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Inelastic effective length factor of non-sway reinforced concrete columns  
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ABSTRACT 

This paper proposes a new equation for the effective length factor (k-factor) for reinforced concrete 

columns in braced frames. The new formula is valid both for normal and high strength concrete. 

The equation was obtained from a sensitivity analysis performed on a 2-D nonlinear finite element 

numerical model that takes into account the inelastic behavior of the concrete columns (cracking, 

yielding, and second order effects). The numerical model was calibrated with 44 experimental tests 

performed by the authors’s research group. A comparative study was carried out between the 

numerical model and different national design codes, displaying important differences with respect 

to all of them: the ACI code (from 37% to -3%), the Spanish code EHE (from 26% to -9.26%) and 

the Euro code 2 (from 14% to -14%). It was decided to propose two additional simplified equations: 

one for checking and the second for design.   
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INTRODUCTION 

The evaluation of the effective length factor (k-factor) in real concrete columns is not properly 

studied at the present time.  This is due to the fact that most of the equations to obtain such factor 

are developed assuming a linear elastic material behavior or a reduced stiffness E·I of the column, 

which is far from the real behavior of reinforced concrete columns, where the strength of concrete, 

the reinforcement ratio, the slenderness and the stiffness of the joints have an important effect on 

the curvature of the support.  

As is well known, the k-factor transforms the buckling of a column with different stiffness restraints 

at the ends in the buckling of another equivalent pinned-pinned column with an effective buckling 

length (Leff = k · L). The differential equations of both problems have been widely solved for an 

elastic material, Duan and Chen (1999), and they are implemented in the national design codes 

(both for steel or concrete structures) through the use of simplified equations of the effective length 

factor or the well-known alignment charts.  

Typically the k-factor depends on the relative stiffness of the joints Ψi, also called “end restrain 

factor” (the sum of the column stiffness divided by the sum of beam stiffness). This factor is used in 

the American code ACI (2005) or the Spanish EHE (2001), which can very from zero to infinite.  
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But Aristizabal-Ochoa (1994) proposed a “fixity factor” (ρi) that varies from zero to one: 
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where 
Ec = elastic modulus of concrete 
Ig = gross moment of inertia of the column section 
L = unsupported length of the column 
K1 and K2: stiffness of each spring (end restraint condition). These springs represent the stiffness of 
the two beams and the exterior column that arrive to the joint. Typically EI and K1 and K2 are 
considered elastic.  
 

Both the end restraint factors and fixity factor result in the same effective length factor because they 

are the solutions to the same differential equation in the elastic range, but use different 

nomenclature. The elastic k-factor for non-sway columns varies from 0.5 (clamped-clamped) to 1 

(pinned-pinned).  

For reinforced concrete structures there were a lot of studies in the elastic range regarding the 

design of slender columns. Cranston (1972) proposed simplified equations for the effective length 

factor. Also, a lot of work studying the influence of different end restraint conditions was completed 

by Hu et al. (1993) and Duan et al (1993) who proposed a new equation based on the partial fraction 

model. 

Inelastic Behavior 

Moreover, the theoretical problem of inelastic buckling was pointed out long time ago with the 

tangent elastic modulus theory and employing the reduced modulus theory or the Shanley´s theory, 

Shanley (1946). 
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For steel structures, Yura (1971) and Disque (1973) presented an inelastic k-factor method for steel 

structures using the concept of tangent elastic modulus; employing the same alignment charts but 

modifying the end restrains factors. 

Besides, the problem for reinforced concrete structures has not been deeply studied, although 

MacGregor at al. (1970) and Breen et al. (1972) pointed out the necessity to get deeper in this 

subject. A simple but good manner to include the inelastic behavior of beams and columns is the 

one implemented in the ACI code (2005), where the stiffness of beams and columns for calculating 

the end restraint factor is reduced using a fixed factor (i.e. for columns EI= 0.7EcIg). 

But the influence of the k-factor on the behavior of reinforced concrete structures is dependent on 

the strength of concrete, Broms and Viest (1961), the slenderness, the fixity factors and the steel 

reinforcement ratio because they contribute to the non-linearity of the column. Moreover, if a 

column is cracked or yielded, its stiffness is lower than the elastic one. In this case the k-factor will 

be lower than the elastic one. Conceptually this makes sense because it is as though the rotational 

springs are relatively more rigid, having a tendency toward the behavior of the clamped-clamped 

column (for which the elastic k is 0.5) .  

 With the actual sophistication of the numerical models, the concrete can be modeled closer 

each time to the real behavior. Thereupon, Bazant and Xiang (1997) studied the inelastic buckling 

of concrete columns in braced frames but focused the study to improve the method of analysis and 

not to obtain the k-factor. They assumed a sine curve as the deflection curve of the column and 

implemented all the non-linearities of concrete. The improvement consisted in considering the 

wavelength as unknown and variable during loading. Conceptually this is the same as the effective 

length factor. Later, Furlong (1998) discussed about the interest for practitioners to include a very 

complex method (although more realistic) in the codes. 
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Moreover, concrete technology has been improved considerably and now high strength concrete 

(HSC) can be easily obtained, whose mechanical behavior cannot be extrapolated simply from that 

of normal strength concrete (NSC). The different simplified methods that can be used for analysis in 

failure for slender columns therefore need to be checked, so that their application might be extended 

to HSC from NSC.  

The objective of this paper is therefore to establish an improved k-factor equation which includes 

the complicated behavior observed for reinforced concrete structures, in which inelastic 

deformations are combined with tensile cracking and bond slip. The equation is limited to non-sway 

columns. 

NUMERICAL SIMULATION 

In order to simulate this behavior a non linear finite element software was selected and calibrated 

with 44 experiments performed by this research group. The required numerical software had to be 

two-dimensional (membrane elements and trusses) in order to recreate: two-dimensional strain-

softening constitutive relations, distributed cracking, bond-slip, plastic behavior of steel and 

concrete, the appearance of plastic hinges, 2nd order effects, etc. The software selected was 

ATENA, Cervenka (1998). The model included a biaxial fracture criteria, tension stiffening, and 

quadratic iso-parametric finite elements with 4 gauss integration points. In order to not extend the 

paper too much, the complex task of calibration can be read in Bendito (2006), where an error of 

2.03% was achieved. Hereinafter, this virtual laboratory allowed performing more tests to propose a 

new equation for the buckling length. 

The 2-D finite element software with membranes elements cannot simulate directly the classical 

rotational spring, because it has only two-dimensional degrees of freedom (u and v).  In order to do 

that, special purpose geometry was created: a column with two elastic beams. These beams 
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represent the rotational springs, Figure 1. 

A preliminary study to test the geometrical two-dimensional model was developed in three steps in order 

to verify that the buckling behavior is acceptable.  

1) Column and springs (that is, beams) were modeled initially using elastic materials to 

compare the numerical k-factor with the theoretical elastic solution. Both k-factors were 

similar to the 2nd decimal.  

2) The second test was accomplished supposing an inelastic behavior for columns but the 

springs were modeled with zero stiffness. Load-slenderness graphs were obtained to 

compare with the elastic Euler’s hyperbola values.  Also normalized load-slenderness curves 

were created to check coherence in type of concrete and the reinforcement ratio influence. A 

statement from Broms and Viest (1961) was numerically verified: “an increase in the 

proportion of the load carried by the reinforcement leads to a more stable column, i.e. high-

strength concrete columns, or those with less longitudinal reinforcement ratio tend to be 

more affected by length”.   Geometrical model with zero stiffness value for beams shows 

similar behavior to that of a pinned-pinned column, so they could be used to define the 

buckling length for different column lengths and different stiffness of beams simulating 

springs. Load-slenderness curves with beam stiffness equal to zero and inelastic columns 

will be called “base curves”. There was generated a base curve for each parameter 

combination (f’c, fy and ρg).  

3) The third step was to analyze inelastic columns with different elastic stiffness springs. There 

were found important differences between elastic and inelastic effective length factors 

(lower k-factor values). This preliminary study made necessary a deeper study of sensitivity 

to detect the parameters of major influence on the effective length factor. 
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SENSITIVITY NUMERICAL STUDY 

The variables that were studied are presented in Table 1.   

Both, column and beams had a square section of 30 cm x 30 cm. The reinforcement was 4 bars, 

located at each corner of the column in a symmetric distribution. The mechanical reinforcement 

cover was fixed at 10% of the height and the width of the section.As it was said in the previous 

section, a real curve of the critical axial load versus slenderness was obtained for each section 

configuration with the numerical model for a pinned-pinned column (base curve). This curve 

improved the elastic Euler’s hyperbola, because it includes the non-linearities of the model. It was 

adjusted with a 5th degree polynomial. 

 The maximum load under compression was obtained for each parameter using the numerical 

model and also including the equivalent rotational springs. Substituting this critical axial load in the base 

curve, the equivalent slenderness was obtained. The inelastic k-factor was obtained from it, [k = (λh)/ L]. 

See Figure 2. The hypothesis that the effective length factor of the inelastic, pinned column is equal to 

unity, i.e. the same as for elastic columns is accepted. Many graphs were generated in the sensitivity 

study but only some of them are presented in this paper, Figure 3 and Figure 4. From the complete 

sensitivity study it can be inferred that k-factor increases with the concrete strength and the longitudinal 

reinforcement ratio, and decreases with the increment of the fixity factor (obvious). Both parameters had 

the same influence in the inelastic effective length factor, around 35 % and 37 %. However, only 1% of 

difference is observed when the strength of steel was modified between 400 and 500 MPa. So, the steel 

strength was fixed to 500 MPa. 

COMPARISON BETWEEN THE NUMERICAL MODEL AND THE DESIGN CODES. 
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The inelastic k-factor was compared with the codes ACI-318(2005), the Spanish code EHE (1999), 

the Euro Code 2 (2004) and with a previous equation proposed by Traver and Bonet (2002). This 

last equation comes from a 1-D finite element analysis. 

It was deduced that for all the cases and for any slenderness, the inelastic k-factor was lower than 

that obtained using the equation from the ACI and Spanish EHE code. Regarding the EC2 and 

concerning some of the slenderness, however, the inelastic effective length was higher, Figure 5 and 

Figure 6. 

Higher differences were observed for the lower strength of concrete (f’c), lower reinforcement ratio 

(ρg) and for the lower stiffness rotational springs (ρ1 and ρ2). 

It is important to find out that the buckling coefficient of the ACI and EHE codes does not take into 

account the reinforcement ratio; hence for different percentages of it, the values of the k-factor are 

the same. However, the simplified equation of Traver and Bonet (2002), the equation of the Euro 

Code 2  and the inelastic k-factor change with f’c, reinforcement ratio and the slenderness. The 

errors are shown in Table 2. Because there are representative differences with respect to all of them: 

the ACI code (between 37% and -3%), with the Spanish code EHE (26% and -9.26%), with the 

Euro code 2 (between the 14% and -14%) and regarding Traver and Bonet (14% and –7%), it was 

decided to propose a new equation for the effective length factor for non-sway columns. 

EQUATION OF THE INELASTIC EFFECTIVE LENGTH FACTOR 
 

It is better to adjust the equation in terms of the fixity factors rho (equation 2), which varies 

between 0 and 1, whereas the rotational stiffness varies between 0 and infinity. Thereby, the k-

factor is calculated in terms of the fixity factors ‘ρ’ initially with respect to a fixed slenderness 

(λ=35) in order to include in the main part of the equation only the variables of the strength of 
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concrete and the longitudinal reinforcement ratio. Later on, the slenderness will be included using a 

correcting parameter. 

For a particular case of f’c=60MPa and a 2% of longitudinal reinforcement ratio the procedure to 

obtain an equation of k is explained below. A graph of k-rho2 is obtained, with fixed rho1 (not 

presented for simplicity). The first graph is for ρ1 =0.2, and the second one is for ρ1 =0.8. 

Only these two graphs are obtained to create initially a very simple equation of k, which is a linear 

interpolation of ρ2.  

bak += 2ρ                                                             (3) 

But what is very important is that the coefficients “a” and “b” are not constant; they vary with ρ1.  

If the values of “a” and “b” are presented in terms of ρ1, it can be inferred that they are also linear 

functions. These coefficients, shown in Table 3, are obtained from a trend line.  

Replacing the values of “a” and “b” in Eq. 4, the following equation is obtained: 

( )9167.02817.0)28.015.0( 21 +−+−= ρρk                                      (4) 

Simplifying the previous equation, the equation 5 is obtained: 

( ) 92.028.015.0 2121 ++−= ρρρρk                                       (5) 

The same procedure is performed for each case of longitudinal reinforcement ratio and strength of 

concrete, reaching the values of k presented at Table 4. 

Correcting Factor “α”. 

The fixity factors ρ1 and ρ2 depend on the rotational stiffness of the beams K1 and K2, the 

unsupported length L and the stiffness EcIg of the column, equation 2. 

In the real behavior of the columns the stiffness E·I is not elastic, because it will vary due to the 

cracking of concrete, the creep, the reinforcement, etc, but to include a complex equation of EI will  
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complicate extremely the method. The influence of f’c, fy and ρg was included in the previous 

section in the equations of “k”. Hereby, it is necessary complement the previous equations with a 

correction parameter to include the effect of the geometric slenderness because in the previous step 

it was fixed to λ=35. 

The equation 2 is reformulated as:                     
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 where  “α” is the slenderness correcting factor. 

The parameter “α” can be calculated by performing the following steps in sequence, for the other 

cases of slenderness (λ=20, 30,40 and 50): 

• The values of the fixity factors ρ1 and ρ2 are analytically replaced in the corresponding 

equation of Table 4.  

• The value of inelastic k-factor is known because it was previously obtained numerically. In 

this case, the value of k can be related to only one unknown, the parameter “α”.  

• As the equation of “k“ depends on “α” in a quadratic form,  an iterative procedure is 

performed. The first value of “α” will be termed “alpha-trial”.  

• The values of alpha are adjusted until both values of k are matched. Doing that, the effect of 

the last variable λ is included in the procedure. 

• The values of alpha are obtained in terms of the slenderness. A relationship is obtained: 

40.004.0 −= λα . 

 
SIMPLIFIED EQUATIONS FOR DESIGN AND CHECKING IN THE CODES. 
 
In this section, simplified equations valid for implementation in national codes are presented. The 

equations are valid for normal and high strength concrete both for design and checking. 
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Proposed equations for checking. 

The equations for checking are in terms of strength of concrete f’c, the longitudinal reinforcement 

ratio, ρg and the fixity factors ρ1 and ρ2, Table 5. 

Comparison between the proposed simplified equation for checking and the exact inelastic k-factor. 

Figure 7 compares the proposed equation for checking with the exact inelastic effective length 

factor, in order to demonstrate that it has better accuracy than that existing in the codes. The errors 

have been diminished from the initial 14% until 5.7%. 

If some random cases are computed for casual values of slenderness, rotational stiffness, strength of 

concrete, the maximum error is as low as 1.8%. In conclusion, the proposed equation has a good 

accuracy for the calculation of the k-factor for inelastic columns and elastic rotational springs. 

Proposed equation for design 

The proposed equation for design is simplified in order to not depend on the longitudinal 

reinforcement ratio. They depend on “f’c” and ρ1 and ρ2, Table 6.  Table 7 summarizes the errors for 

both equations (checking and design). It can be noticed that the average error is 2.6% for checking 

and around 7.6% for design in the safe side, which it improves greatly the existing methods in the 

codes. 

CONCLUSIONS 

The calculation of the effective length factor in real concrete columns is not properly addressed 

now. The reason is, most of the research to obtain such length assumes a linear elastic material 

behavior, which is not the case for reinforced concrete. There is no research study prior to the 

present one that uses 2D non-linear finite element analysis to study the effective length factor.  

-  It was demonstrated that if the real behavior of the column is modeled, the k-factor is 

lower than the elastic one. 



 12

-     If a sensitivity study is performed, the strength of concrete and the longitudinal 

reinforcement ratio have the same influence on the inelastic k-factor coefficient, around 

35 % and 37 %. However the yield stress of steel has not any influence. 

- If a comparative study is performed between the numerical model and the different codes, 

it can be shown that there are representative differences with respect to all of them: the 

ACI code (between 37% and -3%), with the Spanish code EHE (26% and -9.26%), with 

the Euro code 2 (between the 14% and -14%) and regarding Traver and Bonet (14% and 

–7%). It was decided to propose a new equation for the effective length factor for 

non-sway columns. 

Three types of equations were proposed for the inelastic k-factor: one complete and two simplified 

(checking and design). It can be noticed that the medium error is 2.6% for checking and around 

7.6% for design in the safe side, which improves greatly on the existing methods in the codes. 
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APENDIX I. NOTATION 

The following symbols are used in this paper: 

k-factor = effective length factor 
Ec = elastic modulus of concrete 
Ig = gross moment of inertia 
L = unsupported length of the column 
h = height of the column cross section 
K1 and K2: stiffness of end springs (end restrain condition). 
f'c = cylinder strength of concrete  
fy= yield stress of steel 
ρi = fixity factors. 
α = slenderness correcting factor 
λ= geometric slenderness = L/h 
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Figure 1. Geometry of the problem. 
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Figure 2. Procedure to obtain the inelastic buckling coefficient. 
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Figure 3. Curve Inelastic k -λ for ρg =3%, fy=500 MPa, changing f’c. 
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Figure 4. Curve inelastic k –λ, ρ1=0.2, fy=500 MPa, for various ρg,. 
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Figure 5. Comparative curves for ACI code, Spanish EHE, Euro code 2 EC2, and Traver and Bonet 
T-B, for normal strength concrete 
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Figure 6. Comparative curves for ACI code, Spanish EHE, Eurocode 2 EC2, and Traver and Bonet 
T-B, , for high strength concrete 
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k-factor
 ρ1=0.2,ρ2=0.8; fy=500MPa; 2%, 60MPa
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Figure 7. Comparison between the proposed equation for checking and the inelastic k-factor. 
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PARAMETERS OF STUDY SCOPE 

Strength of concrete f’c 30, 60 and 90 MPa 
Long. reinforcement ratio ρg 2%, 3% and 4% 
Geometric Slenderness λ=L/h 20,30,35, 40 and 50 

Yield stress of steel , fy 400 and 500 MPa 
ρ1=0.2 and ρ2=0.2 
ρ1=0.2 and ρ2=0.8 

Fixity factor of the rotational 
springs, ρ1 and ρ2 

ρ1=0.8 and ρ2=0.8 
 

Table 1. Parameters of study in the sensitivity analysis. 
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Values T-B EHE ACI EC2 

Maximun 14.1% 26.2% 37.7% 14.2% 

Minimun -7.7% -9.2% -3.6% -13.8% 

Std. Dev 0.056 0.07 0.093 0.062 

Average 2.9% 5.4% 16.7% -1.6% 

 

Table 2. Analysis of errors. 
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Table 3. Values of “a” and “b”. 

ρ1 a b 
0.2 -0.25 0.86 
0.8 -0.16 0.69 
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ρg  f’c= 30 MPa 
2% k=0.20ρ1ρ2-0.28(ρ1+ρ2)+0.90 

3% k=0.20ρ1ρ2-0.28(ρ1+ρ2)+0.92 
4% k=0.20ρ1ρ2-0.28(ρ1+ρ2)+0.95 

  
  

ρg  f’c = 60 MPa 
2% k=0.15ρ1ρ2-0.28(ρ1+ρ2)+0.92 
3% K=0.15ρ1ρ2-0.28(ρ1+ρ2)+0.95 
4% K=0.15ρ1ρ2-0.28(ρ1+ρ2)+0.97 

  
  

ρg  f’c = 90 MPa 
2% K=0.15ρ1ρ2-0.28(ρ1+ρ2)+0.95 
3% K=0.15ρ1ρ2-0.28(ρ1+ρ2)+0.98 
4% k=0.15ρ1ρ2-0.28(ρ1+ρ2)+1 

 

Table 4. Equations of the inelastic k-factor with respect to the stiffness factors, with fy=500MPa. 
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Normal Strength Concrete 
(up to 50 MPa) 

k=0.2ρ1 ρ2-0.28(ρ1+ρ2)+A 
where A=0.025ρg +0.85 <=1 

High Strength Concrete 
(between 50 and 90 MPa) 

(higher than 90 MPa) 

k=0.15 ρ1 ρ2-0.28 (ρ1+ρ2)+B 
B=0.03ρg + fc/70 <=1 

B=0.025ρg + fc/100 <=1 
where ρg is the longitudinal reinforcement ratio 

Slenderness correcting factor  α = 0.04 λ-0.4 
 λ is the geometric slenderness 

 

Table 5. Proposed equation of k-factor for checking.  
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Normal Strength Concrete k = 0.2ρ1 ρ2-0.28(ρ1+ρ2)+0.95 

High Strength Concrete k = 0.15ρ1 ρ2-0.28(ρ1+ρ2)+1 
where ρg is the longitudinal reinforcement ratio 

Slenderness correcting factor  α = 0.04 λ-0.4 
 λ is the geometric slenderness 

Table 6. Proposed equation for design. 
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Values Error 

for 
checking

Error 
for 

design 
Maximum 6.19% 19.02% 
Minimum 0.00% 0.00% 

Typical Dev 0.02% 0.04% 
Average 2.60% 7.63% 

 
Table 7. Error for both methods. 
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Figure 1. Geometry of the problem. 

 
Figure 2. Procedure to obtain the inelastic buckling coefficient. 
 
Figure 3. Curve Inelastic k -λ for ρg =3%, fy=500 MPa, changing fc. 
 
Figure 4. Curve Inelastic k -λ for ρg =4%, fy=500 MPa, changing fc. 
 
Figure 5. Comparative curves for ACI code, Spanish EHE, Eurocode 2 EC2, and Traver and Bonet 
T-B, for normal strength concrete 
 
Figure 6. Comparative curves for ACI code, Spanish EHE, Eurocode 2 EC2, and Traver and Bonet 
T-B, , for high strength concrete 
 
Figure 7. Comparison between the proposed equation for checking and the inelastic k-factor. 
 
 
 

 

 

 

 

 


