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Abstract 

BACKGROUND: Grapevine cluster morphology influences the quality and commercial value of 

wine and table grapes. It is routinely evaluated by subjective and inaccurate methods that do 

not meet the requirements set by the food industry. Novel 2D and 3D machine vision 

technologies emerge as promising tools for its automatic and fast evaluation. 
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RESULTS: The automatic evaluation of cluster length, width and elongation was successfully 

achieved by the analysis of 2D images, significant and strong correlations with the manual 

methods being found (r= 0.959, 0.861 and 0.852, respectively). The classification of clusters 

according to their shape can be achieved by evaluating their conicity in different sections of 

the cluster. The geometric reconstruction of the morphological volume of the cluster from 2D 

features worked better than the direct 3D laser scanning system, showing a high correlation 

(r= 0.956) with the manual approach (water displacement method). In addition, we 

constructed and validated a simple linear regression model for cluster compactness 

estimation. It showed a high predictive capacity for both the training and validation subsets of 

clusters (R2= 84.5 and 71.1%, respectively). 

CONCLUSION: The methodologies proposed in this work provide continuous and accurate data 

for the fast objective characterization of cluster morphology.  

Keywords: Vitis vinifera L., cluster size, cluster compactness, cluster shape, machine vision 

INTRODUCTION 

Grapevine (Vitis vinifera L.) is considered to be the most valuable horticultural crop in the 

world, mainly grown for the transformation of grapes into wine and raisins, and for their direct 

consumption as fresh fruit. The quality, acceptability and further commercialization of 

grapevine clusters depend on many aspects, including diverse morphological (e.g., cluster size 

or compactness), physical-chemical (e.g., concentration of sugars and acids) and sanitary 

factors (e.g., presence of rotten berries)1. Cluster morphology is determined by several 

attributes (like cluster size, shape, elongation and compactness) that affect its appearance, 

which is especially relevant for the table grape market1. Such attributes also influence the 

industrial processing of grapes, with large clusters requiring hand trimming to fit packaging2, 

which increases production costs. On the other hand, cluster selection is becoming a common 

practice at some wineries for selecting high quality fruits to produce premium wines3. In this 
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light, winemakers usually reject highly compact clusters, which are considered of lower 

quality4-8. Cluster size, shape and compactness are routinely evaluated by visual methods, like 

those proposed by the International Organization of Vine and Wine (O.I.V.)9. These approaches 

often do not satisfy the requirements set by the food industry and breeding programs, which 

demand fast, non-destructive, objective and accurate techniques to screen a large number of 

samples in a short period of time10-12.  

The grapevine cluster is a branched structure, composed of a number of ramifications of 

different lengths. Each ramification comprises a highly variable number of berries, whose size 

and shape also vary widely2,7,13. This singular structure means two different volumes can be 

considered in the cluster: the actual (or solid) and the morphological (or apparent) one, and 

cluster compactness is determined by the difference between them4,14. The actual volume of 

the cluster is mainly composed of the volume of the berries (the volume of the rachis –or 

stem– is insignificant), whereas the morphological one is also defined by the way that this solid 

volume is arranged three-dimensionally4. The evaluation of the morphological volume of the 

cluster is a complex task, since it includes the volume of the berries and the volume existing in 

the cavities of the cluster. It has been previously evaluated by relatively imprecise, tedious and 

time-consuming methods, such as filling the cavities with melted paraffin15, wrapping the 

clusters with different plastic systems10,16 or assimilating the cluster to a perfect cone14. 

Recent advances in computing, robotics and machine vision provide a new framework for the 

automated and accurate morphological evaluation of different fruits and vegetables17-20. 

Nonetheless, most fruits and vegetables have regular shapes with clearly defined surfaces that 

facilitate external inspection by machine vision methods. However, the singular morphology of 

the grapevine fruit makes the evaluation of such attributes through the use of novel image-

based technologies a real challenge.  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
In recent years, several works have successfully applied the analysis of 2D images for the 

evaluation of cluster attributes and cluster components, like cluster weight21,22 or the number 

of berries per cluster11,21,22. Moreover, the dimensions of the berry have also been estimated 

through the analysis of 2D images taken under laboratory11,23 or field conditions12. Recently, a 

methodology for the acquisition and consequent analysis of 2D images for the extraction of 

cluster compactness-related attributes has been detailed24. Following this work, a model based 

on seven variables has been proposed as an alternative to the current visual method of 

estimation. On the other hand, novel 3D technologies emerge as interesting approaches for 

the evaluation of cluster morphology. In this same line, the 3D reconstruction of the structure 

of the grapevine cluster from 2D images has also been assayed for the evaluation of different 

cluster attributes, including cluster compactness25,26. Ivorra, Sánchez, Camarasa, Diago and 

Tardáguila25 created a 3D model from only one face of the cluster. On the other hand, 3D laser 

scanning has recently been used to create more accurate models of full clusters27, but it has 

not yet been applied in a multicultivar framework. 

The aim of this work was to apply 2D imaging and 3D scanning to estimate cluster length, 

width, volume and elongation, and evaluate their accuracy compared to traditional and time-

consuming approaches. Moreover, variables extracted from these novel systems were applied 

to the objective evaluation of cluster shape and compactness. 

MATERIAL AND METHODS 

Plant material 

This study was carried out during the 2011 vintage on eight different grapevine cultivars 

(Aramon, Bobal, Cabernet Franc, Danugue, Derechero de Muniesa, Monastrell, Moravia Agria 

and Ruby Seedless), which were previously identified by genetic analysis to assess their 

distinctness. Grapevines were grown on an experimental plot of the Grapevine Collection of 

the Instituto de Ciencias de la Vid y del Vino (ICVV; FAO Institute Code: ESP217), located in 
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Agoncillo (La Rioja, Spain). Ten mature clusters (21.4±2.1 °Brix) were collected per cultivar at 

harvest time, and kept at 4 °C until their use for 3D scanning, 2D image acquisition, and 

morphological description (Figure 1). 

3D scanning  

The process of 3D digitizing the 80 clusters was performed by an external reverse-engineering 

company (Asorcad, Barcelona, Spain). Clusters were hung from the peduncle so as not to 

distort their shape, and individually scanned by a portable UNIscanTM scanner (Creaform, 

Leinfelden-Echterdingen, Germany). This generated a cloud of datapoints for each cluster 

(Figure 2A) that were analyzed with the RAPIDFORM XOS software application (now Geomagic 

XOS, Rock Hill, SC, USA) in order to model a closed mesh connecting such datapoints to form 

poly-faces (Figure 1B and 2B). The volume of the closed mesh representing the cluster (MVo3D) 

was automatically released by the same software. 

2D image acquisition and analysis 

Grapevine clusters were placed in front of a camera (EOS 550D, Canon Inc., Tokyo, Japan), 

hanging from the peduncle to maintain their shape. The camera was placed inside an 

inspection chamber with a lighting system composed of eight fluorescent tubes (Biolux 

L18W/965, 6500 K, Osram AG, Munich, Germany) located on the four sides of the chamber. 

We used a uniform background to facilitate later image processing. Four images with a 

resolution of 0.12 mm/pixel were taken per individual, one for each side of the cluster (front, 

lateral and back sides), after a 90˚ rotation between each image acquisition. The resulting 320 

images were analyzed as previously described24 to obtain an automatic value for cluster 

maximal length (Le2D), maximal width (Wi2D), widths at 25% (Wi252D), 40% (Wi402D), 50% 

(Wi502D), 60% (Wi602D), 75% (Wi752D) and 80% (Wi802D) of the major axis of the cluster, and 

the percentage of pixels occupied by the rachis (AR2D) and empty holes (AH2D) per image 

(Figure 1C). We considered the average value of the four images of the cluster for each 
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variable except for the determination of Wi2D, which was calculated as the average of the two 

largest values. 

On the basis of these variables, a geometric reconstruction of each cluster was performed to 

estimate its morphological volume. For the sake of simplicity, clusters were divided into only 

four sections of equal height (a, b, c and d in Figure 1D), considering Wi252D, Wi502D and 

Wi752D. Sections a and d were considered to be two perfect cylinders, while sections b and c 

were defined by the variables Wi252D and Wi502D, and Wi502D and Wi752D respectively, ranging 

from cylinders (when the two widths considered were found to be identical) to truncated 

cones. Their volumes were estimated according to equations 1 to 4, and the total 

morphological volume of the cluster (MVo2D) was calculated as Va + Vb + Vc + Vd, as previously 

suggested28. 

Vୟ = π × ቀ୛୧ଶହమీଶ ቁଶ ×	୐ୣమీସ    (1) 

Vୠ = ஠ଷ × ቈቀ୛୧ଶହమీଶ ቁଶ +	ቀ୛୧ହ଴మీଶ ቁଶ +	ቀ୛୧ଶହమీଶ × ୛୧ହ଴మీଶ ቁ቉ ×	୐ୣమీସ    (2) 

Vୡ = ஠ଷ × ቈቀ୛୧ହ଴మీଶ ቁଶ +	ቀ୛୧଻ହమీଶ ቁଶ +	ቀ୛୧ହ଴మీଶ × ୛୧଻ହమీଶ ቁ቉ ×	୐ୣమీସ    (3) 

Vୢ = π × ቀ୛୧଻ହమీଶ ቁଶ ×	୐ୣమీସ    (4) 

Bearing in mind that the visual O.I.V. descriptor Nº 2089 for cluster shape evaluates this trait 

according to the morphology of its central section (between 40% and 80% of its main axis), we 

evaluated the conicity for this section (C1) and for its lower half (C2) as promising objective 

indicators of cluster shape. Conicity was automatically calculated following the ISO Standard 

3040:2009 for the dimensioning of cones (www.iso.org), using Wi402D and Wi802D, (C1, Eq.5), 

and  Wi602D and Wi802D (C2, Eq.6) for its computation.  

Cଵ = ୛୧ସ଴మీ	(ୡ୫)ି୛୧଼଴మీ	(ୡ୫)଴.ସ	×	୐ୣమీ	(ୡ୫)    (5) 
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Cଶ = ୛୧଺଴మీ	(ୡ୫)ି୛୧଼଴మీ	(ୡ୫)଴.ଶ	×	୐ୣమీ	(ୡ୫)    (6) 

On the other hand, we calculated the compactness index CI-13 proposed by Tello and Ibáñez10 

(Eq.7), using the values obtained from 2D image analysis.  

CI − 13ଶୈ = ୑୚୭మీ	(୫୐)[୐ୣమీ	(ୡ୫)]మ   (7) 

Morphological description of grapevine clusters 

Each cluster was characterized morphologically using quantitative and objective methods. 

Cluster weight (Wem) was determined using a scale (Blauscal AC-5000, Barcelona, Spain), and 

cluster length (Lem) and width (Wim) by means of standard rulers following the descriptors Nº 

202 and Nº 203 proposed by the O.I.V.9, respectively. The morphological volume of the cluster 

(MVom) was determined using the water displacement method, as described in Tello and 

Ibáñez10. To obtain quantitative and objective values of compactness, the index CI-1210, based 

on cluster weight and length, was calculated (Eq.8). Cluster elongation (El) was estimated 

according to Eq.9.  

CI − 12 = ୛ୣౣ	(୥)[୐ୣౣ	(ୡ୫)]మ   (8) 

El = ୐ୣ	(ୡ୫)୛୧	(ୡ୫)   (9) 

Cluster compactness was also evaluated qualitatively by a panel of 14 trained judges using the 

O.I.V. descriptor Nº 2049, as previously detailed10,24, considering the mode value provided by 

the evaluators for statistical tests. This descriptor classifies grapevine clusters on five levels, 

from “very loose” (O.I.V. compactness=1) to “very compact” (O.I.V. compactness=9), according 

to the visibility of the pedicels and the mobility and deformation of the berries. Cluster shape 

(Sh) was visually evaluated following the O.I.V. descriptor Nº 2089 based on the morphology of 

the central part of the cluster (between 40% and 80% of its main axis). Clusters were classified 

as “Cylindrical” (O.I.V. shape=1), “Conical” (O.I.V. shape=2) or “Funnel-shaped” (O.I.V. 
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shape=3). Cylindrical clusters (Figure 3A) have a similar section along all this region, whereas 

the conical (Figure 3B) and the funnel-shaped clusters (Figure 3C) display a width that is 

greater at 40% of their length than at 80%. In conical clusters the narrowing occurs 

progressively, whereas the funnel-shaped clusters are characterized by a rapid narrowing in 

the upper part of this region, ending in a cylindrical section.  

Statistical analysis 

Evaluation of the accuracy and agreement between manual and 2D image-based methods 

Pearson coefficients (r) were calculated to evaluate correlations between the manual and the 

novel systems. As r measures the strength of the relation between two variables but not their 

similitude, the Bland and Altman29 approach was used to test their accuracy by plotting the 

mean of the values obtained between both methods (µ) versus their difference (d). The 95% 

confidence interval was calculated as µd±1.96σd
29, where µd and σd indicate the mean and the 

standard deviation of the differences between the two approaches, respectively. Accordingly, 

the mean value represents the systematic bias between both methods, whereas the limits of 

agreement of the confidence interval evaluate how precise the two systems are along the 

respective ranges of variation.  

Evaluation of cluster shape and compactness using variables from image-based methods 

One-way ANOVA with Fisher’s LSD post-hoc tests (P≤0.05) were used to compare C1 and C2 

mean values in the different cluster shape classes. Moreover, C1 and C2 were used as input 

variables to build a decision tree for the classification of clusters according to their shape, 

using the CART (classification and regression tree) approach30 with the default settings. In this 

approach, a series of sequential nodes and critical cut-off values are automatically calculated 

to classify each cluster in a series of subgroups. 

The correlation between the visual value of compactness and different objective variables was 

evaluated by means of Kendall’s τb coefficients. These variables were also compared with the 
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continuous value of compactness given by CI-12, using Pearson coefficients. One-way ANOVA 

with Fisher’s LSD post-hoc tests were used to compare the mean values of certain variables (or 

derived ratios) for the different groups of visual compactness. Given the low number of very 

loose clusters in our sample, this class was not included in the analyses. A simple linear 

regression model based on a set of independent predictors was tested and validated, the 

mean visual value of compactness being considered as the continuous dependent variable. For 

this purpose, the dataset was subdivided into two groups of 40 clusters, each with five 

randomly chosen clusters per variety. The first set was used for the construction of the 

statistical model, whereas the second one was used for its validation. The coefficient of 

determination R2 was used to ascertain the percentage of trait variance explained by the 

model. Root mean square error (RMSE) values between manual and predicted values were 

used for error estimation31. 

All calculations were performed using SPSS v.22.0 (IBM, Chicago, IL, USA). 

RESULTS AND DISCUSSION 

Grapevine cluster morphology is commonly used for the characterization of grapevine 

germplasm32, it is routinely evaluated for the selection of elite cultivars in breeding33, and it 

affects consumers’ perception1. Moreover, and as for other agricultural products, obtaining 

information about the morphology of the grapevine cluster is relevant for the modeling, design 

and optimization of industrial processes2,15,34. Some traditional descriptors proposed by 

international organizations, like the O.I.V., are subjective and/or qualitative, which hinders 

some studies and industrial applications that need an accurate and fine evaluation10-12. Recent 

advances in image processing have proven to improve (in terms of accuracy and time) the 

measurement of different morphological attributes in different foodstuffs and plant materials. 

In this work, 2D and 3D technologies have been assessed for the automated estimation of 

different morphological attributes of the grapevine cluster. 
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Determination of cluster size and elongation 

Cluster size was estimated through the evaluation of its maximal length and width, and cluster 

elongation was calculated as the ratio between them. We obtained strong significant 

correlations (P≤0.001) between the manual and the image-based methods for cluster length 

(r= 0.959; Supporting Figure 1A), cluster width (r= 0.861; Supporting Figure 1B) and cluster 

elongation (r= 0.852; Supporting Figure 1C). The latest variable ranged from 1.01 (a cluster of 

the wine cultivar Cabernet Franc) to 2.84 (a cluster of the table cultivar Ruby Seedless) in our 

dataset. 

The Bland and Altman29 approach showed that the values obtained by means of the 2D image 

method for both cluster length (Supporting Figure 2A) and width (Supporting Figure 2B) closely 

matched the manual measurements, with a mean value close to 0 (µd= -0.02 and -0.58 cm for 

cluster length and cluster width, respectively). Moreover, the confidence intervals were small 

enough to sustain that this novel method can substitute the traditional one (Supporting 

Figures 2A and 2B). Regarding cluster elongation (Supporting Figure 2C), the mean difference 

between both approaches was 0.076, and the 95% confidence interval ranged from 0.444 to -

0.292. The differences between the ratios calculated from manual and 2D images were well 

distributed within the interval limits, and no bias was observed along the whole x-axis 

(Supporting Figure 2C). Altogether, our results suggest that the size and the elongation of the 

cluster can be accurately measured by the analysis of 2D images, thereby replacing time-

consuming traditional systems. 

Evaluation of cluster shape from image-based technologies 

Cluster shape is included among the traits used to characterize and identify different grapevine 

cultivars32. O.I.V. descriptor Nº 208 classifies clusters into three morphotypes according to the 

shape of the region between 3/5 and 4/5 (40-80%) of the main axis of the cluster. The conicity 

calculated considering these extreme points (C1, Eq.5) allowed the cylindrical clusters 
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(Supporting Figure 3A) to be discriminated from the other morphotypes. As expected, they 

presented lower values for this ratio when compared to the conical and the funnel-shaped 

clusters, which are wider in the upper part than in the lower part of the cluster (Figure 3). 

Similarly, the conicity calculated using Wi602D and Wi802D (C2, Eq.6) could differentiate the 

conical clusters from the other two morphotypes (Supporting Figure 3B), which present a 

similar morphology in the lower section (Figure 3).  

The decision tree constructed on the basis of C1 and C2 values showed that C1 was the most 

determining predictor, with a cut-off value of 0.470. When this variable was used in the first 

step of the classification in the decision tree, 76% of the clusters included in node 1 had been 

visually classified as cylindrical (Figure 4). In a second step, the 51 remaining clusters were then 

categorized according to their C2 value (cut-off= 0.249), with the funnel-shaped clusters having 

the lowest values. Considering both steps, 19 out of 24 (79.2%) conical clusters were correctly 

classified (node 4, Figure 4), while node 3 included a majority of funnel-shaped clusters 

(66.7%). Nonetheless, most clusters visually classified as funnel-shaped (and an important 

number of clusters visually categorized as cylindrical) were included in node 4. This 

misclassification was probably caused by the several difficulties existing in the visual 

classification of cluster shape. First, there are no clear borders between the different classes of 

cluster shape, and certain clusters with intermediate shapes can be assigned to different 

categories. Second, the approach proposed by the O.I.V. evaluates a short region of the cluster 

(40-80%), and its visual delimitation can be a complicated task for the judge, whose opinion 

can be biased by the global morphology of the cluster or its size. Thus, subjectivity may be high 

in visual classification, making it difficult to obtain accurate reference data. The method 

proposed here maintains the spirit of the O.I.V. descriptor, but avoids the problems of 

subjectivity. It uses variables measured at the exact points defined for cluster shape 

evaluation, and sets a series of cut-off values for the individual assignment to the different 

shape classes. The stated cut-off values could need fine tuning by including more samples, but 
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in general terms the analysis of 2D images provides relevant and precise information for the 

assessment of cluster shape. 

Determination of the morphological volume of the cluster 

Two novel methods have been tested for the estimation of the morphological volume of the 

cluster: (I) direct 3D scanning, and (II) a geometric reconstruction using variables obtained 

from the 2D image analysis (Figures 1B and 1D). Both methods showed a high level of 

significant correlation (P≤0.001) to the manual value (r= 0.956 and 0.953 for the 2D and 3D 

methods, respectively), and a coefficient of determination (R2) of 0.914 for the 2D system and 

0.908 for the 3D approach. These results initially suggested that both methods could be used 

for the accurate estimation of the trait. Nonetheless, the Bland and Altman29 approach 

(Figures 5A and 5B) revealed a systematic underestimation for the 3D system (µd= -169.20 mL). 

Moreover, this system was characterized by a wide error (95% confidence interval limits: 31.02 

and -369.42 mL), and a systematic bias dependent on cluster size: the underestimation of the 

morphological volume was greater as the volume of the cluster increased.  

In our sample, the bigger clusters were those of the table grape cultivar Ruby Seedless, which 

presented a loose appearance characterized by the presence of numerous cavities in their 

morphology. The volume of such cavities was captured by the manual system and by the 

geometric reconstruction calculated from 2D image analysis, leading to the similarity of both 

values. By contrast, the 3D method excluded a fraction of that ‘empty’ volume of the closed 

mesh (Figure 2B), thus generating an underestimation of the morphological volume if 

compared to the other two methods. The 3D method released an intermediate value between 

the actual and the morphological volumes in loose clusters, whereas it released a more 

accurate value for compact clusters, since they have a smaller number of cavities. Hence, in a 

highly diverse set of clusters, the 2D approach seems to be more appropriate than the 3D 

system for the evaluation of the morphological volume. Moreover, the proposed geometric 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
reconstruction fits the variable cluster shapes. Previous measurements, like the conical 

estimation proposed by Shavrukov, Dry and Thomas14, did not represent the different 

morphotypes that can be found in the grapevine in a realistic way. In this work, the grapevine 

cluster has been divided into four sections whose volumes have been independently 

calculated, leading to a simple approach for the evaluation of the morphological volume of the 

cluster. 

Evaluation of cluster compactness from image-based technologies 

Cubero, Diago, Blasco, Tardaguila, Prats-Montalbán, Ibáñez, Tello and Aleixos24 have recently 

shown that the analysis of 2D images allows the determination of some compactness-related 

attributes that cannot be assessed by hand, although they can be quite useful for the 

automated evaluation of this feature. In our work, the percentage of pixels of the 2D image 

not occupied by berries [hence corresponding to parts of the rachis or empty holes, AR (%)2D + 

AH (%)2D] showed a large correlation with both the mode value of visual compactness given by 

the panel of judges and the objective and quantitative index CI-12 (Table 1).  

A one-way ANOVA for AR (%)2D + AH (%)2D revealed a statistically significant result (P≤0.05), 

and Fisher’s LSD post-hoc tests revealed that all classes were statistically distinct (P≤0.05), 

except those from compact and very compact clusters (data not shown). According to the 

O.I.V. descriptor for cluster compactness, the visibility of pedicels and the occurrence of empty 

holes in the cluster allows a distinction to be made between very loose, loose and medium 

clusters, whereas compact and very compact clusters are so dense that they do not have 

visible pedicels/rachis or empty spaces in their structure9, thus supporting our findings. 

Following the O.I.V. descriptor9, these two classes differ according to the absence (compact 

clusters) or presence (very compact clusters) of deformed berries, which may appear as a 

result of the compression stresses that occur during the development of the cluster5 in clusters 

with a large solid volume per cm of rachis.  
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To obtain an indirect and automatic estimation of such compression, we calculated the 

compactness index CI-132D (Eq.7) using only measurements obtained from the 2D image 

analysis. This ratio relativizes the cluster morphological volume (which is close to the actual 

volume in tight clusters) to the squared cluster length, so it is expected to increase as cluster 

compactness increases. CI-132D showed statistically significant coefficients of correlation with 

both the mode value of compactness given by the panel of judges (τb= 0.591; P≤0.01), and CI-

12 (r= 0.775; P≤0.01). A one-way ANOVA for CI-132D revealed a statistically significant result 

(P≤0.05), all the groups of compactness being statistically distinct (Fisher’s LSD post-hoc test, 

P≤0.05, data not shown). 

AR (%)2D + AH (%)2D and CI-132D represent attributes that are highly related to cluster 

compactness, and measure different cluster compactness-related features. Those variables are 

significantly inter-correlated in our set of clusters (r= -0.419; P≤0.01), revealing that they 

explain a common part of the morphological variation. This negative correlation is not 

unexpected, since clusters with more volume per cm of rachis (high values for CI-132D) usually 

have fewer visible pedicels and empty holes [low values for AR (%)2D + AH (%)2D], and vice 

versa. 

Considering that AR (%)2D + AH (%)2D and CI-132D also bear independent information about 

cluster compactness, they were used as predictive variables to construct a regression model 

(Eq.10). The analysis of the standardized regression coefficients (β) of both variables in the 

model indicated that the predictive weight of AR (%)2D + AH (%)2D (|β|= 0.664) is considerably 

higher than that of CI-132D (|β|= 0.343). The model showed a predictive capability (R2) of 

84.5% (P≤0.01) for the training set of 40 clusters, and 71.1% (P≤0.01) when applied to the 

validation set. These values are similar to those reported by Ivorra, Sánchez, Camarasa, Diago 

and Tardáguila25 (R2= 80.8%) and Cubero, Diago, Blasco, Tardaguila, Prats-Montalbán, Ibáñez, 

Tello and Aleixos24 (R2= 85.3%). Moreover, we found similar low values of RMSE in both 

subsets of clusters (0.79 and 1.12, respectively), thus indicating that the model performs well 
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not only for the set of clusters used for its construction (training set), but also for a different 

sample (validation set).  

Comp = 5.077 − 0.497 × [AR	(%) + AH	(%)] + 1.596 × ୑୚୭మీ	(୫୐)[୐ୣమీ	(ౙౣ)]మ   (10) 

The predicted value of cluster compactness showed a high correlation with the visual one in 

both subsets of clusters (r= 0.924 for the training set and r= 0.843 for the validation set; 

P≤0.01) (Figure 6). Considering the complexity of the trait, and the use of a visual, subjective, 

and qualitative value as a reference, it is acceptable to find up to a one-class difference 

between the visual and the predicted values of compactness10. In our model, all the predicted 

values (but one) fall within this range of variation (Figure 6). Moreover, we observed a high 

level of linear correlation between the predicted value and both the visual value of 

compactness (τb= 0.721; P≤0.01) and the objective index CI-12 (r= 0.878; P≤0.01) for the whole 

set of clusters (n= 80). Coefficients were higher than those obtained individually for the 

predictors included in the model (Figure 7). Moreover, a one-way ANOVA followed by a 

Fisher's LSD post-hoc test showed significant differences (P≤0.05) for the model-predicted 

values among the different classes of visual compactness (Supporting Figure 4). In comparison 

to previous works10,24,25, the proposed model has the advantage of involving a low number of 

variables (AR2D, AH2D, Le2D, Wi252D, Wi502D, and Wi752D), which can be obtained automatically 

from 2D images with no long computation times. Altogether, our results suggest that cluster 

compactness can be evaluated in a fast, automated and accurate way through the analysis of 

2D images. 

CONCLUSIONS 

In this work, different cluster morphological attributes with an impact on crop yield and quality 

have been measured automatically through the application of novel 2D and 3D image-based 

technologies. 2D image processing has provided a simple, accurate and objective framework to 

estimate cluster size and elongation. This system provides similar values to those obtained by 
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means of traditional systems, but having the advantage of the short period of time needed for 

their high throughput characterization. Some insights for the measurement of cluster shape 

are given, and the evaluation of the conicity of the cluster at its central part emerges as a 

promising starting point. The estimation of the morphological volume of the cluster through 

direct 3D scanning was faulty, especially for the loosest clusters. Hence, the 2D approach 

proposed in this work is more appropriate when evaluating this trait in a highly diverse set of 

clusters. Lastly, we propose a model for cluster compactness estimation based on the 

automatic evaluation of two cluster attributes related to this trait (visibility of the pedicels 

and/or empty holes in the cluster, and the compaction of the berries), which can be estimated 

from the analysis of 2D images. Its high predictive capability suggests the usefulness of the 

model for the objective and automatic evaluation of this complex trait. The advances 

presented here can be applied in different contexts, including sorting tables of table grapes 

and in wineries for the classification of clusters prior to winemaking. They may also be used in 

breeding programs focused on generating new elite cultivars or clones, and in genetic studies 

aimed at identifying the underlying genetics of grapevine cluster morphology. 
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Table 1. Coefficients of correlation between cluster attributes obtained by image-based 

technologies and (i) the visual mode value of compactness stated by the judges panel (τb), and 

(ii) the quantitative value of compactness calculated according to CI-12 index proposed by 

Tello and Ibáñez 10 (r). NS: not significant; *: significant at 0.05 level; **: significant at 0.01 

level. 

 Visual 
compactness

Compactness 
index CI-12 

AR (%)2D + AH (%)2D -0.672** -0.730** 
Le2D (cm) -0.257** -0.234* 
Wi2D (cm) NS 0.320** 
Wi252D (cm) NS 0.346** 
Wi402D (cm) NS NS 
Wi502D (cm) 0.230** 0.516** 
Wi602D (cm) 0.402** 0.472** 
Wi752D (cm) 0.581** 0.765** 
Wi802D (cm) 0.614** 0.720** 
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