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Abstract

BACKGROUND: Grapevine cluster morphology influences the quality and commercial value of wine and table grapes. It is
routinely evaluated by subjective and inaccurate methods that do not meet the requirements set by the food industry. Novel
two-dimensional (2D) and three-dimensional (3D) machine vision technologies emerge as promising tools for its automatic and
fast evaluation.

RESULTS: The automatic evaluation of cluster length, width and elongation was successfully achieved by the analysis of 2D
images, significant and strong correlations with the manual methods being found (r = 0.959, 0.861 and 0.852, respectively). The
classification of clusters according to their shape can be achieved by evaluating their conicity in different sections of the cluster.
The geometric reconstruction of the morphological volume of the cluster from 2D features worked better than the direct 3D laser
scanning system, showing a high correlation (r = 0.956) with the manual approach (water displacement method). In addition,
we constructed and validated a simple linear regression model for cluster compactness estimation. It showed a high predictive
capacity for both the training and validation subsets of clusters (R2 =84.5 and 71.1%, respectively).

CONCLUSION: The methodologies proposed in this work provide continuous and accurate data for the fast and objective
characterisation of cluster morphology.
© 2016 Society of Chemical Industry

Supporting information may be found in the online version of this article.
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INTRODUCTION
Grapevine (Vitis vinifera L.) is considered to be the most valuable
horticultural fruit crop in the world, mainly grown for the trans-
formation of grapes into wine and raisins, and for their direct
consumption as fresh fruit. The quality, acceptability and further
commercialisation of grapevine clusters depend on many aspects,
including diverse morphological (e.g. cluster size or compactness),
physical-chemical (e.g. concentration of sugars and acids) and san-
itary factors (e.g. presence of rotten berries).1 Cluster morphology
is determined by several attributes (like cluster size, shape, elonga-
tion and compactness) that affect its appearance, which is espe-
cially relevant for the table grape market.1 Such attributes also
influence the industrial processing of grapes, with large clusters
requiring hand trimming to fit packaging,2 which increases pro-
duction costs. On the other hand, cluster selection is becoming
a common practice at some wineries for selecting high quality
fruits to produce premium wines.3 In this light, winemakers usu-
ally reject highly compact clusters, which are considered of lower
quality.4 – 8 Cluster size, shape and compactness are routinely eval-
uated by visual methods, like those proposed by the International
Organisation of Vine and Wine (O.I.V.).9 These approaches often do
not satisfy the requirements set by the food industry and breeding

programmes, which demand fast, non-destructive, objective and
accurate techniques to screen a large number of samples in a short
period of time.10 – 12

The grapevine cluster is a branched structure, composed of a
number of ramifications of different lengths. Each ramification
comprises a highly variable number of berries, whose size and
shape also vary widely.2,7,13 This singular structure means two
different volumes can be considered in the cluster: the actual
(or solid) and the morphological (or apparent) one, and cluster
compactness is determined by the difference between them.4,14
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Figure 1. Example of a grapevine cluster (cv. Derechero de Muniesa) used for direct characterisation (A), reconstruction of the cluster structure after 3D
scanning (B), segmentation of the 2D image for the measurement of different cluster attributes (C), and geometric reconstruction of the morphological
volume into four sections (a, b, c and d) (D). In C, black, green (online)/grey and white regions refer to areas covered by berries, rachis and empty holes,
respectively, and red lines indicate cluster length and width at 25, 40, 50, 60, 75 and 80% of the main axis.

The actual volume of the cluster is mainly composed of the volume
of the berries (the volume of the rachis – or stem – is insignificant),
whereas the morphological one is also defined by the way that this
solid volume is arranged three-dimensionally.4 The evaluation of
the morphological volume of the cluster is a complex task, since
it includes the volume of the berries and the volume existing in
the cavities of the cluster. It has been previously evaluated by
relatively imprecise, tedious and time-consuming methods, such
as filling the cavities with melted paraffin,15 wrapping the clusters
with different plastic systems10,16 or assimilating the cluster to a
perfect cone.14

Recent advances in computing, robotics and machine vision
provide a new framework for the automated and accurate mor-
phological evaluation of different fruits and vegetables.17 – 20

Nonetheless, most fruits and vegetables have regular shapes
with clearly defined surfaces that facilitate external inspection by
machine vision methods. However, the singular morphology of the
grapevine fruit makes the evaluation of such attributes through
the use of novel image-based technologies a real challenge.

In recent years, several works have successfully applied the anal-
ysis of two-dimensional (2D) images for the evaluation of cluster
attributes and cluster components, like cluster weight21,22 or the
number of berries per cluster.11,21,22 Moreover, the dimensions of
the berry have also been estimated through the analysis of 2D
images taken under laboratory11,23 or field conditions.12 Recently,
a methodology for the acquisition and consequent analysis of
2D images for the extraction of cluster compactness-related
attributes has been detailed.24 Following this work, a model
based on seven variables has been proposed as an alternative
to the current visual method of estimation. On the other hand,
novel three-dimensional (3D) technologies emerge as interesting
approaches for the evaluation of cluster morphology. In the same
line, the 3D reconstruction of the structure of the grapevine
cluster from 2D images has also been assayed for the evaluation
of different cluster attributes, including cluster compactness.25,26

Ivorra et al.,25 created a 3D model from only one face of the cluster.
On the other hand, 3D laser scanning has recently been used to
create more accurate models of full clusters,27 but it has not yet
been applied in a multi-cultivar framework.

The aim of this work was to apply 2D imaging and 3D scanning to
estimate cluster length, width, volume and elongation, and eval-
uate their accuracy compared to traditional and time-consuming
approaches. Moreover, variables extracted from these novel

systems were applied to the objective evaluation of cluster shape
and compactness.

MATERIAL AND METHODS
Plant material
This study was carried out during the 2011 vintage on eight differ-
ent grapevine cultivars (Aramon, Bobal, Cabernet Franc, Danugue,
Derechero de Muniesa, Monastrell, Moravia Agria and Ruby Seed-
less), which were previously identified by genetic analysis to assess
their distinctness. Grapevines were grown on an experimental plot
of the Grapevine Collection of the Instituto de Ciencias de la Vid y
del Vino (ICVV; FAO Institute Code: ESP217), located in Agoncillo
(La Rioja, Spain). Ten mature clusters (21.4± 2.1∘Brix) were col-
lected per cultivar at harvest time, and kept at 4 ∘C until their use
for 3D scanning, 2D image acquisition, and morphological descrip-
tion (Fig. 1).

Three-dimensional scanning
The process of 3D digitising the 80 clusters was performed by
an external reverse-engineering company (Asorcad, Barcelona,
Spain). Clusters were hung from the peduncle so as not to distort
their shape, and individually scanned by a portable UNIscanTM

scanner (Creaform, Leinfelden-Echterdingen, Germany). This
generated a cloud of datapoints for each cluster (Fig. 2A) that
were analysed with the RAPIDFORM XOS software application
(now Geomagic XOS, Rock Hill, SC, USA) in order to model a
closed mesh connecting such datapoints to form poly-faces
(Fig. 1B and Fig. 2B). The volume of the closed mesh repre-
senting the cluster (MVo3D) was automatically released by the
same software.

Two-dimensional image acquisition and analysis
Grapevine clusters were placed in front of a camera (EOS 550D;
Canon, Tokyo, Japan), hanging from the peduncle to maintain
their shape. The camera was placed inside an inspection cham-
ber with a lighting system composed of eight fluorescent tubes
(Biolux L18W/965, 6500 K; Osram, Munich, Germany) located on
the four sides of the chamber. We used a uniform background to
facilitate later image processing. Four images with a resolution of
0.12 mm pixel−1 were taken per individual, one for each side of the
cluster (front, lateral and back sides), after a 90∘ rotation between
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Figure 2. Detail of the cloud of datapoints created in the central part of a
grapevine cluster (cv. Ruby Seedless) by means of the 3D scanner (A). In (B)
the same region after computing the mesh connecting such datapoints as
shaded poly-faces is shown.

each image acquisition. The resulting 320 images were analysed
as previously described24 to obtain an automatic value for clus-
ter maximal length (Le2D), maximal width (Wi2D), widths at 25%
(Wi252D), 40% (Wi402D), 50% (Wi502D), 60% (Wi602D), 75% (Wi752D)
and 80% (Wi802D) of the major axis of the cluster, and the percent-
age of pixels occupied by the rachis (AR2D) and empty holes (AH2D)
per image (Fig. 1C). We considered the average value of the four
images of the cluster for each variable except for the determina-
tion of Wi2D, which was calculated as the average of the two largest
values.

On the basis of these variables, a geometric reconstruction of
each cluster was performed to estimate its morphological volume.
For the sake of simplicity, clusters were divided into only four
sections of equal height (a, b, c and d in Fig. 1D), considering
Wi252D, Wi502D and Wi752D. Sections a and d were considered to be
two perfect cylinders, while sections b and c were defined by the
variables Wi252D and Wi502D, and Wi502D and Wi752D, respectively,
ranging from cylinders (when the two widths considered were
found to be identical) to truncated cones. Their volumes were
estimated according to Eqns (1 to 4), and the total morphological

volume of the cluster (MVo2D) was calculated as Va +Vb +Vc +Vd,
as previously suggested:28
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Bearing in mind that the visual O.I.V. descriptor N∘ 2089 for
cluster shape evaluates this trait according to the morphology of
its central section (between 40% and 80% of its main axis), we
evaluated the conicity for this section (C1) and for its lower half
(C2) as promising objective indicators of cluster shape. Conicity
was automatically calculated following ISO Standard 3040:2009
for the dimensioning of cones (www.iso.org), using Wi402D and
Wi802D, [C1, Eqn (5)], and Wi602D and Wi802D [C2, Eqn (6)] for its
computation:

C1 =
Wi402D (cm) − Wi802D (cm)

0.4 × Le2D (cm)
(5)

C2 =
Wi602D (cm) − Wi802D (cm)

0.2 × Le2D (cm)
(6)

On the other hand, we calculated the compactness index CI-13
proposed by Tello and Ibáñez10 [Eqn (7)], using the values obtained
from 2D image analysis:

CI − 132D =
MVo2D (mL)[
Le2D (cm)

]2
(7)

Morphological description of grapevine clusters
Each cluster was characterised morphologically using quantitative
and objective methods. Cluster weight (Wem) was determined
using a scale (Blauscal AC-5000; Gram Precision, Barcelona, Spain),
and cluster length (Lem) and width (Wim) by means of standard
rulers following the descriptors N∘ 202 and N∘ 203 proposed
by the O.I.V.,9 respectively. The morphological volume of the
cluster (MVom) was determined using the water displacement
method, as described in Tello and Ibáñez.10 To obtain quantitative
and objective values of compactness, the index CI-12,10 based
on cluster weight and length, was calculated [Eqn (8)]. Cluster
elongation (El) was estimated according to Eqn (9):

CI − 12 =
Wem (g)[

Lem (cm)
]2

(8)
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Figure 3. Examples of cylindrical (A), conical (B) and funnel-shaped (C) clusters according to the O.I.V. descriptor N∘ 208. Broken lines indicate positions at
40, 60 and 80% of the main axis. Images in A, B and C, correspond to clusters of the cultivars Aramon, Monastrell and Cabernet Franc, respectively.

El = Le (cm)
Wi (cm)

(9)

Cluster compactness was also evaluated qualitatively by a panel of
14 trained judges using the O.I.V. descriptor N∘ 204,9 as previously
detailed,10,24 considering the mode value provided by the evalua-
tors for statistical tests. This descriptor classifies grapevine clusters
on five levels, from ‘very loose’ (O.I.V. compactness= 1) to ‘very
compact’ (O.I.V. compactness= 9), according to the visibility of the
pedicels and the mobility and deformation of the berries. Cluster
shape (Sh) was visually evaluated following the O.I.V. descriptor
N∘ 2089 based on the morphology of the central part of the clus-
ter (between 40% and 80% of its main axis). Clusters were classi-
fied as ‘Cylindrical’ (O.I.V. shape= 1), ‘Conical’ (O.I.V. shape= 2) or
‘Funnel-shaped’ (O.I.V. shape= 3). Cylindrical clusters (Fig. 3A) have
a similar section along all this region, whereas the conical (Fig. 3B)
and the funnel-shaped clusters (Fig. 3C) display a width that is
greater at 40% of their length than at 80%. In conical clusters the
narrowing occurs progressively, whereas the funnel-shaped clus-
ters are characterised by a rapid narrowing in the upper part of this
region, ending in a cylindrical section.

Statistical analysis
Evaluation of the accuracy and agreement between manual
and two-dimensional image-based methods
Pearson coefficients (r) were calculated to evaluate correlations
between the manual and the novel systems. As r measures the
strength of the relation between two variables but not their simil-
itude, the Bland and Altman29 approach was used to test their
accuracy by plotting the mean of the values obtained between
both methods (μ) versus their difference (d). The 95% confidence
interval was calculated as μd ± 1.96𝜎d,29 where μd and 𝜎d indicate
the mean and the standard deviation of the differences between
the two approaches, respectively. Accordingly, the mean value rep-
resents the systematic bias between both methods, whereas the
limits of agreement of the confidence interval evaluate how pre-
cise the two systems are along the respective ranges of variation.

Evaluation of cluster shape and compactness using variables from
image-based methods
One-way ANOVA with Fisher’s LSD post-hoc tests (P ≤ 0.05) were
used to compare C1 and C2 mean values in the different cluster
shape classes. Moreover, C1 and C2 were used as input variables

to build a decision tree for the classification of clusters according
to their shape, using the CART (classification and regression tree)
approach30 with the default settings. In this approach, a series
of sequential nodes and critical cut-off values are automatically
calculated to classify each cluster in a series of sub-groups.

The correlation between the visual value of compactness and
different objective variables was evaluated by means of Kendall’s
𝜏b coefficients. These variables were also compared with the
continuous value of compactness given by CI-12, using Pearson
coefficients. One-way ANOVA with Fisher’s LSD post-hoc tests were
used to compare the mean values of certain variables (or derived
ratios) for the different groups of visual compactness. Given the
low number of very loose clusters in our sample, this class was
not included in the analyses. A simple linear regression model
based on a set of independent predictors was tested and validated,
the mean visual value of compactness being considered as the
continuous dependent variable. For this purpose, the dataset
was subdivided into two groups of 40 clusters, each with five
randomly chosen clusters per variety. The first set was used for
the construction of the statistical model, whereas the second one
was used for its validation. The coefficient of determination R2 was
used to ascertain the percentage of trait variance explained by the
model. Root mean square error (RMSE) values between manual
and predicted values were used for error estimation.31

All calculations were performed using SPSS v.22.0 (IBM, Chicago,
IL, USA).

RESULTS AND DISCUSSION
Grapevine cluster morphology is commonly used for the char-
acterisation of grapevine germplasm,32 it is routinely evaluated
for the selection of elite cultivars in breeding,33 and it affects
consumers’ perception.1 Moreover, and as for other agricultural
products, obtaining information about the morphology of the
grapevine cluster is relevant for the modelling, design and opti-
misation of industrial processes.2,15,34 Some traditional descriptors
proposed by international organisations, like the O.I.V., are sub-
jective and/or qualitative, which hinders some studies and indus-
trial applications that need an accurate and fine evaluation.10 – 12

Recent advances in image processing have proven to improve (in
terms of accuracy and time) the measurement of different mor-
phological attributes in different foodstuffs and plant materials.
In this work, 2D and 3D technologies have been assessed for the
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Figure 4. Decision tree for classifying grapevine clusters according to the three shapes proposed by the O.I.V. descriptor N∘ 2089 (cylindrical, conical and
funnel-shaped) on the basis of two conicity measurements (C1 and C2). C1 and C2 refer to Eqns (5) and (6), respectively.

automated estimation of different morphological attributes of the
grapevine cluster.

Determination of cluster size and elongation
Cluster size was estimated through the evaluation of its maximal
length and width, and cluster elongation was calculated as the
ratio between them. We obtained strong significant correlations
(P ≤ 0.001) between the manual and the image-based methods
for cluster length (r = 0.959; Supporting Fig. 1A), cluster width
(r = 0.861; Supporting Fig. 1B) and cluster elongation (r = 0.852;
Supporting Fig. 1C). The latest variable ranged from 1.01 (a cluster
of the wine cultivar Cabernet Franc) to 2.84 (a cluster of the table
cultivar Ruby Seedless) in our dataset.

The Bland and Altman29 approach showed that the values
obtained by means of the 2D image method for both clus-
ter length (Supporting Fig. 2A) and width (Supporting Fig. 2B)
closely matched the manual measurements, with a mean value
close to 0 (μd =−0.02 and −0.58 cm for cluster length and clus-
ter width, respectively). Moreover, the confidence intervals were
small enough to sustain that this novel method can substitute the
traditional one (Supporting Fig. 2A and B). Regarding cluster elon-
gation (Supporting Fig. 2C), the mean difference between both
approaches was 0.076, and the 95% confidence interval ranged
from 0.444 to −0.292. The differences between the ratios calcu-
lated from manual and 2D images were well distributed within the
interval limits, and no bias was observed along the whole x-axis
(Supporting Fig. 2C). Altogether, our results suggest that the size
and the elongation of the cluster can be accurately measured by
the analysis of 2D images, thereby replacing time-consuming tra-
ditional systems.

Evaluation of cluster shape from image-based technologies
Cluster shape is included among the traits used to characterise
and identify different grapevine cultivars.32 O.I.V. descriptor N∘ 208
classifies clusters into three morphotypes according to the shape
of the region between 3/5 and 4/5 (40–80%) of the main axis of the
cluster. The conicity calculated considering these extreme points
[C1, Eqn (5)] allowed the cylindrical clusters (Supporting Fig. 3A) to
be discriminated from the other morphotypes. As expected, they
presented lower values for this ratio when compared to the conical
and the funnel-shaped clusters, which are wider in the upper part
than in the lower part of the cluster (Fig. 3). Similarly, the conicity
calculated using Wi602D and Wi802D [C2, Eqn (6)] could differentiate

the conical clusters from the other two morphotypes (Supporting
Fig. 3B), which present a similar morphology in the lower section
(Fig. 3).

The decision tree constructed on the basis of C1 and C2 values
showed that C1 was the most determining predictor, with a cut-off
value of 0.470. When this variable was used in the first step
of the classification in the decision tree, 76% of the clusters
included in node 1 had been visually classified as cylindrical
(Fig. 4). In a second step, the 51 remaining clusters were then
categorised according to their C2 value (cut-off= 0.249), with
the funnel-shaped clusters having the lowest values. Considering
both steps, 19 out of 24 (79.2%) conical clusters were correctly
classified (node 4, Fig. 4), while node 3 included a majority of
funnel-shaped clusters (66.7%). Nonetheless, most clusters visually
classified as funnel-shaped (and an important number of clusters
visually categorised as cylindrical) were included in node 4. This
misclassification was probably caused by the several difficulties
existing in the visual classification of cluster shape. First, there are
no clear borders between the different classes of cluster shape,
and certain clusters with intermediate shapes can be assigned
to different categories. Second, the approach proposed by the
O.I.V. evaluates a short region of the cluster (40–80%), and its
visual delimitation can be a complicated task for the judge, whose
opinion can be biased by the global morphology of the cluster
or its size. Thus, subjectivity may be high in visual classification,
making it difficult to obtain accurate reference data. The method
proposed here maintains the spirit of the O.I.V. descriptor, but
avoids the problems of subjectivity. It uses variables measured
at the exact points defined for cluster shape evaluation, and
sets a series of cut-off values for the individual assignment to
the different shape classes. The stated cut-off values could need
fine tuning by including more samples, but in general terms the
analysis of 2D images provides relevant and precise information
for the assessment of cluster shape.

Determination of the morphological volume of the cluster
Two novel methods have been tested for the estimation of the
morphological volume of the cluster: (1) direct 3D scanning, and
(2) a geometric reconstruction using variables obtained from the
2D image analysis (Fig. 1B and D). Both methods showed a high
level of significant correlation (P ≤ 0.001) to the manual value
(r = 0.956 and 0.953 for the 2D and 3D methods, respectively),
and a coefficient of determination (R2) of 0.914 for the 2D system
and 0.908 for the 3D approach. These results initially suggested
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Figure 5. Bland–Altman plots for the comparisons for the morphological volume of the cluster obtained by manual procedures, and by means of novel
technologies [2D image (A) and 3D scanning (B)]. Centre line (solid/red(online)) indicates the average difference between both procedures, and outer
(dashed) lines indicate the 95% limits of agreement, whose values are indicated.

that both methods could be used for the accurate estimation
of the trait. Nonetheless, the Bland and Altman29 approach
(Fig. 5A and B) revealed a systematic under-estimation for the
3D system (μd =−169.20 mL). Moreover, this system was charac-
terised by a wide error (95% confidence interval limits: 31.02 and
−369.42 mL), and a systematic bias dependent on cluster size: the
under-estimation of the morphological volume was greater as the
volume of the cluster increased.

In our sample, the bigger clusters were those of the table grape
cultivar Ruby Seedless, which presented a loose appearance char-
acterised by the presence of numerous cavities in their morphol-
ogy. The volume of such cavities was captured by the manual
system and by the geometric reconstruction calculated from 2D
image analysis, leading to the similarity of both values. By contrast,
the 3D method excluded a fraction of that ‘empty’ volume of the
closed mesh (Fig. 2B), thus generating an under-estimation of the
morphological volume if compared to the other two methods. The
3D method released an intermediate value between the actual and
the morphological volumes in loose clusters, whereas it released
a more accurate value for compact clusters, since they have a
smaller number of cavities. Hence, in a highly diverse set of clus-
ters, the 2D approach seems to be more appropriate than the 3D
system for the evaluation of the morphological volume. Moreover,
the proposed geometric reconstruction fits the variable cluster
shapes. Previous measurements, like the conical estimation pro-
posed by Shavrukov et al.,14 did not represent the different mor-
photypes that can be found in the grapevine in a realistic way. In
this work, the grapevine cluster has been divided into four sections
whose volumes have been independently calculated, leading to a
simple approach for the evaluation of the morphological volume
of the cluster.

Evaluation of cluster compactness from image-based
technologies
Cubero et al.24 have recently shown that the analysis of 2D images
allows the determination of some compactness-related attributes
that cannot be assessed by hand, although they can be quite
useful for the automated evaluation of this feature. In our work,
the percentage of pixels of the 2D image not occupied by berries
[hence corresponding to parts of the rachis or empty holes, AR

Table 1. Coefficients of correlation between cluster attributes
obtained by image-based technologies and (1) the visual mode value
of compactness stated by the judges panel (𝜏b), and (2) the quanti-
tative value of compactness calculated according to CI-12 index pro-
posed by Tello and Ibáñez10 (r)

Parameter Visual compactness Compactness index CI-12

AR (%)2D +AH (%)2D −0.672** −0.730**

Le2D (cm) −0.257** −0.234*

Wi2D (cm) NS 0.320**

Wi252D (cm) NS 0.346**

Wi402D (cm) NS NS
Wi502D (cm) 0.230** 0.516**

Wi602D (cm) 0.402** 0.472**

Wi752D (cm) 0.581** 0.765**

Wi802D (cm) 0.614** 0.720**

NS, not significant; *significant at the 0.05 level; **significant at the 0.01
level.

(%)2D +AH (%)2D] showed a large correlation with both the mode
value of visual compactness given by the panel of judges and the
objective and quantitative index CI-12 (Table 1).

A one-way ANOVA for AR (%)2D +AH (%)2D revealed a statisti-
cally significant result (P ≤ 0.05), and Fisher’s LSD post-hoc tests
revealed that all classes were statistically distinct (P ≤ 0.05), except
those from compact and very compact clusters (data not shown).
According to the O.I.V. descriptor for cluster compactness, the vis-
ibility of pedicels and the occurrence of empty holes in the clus-
ter allows a distinction to be made between very loose, loose and
medium clusters, whereas compact and very compact clusters are
so dense that they do not have visible pedicels/rachis or empty
spaces in their structure,9 thus supporting our findings. Follow-
ing the O.I.V. descriptor,9 these two classes differ according to the
absence (compact clusters) or presence (very compact clusters) of
deformed berries, which may appear as a result of the compres-
sion stresses that occur during the development of the cluster5 in
clusters with a large solid volume per centimetre of rachis.

To obtain an indirect and automatic estimation of such com-
pression, we calculated the compactness index CI-132D [Eqn (7)]

wileyonlinelibrary.com/jsfa © 2016 Society of Chemical Industry J Sci Food Agric 2016; 96: 4575–4583
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using only measurements obtained from the 2D image analysis.
This ratio relativises the cluster morphological volume (which is
close to the actual volume in tight clusters) to the squared clus-
ter length, so it is expected to increase as cluster compactness
increases. CI-132D showed statistically significant coefficients of
correlation with both the mode value of compactness given by
the panel of judges (𝜏b = 0.591; P ≤ 0.01), and CI-12 (r = 0.775;
P ≤ 0.01). A one-way ANOVA for CI-132D revealed a statistically
significant result (P ≤ 0.05), all the groups of compactness being
statistically distinct (Fisher’s LSD post-hoc test, P ≤ 0.05, data not
shown).

AR (%)2D +AH (%)2D and CI-132D represent attributes that are
highly related to cluster compactness, and measure different clus-
ter compactness-related features. Those variables are significantly
inter-correlated in our set of clusters (r =−0.419; P ≤ 0.01), reveal-
ing that they explain a common part of the morphological vari-
ation. This negative correlation is not unexpected, since clusters
with more volume per cm of rachis (high values for CI-132D) usu-
ally have fewer visible pedicels and empty holes [low values for AR
(%)2D +AH (%)2D], and vice versa.

Considering that AR (%)2D +AH (%)2D and CI-132D also bear
independent information about cluster compactness, they were
used as predictive variables to construct a regression model [Eqn
(10)]. The analysis of the standardised regression coefficients (𝛽) of
both variables in the model indicated that the predictive weight of
AR (%)2D +AH (%)2D (|𝛽|= 0.664) is considerably higher than that
of CI-132D (|𝛽|= 0.343). The model showed a predictive capability
(R2) of 84.5% (P ≤ 0.01) for the training set of 40 clusters, and
71.1% (P ≤ 0.01) when applied to the validation set. These values
are similar to those reported by Ivorra et al.25 (R2 = 80.8%) and
Cubero et al.24 (R2 = 85.3%). Moreover, we found similar low values
of RMSE in both sub-sets of clusters (0.79 and 1.12, respectively),
thus indicating that the model performs well not only for the set
of clusters used for its construction (training set), but also for a
different sample (validation set).

Comp = 5.077 − 0.497 × [AR (%) + AH (%)]

+ 1.596 ×
MVo2D (mL)[

Le2D (cm)
]2

(10)

The predicted value of cluster compactness showed a high cor-
relation with the visual one in both subsets of clusters (r = 0.924
for the training set and r = 0.843 for the validation set; P ≤ 0.01)
(Fig. 6). Considering the complexity of the trait, and the use of a
visual, subjective, and qualitative value as a reference, it is accept-
able to find up to a one-class difference between the visual and
the predicted values of compactness.10 In our model, all the pre-
dicted values (but one) fall within this range of variation (Fig. 6).
Moreover, we observed a high level of linear correlation between
the predicted value and both the visual value of compactness
(𝜏b = 0.721; P ≤ 0.01) and the objective index CI-12 (r = 0.878;
P ≤ 0.01) for the whole set of clusters (n= 80). Coefficients were
higher than those obtained individually for the predictors included
in the model (Fig. 7). Moreover, a one-way ANOVA followed by a
Fisher’s LSD post-hoc test showed significant differences (P ≤ 0.05)
for the model-predicted values among the different classes of
visual compactness (Supporting Fig. 4). In comparison to previ-
ous works,10,24,25 the proposed model has the advantage of involv-
ing a low number of variables (AR2D, AH2D, Le2D, Wi252D, Wi502D,
and Wi752D), which can be obtained automatically from 2D images
with no long computation times. Altogether, our results suggest
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Figure 6. Observed versus predicted values of compactness obtained by
the regression model in the training (empty circles) and the validation
(filled circles) subset of clusters. The identity line (y = x) is shown as a
solid/red line. Dashed lines indicate the tolerated variation in one category
of compactness with respect the line of equality.

Figure 7. Absolute coefficients of correlation obtained between the visual
mode value of compactness stated by the judges panel (in white; 𝜏b) or
the quantitative value of compactness calculated according to CI-12 Tello
and Ibáñez 10 (in grey; r) and three automatic methods of evaluation of
cluster compactness: (1) percentage of image occupied by empty holes
or stem (AR (%)2D +AH (%)2D), (2) the CI-132D index, and (3) the model
constructed through their combination (Comp).

that cluster compactness can be evaluated in a fast, automated
and accurate way through the analysis of 2D images.

CONCLUSIONS
In this work, different cluster morphological attributes with
an impact on crop yield and quality have been measured
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automatically through the application of novel 2D and 3D
image-based technologies. 2D image processing has provided
a simple, accurate and objective framework to estimate cluster
size and elongation. This system provides similar values to those
obtained by means of traditional systems, but having the advan-
tage of the short period of time needed for their high throughput
characterisation. Some insights for the measurement of cluster
shape are given, and the evaluation of the conicity of the cluster
at its central part emerges as a promising starting point. The
estimation of the morphological volume of the cluster through
direct 3D scanning was faulty, especially for the loosest clusters.
Hence, the 2D approach proposed in this work is more appropriate
when evaluating this trait in a highly diverse set of clusters. Lastly,
we propose a model for cluster compactness estimation based on
the automatic evaluation of two cluster attributes related to this
trait (visibility of the pedicels and/or empty holes in the cluster,
and the compaction of the berries), which can be estimated from
the analysis of 2D images. Its high predictive capability suggests
the usefulness of the model for the objective and automatic
evaluation of this complex trait. The advances presented here
can be applied in different contexts, including sorting tables of
table grapes and in wineries for the classification of clusters prior
to winemaking. They may also be used in breeding programmes
focused on generating new elite cultivars or clones, and in genetic
studies aimed at identifying the underlying genetics of grapevine
cluster morphology.
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