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Received 22 October 2014; Revised 3 February 2015; Accepted 4 February 2015

Academic Editor: Hiroyuki Mino
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This proposal presents an online method to detect and isolate faults in stochastic discrete event systems without previous model.
A coloured timed interpreted Petri Net generates the normal behavior language after an identification stage. The next step is fault
detection that is carried out by comparing the observed event sequences with the expected event sequences. Once a new fault
is detected, a learning algorithm changes the structure of the diagnoser, so it is able to learn new fault languages. Moreover,
the diagnoser includes timed events to represent and diagnose stochastic languages. Finally, this paper proposes a detectability
condition for stochastic DES and the sufficient and necessary conditions are proved.

1. Introduction

Fault diagnosis has a major role in industrial systems since it
allows the fault detection as soon as possible to avoid serious
damages of the system or the injury of an operator. Fault
diagnosis of Discrete Event Systems (DES) is an issue that has
been addressed from different approaches. A fault is a devia-
tion of the normal or required behavior. Fault diagnosis is the
process of detecting and identifying such deviations of the
system by using the information available on system variables
[1].

According to [2], fault diagnosis aims to achieve three
complementary tasks: fault detection, fault isolation, and fault
identification. Fault detection is a functionality that decides
whether the system works in normal conditions or whether
a fault has occurred. If a fault has occurred, fault isolation
aims to locate the component(s) causing the fault. Fault iden-
tification is concerned with identifying the specific nature
of the fault (its size, criticality, importance, etc.). This prob-
lem has been addressed by many researchers related with
developing newmodels, new properties, new algorithms, and
efficient solutions to fault diagnosis of DES. Model based
diagnosis techniques can be divided into two groups. The
first group uses models which include fault-free and faulty
behaviors. The second group only uses fault-free models.

The work of [3, 4] has provided a formal foundation of
fault diagnosis and diagnosability analysis of DES that has
been the base for many approaches of diagnosis. They use an
automaton which generates all the possible event sequences
in nominal and faulty operation.

Petri Nets (PNs) have been recognized as a suitable
model to describe DES, particularly when a system is asyn-
chronous [5, 6]. PN has been used for fault diagnosis starting
from [7–9] who presented diagnosis proposals of estimating
faulty states. In [10] a net unfolding approach to online
asynchronous diagnosis is presented.This proposal avoids the
state explosion problem that typically results from having
concurrent components interacting asynchronously in a dis-
tributed system, but the computing cost of performing the
online diagnosis increases for offline diagnosis. In [11], the
authors extend the proposal of [3] to online fault diagnosis
of modeled systems by PN. Some years later, these authors in
[12] present two new algorithms to deal with the case of mul-
tiplemodules and real-time communication requirements. In
[13] the authors not only model faults by unobservable tran-
sitions but also include other transitions representing legal
unobservable behaviors as well. They prove that all possible
firing sequences corresponding to a given observation can
be characterized and based on the notion of basis markings
and justifications. The authors use a basis reachability tree to
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compute the set of basis markings; [6] changes the concept of
basis marking and enumerates only a subset of the reachabil-
ity space. This approach includes a different characterization
in terms of new original notions such as justifications and
minimal explanations. The work of [14] considers the system
modeled as an interpreted PN (IPN)with partially observable
states and events; the model includes the possible faults
that may happen. Reference [15] proposes an online fault
detection technique to avoid the redesign and the redefinition
of the diagnoser when the structure of the system changes.
The diagnoser waits for an observable event and an algorithm
decides whether the system behavior is normal or may
exhibit some possible faults. The solution of an integer
linear programming (ILP) problem provides a sequence of
unobservable transitions containing the faults that may have
occurred. The system is modeled by IPN where fault events
aremodeled as unobservable transitions. It associates a differ-
ent label to each transition, so it models the regular behavior.
In [16] the authors started from the results of [15].They extend
the work by considering a new source of nondeterminism
(different observable transitions sharing the same label) and
by considering distributed systems. To conclude [17] builds
an online diagnoser based on PN approach, using the ILP
definition and resolution.

The advantage of this class of methods lies in the pos-
sibility to give guarantees about the diagnosability of faults;
moreover, if certain conditions hold, modeled faults can
be precisely localized. An inherent disadvantage is that only
faults explicitly considered in the system model can be
detected and localized.

Diagnosis methods without fault model avoid this disad-
vantage; moreover, they build straightforward models since
no special knowledge of system fault behavior is necessary.
Nevertheless, the main drawback of these approaches is how
to locate the fault since the models have less knowledge.
Moreover, diagnosability of a given set of faults usually cannot
be guaranteed. These methods are based on comparing the
system outputs with model nominal outputs. In [18, 19] the
proposed method compares the observed and the expected
behavior, a fault can be detected, and a set of fault candidates
is determined. Inspired by residuals known from diagnosis in
continuous systems, different set operations are introduced
to generate the fault candidate set. After fault detection and a
first fault localization, a procedure is given to locate the fault
more precisely by an analysis of the further observed system
behavior.

Coloured Petri Nets (CPNs) have also been oriented to
fault diagnosis. Some approaches deal with combinatorial
explosion, so they can be used to diagnose large systems.
In [20], the authors present a method for modeling flexible
manufacturing systems including faultmodels (based on fault
trees). In [21], the authors present a method for modeling
and diagnosing an orchestrated complex Web service. This
approach is very restrictive to Web services models. In [22]
the author presents amethod for including the fault diagnosis
within an embedded controller. The integration between
diagnosis and controller in a reduced CPN model is suitable
since it allows merging information about device states in a
single token. Nevertheless, this approach has the same weak
point as othermodel based approaches; it needs a faultmodel.

Reference [23] presented a new diagnosis method based
on CPN called Latent Nestling Method. The initial model
of the normal behavior of the system is performed from
modeling techniques, based on generalized PNs. However,
for complex systems the synthesis capabilities of CPNs can be
used in thesemodeling steps.The set of faults to be diagnosed
are defined and assigned to the subset of coloured tokens. A
faulty event will be defined by establishing dynamic con-
ditions in every marking and subsequently in every state
reached by the system and the set of unexpected signals of the
sensor readings. Next the coloured tokens of faulty events are
allocated in appropriate places called places of latent nestling
faults. These tokens are susceptible to fire from that place by
the activation of an event sequence, 𝑠, associated with an
abnormal sensor reading.

Regarding diagnosability [3] defines diagnosability in the
framework of formal languages and presents necessary and
sufficient conditions for diagnosability of DES. The authors
in [24] focused on diagnosability of IPN. They defined and
characterized the property of input-output diagnosability in
IPNmodels, so they avoided the reachability analysis. In their
next work [25], they presented a polynomial algorithm to
decide if an IPN is diagnosable. Reference [26] provides a nec-
essary and sufficient condition for diagnosability of bounded
PNs, namely, PNs whose set of reachable markings is finite.
The effectiveness of the proposed procedure was illustrated in
[27].They showed that, under certain conditions, the number
of basis markings (a basis marking is a marking reached from
𝑀
0
with the firing of 𝜎

0
, where 𝜎

0
∈ 𝑇𝑟

0
|L(𝜎

0
) = 𝜔, and of

all unobservable transitions whose firing is strictly necessary
to enable 𝜔) is always smaller than the number of reachable
markings (that increase exponentially with the size of the
net).

Approach of theWork. In [2], the authorsmade a classification
of diagnosis methods with respect to a number of criteria
such as fault compilation (offline or online), modeling tools
(automaton, PN, and state machines), fault representation
(fault model: event-based or state-based, fault-free model),
and decision structure or architecture (centralized, decen-
tralized, and distributed). According to this classification,
the diagnoser presented in this proposal can be classified as
online fault diagnosis, based on PN without previous model
and under a centralized structure.

In general terms the proposal is based on language theory
and on stochastic timed interpreted Petri Nets (st-ICPN), as
structures to generate DES languages. The diagnosis process
starts by identifying the fault-free model, from the observed
language. As a result, a st-ICPN language generator is built.
The generator of the fault-free language is a base to building
the diagnoser and, in addition, to the concepts of Coloured
Petri Nets. A learning algorithm modifies the net structure
each time a new fault is detected, so the diagnoser is able
to learn fault languages. The net structure changes with each
new detected fault.Themodifications are as follows: addition
of a token in the fault transition, modification of the arcs
linking that transition, and the addition of a specific fault
token to the initial marking.
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Themain advantages of this proposal about other diagno-
sis methodologies are the generation of deterministic models
and the absence of previous fault models. The learning algo-
rithm guarantees the diagnosis of faults not included in the
fault set.

This paper is organized as follows: Section 2 describes the
background on PN; Section 3 describes the fault behavior;
Section 4 presents the diagnosis method; Section 5 shows
an application case; and finally, the concluding remarks and
discussion are shown in Section 6.

2. Background

This section introduces the formalism and definitions used in
the paper.

2.1. System under Study. In real systems, there are various
stochastic disturbances such as sensor noises, stochastic dis-
turbance, fault, or random variation of parameters. Thus, the
system representation should be based on stochastic models
[28]; therefore, the system to be diagnosed is a stochastic
DES, whose dynamics can be described by the interrelation of
I/O signals and its behavior could be described with formal
languages based on event sequences; the system is split into 𝑐
subsystems; a subsystem is a part of a systemwith a particular
behavior. This structure can be seen in Figure 1.

In a closed loop system, there exist two kinds of inputs.
Some inputs are external observable SCADA commands or
operator requirements that modify the operation mode of
the controller (𝐸𝑥𝐼𝑛𝐶). The other kind of inputs is external
events affecting the plant (𝐸𝑥𝐼𝑛𝑃); these inputs can be either
observable or unobservable. 𝐸𝑥𝐼𝑛𝑃 includes disturbances
and interaction with other systems or faults. Moreover,
control commands are plant inputs and can be considered
as internal signals (𝐼𝑛𝑡𝐼𝑛𝑃) of the closed loop model. When
the system can be split into subsystems, control commands
can be considered as local or global. A control command is
considered global if it is applied to more than one subsystem,
and it is considered local otherwise.

System outputs are sensor reading; each sensor reading
belongs to a subsystem 𝑙; then, the set of sensor readings (𝑆)
will be 𝑆 = ∪𝑆𝑟

𝑙
. An input symbol for a subsystem 𝑙 is com-

posed of global and local control commands, [𝑔𝑐𝑐
1
⋅ ⋅ ⋅ 𝑔𝑐𝑐

𝑛𝑔𝑐

𝑐𝑐
𝑙,1
⋅ ⋅ ⋅ 𝑐𝑐

𝑙,𝑛𝑙,𝑐𝑐
], where 𝑔𝑐𝑐

𝑖
, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑛

𝑔𝑐
, are global con-

trol commands and 𝑐𝑐
𝑙,𝑗
, 𝑗 = 1 ⋅ ⋅ ⋅ 𝑛

𝑙,𝑐𝑐
, are local control

commands; it is represented as 𝑢
𝑙,𝑠
, 𝑢

𝑙,𝑠
being a binary

representation of 𝑠; 𝑠 stands for the input symbol at time 𝜏
𝑖
. An

output symbol for a subsystem 𝑙 is [𝑠𝑟
𝑙,1
⋅ ⋅ ⋅ 𝑠𝑟

𝑙,𝑛𝑙
]; it is

represented as 𝑦
𝑙,𝑗
, 𝑦
𝑙,𝑗

being a binary representation of 𝑗; 𝑗
stands for the output symbol at time 𝜏

𝑖
. An operationmode is

composed of a combination of 𝐸𝑥𝐼𝑛𝐶 signals, [𝑒𝑐
1
⋅ ⋅ ⋅ 𝑒𝑐

𝑛𝑒𝑐
];

it is represented as 𝑜
𝑜𝑚
, 𝑜
𝑜𝑚

being a binary representation of
𝑜𝑚; 𝑜𝑚 stands for the external event at time 𝜏

𝑖
. For example,

given a set of sensor readings for subsystem 𝑙 = 1 : 𝑆𝑟
1
=

{𝑠𝑟
1,1
, 𝑠𝑟
1,2
}; if 𝑠𝑟

1,1
= 1 and 𝑠𝑟

1,2
= 0, then the output symbol

is represented by 𝑦
1,2
.
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Figure 1: Complex system.

2.2. Events and Languages. Let Ω
1
, Ω be two event sets, such

that Ω
1
⊂ Ω. A language,L, defined over Ω is a set of finite-

length strings formed from events inΩ; that is,L ⊂ Ω∗. The
projection operation, 𝑃 : Ω∗ → Ω

1
, is defined as 𝑃

Ω
(𝜀) = 𝜀;

𝑃
Ω
(𝑎𝑠) = 𝑎𝑃(𝑠) if 𝑎 ∈ Ω

1
, 𝑠 ∈ Ω

∗

1
; 𝑃
Ω
(𝑎𝑠) = 𝑃(𝑠) if 𝑎 ∉ Ω

1
.

Given 𝑠, 𝑠󸀠 ⊂ Ω∗, 𝑠𝑠󸀠 is the concatenation of 𝑠 and 𝑠󸀠. |𝑠| is the
length of 𝑠.

Definition 1 (compound event). Given two event sets Ω
𝑝
, Ω
𝑞

and given two events 𝑒
𝑝
and 𝑒

𝑞
, such that 𝑒

𝑝
∈ Ω

𝑝
and 𝑒

𝑞
∈

Ω
𝑞
, a compound event 𝜔 is the concatenation of 𝑒

𝑝
and 𝑒

𝑞
;

𝜔 = 𝑒
𝑝
𝑒
𝑞
.Ω = Ω

𝑝
Ω
𝑞
is a compound event set (Ω overΩ

𝑝
Ω
𝑞
)

and a language defined over Ω will beL ⊂ (Ω
𝑝
Ω
𝑞
)
∗.

For example, given two event sets Ω
𝑝
= {𝑝

1
, 𝑝
2
},

Ω
𝑞
= {𝑞

1
, 𝑞
2
}, a compound event set will be Ω =

{(𝑝
1
𝑞
1
), (𝑝

1
𝑞
2
), (𝑝

2
𝑞
1
), (𝑝

2
𝑞
2
)}.

Definition 2 (projection operation over compound event sets,
𝑃𝑐). Given a compound event setΩ overΩ

𝑝
Ω
𝑞
, 𝑃𝑐 operation

over compound events, 𝑃𝑐 : Ω → Ω
𝑞
, is 𝑃𝑐

Ω𝑞
(𝜀) = 𝜀;

𝑃𝑐
Ω𝑞
(𝑒
𝑝
𝑒
𝑞
) = 𝑃

Ω𝑞
(𝑒
𝑝
)𝑃
Ω𝑞
(𝑒
𝑞
).

𝑃𝑐 used at the previous example will give 𝑃𝑐 : Ω → Ω
𝑝
;

𝑃𝑐
Ω𝑝
(𝑝
2
𝑞
2
) = 𝑝

2
. Given an event sequence 𝑠 | 𝑠 ∈ Ω∗, where

𝑠 = (𝑝
1
𝑞
1
)(𝑝

2
𝑞
2
)(𝑝

1
𝑞
1
), 𝑃𝑐 of 𝑠 overΩ

𝑝
is 𝑃𝑐

Ω𝑝
(𝑠) = 𝑝

1
𝑝
2
𝑝
1
.

Definition 3 (timed event and stochastic timed event). A
timed event is a composition of an event and the elapsed time
between two consecutive events. Then 𝑒𝑖 = 𝑒 ⋅ 𝑡ev at time 𝜏

𝑖
,

where 𝑡ev = |𝜏current ev| − |𝜏previous ev|.
A language,L, defined over timed event set Ω is a set of

finite-length strings formed from timed events in Ω; that is,
L ⊂ Ω∗;L = {𝑠 | 𝑠 ⊂ Ω∗}, where 𝑠 is a timed event sequence,
at times 𝜏

0
≤ ⋅ ⋅ ⋅ ≤ 𝜏

𝑘
. In real systems, it is nearly impossible to

repeat the same event sequence with the same times between
events. In that case, if times fit a probability density function,
𝑡
ev
∼ 𝑓(𝑡

ev
), timed events are called stochastic timed events.

Definition 4 (projection operation of timed event sequences:
𝑃𝑡). Given two timed event sets Ω

1
, Ω, such thatΩ

1
⊆ Ω, let

𝑠 = 𝑒
0
⋅ ⋅ ⋅ 𝑒

𝑘 be a timed event sequencewith 𝑒𝑖 = 𝑒⋅𝑡ev; the pro-
jection operation of timed event sequences,𝑃𝑡 : Ω∗ → Ω

1
, is

defined as𝑃𝑡
Ω1
(𝑠) = 𝑃𝑡

Ω1
(𝑒
0
) ⋅ ⋅ ⋅ 𝑃𝑡

Ω1
(𝑒
𝑘
), for all 𝑒𝑖 ∈ 𝑠, which

is calculated as follows: a variable is started to zero 𝑡proy =
0; for 𝑖 = 0 ⋅ ⋅ ⋅ 𝑘, 𝑃𝑡

Ω1
(𝑒
𝑖
) = 𝑒 ⋅ 𝑡

ev if 𝑒𝑖 ∈ Ω
1
; then 𝑡proy = 𝑡

ev
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Figure 2: Example of 𝑃𝑡.

and the variable back to zero 𝑡proy = 0; else 𝑃𝑡Ω1(𝑒
𝑖
) = 𝜀 and

𝑡proy = 𝑡proy + 𝑡
ev.

For example (see Figure 2), given a timed set Ω
1
= {𝑒

1
⋅

𝑡
𝑒1
, 𝑒
3
⋅𝑡
𝑒3
}, let 𝑠 be a timed event sequence, 𝑠 = 𝑒

1
⋅𝑡
𝑒1
𝑒
2
⋅𝑡
𝑒2
𝑒
3
⋅𝑡
𝑒3 ;

𝑃𝑡 : Ω
∗
→ Ω

1
;𝑃𝑡

Ω1
𝑠 = 𝑃𝑡

Ω1
(𝑒
1
⋅ 𝑡
𝑒1
)𝑃𝑡

Ω1
(𝑒
2
⋅ 𝑡
𝑒2
)𝑃𝑡

Ω1
(𝑒
3
⋅ 𝑡
𝑒3
);

then

for 𝑖 = 0,
𝑒
1
⋅ 𝑡
𝑒1
∈ Ω

1
; then 𝑡proy = 𝑡

𝑒1 ; 𝑃𝑡
Ω1
(𝑒
1
⋅ 𝑡
𝑒1
) = 𝑒

1
⋅ 𝑡proy;

𝑡proy = 0;
for 𝑖 = 1,
𝑒
2
⋅𝑡
𝑒2
∉ Ω

1
; then 𝑡proy = 𝑡proy+𝑡

𝑒2
= 𝑡
𝑒2 ;𝑃𝑡

Ω1
(𝑒
2
⋅𝑡
𝑒2
) =

𝜀;
for 𝑖 = 2,
𝑒
3
⋅ 𝑡
𝑒3
∈ Ω

1
; then 𝑡proy = 𝑡proy + 𝑡

𝑒3
= 𝑡
𝑒2
+ 𝑡
𝑒3 ; 𝑃𝑡

Ω1
(𝑒
3
⋅

𝑡
𝑒3
) = (𝑒

3
⋅ 𝑡proy).

Therefore 𝑃𝑡
Ω1
𝑠 = 𝑒

1
⋅ 𝑡
𝑒1
𝑒
3
⋅ (𝑡
𝑒2
+ 𝑡
𝑒3
).

Now, if Ω
1
= {𝑒

4
⋅ 𝑓(𝑡

𝑒4
)𝑒
5
⋅ 𝑓(𝑡

𝑒5
)} and given a stochastic

timed event sequence 𝑠 = 𝑒
4
⋅ 𝑡
𝑒4
𝑒
5
⋅ 𝑡
𝑒5 , then 𝑃𝑡 of 𝑠 over Ω

1

is 𝑃𝑡
Ω1
(𝑠) = 𝑃𝑡

Ω1
(𝑒
4
⋅ 𝑡
𝑒4
)𝑃𝑡

Ω1
(𝑒
5
⋅ 𝑡
𝑒5
), where 𝑃𝑡

Ω1
(𝑒
4
⋅ 𝑡
𝑒4
) =

(𝑒
4
⋅ 𝑡
𝑒4
) if 𝑒

4
∈ Ω

1
∧ 𝑎 ≤ 𝑡

𝑒4
≤ 𝑏, where ∫𝑏

𝑎
𝑓(𝑡

𝑒4
) ≥ (1 − 𝛼),

(1 − 𝛼) is the confidence level.

2.3. Petri Nets. Petri Nets (PNs) are widely used for modeling
DES ([29]). A PN, 𝑁, is a bipartite digraph represented by
the five-tuple 𝑁 = (𝑃, 𝑇𝑅, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡,𝑀

0
), where 𝑃 is a set of

places with cardinality 𝑛𝑝 and 𝑇𝑅 is a set of transitions with
cardinality 𝑛𝑡𝑟; 𝑃𝑟𝑒 : 𝑃 × 𝑇𝑅 → N and 𝑃𝑜𝑠𝑡 : 𝑇𝑅 × 𝑃 → N

are the Pre and Post incidence matrices (𝐼 = 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒). The
marking function 𝑀 : 𝑃 → N represents the number of
tokens residing inside each place; 𝑀

0
is the initial marking

[30, 31]. For the Pre and Post sets, the dot notation is used:
⋅
𝑡𝑟 = {𝑝 ∈ 𝑃 : 𝑃𝑟𝑒(𝑝, 𝑡𝑟) > 0} [31].

IPN is an extension of PN allowing the association of
input and output signals to models [32].

Definition 5 (interpreted Petri Net). An IPN is a tuple 𝑄 =
(𝑁,𝑈

𝑜
, 𝑌, 𝜆, 𝜑), where 𝑁 is a PN. 𝑈

𝑜
= {𝑢

0
, 𝑢
1
, . . . , 𝑢

|2
𝑚𝑜 |−1
}

is the observable inputs set, 𝑢
𝑠
is an input symbol, and 𝑚

𝑜
is

the number of observable inputs; 𝑌 = {𝑦
0
, 𝑦
1
, . . . , 𝑦

|2
𝑛
|−1
} is

the output set, 𝑦
𝑗
is an output symbol, and 𝑛 is the number of

outputs; 𝜆 : 𝑇𝑅 → 𝑈
𝑜
is a transition labeling function that

assigns an input symbol to each transition. 𝜑 : 𝑅(𝑁) → 𝑌

is an output function that assigns an output symbol to each
reachable marking.

Differential of output symbols is introduced in [33] to
avoid IPN nondeterminism.

Definition 6 (differential of output symbol 𝑑𝑦). Given two
output symbols 𝑦

𝑗
, 𝑦
𝑗−1
∈ 𝑌, at times 𝜏

𝑖
and 𝜏

𝑖−1
, respectively,

𝑑𝑦
𝑗
is defined as 𝑑𝑦

𝑗
(𝑦
𝑗
× 𝑦

𝑗−1
) → {−1, 0, 1}, where 𝑑𝑦

𝑗
=

𝑦
𝑗
− 𝑦

𝑗−1
with 𝑑𝑦

𝑗
∈ {−1, 0, 1}; so 𝑑𝑦

𝑗
possible values are

0 × 0 → 0; 0 × 1 → 1; 1 × 0 → −1; 1 × 1 → 0.
A st-IPN is defined as follows.

Definition 7 (stochastic timed interpreted Petri Net (st-IPN)
(see [33])). A st-IPN is a structure represented by 𝑠𝑡𝑄 =
(𝑄,Ω, 𝛿, 𝑂𝑀), where 𝑄 = (𝑁,𝑈

𝑜
, 𝑌, 𝜆, 𝜑) is an IPN;𝑁,𝑈

𝑜
, 𝑌

have the same meaning as in Definition 5; 𝜆 : 𝑇𝑅 → 𝑈
𝑜
×

𝛿 is a labeling function that assigns an input symbol and
a time density function to each transition; 𝜑 is defined as
𝜑 : (𝑅𝑁) → 𝑌/𝑑𝑌; 𝜑 is isomorphic over 𝑌/𝑑𝑌. Consider
Ω := (𝑈

𝑜
× 𝑌). 𝛿 is the system alphabet. 𝛿 := 𝑇𝑅 × 𝑂𝑀 →

𝑓(𝑡
𝑇𝑅×𝑂𝑀

) is a transition firing time density function for each
𝑜
𝑜𝑚
. 𝑂𝑀 = {𝑜

0
, . . . , 𝑜

|2
𝑛𝑒𝑐 |−1
} is the set of operation modes.

The system alphabet Ω = (𝑈
𝑜
× 𝑌). 𝛿 relates signals. A

letter 𝜔𝑖 ∈ Ω is a symbol that concatenates input signals and
output signals at every instant 𝜏

𝑖
, (I/O symbol); this symbol is

a compound event as in Definition 1 but is a timed event (see
Definition 3); thereforeΩ is a timed compound event set over
𝑈
𝑜
, 𝑌. Consider

𝜔
𝑖
= (𝑢

𝑠
𝑦
𝑗
) ⋅ 𝑡

ev
. (1)

Definition 8 (st-ICPN language). The L(𝑠𝑡𝐶𝑄) is
L(𝑠𝑡𝐶𝑄) = {𝑠 | 𝑠 ⊂ Ω∗}, where 𝑠 = 𝜔0, . . . , 𝜔𝑘 is a
timed compound event sequence, at times 𝜏

0
≤ ⋅ ⋅ ⋅ ≤ 𝜏

𝑘
; that

is, 𝑠 is an ordered sequence at a time line. If the elapsed time
between events is not constant, the time fits a probability
density function 𝑓(𝑡ev), that is, 𝑡ev ∼ 𝑓(𝑡ev), andL(𝑠𝑡𝐶𝑄) is
a stochastic language.

Coloured Petri Nets (CPNs) have formal semantics, and
they allow different types of analysis [34]. CPNs are defined
as follows.

Definition 9 (Coloured Petri Net (CPN) (see [35])). A CPN
is defined by a tuple 𝐶𝑁 = (𝑃, 𝑇𝑅, 𝐶, 𝑐𝑑, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡,𝑀

0
),

where 𝑃, 𝑇𝑅 have the same meaning of a PN; 𝐶 =

{class
1
, . . . , class

𝑛𝑐𝑐
} is the set of colour classes with cardinality

𝑛𝑐𝑐; 𝑐𝑑 : 𝑃 ∪ 𝑇𝑅 → 𝐶 is the colour domain mapping;
𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 ∈ 𝛽

|𝑃|×|𝑇𝑅| are incidence matrices, such that
𝑃𝑟𝑒[𝑝, 𝑡𝑟] : 𝑐𝑑(𝑡𝑟) → 𝐵𝑎𝑔(𝑐𝑑(𝑝)) and 𝑃𝑜𝑠𝑡[𝑝, 𝑡𝑟] :
𝑐𝑑(𝑡𝑟) → 𝐵𝑎𝑔(𝑐𝑑(𝑝)) are mappings for each pair (𝑝, 𝑡) ∈
𝑃 × 𝑇𝑅. 𝛽 can be taken as the set of mappings of the form
𝑓 : 𝑐𝑑(𝑡𝑟) → 𝐵𝑎𝑔(𝑐𝑑(𝑝)). Representation of the incidence
matrices entries 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 will be by vectors. A place
marking is a vector, such that 𝑚[𝑝] → 𝐵𝑎𝑔(𝑐𝑑(𝑝)) for each
𝑝 ∈ 𝑃;𝑚

0
is the initial marking.

If a CPN has output and transition labeling functions, it
can be considered as an ICPN.Therefore, a PN including the
characteristics of CPN and st-IPN can be defined as follows.
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Definition 10 (stochastic timed interpretedColouredPetriNet
(st-ICPN)). A st-ICPN is a structure represented by 𝑠𝑡𝐶𝑄 =
(𝐶𝑁,𝑈

𝑜
, 𝑌, 𝜆, 𝜑, Ω, 𝛿, 𝑂𝑀), where 𝐶𝑁 is a CPN defined

as in Definition 9, 𝑈
𝑜
, 𝑌 are input and output alphabets,

respectively, 𝑈
𝑜
= ∪𝑈

𝑐𝑙

𝑜
and 𝑌 = ∪𝑌𝑐𝑙, with 𝑐𝑙 = 1 : 𝑛𝑐𝑐,

𝜆 : 𝑇𝑅 × 𝐵𝑎𝑔(𝑐𝑑(𝑡𝑟)) → 𝑈
𝑜
. 𝛿 is the transition labeling

function. 𝜑 : 𝑅(𝐶𝑁) × 𝐵𝑎𝑔(𝑐𝑑(𝑝)) → 𝑌/𝑑𝑌 is the output
function. Consider Ω := (𝑈

𝑜
× 𝑌). 𝛿 is the system alphabet.

𝛿 := 𝑇𝑅 × 𝑂𝑀 × 𝐶 → 𝑓(𝑡
𝑇𝑅×𝑂𝑀×𝐶

) is the transition
firing time density function for each 𝑜

𝑜𝑚
in each 𝑐𝑙. 𝑂𝑀 =

{𝑜
0
, . . . , 𝑜

|2
𝑛𝑒𝑐 |−1
} is the set of operation modes.

A transition 𝑡𝑟
𝑟
∈ 𝑇𝑅 with 𝜆(𝑡𝑟

𝑗
) = 𝑢

𝑠
⋅ 𝑓(𝑡

𝑡𝑟𝑟 ,𝑜𝑜𝑚,𝑐𝑙
) is

enabled with respect to 𝑐𝑑(𝑡𝑟) at operation mode 𝑜
𝑜𝑚
, if and

only if, for all 𝑝
𝑞
∈
⋅
𝑡𝑟
𝑟
, 𝑚[𝑝

𝑞
] ≥ 𝑃𝑟𝑒[

⋅
𝑡𝑟](𝑐𝑑(𝑡𝑟)) and if 𝑎 ≤

𝑡
ev
≤ 𝑏, where∫𝑏

𝑎
𝑓(𝑡

𝑡𝑟𝑟 ,𝑜𝑜𝑚 ,𝑐𝑙
) ≥ (1−𝛼), (1−𝛼) is the confidence

level and [𝑎, 𝑏] is the confidence interval. If 𝑡𝑟
𝑟
is enabled and

𝑡𝑟
𝑟
is fired a newmarking𝑀

𝑘+1
is reached; it is computedwith

the classical state space equation:𝑀
𝑘+1
= 𝑀

𝑘
+𝐼⋅

󳨀→

𝑡𝑟
𝑟
, 𝑦
𝑗
/𝑑𝑦

𝑗
=

𝜑(𝑀
𝑘
).

Definition 11 (firing language of a st-ICPN). Let 𝜎𝑐𝑙 be a firing
sequence 𝜎𝑐𝑙 = 𝑡𝑟

1
⋅ ⋅ ⋅ 𝑡𝑟

𝑘
for colour class 𝑐𝑙, of a 𝑠𝑡𝐶𝑄, such

that𝑀
0
⌈𝜎
𝑖
> 𝑀

𝑘
.The set of all firing sequences for the colour

class 𝑐𝑙 is called the firing languageL𝑐𝑙

𝐹
(𝑠𝑡𝐶𝑄) for 𝑐𝑙. Consider

L𝑐𝑙

𝐹
(𝑠𝑡𝐶𝑄) = {𝜎

𝑐𝑙
| 𝑃𝑟𝑜𝑏(𝜎

𝑐𝑙
| 𝑚

0
) ≥ (1 − 𝛼)}.

The transition and output labeling sequences generated
by 𝜎𝑐𝑙 allow the definition of the generated languages as
follows.

Definition 12 (input and output languages of a st-ICPN). Let
𝜎
𝑐𝑙 be a firing sequence such that 𝜎𝑐𝑙 ∈ L𝑐𝑙

𝐹
(𝑠𝑡𝐶𝑄); the input

language for 𝑐𝑙 is defined as the labeling function sequences
of the 𝑡𝑟

𝑟
∈ L𝑐𝑙

𝐹
(𝑠𝑡𝐶𝑄); that is, L𝑐𝑙

in(𝑠𝑡𝐶𝑄) = {𝜎
𝑐𝑙
| 𝜎

𝑐𝑙
=

𝜆(𝑡𝑟
1
) ⋅ ⋅ ⋅ 𝜆(𝑡𝑟

𝑘
)}, and the output language for 𝑐𝑙 is defined

as the reached marking sequences by the firing of 𝜎𝑐𝑙; that
is, L𝑐𝑙

out(𝑠𝑡𝐶𝑄) = {𝜑(𝑀0) ⋅ ⋅ ⋅ 𝜑(𝑀𝑘)}. st-ICPN language is
L(𝑠𝑡𝐶𝑄) = {L𝑐𝑙

(𝑠𝑡𝐶𝑄)}.

3. Fault Behavior

The system generates a language that can be split into
sublanguages, taking into account if a fault has occurred or
not.L

𝑙
is the language generated by a subsystem.

The set of timed compound events is partitioned into
observable and unobservable events, Ω

𝑙
= Ω

𝑜𝑙
∪ Ω

𝑢𝑜𝑙
, where

Ω
𝑢𝑜𝑙

includes two subsets: fault and regular unobservable
event subsetsΩ

𝑢𝑜𝑙
= Ω

𝑓𝑙
∪Ωreg

𝑙

(adapted from [36]). An event
𝜔
𝑖

𝑙
∈ Ω

𝑙
is of the form 𝜔𝑖

𝑙
= (𝑢

𝑙,𝑠
𝑦
𝑙,𝑗
) ⋅ 𝑡

ev (see (1)). The set of
normal timed compound events Ω

𝑁𝑙
is a subset of Ω

𝑜𝑙
such

thatL𝑁𝑙
⊂ Ω

∗

𝑁𝑙
.

A timed fault event can be defined as follows.

Definition 13 (timed fault event). Given a timed event
sequence 𝑠 and an event of the form 𝜔𝑖∗

𝑙
= (𝑢

𝑙,𝑠
𝑦
𝑙,𝑗
) ⋅ 𝑡

ev and if
𝑠 ∈L𝑁𝑙

∧ 𝑠𝜔
𝑖∗

𝑙
∉L𝑁𝑙 , then 𝜔𝑖∗

𝑙
is a timed fault event.

A fault event, 𝜔𝑖
𝑙
, does not belong to the normal language

(based on Definition 2) 𝜔𝑖
𝑙
= (𝑢

𝑖

𝑙,𝑠
𝑦
𝑖

𝑙,𝑗
) ⋅ 𝑡

ev
∉ L𝑁𝑙 ( the

superscript “𝑖” has been added to identify the event time), if

(i) 𝑃𝑐
Ω𝑁
𝑙

(𝑢
𝑖

𝑙,𝑠
) ∉L

𝑁𝑙

in ∧ 𝑃𝑐Ω𝑁
𝑙

(𝑦
𝑖

𝑙,𝑗
) ∈L

𝑁𝑙

out or

(ii) 𝑃𝑐
Ω𝑁
𝑙

(𝑢
𝑖

𝑙,𝑠
) ∈L

𝑁𝑙

in ∧ 𝑃𝑐Ω𝑁
𝑙

(𝑦
𝑖

𝑙,𝑗
) ∉L

𝑁𝑙

out or

(iii) 𝑃𝑐
Ω𝑁
𝑙

(𝑢
𝑖

𝑙,𝑠
) ∉L

𝑁𝑙

in ∧ 𝑃𝑐Ω𝑁
𝑙

(𝑦
𝑖

𝑙,𝑗
) ∉L

𝑁𝑙

out or

(iv) 𝑃𝑐
Ω𝑁
𝑙

(𝑢
𝑖

𝑙,𝑠
) ∈L

𝑁𝑙

in ∧ 𝑃𝑐Ω𝑁
𝑙

(𝑦
𝑖

𝑙,𝑗
) ∈L

𝑁𝑙

out but 𝑡
ev
∉ [𝑎, 𝑏];

∫

𝑏

𝑎
𝑓(𝑡) ≥ (1 − 𝛼); (1 − 𝛼) is the confidence level and

𝑓(𝑡) is the density function of normal event, 𝜔𝑖
𝑙
∈

L𝑁𝑙
/𝑠.

In cases (i), (ii), and (vi) the fault event is observable and
in case (iii) the fault event is unobservable. Fault language can
be defined as follows.

Definition 14 (fault language, L𝐹𝑙). Given a timed event
sequence 𝑠, the fault language is L𝐹𝑙

= {𝑠𝑡 | 𝑠 ∈ L𝑁𝑙
∧ 𝑡 ∈

L/𝑠 ∧ ∃𝜔𝑖∗
𝑙
∈ 𝑡 | 𝜔

𝑖∗

𝑙
∉ L𝑁𝑙

}, that is, the set of all timed
event sequences with at least one timed fault event in the
postlanguage of a normal sequence.

4. Diagnosis Method

The diagnoser proposed in this paper works without any
previous knowledge of the system language. The diagnoser
construction starts with the identification of the normal
behavior, which results in a set of st-IPNs that generate the
observed normal language. L𝑁𝑙 is the language generated
by the identified st-IPN for subsystem 𝑙. The diagnosis task
is carried out by comparing the current event trace 𝑡 with
L𝑁𝑙 . If 𝑡 ∉ L𝑁𝑙 , a timed fault event has been detected. The
algorithm creates a language model recognizer for this new
situation and 𝑡 is considered as part of a fault language,L𝑓𝑖 .

Once a fault has been detected, a fault filtering algorithm
allows the full diagnosis. This algorithm takes into account
flow sharing (data, materials, or energy) between subsystems.
The consequence of flow sharing is that a subsystem that
operates without fault could reach an erroneous state, not
described inL𝑁𝑙 .This problem happens when the subsystem
does not receive the prospective service (the flow) of another
subsystem linked to it. Flow stopping could be due to failures
in another subsystem up or down the line [37]. In order to
include this fact in the diagnoser the notion of shared flow
sensor (SFS) is introduced.

When a fault has been detected and it has not been elim-
inated by the filtering algorithm, the structure of diagnoser
proposed allows isolating and identifying the fault; at this
time a new fault trace ofL𝑓𝑖 is learned by the diagnoser. So,
the diagnosis skills of the diagnoser grow over time.

4.1. Architecture for the Diagnostic Method. As it was men-
tioned in the previous section, the diagnoser is based on a
set of identified st-IPNs. The diagnoser also includes color
in order to compare languages and detect faults. So the
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Behaviour
pl,0

Behaviour
pl,1

trl,2 trl,1

m Nm N

Nl⟩⟩

(l, 0)gfgf⟩⟩

(l, 1)gfgf⟩⟩

[Nl ∧ (l, 0)gfgf]

trl,3

[(l, 0)gfgf]
[(l, 0)gfgf]

pl,2
VF

pl,3
IF

trl,4

[(l, 1)gfgf]

[(l, 1)gfgf]

[Nl ∧ (l, 1)gfgf]

Colour sets:
Behaviour = {N, gfgf}

VF

IF

= {gfgf} “verification of fault”

“identified faults”={Integer}

Mode = {m N,m fdf}
Variable
df “integer” “detected faults”

[Nl]

[Nl]

[Nl]

[Nl]

m fdf

m fdf

[df = df + 1]

[df = df + 1]

df = 0

Figure 3: st-DICPN architecture.

diagnoser is a stochastic timed interpreted Coloured Petri Net
to diagnosis (st-DICPN), which is shown in Figure 3.

The set of places is partitioned into 𝑃
𝑙
= 𝑃

𝐿𝑁𝑙
∪𝑃

𝑉𝐹𝑙
∪𝑃

𝐼𝐹𝑙
,

where 𝑃
𝐿𝑁𝑙

represents the set of latent nestling places, that is,
places with nominal behavior in which a fault can happen;
𝑃
𝑉𝐹𝑙

is the set of places that verify the detected fault kind; 𝑃
𝐼𝐹𝑙

is a place that counts the identified faults.
The set of transitions is partitioned into 𝑇𝑅

𝑙
= 𝑇𝑅

𝑁𝑙
∪

𝑇𝑅
𝐹𝑙
, where𝑇𝑅

𝑁𝑙
represents the set of normal transitions that

fire following the normal language and𝑇𝑅
𝐹𝑙
represents the set

of fault transitions whose size can be increased each time a
fault event is detected; they fire when a fault 𝑓

𝑑𝑓
is detected.

The set of colour classes is𝐶
𝑙
= {Behavior, 𝑉𝐹, 𝐼𝐹,Mode},

where Behavior = {⟨𝑁
𝑙
⟩, ⟨(𝑙, 𝑞)𝑔𝑓

𝑔𝑓𝑙
⟩}: ⟨𝑁

𝑙
⟩ is the normal

token, ⟨(𝑙, 𝑞)𝑔𝑓
𝑔𝑓𝑙
⟩ is the generic fault token, 𝑙 stands for

the subsystem, 𝑞 stands for the place, and the subscript 𝑔𝑓
𝑙

is a fault identification index; 𝑉𝐹 = {⟨(𝑙, 𝑞)𝑔𝑓
𝑔𝑓𝑙
⟩}; 𝐼𝐹 =

{⟨integer⟩} is variable token that depends on variable 𝑑𝑓, and
the Mode colour class set includes the colours assigned to
transitions, where Mode = {𝑚 𝑁,𝑚 𝑓

𝑑𝑓
}: 𝑚 𝑁 is “normal

mode” and𝑚 𝑓
𝑑𝑓

is “detected fault mode 𝑑𝑓.”
In Figure 4, the part of the net in green colour represents

the normal behavior which is identified online from the
observed legal sequences. The part of the net in black colour
represents the identified fault behavior by means of applying
the diagnostic algorithm. This net has a variable structure
because the diagnosis process learns the fault languages.

In Figure 4, when a fault is detected on place 𝑝
𝑙,0
, 𝑑𝑓 = 1,

the transition 𝑡𝑟
1,3

fires in𝑚 𝑓
1
mode and then a colour token

⟨(𝑙, 0)𝑔𝑓
1
⟩ is reached in 𝑝

𝑙,2
(VF place) and an integer ⟨1⟩ is

reached in 𝑝
𝑙,3

(IF place). In this moment, the fut function
is executed and the arcs and transitions structure increases,

so 𝑝𝑟𝑒(𝑝
𝑙,0
, 𝑡𝑟
𝑙,3
) = [(𝑙, 0)𝑔𝑓

1
; (𝑙, 0)𝑔𝑓

𝑔𝑓
], 𝑝𝑜𝑠𝑡(𝑝

𝑙,0
, 𝑡𝑟
𝑙,3
) =

[(𝑙, 0)𝑔𝑓
𝑔𝑓
],𝑝𝑜𝑠𝑡(𝑝

𝑙,2
, 𝑡𝑟
𝑙,3
) = [(𝑙, 0)𝑔𝑓

1
],𝑝𝑜𝑠𝑡(𝑝

𝑙,3
, 𝑡𝑟
𝑙,3
) = [1],

and the token in transition 𝑡𝑟
𝑙,3
is [𝑚 𝑓

1
; 𝑚 𝑓

𝑑𝑓
].

The incidence matrix entries are represented by vectors
[35]. If a fault 𝑓

1
is detected in place (𝑝

𝑙,0
), then Pre and Post

matrices will be updated as shown as follows.

Pre
𝑡𝑟
𝑙,1

𝑡𝑟
𝑙,2

𝑡𝑟
𝑙,3

𝑡𝑟
𝑙,4

𝑚 𝑁 𝑚 𝑁 [

𝑚 𝑓
𝑑𝑓

𝑚 𝑓
1

] [𝑚 𝑓
𝑑𝑓
]

𝑝
𝑙,0

𝑝
𝑙,1

𝑝
𝑙,2

𝑝
𝑙,3

[

[

[

[

[

[

𝑁
𝑙

0

0

0

0

𝑁
𝑙

0

0

[

𝑁
𝑙
∧ (𝑙, 0) 𝑔𝑓1

𝑁
𝑙
∧ (𝑙, 0) 𝑔𝑓𝑔𝑓

]

0

0

0

0

𝑁
𝑙
∧ (𝑙, 1) 𝑔𝑓𝑔𝑓

0

0

]

]

]

]

]

]

.

(2)
Post

𝑡𝑟
𝑙,1

𝑡𝑟
𝑙,2

𝑡𝑟
𝑙,3

𝑡𝑟
𝑙,4

𝑚 𝑁 𝑚 𝑁 [

𝑚 𝑓
𝑑𝑓

𝑚 𝑓
1

] [𝑚 𝑓
𝑑𝑓
]

𝑝
𝑙,0

𝑝
𝑙,1

𝑝
𝑙,2

𝑝
𝑙,3

[

[

[

[

[

[

0

𝑁
𝑙

0

0

𝑁
𝑙

0

0

0

(𝑙, 0) 𝑔𝑓
𝑔𝑓

0

[

(𝑙, 0) 𝑔𝑓
1

(𝑙, 0) 𝑔𝑓
𝑔𝑓

]

1

0

(𝑙, 1) 𝑔𝑓
𝑔𝑓

(𝑙, 1) 𝑔𝑓
𝑔𝑓

0

]

]

]

]

]

]

.

(3)
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Behaviour
pl,0

Behaviour
pl,1

trl,2

trl,3

trl,4

trl,1

[Nl ∧ (l, 1)gfgf]

[(l, 0)gfgf]

[(l, 1)gfgf]

[(l, 1)gfgf]

Nl⟩⟩

m N m N

[m f1; m fdf]

[Nl ∧ (l, 0)gfgf;

Nl ∧ (l, 0)gf1]

[(l, 0)gf1;

(l, 0)gfgf]

(l, 1)gfgf⟩⟩

(l, 0)gfgf⟩⟩

(l, 0)gf1⟩⟩

[Nl]

[Nl]

[Nl]

[Nl]

pl,2
VF

pl,3
IF

df = 1

[df = df + 1]

[df = df + 1]

m fdf

Colour sets:
Behaviour = {N, gfgf}

VF

IF

= {gfgf} “verification of fault”

“identified faults”={Integer}

Mode = {m N,m fdf}
Variable
df “integer” “detected faults”

Figure 4: st-DICPN with fault.

Definition 15 (stochastic timed interpreted Coloured Petri
Net to diagnosis (st-DICPN)). A st-DICPN for a subsystem
𝑙 is defined as 𝑠𝑡𝐷𝐶𝑄

𝑙
= (𝑠𝑡𝐶𝑄

𝑙
, 𝑓𝑢𝑡), where 𝑠𝑡𝐶𝑄

𝑙
=

(𝐶𝑄
𝑙
, Ω
𝑙
, 𝛿
𝑙
) is a st-ICPN defined as in Definition 10 for a

subsystem 𝑙; 𝑃
𝑙
= 𝑃

𝐿𝑁𝑙
∪ 𝑃

𝑉𝐹𝑙
∪ 𝑃

𝐼𝐹𝑙
; 𝑇𝑅

𝑙
= 𝑇𝑅

𝑁𝑙
∪ 𝑇𝑅

𝐹𝑙
; 𝐶
𝑙
=

{Behavior, 𝑉𝐹, 𝐼𝐹,Mode}. The set of colour domain of places
are 𝑐𝑑(𝑃

𝐿𝑁𝑙
) = {𝑁

𝑙
, (𝑙, 𝑞)𝑔𝑓

𝑔𝑓𝑙
}, 𝑐𝑑(𝑃

𝑉𝐹𝑙
) = {(𝑙, 𝑞)𝑔𝑓

𝑔𝑓𝑙
}, and

𝑐𝑑(𝑃
𝐼𝐹𝑙
) = {Integer}. The set of colour domain of transitions

are 𝑐𝑑(𝑇𝑅
𝑁𝑙
) = {𝑚 𝑁

𝑙
} and 𝑐𝑑(𝑇𝑅

𝐹𝑙
) = {𝑚 𝑓

𝑑𝑓
}. 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 ∈

𝛽
|𝑃|×|𝑇𝑅| are incidence matrices based on Definition 9. The

normal transitions labeling function is 𝜆
𝑙
: 𝑇𝑅

𝑁𝑙
× 𝑚 𝑁 →

𝑈
𝑙
⋅ 𝛿
𝑙
. 𝛿
𝑙
:= 𝑇𝑅

𝑙
× 𝑂𝑀 → 𝑓(𝑡

𝑇𝑅𝑙×𝑂𝑀
) is the transition

firing time density function for each 𝑂𝑀. The normal places
output function is 𝜑

𝑙
: 𝑅(𝐶𝑄

𝑙
) × 𝑐𝑑(𝑃

𝐿𝑁𝑙
) → 𝑌

𝑙
/𝑑𝑌

𝑙
. And

𝑓𝑢𝑡 : 𝑀
𝑙
×𝑌

𝑙
→ 𝑇𝑅

𝑙
×𝑃𝑟𝑒

𝑙
×𝑃𝑜𝑠𝑡

𝑙
is a function that updates

𝑇𝑅
𝑙
, 𝑃𝑟𝑒

𝑙
, 𝑃𝑜𝑠𝑡

𝑙
.

The incidence matrices are 𝑃𝑟𝑒[𝑝, 𝑡𝑟] : 𝑐𝑑(𝑡𝑟) → 𝑐𝑑(𝑝)

and 𝑃𝑜𝑠𝑡[𝑝, 𝑡𝑟] : 𝑐𝑑(𝑡𝑟) → 𝑐𝑑(𝑝). That is, 𝑃𝑟𝑒[𝑝𝐿𝑁
𝑙,𝑞
,

𝑡𝑟
𝑁

𝑙,𝑟
]𝑚 𝑁

𝑙
= ⟨𝑁

𝑙
⟩; 𝑃𝑟𝑒[𝑝𝐿𝑁

𝑙,𝑞
, 𝑡𝑟
𝐹

𝑙,𝑟
]𝑚 𝑓

𝑑𝑓
= ⟨𝑁

𝑙
⟩∧⟨(𝑙, 𝑞)𝑔𝑓

𝑔𝑓𝑙
⟩;

𝑃𝑜𝑠𝑡[𝑝
𝐿𝑁

𝑙,𝑞
, 𝑡𝑟
𝑁

𝑙,𝑟
]𝑚 𝑁

𝑙
= ⟨𝑁

𝑙
⟩; 𝑃𝑜𝑠𝑡[𝑝𝐿𝑁

𝑙,𝑞
, 𝑡𝑟
𝐹

𝑙,𝑟
]𝑚
𝑓𝑑𝑓
= ⟨(𝑙,

𝑞)𝑔𝑓
𝑔𝑓𝑙
⟩ ; 𝑃𝑜𝑠𝑡[𝑝𝑉𝐹

𝑙,𝑞
, 𝑡𝑟
𝐹

𝑙,𝑟
]𝑚 𝑓

𝑑𝑓
= ⟨(𝑙, 𝑞)𝑔𝑓

𝑔𝑓𝑙
⟩; 𝑃𝑜𝑠𝑡[𝑝𝐼𝐹

𝑙,𝑞
,

𝑡𝑟
𝐹

𝑙,𝑟
]𝑚 𝑓

𝑑𝑓
= {𝑥 + 1}.

This structure of incidence matrices allows the net evolu-
tion under normal conditions or nonpredefined event traces.

4.2. Online Diagnosis Process. This section proposes a pro-
cedure that specifies the online work of the diagnoser. This
process has five steps and it can be seen in Figure 5.

The first step is the configuration of the system. The
system has to be split into subsystems, I/O signals must be
defined, and the starting event for each subsystem will be
𝜔
0

𝑙
= (𝑢

𝑙,𝑠
𝑦
𝑙,𝑗
)𝜏
0
, where 𝑢

𝑙,𝑠
, 𝑦
𝑙,𝑗
stand for the starting values

of control commands and sensor readings, at time 𝜏
0
, and the

set of operation modes (𝑜
𝑜𝑚
) has to be stated.

The second step is the observation and learning of the
normal behavior. The identification algorithm [33] builds a
set of st-IPNs generating the observed language.

The third step is the computing of the initial diagnoser
which transforms the st-IPNs into st-DICPNs. The proposed
algorithm modifies the net structure as follows.

(i) A normal token ⟨𝑁
𝑙
⟩ will be added to each at initial

place.
(ii) The set of 𝑃

𝑉𝐹𝑙
, 𝑃

𝐼𝐹𝑙
, and 𝑇𝑅

𝐹𝑙
will be added as

well as the arcs required to complete the diagnoser
architecture (as the one shown in Figure 4).

(iii) To represent generic faults, a coloured fault token,
⟨(𝑙, 𝑞)𝑔𝑓

𝑔𝑓𝑙
⟩, must be added to each 𝑝

𝑙,𝑞
∈ 𝑃

𝐿𝑁𝑙
.

The fourth step is the online fault detection and fault isolation.
More precisely the process consists of the following.

Initialize the variables 𝑑𝑓
𝑙
= 0, 𝑔𝑓

𝑙
= 0, andL𝑓𝑑𝑓

𝑙 = { }

(set of identified fault traces).
Being the current state of the net 𝑝

𝑙,𝑞
∈ 𝑃

𝐿𝑁𝑙
and given

an observed event, 𝜔𝑖∗
𝑙
= (𝑢

𝑖∗

𝑙,𝑠
𝑦
𝑖∗

𝑙,𝑗
) ⋅ 𝑡

ev
𝑙,𝑜𝑜𝑚

.

(i) If𝑃𝑐
Ω𝑁
𝑙

(𝜔
𝑖∗

𝑙
) = 𝜔

𝑖∗

𝑙
(seeDefinition 4), then𝜔𝑖∗

𝑙
∈

L𝑁𝑙 . 𝑡𝑟
𝑙,𝑟
∈ 𝑇𝑅

𝑁𝑙
is firing in normal mode with



8 Mathematical Problems in Engineering

Online

System

Setting the initial conditions

Event generator

Construction and update
of st-IPNs

Stochastic identification
st-IPNs

Diagnoser adaptation

Event generator

Diagnosis process

st-DIPNs

Division of system

st-IPNs; 𝛿l

ul,syl,j; oom

ul,syl,j; oom

𝜔i
l = ul,syl,j 𝜏i(

𝜔0
l = ul,syl,j 𝜏0( (

𝜑l m p(l,1) = yl,j/dyl,j( ( ((

(

Figure 5: Diagnosis process.

Inputs:L𝑁𝑙 , 𝑠𝑡-𝐷𝐼𝐶𝑃𝑁
𝑙
; 𝜔𝑖
𝑙
= (𝑢

𝑙,𝑠
𝑦
𝑙,𝑗
) ⋅ 𝑡

𝑒V, for 𝑖 = 0, . . . , 𝑘;
Outputs: 𝐼𝐹

𝑙
;L𝐼𝐹𝑙 ; update 𝑠𝑡-𝐷𝐼𝐶𝑃𝑁

𝑙

Initial Conditions: 𝜔0
𝑙
= (𝑢

𝑙,𝑠
𝑦
𝑙,𝑗
) ⋅ 𝑡

𝑒V; 𝐼𝐹
𝑙
= [];L𝑓𝑑𝑓

𝑙 = {}.
(1) 𝑖 = 0;
(2) for 𝑙 = 1, . . . , 𝑐

(i) 𝑞
𝑙
= 1; 𝑝𝑓

𝑙
= 0; 𝑝𝑓

𝑙
= 0; 𝑓

𝑙
= 0; 𝑑𝑓

𝑙
= 0.

(ii) read 𝑢
𝑙,𝑠
, 𝑦
𝑙,𝑗
at time 𝜏

0

(iii) 𝜑
𝑙
(𝑚(𝑝

𝑙,𝑞𝑙
)) = 𝑦

𝑙,𝑗
/0⃗;𝑚(𝑝

𝑙,𝑞𝑙
) = ⟨𝑁

𝑙
⟩;

end for
(3) 𝑖 = 𝑖 + 1;
(4) Wait for a new 𝜔𝑖

𝑙
; read 𝜔𝑖

𝑙
= (𝑢

𝑙,𝑠
𝑦
𝑙,𝑗
)𝜏
𝑖
;

(5) 𝑠𝑢𝑏 = 𝑙
(a) if 𝜔𝑖

𝑙
= (𝑢

𝑙,𝑠
𝑦
𝑙,𝑗
) ⋅ 𝑡

𝑒V
∈L𝑁𝑠𝑢𝑏 then𝑚(𝑝

𝑠𝑢𝑏,𝑞𝑙+1
) = ⟨𝑁

𝑠𝑢𝑏
⟩ and 𝜎𝑁𝑠𝑢𝑏 = 𝑡𝑟

𝑠𝑢𝑏,1
, . . . , 𝑡𝑟

𝑠𝑢𝑏,𝑖
.

(b) else 𝜔𝑖
𝑙
= (𝑢

𝑙,𝑠
𝑦
𝑙,𝑗
) is a generic fault in 𝑝

𝑠𝑢𝑏,𝑞𝑠𝑢𝑏
; 𝑔𝑓

𝑠𝑢𝑏
= 𝑔𝑓

𝑠𝑢𝑏
+ 1;

then a new 𝑡𝑟
𝑙,𝑟
is generated as:

(i) compute a 𝑝𝑟𝑒 vector of zeros except in position 𝑝
𝑠𝑢𝑏,𝑞𝑠𝑢𝑏

which has
a value of𝑁

𝑙
∧ (𝑠𝑢𝑏, 𝑞

𝑠𝑢𝑏
)𝑔𝑓

𝑔𝑓𝑠𝑢𝑏
.

(ii) compute a 𝑝𝑜𝑠𝑡 vector of zeros except in position 𝑝
𝑠𝑢𝑏,𝑞𝑠𝑢𝑏

, 𝑝
𝑠𝑢𝑏,𝑉𝐹𝑠𝑢𝑏

which has a value of (𝑠𝑢𝑏, 𝑞
𝑠𝑢𝑏
)𝑔𝑓

𝑔𝑓𝑠𝑢𝑏
and position 𝑝

𝑠𝑢𝑏,𝐼𝐹
which has a weight of 𝑑𝑓

𝑙
.

(iii) the new 𝑡𝑟
𝑙,𝑟
fire, the net reaches the marking:𝑚(𝑝

𝑠𝑢𝑏,𝑉𝐹𝑠𝑢𝑏
) = (𝑠𝑢𝑏, 𝑞

𝑠𝑢𝑏
)𝑝𝑓

𝑝𝑓𝑠𝑢𝑏
;

𝑚(𝑝
𝑠𝑢𝑏,𝑞𝑠𝑢𝑏

) = (𝑠𝑢𝑏, 𝑞
𝑠𝑢𝑏
)𝑔𝑓

𝑔𝑓𝑠𝑢𝑏
and 𝑑𝑓

𝑙
= 𝑑𝑓

𝑙
+ 1.𝑚(𝑝

𝑙,𝐼𝐹𝑙
) = ⟨𝑑𝑓

𝑙
⟩.

(iv) 𝑓
𝑑𝑓𝑠𝑢𝑏
= 𝑓

𝑑𝑓𝑠𝑢𝑏
+ 1.

(v) Execute Algorithm 2.
end if

(6) Wait for the next event and return to Step (3)

Algorithm 1: Diagnosis process.

𝜆
𝑙
(𝑡𝑟
𝑙,𝑟
) = 𝑢

𝑙,𝑠
.𝑓(𝑡

𝑡𝑟𝑙,𝑟 ,𝑜𝑜𝑚
) and a normal token is

placed at 𝑚(𝑝
𝑙,𝑞+1
) = ⟨𝑁

𝑙
⟩, with 𝜑

𝑙
(𝑚(𝑝

𝑙,𝑞+1
)) =

𝑦
𝑙,𝑗
/𝑑𝑦

𝑙.𝑗
and wait for a new 𝜔𝑖∗

𝑙
.

(ii) Else, if 𝑃𝑐
Ω𝑁
𝑙

(𝜔
𝑖∗

𝑙
) = 𝜀 then𝜔𝑖

𝑙
∉L𝑁𝑙 , and a fault

trace has been detected in 𝑙: 𝑑𝑓
𝑙
= 𝑑𝑓

𝑙
+ 1:

(a) a 𝑡𝑟
𝑙,𝑟
∈ 𝑇𝑅

𝐹𝑙
is firing in 𝑓

𝑑𝑓𝑙
mode, 𝑔𝑓

𝑙
=

𝑔𝑓
𝑙
+ 1;

(b) a generic fault token is reached in
𝑚(𝑝

𝑙,𝑉𝐹𝑙
) = 𝑚(𝑝

𝑙,𝑞𝑙
) = ⟨(𝑙, 𝑞)𝑔𝑓

𝑔𝑓𝑙
⟩ and

another integer token is reached in
𝑝
𝑙,𝐼𝐹𝑙
= ⟨𝑑𝑓

𝑙
⟩.

This process is shown in Algorithm 1.
At the end of this step a fault has been detected over a time

line, as well as its fault trace.



Mathematical Problems in Engineering 9

Input: 𝑆𝐹𝑆
𝑟
; 𝜔𝑖∗
𝑙,𝑞
= (𝑢

𝑖∗

𝑙,𝑠
𝑦
𝑖∗

𝑙,𝑗
) ⋅ 𝑡

𝑒V
⊂L𝑓𝑖 ; 𝑠𝜔𝑝

𝑙
∈L𝑁𝑙 is the expected sequence.

Output: 𝐼𝑆𝐹𝑆
𝑟
.

Initial Conditions: 𝐼𝑆𝐹𝑆
𝑟
= {}.

If 𝑃
Ω𝑁
𝑙

(𝑦
𝑖∗

𝑙,𝑗
) = 𝜀 then ∃𝑖 | 𝑠𝑟∗

𝑙,𝑖
∈ 𝑦

∗

𝑙,𝑗
̸= 𝑠𝑟
𝑙,𝑖
∈ 𝑦

𝑙,𝑗
, therefore 𝑠𝑟

𝑙,𝑖
= 𝑠𝑟

𝑒𝑥

𝑙,𝑖
is the expected sensor reading.

If 𝑠𝑟𝑒𝑥
𝑙,𝑖
∈ 𝑆𝐹𝑆

𝑟
then

For 𝑙 : 1, . . . , 𝑐
if ∃𝑠𝑟

𝑙,𝑛𝑙
∈ 𝐼𝑆𝐹𝑆

𝑟
then, delete 𝜔𝑖∗

𝑙,𝑞
because is a fault propagation.

else include 𝑠𝑟𝑒𝑥
𝑙,𝑖
in 𝐼𝑆𝐹𝑆

𝑟

end if
end for

end if
else there is not a fault propagation.
end if

Algorithm 2: Fault filtering.

The fifth step eliminates the fault if it has been generated
by a false alarm caused by coupling. Coupling of 𝑠𝑡-𝐷𝐼𝐶𝑃𝑁

𝑙

and faults propagation ([38]) are generated by interactions
among subsystems. Therefore, a fault filtering algorithm is
proposed, which is described below.

The algorithmanalyzes the shared flow sensor reading set,
𝑆𝐹𝑆

𝑟
= ∪𝑠𝑟

𝑙,𝑛𝑙
, where 𝑛

𝑙
is the number of sensors in subsystem

𝑙. Given an identified fault event 𝜔𝑖∗
𝑙,𝑞

at current time 𝜏
𝑎𝑐
,

Lout(𝜔
𝑖∗

𝑙,𝑞
) = 𝑦

𝑙,𝑗
, and 𝑦

𝑙,𝑗
= 𝑠𝑟

𝑙,1
⋅ ⋅ ⋅ 𝑠𝑟

𝑙,𝑛𝑙
, the algorithm

compares the values of the shared flow sensors to decide if
the fault is due to propagation (Algorithm 2).

Once Algorithm 2 filters each fault, the st-DICPN archi-
tecture is updated and 𝑓𝑢𝑡 function updates the st-DICPN as
follows.

(i) Detected fault colour tokens are added in the verifica-
tion place.

(ii) The integer colour token is updated.
(iii) A colour token, 𝑚 𝑓

𝑑𝑓
, is added in the fired fault

transition, the same way the colour token (𝑙, 𝑞)𝑔𝑓
𝑔𝑓𝑙

is added in the involved arcs.
(iv) The fault has been isolated and then 𝑠𝜔𝑖∗

𝑙
is included

in the set of identified fault trace, 𝑠𝜔𝑖
𝑙
⊂L𝑓𝑑𝑓

𝑙 .

Therefore, the fault trace is learned by the st-DICPN and the
fault is identified.

This trace contains information about the faulty subsys-
tem as well as the unexpected behavior and it is possible to
distinguish the subsystem that made the fault as well as the
faulty signals.

4.3. Properties. The structure of a 𝑠𝑡𝐷𝐶𝑄
𝑙
is variable because

the number of coloured tokens, as well as the number of
transitions, grows with each new fault trace. Nevertheless, the
size of each 𝑠𝑡𝐷𝐶𝑄

𝑙
is bounded by the number of sensors.

Let 𝜎𝑁𝑙 be a transition firing sequence, such that, for all
𝑡𝑟
𝑙,𝑟
∈ 𝜎

𝑁𝑙
, 𝑡𝑟
𝑙,𝑟
∈ 𝑇𝑅

𝑁𝑙
; let 𝑠 be the generated event sequence

by 𝜎𝑁𝑙 such that 𝑠 ∈ L𝑁𝑙
(𝑠𝑡𝐷𝐶𝑄

𝑙
), where 𝑠 = 𝜔0

𝑙
, . . . , 𝜔

𝑘

𝑙
; if

𝜑(𝑚(𝑝
𝑙,0
)) = 𝜑(𝑚(𝑝

𝑙,𝑘
)), then 𝑠∗ ∈ L𝑁𝑙

(𝑠𝑡𝐷𝐶𝑄); that is, 𝑠 is
a cycle.

Given a sequence of events 𝑠𝜔𝑖∗
𝑙
, such that 𝑠 ∈ L𝑁𝑙 ,

𝑠 = 𝜔
0

𝑙
, . . . , 𝜔

𝑘

𝑙
, at times 𝜏

1
≤ ⋅ ⋅ ⋅ ≤ 𝜏

𝑘
and 𝑠𝜔𝑖∗

𝑙,𝑞
∈ L𝐼𝐹𝑙 ,

then the transition firing sequence 𝜎𝐹𝑙 that generates 𝑠𝜔𝑖∗
𝑙
is

𝜎
𝐹𝑙
= 𝑡𝑟

𝑙,1
, . . . , 𝑡𝑟

𝑙,𝑘
, 𝑡𝑟
𝑙,𝑘+1
, 𝑡𝑟
𝑙,𝑘
, where 𝑡𝑟

𝑙,1
, . . . , 𝑡𝑟

𝑙,𝑘
∈ 𝑇𝑅

𝑁𝑙
,

𝑡𝑟
𝑙,𝑘+1

∈ 𝑇𝑅
𝐹𝑙
, and 𝑀

𝑙,0
⌈𝜎
𝐹𝑙
> 𝑀

𝑙,𝑘
, where 𝑚(𝑝

𝑙,𝑉𝐹𝑙
) =

⟨(𝑙, 𝑞)𝑔𝑓
𝑔𝑓𝑙
⟩;𝑚(𝑝

𝑙,𝑘
) = ⟨𝑁⟩, ⟨(𝑙, 𝑞)𝑔𝑓

𝑔𝑓𝑙
⟩. (𝑝

𝑙,𝑘
∈ 𝑃

𝐿𝑁𝑙
).That is,

the fault languageL𝐼𝐹𝑙
(𝑠𝑡𝐷𝐶𝑄) = 𝜔

0

𝑙
, . . . , 𝜔

𝑘

𝑙
𝜔
𝑖∗

𝑙,𝑞
𝜔
𝑘+1

𝑙
reaches

a normal token in a latent nesting place, from which the
system can evolve when the fault has been repaired.

4.4. Detectability. The analysis of detectability presented in
this proposal is based on language theory and prior works
on temporal observability. Detectability proves if the system
can detect the occurrence of a fault in a finite number of
observable events.

Based on Definition 13 𝑛-detectability is defined as fol-
lows.

Definition 16 (𝑛-detectable). Let 𝑠𝜔𝑖∗
𝑙

be an event sequence
ending with a fault event and let 𝑡 be an observable event
sequence after 𝑠𝜔𝑖∗

𝑙
, with 𝑛 = |𝑡|. Given 𝑠

1
= 𝑠𝜔

𝑖∗

𝑙
𝑡, 𝜔𝑖∗

𝑙
=

(𝑢
𝑙,𝑠
𝑦
𝑙,𝑗
)⋅𝑡

ev is 𝑛-detectable if ∃𝜔𝑖
𝑙
∈ 𝑡 such that (i)𝑃𝑐

Ω𝑁
𝑙

(𝑢
𝑙,𝑠
) ∉

L
𝑁𝑙

in ∧ 𝑃𝑐Ω𝑁
𝑙

(𝑦
𝑙,𝑗
) ∈ L

𝑁𝑙

out or (ii) 𝑃𝑐
Ω𝑁
𝑙

(𝑢
𝑙,𝑠
) ∈ L

𝑁𝑙

in ∧

𝑃𝑐
Ω𝑁
𝑙

(𝑦
𝑙,𝑗
) ∉ L

𝑁𝑙

out or (iii) 𝑃𝑐Ω𝑁
𝑙

(𝑢
𝑙,𝑠
) ∈ L

𝑁𝑙

in ∧ 𝑃𝑐Ω𝑁
𝑙

(𝑦
𝑙,𝑗
) ∈

L
𝑁𝑙

out but 𝑡
ev
∉ [𝑎, 𝑏] in n steps.

Necessary and Sufficient Conditions for Detectability

Theorem 17 (detectability). Given 𝑠𝜔𝑝
𝑙
, an event sequence

ending with a fault event, 𝜔𝑝
𝑙
, let 𝑡

1
, 𝑡
2
be two observable events

sequences, where 𝑠, 𝑡
1
∈ L𝑁𝑙

∧ 𝑡
1
, 𝑡
2
∈ L/𝑠; 𝜔𝑝

𝑙
is detectable if

𝑃𝑡
Ω𝑁
𝑙

(𝑠𝑡
1
) ̸= 𝑃𝑡

Ω𝑁
𝑙

(𝑠𝜔
𝑝

𝑙
𝑡
2
).
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Proof. As 𝑡
1
∈ L𝑁𝑙

/𝑠 ∧ 𝑡
1
∈ L𝑁𝑙 then 𝑠𝑡

1
∈ L𝑁𝑙 . And as

𝜔
𝑝

𝑙
is a fault event then 𝑠𝜔𝑝

𝑙
𝑡
2
is a fault trace of the 𝑠𝑡𝐷𝐶𝑄

𝑙
,

(L𝑓𝑖
= 𝑠𝜔

𝑝

𝑙
𝑡
2
). Give 𝑠 = 𝜔0

𝑙
, . . . , 𝜔

𝑘

𝑙
and 𝑡

2
= 𝜔

𝑞

𝑙
, . . . , 𝜔

𝑥

𝑙
.

Necessary Condition. If 𝜔𝑝
𝑙
is detectable then 𝑃𝑡

Ω𝑁
𝑙

(𝑠𝑡
1
) ̸=

𝑃𝑡
Ω𝑁
𝑙

(𝑠𝜔
𝑝

𝑙
𝑡
2
).

As 𝑡
1
∈ L𝑁𝑙 then, for all 𝜔𝑖

𝑙
∈ 𝑡

1
, 𝜔
𝑖

𝑙
∈ Ω

𝑁𝑙
. If 𝜔𝑝

𝑙
is

detectable then ∃𝜔𝑖∗
𝑙
∈ 𝑡

2
| 𝜔

𝑖∗

𝑙
∈ Ω

𝑜𝑙
∧ 𝜔

𝑖∗

𝑙
∉ Ω

𝑁𝑙

(see Definition 16); therefore 𝑡
1
̸= 𝑡
2
and 𝑃𝑡

Ω𝑁
𝑙

(𝑠𝑡
1
) ̸=

𝑃𝑡
Ω𝑁
𝑙

(𝑠𝜔
𝑝

𝑙
𝑡
2
).

Sufficient Condition. If 𝑃𝑡
Ω𝑁
𝑙

(𝑠𝑡
1
) ̸= 𝑃𝑡

Ω𝑁
𝑙

(𝑠𝜔
𝑝

𝑙
𝑡
2
), then 𝜔𝑝

𝑙
is

detectable.
𝑠𝑡𝐷𝐶𝑄

𝑙
represents only observed languages. If 𝑠𝑡

1
and

𝑠𝜔
𝑝

𝑙
𝑡
2
are represented in a 𝑠𝑡𝐷𝐶𝑄

𝑙
, then 𝑠𝑡

1
and 𝑠𝑡

2
must be

observed event sequences.
Assuming that 𝑃𝑡

Ω𝑁
𝑙

(𝑠𝑡
1
) = 𝑃𝑡

Ω𝑁
𝑙

(𝑠𝜔
𝑝

𝑙
𝑡
2
), then 𝑡

2
∈ L𝑁𝑙

and 𝜔𝑝
𝑙
is not detectable.

5. Application Case

As application case, it has used the centralized air heating
system, AHS; it has been identified as a set of st-IPNs in [33].

The system includes three heating subsystems. Each
heating subsystem has a fan creating an air flow that is heated
with hot water. The water flow is controlled by pump-valve
systems. Moreover, there are a central heater providing hot
water to each heating subsystem and two valves (V

𝑐1
and V

𝑐2
)

controlling the water flow through the whole system. The
system can be split into five subsystems (1, 2, 3, 4, and 5).
Subsystems 3, 4, and 5 are the local heaters, subsystem 2 is the
distribution subsystem (V

𝑐1
and V

𝑐2
), and subsystem 1 is the

main heating subsystem (heater, main pump (𝑝
𝑚
), and reflux

valve (V
𝑟
)). The heater works in three modes (0, 1, 2), each

state is defined by the number of resistances it has activated;
so modes 0, 1, and 2 will represent no activation of resistance,
activation of ℎ

1
, and activation of both ℎ

1
and ℎ

2
.

The system has a set of sensors. Each subsystem 𝑙 includes
a flow sensor (𝐹

𝑙
) that measures the presence or absence of

flow. Nevertheless, flow level is affected when other subsys-
tems are activated. So, a software sensor (𝑁𝐹

𝑙
) is designed to

measure the deviation over a normal operation flow taking
into account the activation of other subsystems. The system
also includes binary temperature sensors, pressure sensors,
and a position sensor for valve 𝑉𝑐

1
.

The initial conditions in each subsystem are

𝜔
0

1
= [V

𝑟
𝑝
𝑔
V
𝑔
ℎ
1
ℎ
2
, 𝑇
𝑜
𝑇
1
𝑇
2
𝐹
1
] = (𝑢

1,0
𝑦
1,8
) ;

𝜔
0

2
= [V

𝑐1
V
𝑐2
, 𝑃
𝑜
𝐹
2
𝑁𝐹

2
] = (𝑢

2,0
𝑦
2,0
) ;

𝜔
0

3
= [𝑝

3
V
3
, 𝐹
3
𝑁𝐹

3
] = (𝑢

3,0
𝑦
3,0
) ;

𝜔
0

4
= [𝑝

4
V
4
, 𝐹
4
𝑁𝐹

4
] = (𝑢

4,0
𝑦
4,0
) ;

𝜔
0

5
= [𝑝

5
V
5
, 𝐹
5
𝑁𝐹

5
] = (𝑢

5,0
𝑦
5,0
) .

(4)

Table 1: Identified density functions for AHS system.

Transition 𝑜
8

𝑜
12

𝑡𝑟
1,1

𝑁(16.6, 0.51)
𝑡𝑟
1,2

27
𝑡𝑟
1,3

𝑁(115.1, 0.32)
𝑡𝑟
1,4

12
𝑡𝑟
1,5

𝑁(593, 1.5)
𝑡𝑟
1,6

2
𝑡𝑟
1,7

𝑁(91.5, 1.2)
𝑡𝑟
1,8

9
𝑡𝑟
1,9

1
𝑡𝑟
3,1

𝑁(158.08, 2.52)
𝑡𝑟
3,2

𝑁(26.93, 1.201)
𝑡𝑟
3,3

𝑁(565.06, 1.201)
𝑡𝑟
3,4

3
𝑡𝑟
3,5

1

The system globally starts with the external event “Son”;
the heating subsystems are locally started with events “Ca3,”
“Ca4,” and “Ca5.” These events are external events that
change the controller strategy. Each combination of external
events generates a systemoperationmode. For example, 𝑜

12
=

𝑆𝑜𝑛, 𝐶𝑎3, 𝐶𝑎4, 𝐶𝑎5.
We have simulated the system, including some changes in

the operationmodes: 𝑜
0
–𝑜
8
–𝑜
12
–𝑜
8
–𝑜
0
.That sequencemeans

that “Son”works from time 1 to 85 and “Ca3”works from time
15 to 75.

Step 1. The identified normal languages for each subsystem
are:

L
𝑁1
= (𝑢

1,0
𝑦
1,8
) (𝑢

1,30
𝑦
1,9
) (𝑢

1,30
𝑦
1,13
) (𝑢

1,15
𝑦
1,13
)

(𝑢
1,15
𝑦
1,15
) (𝑢

1,30
𝑦
1,15
) (𝑢

1,30
𝑦
1,13
) (𝑢

1,0
𝑦
1,9
)

(𝑢
1,0
𝑦
1,8
) at times 𝜏

0
, 𝜏
1
, 𝜏
2
, 𝜏
3
, 𝜏
5
, 𝜏
8
, 𝜏
9
, 𝜏
12
, 𝜏
13
,

L
𝑁2
= (𝑢

2,0
𝑦
2,0
) at time 𝜏

0
,

L
𝑁3
= (𝑢

3,0
𝑦
3,0
) (𝑢

3,3
𝑦
3,2
) (𝑢

3,3
𝑦
3,3
) (𝑢

3,3
𝑦
3,2
) (𝑢

3,3
𝑦
3,0
)

(𝑢
3,0
𝑦
3,0
) at times 𝜏

0
, 𝜏
4
, 𝜏
6
, 𝜏
7
, 𝜏
10
, 𝜏
11
,

L
𝑁4
= (𝑢

4,0
𝑦
4,0
) at time 𝜏

0
,

L
𝑁5
= (𝑢

5,0
𝑦
5,0
) at time 𝜏

0
.

(5)

The identified transition firing time density functions for
each 𝑜

𝑜𝑚
, (𝛿

𝑙
) are shown in Table 1.

Step 2. The set of the flow sensors is 𝑆𝐹𝑆
𝑟
= {𝑠𝑟

1,4
, 𝑠𝑟
2,1
, 𝑠𝑟
2,2
,

𝑠𝑟
3,1
, 𝑠𝑟
4,1
, 𝑠𝑟
5,1
}.

Generic fault in all places is assumed, in all involved
subsystems of the identified operation modes sequence.

Step 3. Assuming a fault in the main pump at time 60min
and a fault in the heater at time 70min at subsystem 1, the
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Table 2: Detected faults.

Fault Subsystem Place Expected 𝑠𝑟 Fault 𝑠𝑟 Meaning 𝑠𝑟
𝑒𝑥

𝑙,𝑖
𝐼𝑆𝐹𝑆

𝑟

(1, 5)𝑔𝑓
1

1 5 [1111] [1110] 𝑇
𝑜
𝑇
1
𝑇
2
𝐹
1

𝑠𝑟
1,4

𝑠𝑟
1,4

(3, 3)𝑔𝑓
1

3 3 [10] [00] 𝐹
3
𝑁𝐹

3
𝑠𝑟
3,1

𝑠𝑟
1,4
, 𝑠𝑟

3,1

(1, 5)𝑔𝑓
2

1 5 [1111] [1101] 𝑇
𝑜
𝑇
1
𝑇
2
𝐹
1

𝑠𝑟
1,3

observed event sequence at subsystem 1 is 𝑠
1
= (𝑢

1,0
𝑦
1,8
)

(𝑢
1,30
𝑦
1,9
)(𝑢
1,30
𝑦
1,13
)(𝑢
1,15
𝑦
1,13
)(𝑢
1,15
𝑦
1,15
)(𝑢
1,15
𝑦
1,13
)(𝑢
1,30
𝑦
1,8
)

(𝑢
1,0
𝑦
1,8
)(𝑢
1,15
𝑦
1,9
), at times 𝜏

0
, 𝜏
1
, 𝜏
2
, 𝜏
3
, 𝜏
5
, 𝜏
7
, 𝜏
9
, 𝜏
11
, 𝜏
12

with 𝛿 = {0, 17, 27, 114, 12, 454, 268, 39, 95} and at subsystem
3: 𝑠

2
= (𝑢

3,0
𝑦
3,0
)(𝑢
3,3
𝑦
3,2
)(𝑢
3,3
𝑦
3,3
)(𝑢
3,3
𝑦
3,0
)(𝑢
3,0
𝑦
3,0
), at times

𝜏
0
, 𝜏
4
, 𝜏
6
, 𝜏
8
, 𝜏
10
with 𝛿 = {0, 159, 28, 520, 46}.

Step 4

Inputs.L𝑁𝑙 , 𝑠𝑡-𝐷𝐼𝐶𝑃𝑁
𝑙
.

Initial Conditions. Consider 𝜔0
1
= (𝑢

1,0
𝑦
1,8
)𝜏
0
; 𝜔0

3
=

(𝑢
3,0
𝑦
3,0
)𝜏
0
; 𝜑

1
(𝑚(𝑝

1,1
)) = 𝑦

1,8
/0000; 𝑚(𝑝

1,1
) = ⟨𝑁

1
⟩;

𝜑
3
(𝑚(𝑝

3,1
)) = 𝑦

3,0
/00;𝑚(𝑝

3,1
) = ⟨𝑁

3
⟩.

In 𝜏
1
, 𝜔1
1
= (𝑢

1,30
𝑦
1,9
) ⋅ 17; 𝑃𝑡

Ω𝑁1
(𝜔
1

1
) = (𝑢

1,30
𝑦
1,9
) ⋅ 17;

then 𝜆
1
(𝑡𝑟
1,1
) = 𝑢

1,30
⋅ 𝑓(𝑡

𝑡𝑟1,1 ,8
) and 𝑚(𝑝

1,2
) = ⟨𝑁

1
⟩ with

𝜑
1
(𝑚(𝑝

1,2
)) = 𝑦

1,9
/0001.

In 𝜏
2
, 𝜔2
1
= (𝑢

1,30
𝑦
1,13
) ⋅ 27; 𝑃𝑡

Ω𝑁1
(𝜔
1

1
) = (𝑢

1,30
𝑦
1,13
) ⋅ 27;

then 𝜆
1
(𝑡𝑟
1,2
) = 𝑢

1,30
⋅ 𝑓(𝑡

𝑡𝑟1,2 ,8
) and 𝑚(𝑝

1,3
) = ⟨𝑁

1
⟩ with

𝜑
1
(𝑚(𝑝

1,3
)) = 𝑦

1,13
/0100.

In 𝜏
3
, 𝜔3
1
= (𝑢

1,15
𝑦
1,13
) ⋅ 114; 𝑃𝑡

Ω𝑁1
(𝜔
3

1
) = (𝑢

1,15
𝑦
1,13
) ⋅ 114;

then 𝜆
1
(𝑡𝑟
1,3
) = 𝑢

1,15
⋅ 𝑓(𝑡

𝑡𝑟1,3 ,12
) and 𝑚(𝑝

1,4
) = ⟨𝑁

1
⟩ with

𝜑
1
(𝑚(𝑝

1,4
)) = 𝑦

1,13
/0000.

In 𝜏
4
, 𝜔4
3
= (𝑢

3,3
𝑦
3,2
) ⋅ 159; 𝑃𝑡

Ω𝑁3
(𝜔
4

3
) = (𝑢

3,3
𝑦
3,2
) ⋅ 159;

then 𝜆
3
(𝑡𝑟
3,1
) = 𝑢

3,3
⋅ 𝑓(𝑡

𝑡𝑟3,1 ,12
) and 𝑚(𝑝

3,2
) = ⟨𝑁

3
⟩ with

𝜑
3
(𝑚(𝑝

3,2
)) = 𝑦

3,2
/10.

In 𝜏
5
, 𝜔5
1
= (𝑢

1,15
𝑦
1,15
) ⋅ 12; 𝑃𝑡

Ω𝑁1
(𝜔
5

1
) = (𝑢

1,15
𝑦
1,15
) ⋅ 12;

then 𝜆
1
(𝑡𝑟
1,4
) = 𝑢

1,15
⋅ 𝑓(𝑡

𝑡𝑟1,4 ,12
) and 𝑚(𝑝

1,5
) = ⟨𝑁

1
⟩ with

𝜑
1
(𝑚(𝑝

1,5
)) = 𝑦

1,15
/0010.

In 𝜏
6
, 𝜔6
3
= (𝑢

3,3
𝑦
3,3
) ⋅ 28; 𝑃𝑡

Ω𝑁1
(𝜔
6

3
) = (𝑢

3,3
𝑦
3,3
) ⋅ 28;

then 𝜆
3
(𝑡𝑟
3,2
) = 𝑢

1,3
⋅ 𝑓(𝑡

𝑡𝑟3,2 ,12
) and 𝑚(𝑝

3,3
) = ⟨𝑁

3
⟩ with

𝜑
3
(𝑚(𝑝

3,3
)) = 𝑦

3,3
/01.

In 𝜏
7
, 𝜔7
1
= (𝑢

1,15
𝑦
1,13
) ⋅ 454; 𝑃𝑡

Ω𝑁1
(𝜔
7

1
) = 𝜀; then 𝜔7

1
is a

generic fault at the subsystem 1; 𝑡proy = 454; a new fault mode
𝑚 𝑓

1
is added in 𝑡𝑟

1,10
∈ 𝑇𝑅

𝐹1
, with 𝑝𝑟𝑒 = [0000⟨(1, 5)𝑔𝑓

1
∧

𝑁
1
⟩000000], 𝑝𝑜𝑠𝑡 = [0000⟨(1, 5)𝑔𝑓

1
⟩0000⟨(1, 5)𝑔𝑓

1
⟩⟨𝑥⟩]

and it adds a fault token to 𝑚(𝑝
1,V𝑓1) = 𝑚(𝑝1,5) = ⟨(1, 5)𝑔𝑓1⟩

and𝑚(𝑝
1,𝑖𝑓1
) = ⟨1⟩. This fault is added in Table 2.

Algorithm 2 Execution. Consider 𝑠𝑟𝑒𝑥
𝑙,𝑖
= 𝑠𝑟

1,4
and 𝑠𝑟

1,4
∈ 𝑆𝐹𝑆

𝑟
.

In 𝜏
8
, 𝜔8
3
= (𝑢

3,3
𝑦
3,0
) ⋅ 520; 𝑃𝑡

Ω𝑁3
(𝜔
8

3
) = 𝜀; then 𝜔8

3
is a

generic fault at the subsystem 3; a new fault mode 𝑚 𝑓
1
is

added in 𝑡𝑟
3,6
∈ 𝑇𝑅

𝐹3
, with 𝑝𝑟𝑒 = [00⟨(3, 3)𝑔𝑓

1
∧ 𝑁

3
⟩0000],

𝑝𝑜𝑠𝑡 = [00⟨(3, 3)𝑔𝑓
1
⟩00⟨(3, 3)𝑔𝑓

1
⟩⟨𝑥⟩] and it adds a fault

token to 𝑚(𝑝
3,V𝑓3) = 𝑚(𝑝3,3) = ⟨(3, 3)𝑔𝑓1⟩ and 𝑚(𝑝3,𝑖𝑓3) =

⟨1⟩. This fault is added in Table 2.

Algorithm 2 Execution. Consider 𝑠𝑟𝑒𝑥
𝑙,𝑖
= 𝑠𝑟

3,1
and 𝑠𝑟

3,1
∈ 𝑆𝐹𝑆

𝑟
;

then the detected generic fault is a propagation fault and
therefore is eliminated.

In 𝜏
9
, 𝜔9
1
= (𝑢

1,15
𝑦
1,9
) ⋅ 268; 𝑃𝑡

Ω𝑁1
(𝜔
9

1
) = 𝜀; then 𝜔9

1
is a

generic fault at the subsystem 1; 𝑡proy = 454 + 268; 𝑡𝑟1,10 ∈
𝑇𝑅
𝐹1

is fired in mode 𝑚 𝑓
2
with 𝑝𝑟𝑒 = [0000⟨(1, 5)𝑔𝑓

1
∧

𝑁
1
; (1, 5)𝑔𝑓

2
∧𝑁

1
⟩000000],𝑝𝑜𝑠𝑡 = [0000⟨(1, 5)𝑔𝑓

1
; (1, 5)𝑔𝑓

2
⟩

0000⟨(1, 5)𝑔𝑓
1
; (1, 5)𝑔𝑓

2
⟩⟨𝑥⟩] and 𝑚(𝑝

1,V𝑓1) = 𝑚(𝑝1,5) =

⟨(1, 5)𝑔𝑓
2
⟩ and𝑚(𝑝

1,𝑖𝑓1
) = ⟨2⟩. This fault is added in Table 2.

Algorithm 2 Execution. Consider 𝑔𝑓
2
is not a fault propaga-

tion.
Therefore 𝜔0

1
𝜔
1

1
𝜔
2

1
𝜔
3

1
𝜔
5

1
𝜔
7

1
is a fault trace; that is,

𝜔
0

1
𝜔
1

1
𝜔
2

1
𝜔
3

1
𝜔
5

1
𝜔
7

1
⊂L𝑓1 .

Interpretation. Based on Table 2, (1, 5)𝑔𝑓
1
is a detected fault

that has happened in subsystem 1. It has been detected
because there is no flow. Therefore the fault may have
occurred due to a main pump fault since the sensor 𝑠

1,4

measures the flow after the pump. (3, 3)𝑔𝑓
1
is not fault and

(1, 5)𝑔𝑓
2
is a fault in the heater.

6. Conclusions

Thepresentedmethod detects and isolates faults in stochastic
DES without previous behavior model. To achieve this goal a
diagnoser that represents the system languages (normal and
fault behaviors) is defined. The diagnoser is a deterministic
language generator that avoids the combinatorial explosion
of states. The proposed fault identification works online
and it uses PN as the language generator. Moreover, the
proposed structure generates stochastic timed languages.The
st-DICPN has a structure without deadlocks and allows a
detectability test based on the timed projection operation,
which is defined, too.The diagnosis methodology guarantees
the detection and isolation of nonmodeled faults. It has been
shown that the system learns the fault languages, so the next
time the same fault happens, the diagnoser will be able to
conclude that the same fault has occurred.
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