using the maximum likelihood method; second, it computes
the p-value statistic as

p-value = sup 'ﬁn (x;) — Fy (x,~)| ’)

1<i<n

where x; is the ith observed value in the sample (whose
values have previously been ordered from the lowest to the
highest); F,(x;) is an estimator of the probability of observing
values less than or equal to x; and F(x;) is the probability
of observing values less than or equal to x; from a specified
distribution [41]; that is, F(x;) € CD.

4.4.1. Modelling Error. The proposed identification algorithm
is a tool for identifying stochastic DES which estimates
the probability distributions of transitions times. Because
full times population cannot be observed, there will be a
modelling error. As the sample mean is the estimator of a
population mean, then the modelling error is related to the
difference between value estimated and the true value of the
mean. The standard error of the mean is the way to measure
the modelling error. The standard error of the mean is the
standard deviation of sample means over all possible samples
(of a given size) drawn from the population. To measure it,

Mathematical Problems in Engineering

LKL kI, gl;

1

(M), (M g3
—
Ay(er), Ay(trygp)s

Update of pre, post

i
tl,ql

kl=klI'
ql=ql'
Compute

Pre Zeros (kl);preq,(kl -1)==1

ql =

True

Posty = zeros (kl); postql(kl) ==1;

g

Update
Pre; = [pre; ~-~preq,];
Post; = [post, - ~-postql];

Update
¢ (M) = {p, (M) - - (M)}
Aytr) = {Ay(ery) - Aty g}

. .
So(trpg) = [tyg -t s

Pre; = pre;
Kl = ki 1=
I al Post; = post;
q =9
@, (M)
Ay(tr)

FIGURE 4: Update of Pre; Post;; ¢,(M); A,(tr); 8, (tr; ;).

the root-mean-square error (RMSE) is used, where RMSE =

S//n.

4.5. Global Language Reconstruction from to Language of
the Subsystems. Our objective is to identify the language of
global system. It is found from the language of its subsystem.

A global system event is obtained by Timed Synchronized
Splice so.

Definition 16 (operation of timed synchronized splice). Le
Let Q be a system composed by ¢ subsystems. Let w; with
I = 1---c be c events at time 7;, where wj = (u,y,,)7; A
global system event, at time 7;, can be obtained as:
wizwieau-eawi (10)
where] ® - ®w, = (U 1)) & & (U, Y, ;) = (u1,s€9"'§9
U) (Y1, @ @ ;) and (uy @ - S u.g) = ug where u, is

a binary representation of s, s, stands for all input symbols
and (y, ;®---®y, ;) = Vi, where ¥j, 182 binary representation
of jg, j, stands for all output symbols.

Then, the global system language can be built from the
sequence of synchronized events of its subsystem. Therefore,
the global generated language at times 7, < ... < 7 is

Z(stQ) = ok,

Proposition 17. Given a global system Q composed by ¢
subsystems, the global system language < (stQ) built by the
temporal synchronization of the languages of its subsystems is
equal to system language, £ (stQ) = Z(Q).

Proof. Let Q be a complex system with ¢ subsystems. Let
LQ) = @' w® be an event sequence generated from
generator defined in Section 4.1.3(a) and let Z(stQ) be the
global system language built from a sequence of synchronized
events of its subsystems.

12

Let s = w’w'---@° be an event sequence such that

s € Z(Q) and lets, = w*---w* be the sequence of
synchronized events of the Z(stQ;) with I =1---c.

Assuming o’ # "’

Py(s) = {ud-ugh u¢ = {upe...,u.} and Py(s) =
{y? ceyihaswp = (ueyy) forl = 1--cowf = (uey));
@ = (U 1)) (Ugy ¥ ;)- Based on Definition 16 0™ =
w] & - ® w, then w* = w™, which contradicts the initial
condition. O

4.5.1. Synchronous Product of st-IPNs. To find the global sys-
tem st-IPN we have proposed the operation of synchronous
product of st-IPNs defined as follows.

Definition 18 (synchronous product of st-IPNs). Given a set
stQ of ¢ st-IPNs, stQ = {stQ,,...,stQ.} defined as (5),
synchronous product of stQ is the st-IPN defined as:

stQs = [|I_,stQ;,
stQs = (Qs, Qs, bs) ,

(11)

where Qs = (Ns,Us, Ys, As, ¢s). Ns = (Ps, TRs, Pre, Pos, M)
is an ordinary PN, with Ps = {P1x P2 x - - - x Pc} set of places,
TRs = {27171} set of system transitions, |P;| is the length set
of places, ¢ number of subsystems, Pre : Ps x TRs — Z,
Pos: Psx TRs — Z"),and Ms, = M1, x M2, X - -+ x Mg,
is the initial marking. Us = {U; UU, U ---Uc} is the set of
input to the system. Ys = {Y, UY, U-- - Yc} is the set of output
to the system. As : TRs — Us - §s (labeling function that
assigns an input symbol and a timer density function to each
transition) and s is defined as ¢s : R(N's, Msg) — y,;/dy, ;;
¢s is isomorphic over y, ;/dy, ;.

Qs =Us-Ys := {ws = (4, ;)} is the system alphabet.

Os := TRs x OM — f(trrexom) s @ density function
of transition firing time for each operation modes OM =
{01,0,,...}.

In order to verify that the structure of a st-IPN solves
Problem 15, we define the conditions for a PN which is
considered a deterministic generator and the conditions for
a system to be considered deterministically identifiable.

Definition 19 («x-Generator). Let U - Y be an alphabet and
let Z(Q) be a language generated by alphabet; a PN is an
a-Generator for £(Q) if given a set of inputs u, € P, :
(U-Y)" — U", PN generates a set of outputs y; such that the
strings u,y; € Z(Q)Vu, € U with a probability greeter than
1-a.

4.5.2. Assumptions of a System so that It Is a Deterministically
Identifiable (DI) System. Definition 19 enables us to set the
assumptions of a system for it can be a DI system.

(i) Let U and Y be a set of I/O observed signals of system;
if given a set of inputs u, € U associated with a time
t, P, : (Y) — yjis always the same.

(ii) Moreover, given two identical inputs u,, but with
different length of time and two different projections

Mathematical Problems in Engineering

of outputs, the system can be considered DI, since
length of time defines the mark to reach.

Proposition 20. Let £(Q) = {wowl---wk} be a system
observed language, at times 7y < 7, < --- < T;; if st-IPN is
a PN obtained with proposed identification algorithm then st-
IPN is a «-Generator of Z(Q).

Proof. A st-IPN is a a-Generator of Z(Q) if Vs € £(Q), s €
Z(P) and if Vs € ZL(P), s € Z(Q).

Let P be a st-IPN obtained by proposed identification
algorithm for £(Q).

Assuming that ss; is a string such that s € Z(Q) A Z(P)
buts; € L(Q) Asy ¢ L(P), where s = «’, ..., ", then the
postlanguage of s is given by Z(Q)/s = {s; € (U-Y)" | ss, €
Z(Q)}. Then given the event s; with s; = Wt = (usyj)kJrl
at time 7y, ;, applying the Algorithm 1 a new event generates a

transition with A(try,,) = u’s‘” ty,,, and the marking reached

gy

by try,p: My T, My, will be oM,p) = Vi -

kL y;.‘“ are signals vectors observed at time 7, ;,
(based on description of event generator, Section 4.1.3(a)),
then o**! = (u, yj)kJr1 € Z(P) then assumption is rejected.
Now, we assume that ss, is a string such that s € Z£(Q) A
Z(P)buts, ¢ Z(Q)As, € Z(P),wheres = «’, ...,w". Then
the postlanguage of s is given by Z(P)/s = {s, € (U-Y)" |
ss, € Z(P)}. Then given the event s, with s, = =
(usyj)k+1 at time 7y, the st-IPN evolves a state from to a

transition with A(tr,,) = u**' ¢

and as u

and the marking reached

ey

by tres: My —5 My, will be p(My,,) = y= /y5 = 5F,

where tr;,, has not been observed and reaches states that
have not been observed, but according to Algorithm 1 the
construction of st-IPN is made based on reached state by
the observed language, then w**' = (u, yj)k+1 ¢ ZL(P) and
then assumption is rejected and therefore Proposition 20 is
proved. O

Moreover, Z(Q)/s = {s; € (U-Y)" | ss; € Z(Q)}
reaches the mark (M,) if Prob((p(MkH),a)k“/q)(Mk)) >
(1-a) | ' € £(Q)and if ©(My,;) = ¢(M;) for some
i=1---k, then ss, is a cycle (Proposition 12).

Definition 21. A Z(Q), where Z(Q) = {s € (U-Y)"
Prob(s | @(M,)) = (1 — «)} is DI language if Vs ¢
Z(Q),NVsy, s, € L(Q)/s, where s = @’ ..., " suchas P, :
(ss1) = P, : (ss,) then Prob(Pyj :(ssy) = Pyj ((ss)) 21—«
if they started from the same state ¢(M,,).

In other words, a Z(Q) is DI language, if from a state two
equal inputs are given, the output symbol is always the same.

Theorem 22. A language Z(Q) is DI language if and only if 3
an a-Generator for Z(Q).

Proof. Necessary condition: if Z(Q) is a DI language, then 3
an a-Generator.

Mathematical Problems in Engineering

13

—
Fan 3
Vs
Ps

Va

+— Heater

F1IGURE 5: AHS system.

A deterministic a-Generator for £(Q) is a st-IPN.
Z(Q) is a DI language, if a-Generator is a st-IPN (see
Proposition 20).

Sufficient condition: if 3 an a-Generator then Z£(Q) is a
DI language.

Assume that the a-Generator for Z£(Q) is a st-IPN. Let
Z(P) be the generated language by a-Generator. Let s =
@’ ..., 0" be a string such that Z(P) = {s € (U-Y)" :
Prob(s | ¢@(M,)) = (1 — «)}. Then, given the events s,
and s, such that s;,s5, € Z(P)/s with 5,5, = "' with
Prob((p(MkH),a)k“/q)(Mk)) >(1-a) ifPuS : (ssy) = P, :
(ss,), in the event ! then Pyj 2 o(ssy) = Pyj 2 (ssy),
based on Definition 21 Z(P) is a DI language and according
to Proposition 13 Z(P) = Z(Q); therefore £(Q) is a DI
language. O

If a st-IPN is a deterministic «-Generator for Z(Q),
then st-IPN generates the same observed language; therefore
Problem 15 is solved.

5. Application Example

Let us illustrate the approach with an example. The proposed
example is the centralized air heating system (AHS) in
Figure 5. The system includes three heating subsystems. Each
heating subsystem has a fan creating an air flow that is heated
with hot water. The water flow is controlled by pump-valve
systems. Moreover, there is a central heater providing hot
water to each heating subsystem and two valves (v, and v,,)
controlling the water flow through the whole system. The
system can be split into five subsystems (1, 2, 3, 4, and 5).
Subsystems 3, 4, and 5 are the local heaters, subsystem 2 is the
distribution subsystem (v,, and v,,), and subsystem 1 is the
main heating subsystem (heater, main pump (p,,,), and reflux
valve (v,)). The heater works in three modes (0, 1, 2), each
state is defined by the number of resistances it has activated,

so, modes 0, 1, and 2 will represent no activation of resistance,
activation of h,, and activation of both /; and h,.

The system is equipped with a set of sensors detailed in
Table 1. Each subsystem i includes a flow sensor (F;) that
measures the presence or absence of flow in the subsystem.
Nevertheless, flow level is affected when other subsystems are
activated. So, a software sensor (NF;) is designed in order to
measure the deviation over a normal operation flow taking
into account the activation of other subsystems.

The system also includes binary temperature sensors,
pressure sensors, and a position sensor for valve Vc;.

U5y, isan 1/O symbol based on Definition 3, where u; ; is
a binary representation of s, s stands for the input symbol, y; ;
is a binary representation of j, j stands for the output symbol,
and [stands the subsystem index. For example, (1, 3, o) is
an I/O symbol in subsystem 1, whose values are [11110, 1001],

that is, [vrpgvghlﬁz,Toflszl].

5.1. System Operation. The system globally starts with the
external event “Son”; the heating subsystems are locally
started with events “Ca3,” “Ca4,” and “Ca5”. These events
are external events that change the controller strategy (See
in Figure 6). Each combination of external events generates
a system operation mode. When event “Son” is generated,
the controller opens the reflux valve (v,) and starts Pm
(pm)» the heater starts heating (temperature set point is Tp,)
and the water flows through the path Heater-Pm-VR-Heater.
When any heating subsystem is activated (“Ca3,” “Ca4,” or
“Cab5”), subsystem 1 closes reflux valve (v,) and it changes
the temperature set point to Tp, (Tp, > Tp,). If “Ca4” and
(or) “Cab5” are started, then, the corresponding valves 1 and
2 of subsystem 2 are opened (v,;, v,,). Moreover local valves
and pumps start their work when necessary (vs,v,, vs and
D3> Ps» P5)- Each heating subsystem is stopped with events
“Ca3; “Ca4; and “Ca5” (Ca = Ca3 A Ca4 A Ca5). Then,
the controller performs the closing actions; it closes the valves
(Ve1» Vez» V35 V45 v5) and stops the pumps (p;, py, ps). When

14 Mathematical Problems in Engineering

Son
P b
() O
hy, hy, hy, by,
Soft F T,
5
Ca Ca Ca
e
v
T, T, Ca4 + Ca5

NF; NEF,

Ca4 - Ca5

vacl

FIGURE 6: AHS system controller.

Mathematical Problems in Engineering

Py
y1’8/0000
Uy30

Py
¥1,0/0001
Uy 30

Py
¥1,13/0100
Uy,1s

Py
¥1,13/0000
Uy1s

Py5
¥1,15/0010

Uy 30

P1,7
¥1,13/00-10

Uro

PI,S
Y1,9/0-100

(a) Subsystems1and 3

15

Ps
Yeess/0000000100000
U3ggs

Fs
Vesss/0000000000000
U3ggs

P7
Ye704/0000000010000
U3ggs

Py
Y7725/0010000000000
U3ggs

¥7712/00000000-10000

U3gao
Py
Y7680/0000000-100000

U7680
Py
7630/0000000000000
U7680

Py
Yes36/00-10000000000

Ya608/0-100000000000

(b) Global

FIGURE 7: st-IPNs system scenario 1.

every subsystem is completely stopped, the system can be
globally stopped with event “Soff>” Then, the controller closes
the reflux valve (v,), and stops the heater and Pm (p,,).

In order to demonstrate the advantages of the proposed
identification method, the system will be identified over two
scenarios.

The first test presented is the stand alone operation of
subsystem 3 and the second test presented simulates all
the possible operation modes sequentially. The identifica-
tion method is additive, so after the identification of a
language associated with a particular mode, the identified
nets learn new languages by adding them to the previous
knowledge.

Because the system cannot work if Son is not activated,
there are 9 possible operations modes: OM = {oy,...,05};
where 0, = Soff,Ca3,Ca4,Ca5,0, = Son,Ca3,Ca4,Cas5,
and o, = Son, Ca3,Ca4,Ca5; so on. Moreover, each
test includes the starting and stopping operations. There-
fore testing of operation mode o, includes the sequence
(0g - 01 - 0, - 07 - 0p).

5.2. Identification of Scenario 1. The number of subsystems is
5 and the initial conditions are as follows.

(i) Definition of initial state at 7,: W’ = {w(l)'wg-wg-wg-wg}:

W) = [T/rﬁgngIEZ’ToTITZFI] = [u10)18)5

= (Vo V2 PoF,NF,] = [420)20)
w5 = [p;73, F3NF;] = [Us0y30]5

= [541_’@?4@4] = [ua0¥a0bs

ws = [ps¥s, FsNFs] = [s50Y50]-
(ii) Initial Output Function:

P1,1 : CP(MU) = yl,g/a;

P2,1 : CP(Mz,l) = yz,o/a;

Py iop(Ms)) = J’3,0/6§

p4,1 : 90(M4,1) = y4,0/5;

P i9(Ms)) =)’5,0/6-

16 Mathematical Problems in Engineering
TABLE 1: Sensor Readings.
Sensor Subs Readings Meaning
Temperature T 1 Ty, T}, Ty, ifT <Tp, T=T,,ifTp, <T <Tp,, T=T,,if T, >Tp, T=T,
Flow 1 F,, NF,, Flow, normal flow.
Position 2 P, Valve V¢, opened or closed
Flow 3 F,, NF, Flow, normal flow.
Flow 3 F,, NF, Flow, normal flow.
Flow 4 F,, NF, Flow, normal flow.
Flow 5 F,, NF, Flow, normal flow.
Pressure 3 Py Pressure.
Pressure 4 P, Pressure.
Pressure 5 Py Pressure.
The input vector arranges the control commands based on 2.9
system operation as described in Section 5.1. The output 2.88 1
vector arranges the sensor readings as in Table 1. 2.861
Once the system starts with “Son”; the controller gen- - i'gj:
erates the control commands when the external inputs E 28
evolve. Then the system reacts and the event generator starts < 278
generating events. (Note that the system starts with operation 2.76
mode o, then it changes to o0,, and, when “Ca3” is externally 2.74
activated, it changes to o,.) 2~27 i 1

With each new event, Algorithm1 creates new places
and transitions. After a complete run of the system (Soff is
generated), Algorithm 1 creates the st-IPNs for subsystems 1
and 3 showed in Figure 7(a).

At this identification stage, places and transitions are
defined and the identified st-IPNs model the expected behav-
ior of the system.

Initially, the system works in operation mode 0 (o,) as
Son is not active. Subsystem 1 starts at place P, ;. Activation
of “Son” changes the operation mode to o,, the controller
opens the valves (reflux and main), turns on the main pump,
and sets the heater in mode 1 (tr; ;). A state change (P, ,)
is generated, because water flows through the path Heater-
Pm-VR-Heater (F; = 1) (as it is showed in Figure 5). After
a time (tr, ,) temperature reaches Tp, (18°C); therefore, the
system evolves to other state (P,). The controller starts the
heating actions; it closes the reflux valve and sets heater
in mode 2 (tr, 3), the state change cannot be measured by
absence of sensors that detect the operation of the reflux
valve (P 4). At this time “Ca3” is activated, so the system
operation mode changes to o,; then the controller turns
on pump 3 and opens valve 3 (tr;;) and subsystem 3
changes its state to P; , because water is flowing through path
Heater-Pm-P3-V3-Heater. After a time (tr; ,), flow reaches its
normal level (NF;) and subsystem 3 changes the state to P; 5.
Subsystem 1 continues with the reflux valve closed (tr, 4). It
waits until reaching Tp, (28°C) and, therefore, it evolves to
P, 5. Subsystem 3 remains in P;; until “Ca3” is externally
deactivated (Ca3) and 0, is reached, then normal flow falls
(tr33) and it changes to (P;,). Now, the controller turns oft
pump 3 and closes valve 3 (tr; ;). As a consequence, flow in the
subsystem decreases (change to P; 5) until flow level is low F,.
This transition makes the subsystem return to its initial state
(P;1). Now, the controller opens the reflux valve and sets the

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Sample

F1GURE 8: Behavior of transition tr; ,.

heater in mode 1 (tr, 5). Subsystem 1 holds the state (P, ¢) until
temperature is below Tp,, (P,), after the controller turns off
the main pump, it closes the main valve and sets the heater
in mode 0 (tr, ;). Subsystem 1 evolves to P, g and after time
(tr; g) to P, 4. Slightly, temperature decreases until it reaches
the initial state (P, ;). At the end, Son is deactivated (Soff)
and the system operation mode changes to 0.

Nevertheless, the time array for each transition has only
one value, so no probability distribution can be fit.

As stated in Section 4, at least 5 samples are needed to
identify the distributions, so scenario 1 will be repeated until
each distribution for each transition will be identified.

After 5 observations of a transition, Algorithm 3 is exe-
cuted. This paper shows, as an example, the case with the
greatest dispersion (tr;,) as it is the worst case.

Inputs: 8, (trs,) = {t;, 13, & = 0.05; &, = 0.05;
d,p, = 0.05; CD = {F;(x;)}
I=3,q,=2.

forn = 5;

8, (trs) = {2.9,2.6,2.8,2.7,2.8}

X =276, S$=0.11, d = 0.1027.

As d > 0.05, there is not enough data to fit the distribution.
After 20 observations, Algorithm 3 gives a positive result:

X =275S8 = 0.09 d = 0.049. As d < 0.05, Algorithm 4

Mathematical Problems in Engineering

Subsystem 1

Subsystem 3
(©)

Pl,l

¥1,8/0000

¥1,0/0001

Uy,30

Pys
¥1,13/0100

Py
y1)13/0000
U1

Pys

¥1,15/0010
Uy 30

Pig
¥1,15/0000

¥1,8/000-1

()

Subsystem 4
(d)

FIGURE 9: st-IPNs after the complete identification.

()

Subsystem 2

Subsystem 5
(e)

17

18

is executed and it will compute the distribution type and its
parameters.

oy = 0.05. p-value, = 0.29408 in table of Kolmogorov-
Smirnov, with n = 20.

Hypothesis test:
Hy: Fo(X) e N(% 02);
H,: Fy(X) + N(u, 0%).

Parameters estimation F, = N(u,0°) =
N(2.75,0.09) and p-value = 0.1621 based on
test Kolmogorov-Smirnov.

Accept H, since p-value < p-value, . Therefore the
data is normally distributed.

To do a full identification of the process it is necessary to get
20 samples of each transition time.

Figure 8 shows the mean of the time array collected for
tr;, versus the number of acquired samples in operation
mode 2. It can be seen that for 20 samples onwards the mean
remains stable.

Thereby, the sequence of operation modes
0y - 01 - 0, - 0] - 0y is fully identified. This identification
includes the st-IPNs structures and all the density functions
for each transition in the net.

5.3. Complete Identification of the System. The last test
performed is the sequential generation of all the possible
combinations of the external events, so the system must be
able to generate a really complex language. Subsystem st-IPNs
are showed in Figure 9.

Results show the advantages of identifying subsystems
instead of the global system. Figure 7(b) shows the identifica-
tion of the global system (without splitting in subsystems) in
scenario 1. The complexity (number of places and transitions)
of this st-IPN is similar to the complexity of the st-IPNs in
the case of the subsystem identification. Nevertheless, as the
complexity of the system increases, subsystem identification
reduces complexity. Table2 shows a comparison of the
number of sates and transitions when identifying with or
without splitting the system into subsystems.

It can be seen that a global system identification increases
its complexity with the number of operation modes consid-
ered, as a subsystem identification does not.

This behavior is related to the number of possible events
handled by the st-IPNs. The maximum number of global
system states is Q(g) max = 2" % 3™, (1, is the total number of
output symbols) (6), whereas in identification by subsystem
the maximum number of system states is Q(split),,x =
Quax1 T Qmaxz ++* + Quax s that is, Q(split) ., = 2™ x 3™ +
2™ x 3™ 4. 4+ 2% x 3" wheren, +n, +--- +n. =n,, it can
be seen that Q(g) . > Q(split).

5.4. Language Generation. This section shows how the
observed language is generated in both subsystem and global
identification approach for scenario 1.

The observed language for each subsystem is equal to the
one generated by the st-IPNs.

Mathematical Problems in Engineering

TABLE 2: Places and transitions.

Scenario Sub Global
Places Tr. Places Tr.
1 7 2 3 2
2 14 14 14 15
3 22 22 22 23
4 28 32 24 31
5 28 32 24 32
6 28 32 24 32
7 28 32 24 32
8 28 32 24 32
9 28 33 33 42
10 28 33 39 52
1 32 41 44 59
12 32 42 50 68
13 32 43 52 71
14 33 43 54 74
15 34 45 57 78
16 35 48 61 83

2Ly = (uy031,8) (1,30 Y1,8) (11,30 Y1,0) (01,30 Y1,13) (11,15 Y1,13)
(u1,151,15) (1,30 Y1,15) (1,30 V1,13) (U1 0V1,9) (1 0 Y1) At times
To> T1> T25 T35 Te> T10o T11> T12> T13> Tige

L3 = (U30Y3,0) (3373, (U3 3733) (U3 3¥3,) (U3 0¥30)
(u30y3,) at times 7y, 74, T5, T7, Tg, T.

Figure 7(b) shows the result of the identification process
in case that the system is not split into subsystems. The
language observed also is equal to the generated.

Z 9= (10 Y4006) (U780 Va608) (7680 Vas0s) (7680 Vesss)
(U340 Vesss) (M3sss Vesss) (Uasss Ver04) (Ussss V7728) (Msgss V7712)
(43840 Y7680) (M7680 Y7680) (7680 Veo36) (Mo Vasos)

(1o Vas08) (Mo Vag9s) (Uo Vagos) at times o, ..., Ty

A global input symbol is

U u, Us Uy Us
_ PR e
Uy =V, PgVgmh VGV P3V3 PaVaPsVs [- (12)

And a global output symbol is

N Y2 V3 Va4 Vs
vy = ATy I35 P,ENEENFFE,NF,FNF; ¢ . (13)

Note that, for example, at time 7;, the input symbol
in the global language is u,, and at time 7, is usg,q
(see Figure 7(b)). At these times, input symbols in local
subsystems are u 3, and u; 5. In this time the output symbol
in the global language is yqes and at time 7, is Ygeeq (Se€
Figure 7(b)). Moreover, at these times output symbols in local
subsystems are y, ;3 and y; ,. Table 3 shows these symbols.

According to Definition 16, a global I/O symbol, ', is
obtained from splice of 0’ = | ® @, ® --- & @ fori = 3,4.
Therefore the global and the subsystem approach represent
the same language. Then, time synchronization splice of £,
and Z; gives 7.

Mathematical Problems in Engineering 19
TABLE 3: I/O SYMBOL IN 7; and 7,.
T3 Ty T3 Ty
u, 110 00 00 00 00 o111 00 11 00 00 y, 1101 000 00 00 00 1101 000 10 00 00
u, 11110 01111 §2) 1101 1101
u, 00 00 ¥ 000 000
u, 00 11 Vs 00 10
U, 00 00 V, 00 00
us 00 00 s 00 00
TABLE 4: Parameters of tr ,. The identification methodology is incremental and is
directly related to the objective of modeling, that is, modeling
Operation Mode Distribution the devices that compose the system in a constructivist way.
%9 NA” This approach allows identifying all observable behaviors of
0 NA the devices.
0, N (2.75,0.094) Some of the main advantages of the methodology (with
0, NA respect to the existing ones) are that it handles a lot of inputs
0, NA and outputs with low computational cost (as they are split
o5 N (1.4, 0.0966) into subsystems) and it does not need a previous knowledge
06 NA of the number of places neither the length of the language.
Moreover, it generates reduced size models and it includes
o, N (135, 0.085) o) :) .
timed information. Besides, this proposal includes a process
04 N (0.37,0.0483)

*“Not applicable” means that the transition not is executed in this operation
mode.

Therefore, the advantage of using subsystems is that
the method identifies only active languages, which allows
determining which subsystem is operating.

5.5. Timed Transitions Identification in Different Operation
Modes. Transition time depends on the operation mode
of the system although the device maintains its operation
sequence.

Table 4 shows the parameters of tr; , distribution for each
operation mode. So, although subsystem 3 uses the same
net for each operation mode (Figure 9) it uses a different
distribution in each transition for each operation mode, so
it can model complex behaviors.

Note that time changes can be notable with changes from
0.37 seconds to 2.75 seconds.

6. Conclusions

The proposed method identifies stochastic DES without
previous model as a set of st-IPNs modelling the subsystems.
The identification algorithm uses on-line I/O data to identify
each subsystem, and it defines st-IPNs that generate the
same language as the observed one. It has been proved that
these st-IPNs are unique and deterministic, a desired feature
for applications such as diagnosis. In addition the proposed
method identifies systems with stochastic time. This is of
great importance in industrial systems because processes
are affected by a number of aspects such as the variability
in the material flow, the fluctuation of power supply, the
deterioration of machinery and devices, among others.

to determine whenever the system is fully identified which
has not been proposed in other research.

Future research will deal with a forgetting algorithm in
order to forget behaviors that will be not more in use.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding this paper.

Acknowledgment

This work was supported by a Grant from the Universidad del
Cauca, reference 2.3-31.2/05 2011.

References

[1] C. G. Cassandras and S. Lafortune, Introduction to Discrete
Event Systems, Springer, New York, NY, USA, 2008.

[2] Y. Zhang, J. An, and C. Ma, “Fault detection of non-Gaussian
processes based on model migration,” IEEE Transactions on
Control Systems Technology, vol. 21, no. 5, pp. 1517-1526, 2013.

[3] E Basile, P. Chiacchio, J. Coppola, and G. De Tommasi, “Identi-
fication of Petri nets using timing information,” in Proceedings
of the 3rd International Workshop on Dependable Control of
Discrete Systems (DCDS ’11), pp. 154-161, June 2011.

[4] A. Ichikawa and K. Hiraishi, “Analysis and control of discrete
event systems represented by Petri nets,” in Discrete Event
Systems: Models and Applications, P. Varaiya and A. Kurzhanski,
Eds., vol. 103 of Lecture Notes in Control and Information
Sciences, pp. 115-134, Springer, Berlin, Germany, 1988.

[5] M. P. Fanti, A. M. Mangini, and W. Ukovich, “Fault detection
by labeled Petri nets in centralized and distributed approaches,”
IEEE Transactions on Automation Science and Engineering, vol.
10, no. 2, pp. 392-404, 2013.

20

(6]

(7]

(8]

(10]

(16]

(17]

(20]

(21]

M. P. Cabasino, A. Giua, and C. Seatzu, “Fault detection
for discrete event systems using Petri nets with unobservable
transitions,” Automatica, vol. 46, no. 9, pp. 1531-1539, 2010.

H. Hu, M. Zhou, Z. Li, and Y. Tang, “An optimization approach
to improved Petri net controller design for automated manufac-
turing systems,” IEEE Transactions on Automation Science and
Engineering, vol. 10, no. 3, pp- 772-782, 2013.

H. Hu, M. Zhou, and Z. Li, “Supervisor optimization for
deadlock resolution in automated manufacturing systems with
Petri nets,” IEEE Transactions on Automation Science and
Engineering, vol. 8, no. 4, pp. 794-804, 2011.

K. Hiraishi, “Construction of a class of safe Petri nets by
presenting firing sequences,” in Application and theory of Petri
nets 1992, K. Jensen, Ed., vol. 616 of Lecture Notes in Computer
Science, pp. 244-262, Springer, Berlin, Germany, 1992.

R. S. Sreenivas and B. H. Krogh, “Petri net based models
for condition/event systems,” in Proceedings of the American
Control Conference, pp. 2899-2904, Boston, Mass, USA, June
1991.

M. Rausch and H.-M. Hanisch, “Net condition/event sys-
tems with multiple condition outputs,” in Proceedings of the
INRIA/IEEE Symposium on Emerging Technologies and Factory
Automation (ETFA °95), vol. 1, pp. 592-600, October 1995.

S. Patil, V. Vyatkin, and M. Sorouri, “Formal verification of
Intelligent Mechatronic Systems with decentralized control
logic,” in Proceedings of the 17th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA ’12),
pp- 1-7, Krakow, Poland, September 2012.

A. P. Estrada-Vargas, E. Lopez-Mellado, and J.-]. Lesage, “A
comparative analysis of recent identification approaches for
discrete-event systems,” Mathematical Problems in Engineering,
vol. 2010, Article ID 453254, 21 pages, 2010.

S. Shu and E Lin, “I-detectability of discrete-event systems,”
IEEE Transactions on Automation Science and Engineering, vol.
10, no. 1, pp. 187-196, 2013.

L. Li and C. N. Hadjicostis, “Least-cost transition firing
sequence estimation in labeled Petri nets with unobservable
transitions,” IEEE Transactions on Automation Science and
Engineering, vol. 8, no. 2, pp. 394-403, 2011.

M. E. Meda-Campana and E. Lopez-Mellado, “Required event
sequences for identification of discrete event systems,” in Pro-
ceedings of the 42nd IEEE Conference on Decision and Control,

vol. 4, pp. 3778-3783, December 2003.

M. Meda-Campana and E. Lopez-Mellado, “Identification of
concurrent discrete event system using Petri nets,” in Proceed-
ings of the 17th IMACS World Congress on Computational and
Applied Mathematics, pp. 11-15, Paris, France, July 2005.

S. Klein, L. Litz, and J.-J. Lesage, “Fault detection of discrete
event systems using an identification approach,” in Proceedings
of the 16th Triennial World Congress of International Federation
of Automatic Control (IFAC *05), pp. 92-97, July 2005.

M. Roth, J.-J. Lesage, and L. Litz, “An FDI method for manu-
facturing systems based on an identified model,” in Proceedings
of the 13th IFAC Symposium on Information Control Problems in
Manufacturing (INCOM ’09), vol. 13, pp. 1406-1411, June 2009.

P. Supavatanakul, J. Lunze, V. Puig, and J. Quevedo, “Diagnosis
of timed automata: theory and application to the DAMADICS
actuator benchmark problem,” Control Engineering Practice, vol.
14, no. 6, pp. 609-619, 2006.

D. E. Jarvis, “An identification technique for timed event
systems,” in Proceedings of the 10th International Workshop on

[22]

(24

(25]

(26]

[27]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Mathematical Problems in Engineering

Discrete Event Systems, vol. 10, pp. 181-186, Berlin, Germany,
2010.

M. Dotoli, M. P. Fanti, and A. M. Mangini, “An optimization
approach for identification of Petri nets,” in Proceedings of the
8th International Workshop on Discrete Event Systems (WODES
’06), pp. 332-337, July 2006.

M. Dotoli, M. P. Fanti, and A. M. Mangini, “On line identifica-
tion of discrete event systems via Petri nets: an application to
monitor specification,” in Proceedings of the 3rd IEEE Interna-
tional Conference on Automation Science and Engineering (CASE
’07), pp. 893-898, September 2007.

M. Dotoli, M. P. Fanti, A. M. Mangini, and W. Ukovich, “On-line
identification of Petri nets with unobservable transitions,” in
Proceedings of the 9th International Workshop on Discrete Event
Systems, WODES "08), pp. 449-454, May 2008.

M. P. Cabasino, A. Giua, and C. Seatzu, “Identification of
deterministic Petri nets,” in Proceedings of the 8th International
Workshop on Discrete Event Systems (WODES "06), pp. 325-331,
July 2006.

M. Dotoli, M. P. Fanti, and A. M. Mangini, “Real time identi-
fication of discrete event systems using Petri nets,” Automatica,
vol. 44, no. 5, pp- 1209-1219, 2008.

Y. Chen, Z. Li, M. Khalgui, and O. Mosbahi, “Design of a
maximally permissive liveness-enforcing Petri net supervisor
for flexible manufacturing systems,” IEEE Transactions on
Automation Science and Engineering, vol. 8, no. 2, pp. 374-393,
2011.

E M. Pia, M. A. Marcello, and U. Walter, “Fault detection by
labeled Petri nets and time constraints,” in Proceedings of the
3rd International Workshop on Dependable Control of Discrete
Systems (DCDS ’11), pp. 168-173, June 2011.

C. Girault and R. Valk, Petri Nets for Systems Engineering—
A Guide to Modeling, Verification, and Applications, Springer,
Berlin, Germany, 2003.

T. Murata, “Petri nets: properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

A. Ramirez-Trevifio, E. Ruiz-Beltran, J. Aramburo-Lizarraga,
and E. Lopez-Mellado, “Structural diagnosability of des and
design of reduced Petri net diagnosers,” IEEE Transactions on
Systems, Man and Cybernetics A: Systems and Humans, vol. 42,
no. 2, pp. 416-429, 2012.

K. Herndndez and M. E. Meda-Campana, “Fault diagnosis
using Petri nets: a case study, in Proceedings of the 10th
Latin American and Caribbean Conference for Engineering and
Technology, Panama City, Panama, July 2012.

L. Rivera-Rangel, A. Ramirez-Trevifio, L. I. Aguirre-Salas, and
J. Ruiz-Leon, “Geometrical characterization of observability in
Interpreted Petri nets,” Kybernetika, vol. 41, no. 5, pp. 553-574,
2005.

P. Supavatanakul and E J. Lunze, Identification of Timed Discre-
teevent Models for Diagnosis, Ruhr-University Bochum, 2004.
A. Ramirez-Trevino, E. Ruiz-Beltran, I. Rivera-Rangel, and
E. Lopez-Mellado, “Online fault diagnosis of discrete event
systems. A Petri net-based approach,” IEEE Transactions on
Automation Science and Engineering, vol. 4, no. 1, pp. 31-39,
2007.

W. G. Cochran, Sampling Techniques, John Wiley & Sons, New
York, NY, USA, 2nd edition, 1977.

J. E. Bartlett, J. W. Kotrlik, and C. C. Higgins, “Organiza-
tional research: determining appropriate sample size in survey
research,” Information Technology, Learning and Performance,
vol. 19, no. 1, pp. 43-50, 2001.

Mathematical Problems in Engineering

(38]

(39]

H. Toutenburg, “Fleiss, J. L.: statistical methods for rates and
proportions. John Wiley & Sons, New York-London-Sydney-
Toronto 1973. XIII, 233 S,” Biometrische Zeitschrift, vol. 16, no.
8, p. 539,1974.

E. H. Livingston and L. Cassidy, “Statistical power and estima-
tion of the number of required subjects for a study based on the
t-test: a surgeon’s primer,” Journal of Surgical Research, vol. 126,
no. 2, pp. 149-159, 2005.

D. Ruppert, Statistics and Data Analysis for Financial Engineer-
ing, Springer Texts in Statistics, Springer, Berlin, Germany, Ist
edition, 2010.

W. Conover, Practical Nonparametric Statistics, Wiley Series in
Probability and Statistics, John Wiley & Sons, New York, NY,
USA, 3rd edition, 1999.

21

-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization

