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Spaces C (X) with ordered bases

J. C. Ferrando, J. Ka̧kol and M. López-Pellicer

Abstract. The concept of Σ-base of neighborhoods of the identity of a topological group
G is introduced. If the index set Σ ⊆ NN is unbounded and directed (and if additionally
each subset of Σ which is bounded in NN has a bound at Σ) a base {Uα : α ∈ Σ} of
neighborhoods of the identity of a topological group G with Uβ ⊆ Uα whenever α ≤ β
with α, β ∈ Σ is called a Σ-base (a Σ2-base). The case when Σ = NN has been noticed
for topological vector spaces (under the name of G-base) at [2]. If X is a separable and
metrizable space which is not Polish, the space Cc(X) has a Σ-base but does not admit
any G-base. A topological group which is Fréchet-Urysohn is metrizable iff it has a Σ2-
base of the identity. Under an appropriate ZFC model the space Cc (ω1) has a Σ2-base
which is not a G-base. We also prove that (i) every compact set in a topological group
with a Σ2-base of neighborhoods of the identity is metrizable, (ii) a Cp (X) space has a
Σ2-base iff X is countable, and (iii) if a space Cc (X) has a Σ2-base then X is a C-Suslin
space, hence Cc(X) is angelic.

2010 Mathematics Subject Classification. 54D70, 46E10, 22A05.

Key words and phrases. G-base, C-Suslin space, web-compact space, strict angelicity.

1. Preliminaries

In what follows N will design the set of positive integers equipped with the discrete
topology. The product space NN is supposed to be provided with the pointwise partial
order, i.e., such that α ≤ β whenever α (i) ≤ β (i) for every i ∈ N. In the sequel Σ
will always design a topological subspace of NN. We shall say that a subset ∆ of NN

is (pointwise) bounded if sup {α (k) : α ∈ ∆} < ∞ for every k ∈ N, otherwise will be
called unbounded. A covering {Aα : α ∈ I} of a topological space X is said to swallow
the compact sets if for each compact set Q in X there is γ ∈ I such that Q ⊆ Aγ . If the
covering {Aα : α ∈ I} consists of compact sets, we shall speak of a compact covering.
Unless otherwise stated X will be a (Hausdorff) completely regular space and C (X)

will denote the linear space of real-valued continuous functions defined on X. We shall
write Cp (X) or Cc (X) when endowed C (X) with the pointwise or the compact-open
topology, respectively. All topological spaces are supposed to be Hausdorff. Let us recall
that a topological space X is called C—Suslin if there is a subspace Σ of NN and a map
T : Σ → P (X) such that

�
{T (α) : α ∈ Σ} = X and if {αn} ⊆ Σ converges in NN and
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Deportes of Generalitat Valenciana. The second author also supported by the GACR Project 16-34860L
and RVO: 67985840.
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xn ∈ T (αn) for every n ∈ N then {xn} has a cluster point in X (see [19]). A topological
space X is called web-compact if there is a map T from a subspace Σ of NN into P (X)

such that
�
{T (α) : α ∈ Σ} = X and if αn → α in Σ and xn ∈ T (αn) for all n ∈ N

then {xn} has a cluster point in X (see [17, Definition]). Clearly, every C-Suslin space
is web-compact. A topological space X is angelic if relatively countably compact sets in
X are relatively compact and for every relatively compact subset A of X each point of A
is the limit of a sequence of A (see [11]). A topological space is strictly angelic if X is
angelic and every compact subset of X is separable.
A completely regular space X is said to beM-dominated by a completely regular space

M if there is a compact covering B of X of the form B = {BK : K ∈ K (M)} , where
K (M) stands for the family of all compact sets of M , satisfying that BK ⊆ BQ whenever
K ⊆ Q. If in addition B swallows the compact sets of X, then X is said to be strongly
M-dominated, see [3].
In this paper we introduce the notion of a Σ-base of neighborhoods of the identity of

a topological group (Definition 3 below), which is a family ’smaller’ than a G-base. We
show that if X is a separable metrizable space which is not a Polish space, then Cc (X)

admits a Σ-base of neighborhoods of the origin but not a G-base (Theorem 7). We also
consider a special type of Σ-bases, named Σ2-bases, that share some important properties
with G-bases (Definition 11). We show that, under appropriate set-theoretical conditions,
there exists a Σ2-base which is not a G-base (Example 20). We also prove other results
stated in Abstract.

2. Σ-bases and distinguishing examples

A topological group G is said to have a G-base if there is a base {Uα : α ∈ NN} of
neighborhoods of the identity e in G such that Uβ ⊆ Uα whenever α ≤ β. Clearly, every
metrizable topological group has a G-base. Conversely, every Fréchet-Urysohn topological
group with a G-base is metrizable, [13, Theorem 1.2].
A space Cc (X) has a G-base of (absolutely convex) neighborhoods of the origin if and

only if X has a covering A =
�
Aα : α ∈ NN

�
made up of compact sets such that (i)

Aα ⊆ Aβ whenever α ≤ β, and (ii) A swallows the compact sets (see [8, Theorem 2]).
Combining this fact with Christensen’s theorem (see [5, Theorem 3.3] or [10, Theorem
6.4]) one gets the following result which will be used, not always with explicit mention,
along the paper.

Proposition 1. For a metrizable space X the following are equivalent

1. X is a Polish space.

2. Cc (X) has a G-base of neighborhoods of the origin.

Since X = RN is Polish but not hemicompact, the previous proposition ensures that
Cc (X) is a non-metrizable locally convex space with a G-base.
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Following [18], a (Hausdorff) topological group G has the strong Pytkeev property if
there exists a sequence D of subsets of G satisfying the property: for each neighborhood
U of the unit e and each A ⊆ G with e ∈ A \ A, there is D ∈ D such that D ⊆ U

and D ∩ A is infinite. In [12, Theorem 5] we showed that any topological group G with
the strong Pytkeev property admits a quasi-G-base {Uα : α ∈ Σ} of the identity, i.e., an
ordered base of neighborhoods of e over some Σ ⊆ NN.
Very recently T. Banakh [1, Corollary 2.6], being inspired by a question in [12], proved

that for every separable metrizable space X the space Cc(X) has the strong Pytkeev prop-

erty; therefore suchCc(X) admits a quasi-G-base, again by [12, Theorem 2.2]. But it turns
out that Cc(Q) has even a quasi-G-base {Uα : α ∈ Σ} for which sup{α(k) : α ∈ Σ} =∞

for each k ∈ N despite Cc(Q) does not admit a G-base (see Remark 2 below). Summariz-
ing, we have the following observation which partially motivates our work to study more
carefully such topological groups which admit a Σ-base.

Remark 2. Let X be a separable metric space which is not a Polish space. Then Cc(X)

has a quasi-G-base but Cc(X) does not admit a G-base.

The concept of quasi-G-base is rather of a theoretical nature. We propose more practical
concept as follows.

Definition 3. A topological group G is said to have a Σ-base if for some unbounded and

directed subset Σ of NN the neutral element of G has a base of neighborhoods {Uα : α ∈ Σ}

such that Uβ ⊆ Uα whenever α ≤ β with α, β ∈ Σ.

The requirement for Σ to be directed is not a serious constraint, since if Γ is any
unbounded subset of NNand F (Σ) stands for the family of all finite subsets of Σ then
Σ := {sup̥ : ̥ ∈ F (Γ)}, where γ = sup̥ ∈ NN is given by γ (i) = sup {α (i) : α ∈ ̥}

for each i ∈ N, is an unbounded and directed subset of NN of the same cardinality as Γ.
A special stronger notion of a Σ-base will be studied in the second part of the paper. The
following theorem characterizes those Cc (X) spaces that admit a Σ-base.

Theorem 4. Let X be a completely regular space. The following are equivalent

1. There is a compact covering {Aα : α ∈ Σ} of X, with Σ unbounded and directed, such

that Aα ⊆ Aβ whenever α ≤ β in Σ, that swallows the compact sets.

2. The locally convex space Cc (X) has a Σ-base of absolutely convex neighborhoods of

the origin.

Proof. 1⇒ 2. For each compact set K ⊆ X and each ǫ > 0, define

[K, ǫ] := {f ∈ C (X) : supx∈K |f (x)| ≤ ǫ} .

Let {Aα : α ∈ Σ} be a compact covering of X indexed by an unbounded directed set
Σ in NN such that Aα ⊆ Aβ if α ≤ β. Since Σ is unbounded there is k ∈ N such that
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sup {α (k) : α ∈ Σ} =∞. Then set

Uα := [Aα, α (k)−1]

for α ∈ Σ and put U = {Uα : α ∈ Σ}. If f ∈ C (X) \ {0} and

λα := sup {|f (x)| : x ∈ Aα} ,

then λ−1α f (x) ≤ 1 for every x ∈ Aα, which means that f ∈ λαα (k)Uα. This shows that
the set Uα is absorbing. On the other hand, given α, β ∈ Σ, since (Σ,≤) is directed there
is γ ≥ sup {α, β}, so that Aα ∪Aβ ⊆ Aγ. Hence, the fact that γ (k) ≥ max {α (k) , β (k)}

assures that Uγ ⊆ Uα ∩ Uβ, which shows that U is a family of absolutely convex and
absorbing sets in C(X) composing a filter base. Since clearly Uβ ⊆ Uα if α ≤ β and
{0} =

�
{Uα : α ∈ Σ}, in order to ensure that U is a Σ-base of neighborhoods of the origin

in C (X) it remains to check that for each α ∈ Σ there is γ ≥ α such that Uγ ⊆
1
2
Uα.

For the latter statement first choose β ∈ Σ such that β (k) ≥ 2α (k). Since (Σ,≤) is a
directed set, there is γ ∈ Σ such that γ ≥ sup {α, β}. Hence γ ≥ α with γ (k) ≥ 2α (k).
If f ∈ Uγ , since Aα ⊆ Aγ we have

supy∈Aα |2f (y)| ≤ 2 supy∈Aγ |f (y)| ≤ 2γ (k)−1 ≤ α (k)−1

which means that 2f ∈ Uα. Hence U is a Σ-base for a locally convex topology τ on C (X)

with τp ≤ τ ≤ τ c. Now assume in addition that {Aα : α ∈ Σ} swallows the compact sets
of X and let V be a neighborhood of the origin of Cc (X). If Q is a compact set in X

with [Q, ǫ] ⊆ V for some ǫ > 0, choosing γ ∈ Σ such that Q ⊆ Aγ and γ (k)−1 < ǫ then
Uγ ⊆ [Q, ǫ] ⊆ V . This shows that τ = τ c, so {Uα : α ∈ Σ} is a Σ-base for Cc (X).

2⇒ 1. First note that ifK is a closed subset of X\{x} there exists f ∈ C(X) such that
f(K) = {0} and f(x) = 2. Hence if ǫ > 0, A ⊆ X and [K, ǫ] ⊆ [A, 1], then A ⊆ K. Now
we proceed exactly as in the second part of the proof of [8, Theorem 2]. Let {Uα : α ∈ Σ}

be a Σ-base of absolutely convex neighborhoods of the origin in Cc(X). Fix α ∈ Σ and
choose a compact set K in X such that [K, ǫ] ⊆ Uα for some ǫ > 0. Since the closed set

Aα := {x ∈ X : |f(x)| � 1, ∀f ∈ Uα}

verifies that Uα ⊆ [Aα, 1], the inclusion [K, ǫ] ⊆ [Aα, 1] together with the above observation
imply that Aα is compact. Finally, if P is any compact subset of X there exists β ∈ Σ,
such that Uβ ⊆ [P, 1], so that P ⊆ {x ∈ X : |f(x)| � 1, ∀f ∈ Uβ} = Aβ. This shows that
the family A = {Aα : α ∈ Σ} is a compact covering of X such that Aα ⊆ Aβ whenever
α ≤ β in the unbounded and directed set Σ, that swallows the compact sets.

Example 5. Let ω = N∪{0} be equipped with the discrete topology. If F = {n1, . . . , np}

is a finite subset of N, define δF ∈ ωω so that δF (0) = |F |, δF (ni) = 1 for 1 ≤ i ≤ p and
δF (j) = 0 otherwise. Setting Σ := {δF : F ⊆ N, F finite} then Σ is a countable subset
of ωω. If α, β ∈ Σ, there are finite sets F,G in N such that α = δF and β = δG. Setting
H = F ∪G then clearly α, β ≤ δH , so that Σ is directed. Moreover Σ is unbounded since
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sup {α (0) : α ∈ Σ} = ∞. If α = δF ∈ Σ, let us define Aα = F . Clearly {Aα : α ∈ Σ}

is a compact covering of N such that Aα ⊆ Aβ if α ≤ β in Σ. Moreover, obviously this
covering swallows the compact sets of the discrete space N. According to the preceding
theorem, Cc (N) = RN admits a Σ-base of neighborhoods of the origin. Of course, since
RN is a metrizable locally convex space, it also admits a G-base. This does not always
happen, as the following example shows.

Example 6. There exists a space Cc (X) that admits a Σ-base of neighborhoods of the

origin but not a G-base of neighborhoods of the origin.

Proof. Let us identify the set ω with an enumeration of the set Q of the rationals. We shall
keep the notation ω when consider ω either as a set or equipped with the discrete topology.
We shall write Ω when consider ω equipped with the (metrizable) relative topology of R.
Let χZ be the characteristic function of a set Z ⊆ ω. If K (Ω) stands for the family of
compact sets of Ω, define Σ ⊆ ωω as follows

Σ = {kχZ : Z ∈ K (Ω) , k ∈ N}

so that α ∈ Σ if there are k ∈ N and Z ∈ K (Ω) such that α = α [k, Z] = kχZ . Thus
Σ consists of all ω-valued functions with compact support in Ω which are constant in
their support. Now observe that if α [m,Y ] , α [n, Z] ∈ Σ then α [m+ n, Y ∪ Z] ∈ Σ and
α [m,Y ] , α [n,Z] ≤ α [m+ n, Y ∪ Z], so that Σ is a directed set. On the other hand,
if j ∈ ω then α [k, {j}] (j) = k, so that sup {α (j) : α ∈ Σ} = ∞, which shows that Σ

is unbounded. Defining Aα[k,Z] = Z for all k ∈ N whenever Z is a compact set of Ω,
clearly {Aα : α ∈ Σ} is a compact covering of Ω. Moreover, if α [m,Y ] ≤ α [n, Z] then
m ≤ n and Y ⊆ Z, hence Aα[m,Y ] = Y ⊆ Z = Aα[n,Z]. Obviously {Aα : α ∈ Σ} swallows
the compact sets because contains all compact sets of Ω. So, according to the previous
theorem, the space Cc (Q) = Cc (Ω) has a Σ-base. On the other hand, since Q is not a
Polish space, according to Proposition 1 the space Cc (X) with X = Q cannot have a
G-base of neighborhoods of the origin.

An appropriate modification of the previous example yields the following general result.

Theorem 7. If X is a separable and metrizable space that is not a Polish space, then

Cc (X) admits a Σ-base of neighborhoods of the origin but it does not admit any G-base.

Proof. Let us identify now the set ω with an enumeration of a countable dense subspace of
X. We keep the notation ω when consider ω either as a set or equipped with the discrete
topology and write Ω when consider ω equipped with the relative topology of X. Let χZ

be the characteristic function of a set Z ⊆ ω. If F (Ω) stands for the family of all subsets
of Ω with compact closure in X, define Σ ⊆ ωω as

Σ = {kχZ : Z ∈ F (Ω) , k ∈ N}
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so that α ∈ Σ if there are k ∈ N and Z ∈ F (Ω) such that α = α [k,Z] = kχZ . Thus Σ
consists of all constant ω-valued functions supported in a subset of Ω which is relatively
compact in X.
Observe that if α [m,Y ] , α [n, Z] ∈ Σ then α [m+ n, Y ∪ Z] ∈ Σ and α [m,Y ] , α [n, Z] ≤

α [m+ n, Y ∪ Z], so that Σ is a directed set. On the other hand, if j ∈ ω we have for
instance that α [k, {j}] (j) = k, so that sup {α (j) : α ∈ Σ} =∞, which shows that Σ is un-
bounded. Defining Aα[k,Z] = Z for all k ∈ N where the closure is in X, then {Aα : α ∈ Σ}

is a compact covering of X. Indeed, if x ∈ X there is a sequence S in Ω converging to
x. Given that x belongs to the compact set S, then Aα[k,S] = S for all k ∈ N, so that
x ∈ Aα[k,S] whatever be k ∈ N. Moreover, if α [m,Y ] ≤ α [n, Z] then m ≤ n and Y ⊆ Z,
hence Aα[m,Y ] = Y ⊆ Z = Aα[n,Z].
We claim that the compact covering {Aα : α ∈ Σ} swallows the compact sets of X. So,

let K ⊆ X be compact and let {an : n ∈ N} be a countable and dense subspace K0 of K.
If d is an admissible metric on X, for each n ∈ N choose bn,m ∈ Ω such that

d (an, bn,m) < 2−nm

for every m ∈ N, so that limm→∞ bn,m = an for each n ∈ N. Although it is not necessary,
we shall also assume that each sequence {bn,m}

∞
m=1 is injective and that an �= bn,m for

every m ∈ N. Now set Bn := {bn,m : m ∈ N} and

B :=
∞�

n=1

Bn =
��

bn,m : (n,m) ∈ N2
�
.

Clearly B ⊆ ω and {an : n ∈ N} ⊆ B, whence K ⊆ B. Therefore to prove that B ∈ F(Ω)

it suffices to check that B it is compact, i.e., we must to justify that each sequence in B
admits a convergent subsequence.
Let {cp}

∞
p=1 be a sequence inB. Then there exist two sequences {n(p)}

∞
p=1 and {m(p)}∞p=1

of positive integers such that

(2.1) d(cp, bn(p),m(p)) < 2−p.

for each p ∈ N. If {n(p)}∞p=1 contains a constant subsequence {n(pl)}
∞
l=1, i.e., such that

n(pl) = n0 for every l ∈ N, then the sequence
�
bn(pl),m(pl)

�∞
l=1

=
�
bn0,m(pl)

�∞
l=1

contains a
convergent subsequence because the set {bn0,m : m ∈ N} ∪ {an0} is compact. Thus, from
(2.1) it follows that the sequence {cp}

∞
p=1 also contains a convergent subsequence.

If {n(p)}∞p=1 does not contain a constant subsequence then there is an strictly increasing
sequence {pl}

∞
l=1 of positive integers such that n(pl) < n(pl′) if l < l′. By construction

d(an(pl), bn(pl),m(pl)) < 2−n(pl)m(pl) and d(cpl , bn(pl),m(pl)) < 2−pl ,

whence

(2.2) d(an(pl), cpl) < 2−n(pl)m(pl) + 2−pl � 2−pl + 2−pl = 21−pl



ON ORDERED BASES 7

for each l ∈ N. Since {an : n ∈ N} is contained in the compact set K, the sequence�
an(pl)

�∞
l=1

has a convergent subsequence. So inequality (2.2) implies that {cpl}
∞
l=1 also

contains a convergent subsequence.
Finally, as happens in the Example 6 above, if X is not a Polish space Proposition 1

prevents the space Cc (X) to have a G-base of neighborhoods of the origin.

3. Boundedly complete sets and Σ2-bases

In this section we are going to consider a special class of Σ-bases, which we denominate
Σ2-bases, and study some properties of them quite close to those of G-bases.

Definition 8. A subset Σ of NN will be called boundedly complete if each bounded set ∆ of

Σ has a bound at Σ. In other words, if sup {α (k) : α ∈ ∆} <∞ for every k ∈ N implies

that there is γ ∈ Σ such that α ≤ γ for every α ∈ ∆.

If Σ is a boundedly complete subset of NN then Σ is itself directed. For if α, β ∈ Σ

then {α, β} is a bounded subset of Σ, so there is γ ∈ Σ such that α, β ≤ γ. On the
other hand, if {Uα : α ∈ Σ} is a base of neighborhoods of a (Hausdorff) locally convex
space and Σ is a boundedly complete subset of NN then Σ must be unbounded. Otherwise
sup {α (k) : α ∈ Σ} < ∞ for every k ∈ N and hence there exists γ ∈ Σ with α ≤ γ for
every α ∈ Σ. Consequently Uγ ⊆

�
α∈Σ Uα, a contradiction.

Example 9. Every cofinal subset Σ of NN with respect to the partial order ‘≤ ’ is bound-

edly complete. If ∆ ⊆ Σ satisfies that sup {α (k) : α ∈ ∆} < ∞ for every k ∈ N, let
β (k) := sup {α (k) : α ∈ ∆}. Then β ∈ NN and hence there is γ ∈ Σ such that β ≤ γ.

Proposition 10. If X is a (completely regular) topological space for which there exists
a compact covering {Aα : α ∈ Σ} that swallows the compact sets indexed by a boundedly

complete subset Σ of NN and such that Aα ⊆ Aβ whenever α ≤ β in Σ, then X is strongly

dominated by a second countable space.

Proof. Consider the mapping T : Σ → K (X) defined by T (α) = Aα. If K is a compact
set in Σ, then K is bounded due to sup {α (k) : α ∈ K} < ∞ for every k ∈ N. Since
Σ is supposed to be boundedly complete, there is γ ∈ Σ such that α ≤ γ for every
α ∈ K. Consequently T (K) =

�
{T (α) : α ∈ K} ⊆ Aγ . So, setting BK := T (K),

then BK is a closed subset of a compact set of X, hence a compact set. This means
that B := {BK : K ∈ K (Σ)} is a family of compact sets of X, which clearly covers X.
On the other hand, if K,Q ∈ K (Σ) are such that K ⊆ Q then clearly T (K) ⊆ T (Q),
which implies that BK ⊆ BQ. Finally, if P is a compact set in X there is δ ∈ Σ with
P ⊆ T (δ) = B{δ}. This shows that X is strongly Σ-dominated. Since Σ is a separable
metric space, the conclusion follows.

Definition 11. A Σ-base of neighborhoods of the unit element of a topological group G

indexed by a boundedly complete subspace Σ of NN will be referred to as a Σ2-base.
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Of course, every G-base of neighborhoods of the neutral element of a topological group
G is a Σ2-base, with Σ = NN. The proof of the next theorem uses the following

Proposition 12. ([3, Theorem 1]) A compact topological space K is metrizable if and

only if the space (K ×K) \∆ is strongly dominated by a second countable space, where

here ∆ := {(x, x) : x ∈ K}.

Theorem 13. If a topological group G has a Σ2-base of neighborhoods of the identity,

then every compact subset K in G is metrizable. Consequently, G is strictly angelic.

Proof. Let {Uα : α ∈ Σ} be an open Σ2-base in G. We may assume that all sets Uα

are symmetric. We have to show that K is metrizable. To prove this, according to
Propositions 10 and 12 it is enough to show that the setW := (K×K)\∆ has a compact
covering {Wα : α ∈ Σ} indexed by a boundedly complete subset Σ ⊆ NN that swallows
the compact sets. Now, for each α ∈ Σ set

Wα := {(x, y) ∈W : xy−1 /∈ Uα}.

Then Wα is closed in K ×K, and hence compact for every α ∈ Σ. Let us show that the
familyW := {Wα : α ∈ ⊀} is a compact covering inW as required. Indeed, if (x, y) ∈W ,
then x �= y. Hence there exists α ∈ Σ such that xy−1 /∈ Uα. So (x, y) ∈ Wα. Thus
W =

�
α∈⊀Wα and W is a compact covering such that Wα ⊆ Wβ whenever α ≤ β for

α, β ∈ Σ.
We show next that the familyW swallows compact sets inW . Let Q ⊆W be a compact

set. Then the set T (Q) := {xy−1 : (x, y) ∈ Q} is compact in G and does not contain the
element e. Therefore we can find a neighborhood Uα such that Uα ∩ T (Q) = ∅ for some
α ∈ Σ, which shows that Q ⊆ Wα. ConsequentlyW swallows the compact sets inW .

Corollary 14. If there exists a family {Aα : α ∈ Σ} made up of compact sets, indexed

by a boundedly complete set Σ such that Aα ⊆ Aβ whenever α ≤ β and satisfying that

∪{Aα : α ∈ Σ} = X, then Cc(X) is strictly angelic.

Proof. First observe that X is web-compact, so that Cp (X) is angelic. Since the compact-
open topology is stronger than the pointwise convergence topology, the angelic lemma [11]
guarantees that the space Cc(X) is angelic.
For the second statement set Y = ∪{Aα : α ∈ Σ}. Now let τ p and τ c denote the

pointwise and the compact-open topology on C (Y ), respectively. Since Σ is unbounded
in NN there is k ∈ N such that sup {α (k) : α ∈ Σ} = ∞. Defining Uα = {f ∈ C (Y ) :

supy∈Aα |f (y)| ≤ α (k)−1} for α ∈ Σ as in the proof of Theorem 4. Then {Uα : α ∈ Σ}

is a base of neighborhoods of a Hausdorff locally convex topology τ on C (Y ) such that
τp ≤ τ ≤ τ c. Moreover, since the index set Σ is a boundedly complete subset of NN,
then {Uα : α ∈ Σ} is a Σ2-base of (C (Y ) , τ). So, according to Theorem 13, every τ -
compact set in C (Y ) is metrizable. Since the restriction map S : Cc (X) → (C (Y ) , τ )
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defined S (f) = f |Y is a continuous (linear) injection from Cc (X) into (C (Y ) , τ), if K is
a compact set in Cc(X) its image S (K) is a compact set in (C (Y ) , τ ), hence metrizable.
Given that S restricts itself to an homeomorphism on K, it follows that K is metrizable
in Cc (X) as required.

Theorem 15. If Cc (X) has a Σ2-base of neighborhoods of the origin, then X is a C—

Suslin space. Consequently Cc(X) is angelic.

Proof. Since Σ is unbounded and directed, by Theorem 4 there is in X a compact covering
{Aα : α ∈ Σ} indexed by Σ such that Aα ⊆ Aβ whenever α ≤ β. Define the map T :

Σ→ K (X), where K (X) stands for the family of all compact sets of X, by T (α) = Aα.
If {αn} is a sequence in Σ such that αn → α in NN, since ∆ = {αn : n ∈ N} ⊆ Σ is a
bounded set there is γ ∈ Σ with αn ≤ γ for every n ∈ N. Consequently, T (αn) ⊆ Aγ for
every n ∈ N. Hence, if xn ∈ T (αn) for every n ∈ N, the sequence {xn}

∞
n=1 has a cluster

point x in X (contained in Aγ). Since X is web-compact, we apply [17] to deduce that
Cp(X) angelic, so Cc(X) is angelic, too.

Let {Uα : α ∈ Σ} be a Σ2-base in a topological group G. For every α = (αi)i∈N ∈ Σ

and each k ∈ N, set

Dk(α) :=
�

β∈Ik(α)

Uβ, where Ik(α) = {β ∈ Σ : βi = αi for i = 1, . . . , k}.

Clearly, {Dk(α)}k∈N is an increasing sequence of subsets of G containing the unit. Recall
that every Fréchet-Urysohn topological group G satisfies the condition:

(AS) For any family {xn,k : (n, k) ∈ N × N} ⊂ G, with limn xn,k = x ∈ G, k = 1, 2, . . . ,

it is possible to choose strictly increasing sequences of natural numbers (ni)i∈N and
(ki)i∈N, such that limi xni,ki = x (see [4, Lemma 1.3]).

Theorem 16. If G be a topological group which is Fréchet-Urysohn with a Σ2-base {Uα :

α ∈ Σ}, then G is metrizable.

Proof. First observe that for every α ∈ Σ there exists k ∈ N such that Dk(α) is a
neighborhood of the unit e. Indeed, assume that there exists α ∈ Σ such that Dk(α) is
not a neighborhood of the unit e for every k ∈ N. Hence e belongs to the closure of the
set G \Dk(α). Since G is Fréchet-Urysohn, for every k ∈ N there is a sequence {xn,k}n∈N
in G \Dk(α) converging to e. By (AS) we choose strictly increasing sequences of natural
numbers (ni)i∈N and (ki)i∈N, such that limi xni,ki = e.
For every i ∈ N, choose αki ∈ Iki(α) such that xni,ki �∈ Uαki

. Since supi∈N αki (j) =

max{αk1(j), . . . , αkj (j)} < ∞ for every j ∈ N, the set ∆ = {αki : i ∈ N} is a subset
of Σ bounded in NN. By hypothesis there exists γ ∈ Σ such that supi∈N αki ≤ γ. So
xni,ki �∈ Uγ for every i ∈ N. Thus xni,ki �→ e, a contradiction. Therefore there is k ∈ N for
which Dk(α) is a neighborhood of e. For every α ∈ Σ choose the minimal kα ∈ N such
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that Dkα(α) is a neighborhood of e. By the construction of the sets Dk(α), the family
{int (Dkα(α))}α∈Σ is a countable base of open neighborhoods of e, so G is metrizable.

Corollary 17. Let {Gt)t∈T be a family of metrizable topological groups. Then the product

G :=
�

t∈T Gt has a Σ2-base if and only if T is countable, i.e., when G is metrizable.

Proof. Let e := (et) be the unit vector in G, where et is the unit vector in Gt for t ∈ T . Let
G0 be the

�
-product in the space G, i.e. G0 := {x = (xt) ∈ G : |t ∈ T : xt �= et| ≤ ℵ0}.

Then G0 is a subgroup of G and endowed with the product topology is a Fréchet-Urysohn
dense subspace of G, see [16]. Assume that G has a Σ2-base, then G0 enjoys also this
property. By Theorem 16 we know that G0 is metrizable, so G is metrizable, too. The
converse is clear.

Since Cp(X) is dense in the product RX , we apply Corollary 17 to get the following.

Corollary 18. The space Cp(X) has a Σ2-base if and only if X is countable.

4. Existence of proper Σ2-bases on Cc ([0, ω1))

Let d be the dominating cardinal, defined as the least cardinality for cofinal subsets of
the preordered space

	
NN,≤∗



, where α ≤∗ β stands for the eventual dominance preorder

defined so that α (n) ≤ β (n) for almost all n ∈ N, i.e., for all but finitely many values of
n. Here α <∗ β means that there exists m ∈ N such that α (n) < β (n) for every n ≥ m.
In what follows ω1 will be the first ordinal of uncountable cardinal, whose cardinality we
denote by ℵ1. In ZFC one has ℵ1 ≤ d ≤ c. The following result, certainly well known to
specialist, of which we provide a detailed proof, will be widely used in the example below.

Lemma 19. If ℵ1 = d there exists a cofinal ω1-sequence Γ := {βκ : κ < ω1} in
	
NN,≤∗




such that (i) κ1 < κ2 implies that βκ1
<∗ βκ2

, (ii) for each α ∈ NN the subset

∆α := {κ < ω1 : βκ ≤
∗ α}

of [0, ω1) is countable, (iii) if α ≤∗ γ then ∆α ⊆ ∆γ, and (iv) every countable subset of

[0, ω1) is contained in some ∆γ; in particular,
�

α∈NN ∆α = [0, ω1).

Proof. Since ℵ1 = d there exists a cofinal set D = {δκ : 0 ≤ κ < ω1} in
	
NN,≤∗



with

|D| = ℵ1. Pick β0 ∈ N
N such that δ0 <∗ β0 and take β1 ∈ N

N such that sup {δ1, β0} <
∗ β1.

Suppose we have defined {βτ : 0 ≤ τ < κ}. Since the latter set is countable, we may choose
βκ ∈ N

N such that sup {δκ, βτ : τ < κ} <∗ βκ. By construction one has that βτ <∗ βε

whenever τ < ε and on the other hand that δκ <∗ βκ for all κ < ω1, which assures that
Γ is a cofinal set in

	
NN,≤∗



. Let us see that each set ∆α, α ∈ NN, is countable. In fact,

given α ∈ NN, the cofinality of D allows us to choose τ < ω1 such that α ≤∗ βτ and then

∆α = {κ < ω1 : βκ ≤
∗ α} ⊆ {κ < ω1 : βκ <

∗ βτ} ⊆ {κ < ω1 : κ < τ} .

Since the latter set is countable, we are done.
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If α ≤∗ γ and κ ∈ ∆α then βκ ≤
∗ α ≤∗ γ and hence κ ∈ ∆γ , so that ∆α ⊆ ∆γ . Finally,

if M is a countable subset of [0, ω1), pick ε ∈ [0, ω1) such that ε > supM . Since τ < ε

for all τ ∈M , then βτ <
∗ βε for all τ ∈M . Hence M ⊆ ∆βε

.

Example 20. In any ZFC consistent model for which ℵ1 = d but d < c there exists a

completely regular space X and a compact covering {Aα : α ∈ Σ} of X, with Aα ⊆ Aβ

whenever α ≤ β and indexed by an unbounded, directed and boundedly complete proper

subset Σ of NN that swallows the compact sets of X.

Proof. Assume that ℵ1 = d but d < c and let Γ be the cofinal subset of NN of cardinality d
with respect to the preorder ‘ ≤∗ ’ determined in the previous lemma. Then we claim that
{∆α : α ∈ Γ} is a covering of X = [0, ω1) such that ∆α ⊆ ∆β whenever α ≤ β and Γ is an
unbounded subset of NN. Indeed, if κ ∈ [0, ω1) the previous result yields γ ∈ NN such that
κ ∈ ∆γ. Since Γ is cofinal in NN with respect to the eventual dominance preorder, there
is δ ∈ Γ with γ ≤∗ δ. By Lemma 19 this implies that ∆γ ⊆ ∆δ, so that κ ∈ ∆δ. Therefore�

α∈Γ∆α = X. Now, to see that Γ is an unbounded subset of NN, assume by contradiction
that sup {α (k) : α ∈ Γ} <∞ for all k ∈ N. Setting β (k) = sup {α (k) : α ∈ Γ} for every
k ∈ N and choosing γ ∈ Γ such that β ≤∗ γ we have that

�
α∈Γ∆α ⊆ ∆γ, so that

∆γ = [0, ω1). But this is a contradiction, since ∆γ is countable.
In order to get a directed index set, let us enlarge a little bit the set Γ. For each

finite subset ̥ of Γ choose the supremum sup̥ at NN with respect to the order ‘≤ ’ and
denote by Σ the subset of NN consisting of the suprema of the finite sets of Γ. Of course,
according to our hypotheses, |Σ| = |Γ| = d < c =

��NN
��, so that Σ is a proper subset of NN.

Clearly {∆α : α ∈ Σ} is still unbounded,
�

α∈Σ∆α = X and ∆α ⊆ ∆β whenever α ≤ β in
Σ, but now we have the benefit that Σ is directed. In fact, if α1, α2 ∈ Σ there are finite
sets ̥1,̥2 ⊆ Γ such that α1 = sup̥1 and α2 = sup̥2, so that if γ := sup (̥1 ∪̥2)

then clearly γ ∈ Σ and α1, α2 ≤ γ.
We claim that every compact set K ⊆ X is contained in some ∆γ with γ ∈ Σ. In fact,

since K is countable, by Lemma 19 there is α ∈ NN such that K ⊆ ∆α. Since Γ is cofinal
with respect to the eventual dominance preorder, there exists β ∈ Γ such that α ≤∗ β.
But this implies that ∆α ⊆ ∆β, which ensures that K ⊆ ∆β with β ∈ Σ.
Finally let us see that Σ is boundedly complete. Let P be a bounded subset of Σ and

put β (i) = sup {α (i) : α ∈ P} for every i ∈ N. Now chose γ ∈ Γ such that β ≤∗ γ and let
F ⊆ N be a finite set such that β (i) ≤ γ (i) for every i ∈ N \ F . Observe that, since each
set {α (i) : α ∈ P} is finite, for each given index i ∈ N there exists an element αi ∈ P

such that αi (i) = β (i). On the other hand, since {γ, αj : j ∈ F} is a finite subset of the
directed set Σ there exists some δ ∈ Σ such that γ ≤ δ and αj ≤ δ for all j ∈ F . This
means that α ≤ δ for every α ∈ P , since either α (i) ≤ β (i) ≤ γ (i) ≤ δ (i) if i ∈ N \ F or
α (j) ≤ αj (j) ≤ δ (j) if j ∈ F . Consequently, Σ is boundedly complete.
Hence the family {Aα : α ∈ Σ} with Aα := ∆α satisfies the required conditions.
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Corollary 21. In any ZFC consistent model for which ℵ1 = d but d < c there exists a

Σ2-base of absolutely convex neighborhoods of the origin of the space Cc ([0, ω1)) which is

not a G-base.

Proof. This is a straightforward consequence of Theorem 4 and Example 20.

Remark 22. According to [9, Theorem 8], the locally convex space Cc ([0, ω1)) admits a
G-base of neighborhoods of the origin if and only if we assume that ℵ1 = d. The preceding
corollary shows that this space even admits a Σ2-base, which is not a G-base if we assume
in addition that d < c. This latter condition is consistent with Cichon’s diagram and
hence can be realized in some model of ZFC.

Problem 23. We do not know whether there exists a topological group with a Σ2-base

that admits no G-base.

Problem 24. Let X be a separable metric space admitting a compact ordered covering

of X indexed by an unbounded and boundedly complete proper subset of NN that swallows

the compact sets of X. Is then X a Polish space?
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