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ABSTRACT 

It has been developed the synthesis of a new microporous Metal-Organic Framework (MOF) based 

on two Secondary Building Units (SBU), with dinuclear cobalt centers. The employing of a well-
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defined cobalt cluster results in an unusual topology of the Co2-MOF, where one of the cobalt 

centers has three open coordination positions, which has not precedent in MOF materials based on 

cobalt. Adsorption isotherms have revealed that Co2-MOF is in the range of best CO2 adsorbents 

among the carbon materials, with a very high CO2/CH4 selectivity. On the other hand, dispersion 

of Co2-MOF in an alcoholic solution of Nafion gives rise to a composite (Co2-MOF@Nafion) 

with a great resistance to hydrolysis in aqueous media and good adherence to graphite electrodes. 

In fact, it exhibits a high electrocatalytic activity and robustness for the oxygen evolution reaction 

(OER), with a TOF value superior to those reported for similar electrocatalysts. Overall, this work 

has provided the basis for the rational design of new cobalt OER catalysts and related materials 

employing well defined metal clusters as directing agents of MOF structure. 

INTRODUCTION 

Water splitting is one of the key processes for many applications related with energy storage and 

conversion.1-3 Water oxidation (WO) or oxygen evolution reaction (OER) is still considered the 

most challenging step in water splitting since it is a more complex transformation than proton 

reduction.4-5 In fact, OER is essential to achieve successfully hydrogen production from water6-7 

but also in other applications such as regenerating fuel cells8 and rechargeable metal-air batteries.9 

Cobalt-based water oxidation catalysts (WOC), including molecular complexes5,10-11 and inorganic 

nanoparticles,12-17 are of great interest due to their prominent activities and abundance of this metal 

in the earth.18-21 

However, few examples of electrocatalytic WOC based on porous metal-organic frameworks 

(MOFs)22 have been reported,23-26 despite their large structural features. In fact, the ample 

versatility in coordination modes and nuclearity has provided a high structural diversity of MOFs 
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in barely 25 years, with applications in the fields of gas storage and sensing,27-29 catalysis,30-31 and 

electroactive materials in devices.31-36 In addition, MOFs are also emerging as potential 

electrocatalysts for CO2 reduction, hydrogen and oxygen evolution reactions.37-39 

Among the different secondary building units (SBUs) that form MOFs, the dinuclear 

M2(RCOO)4 paddlewheel (M = Cu, Zn, Ni, Fe, Co, Mo, Cr, Ru) is considered a potential core to 

achieve OER successfully with abundant metallic elements.40 However, cobalt MOF materials 

based on this SBU have shown poor stability in water.41 Different approaches have been used to 

augment the water stability of MOFs mainly based on the employment of bulky, hydrophobic 

and/or irremovable ligands.40,42-43 Herein, we report a new Co-based MOF of formula 

{[Co2(BTC)1,3(DMF)2][Co2(BTC)1,3(DMF)2py]}, denoted as Co2–MOF, possessing two distinct 

dinuclear cobalt SBUs. Upon Nafion coating, Co2–MOF is water-stable, thus allowing its 

evaluation as an electrocatalyst in the O2 evolution reaction (OER) with high activity under mild 

conditions. 

DISCUSSION AND RESULTS 

Synthesis and characterization of Co2–MOF. The solvothermal reaction of the cubane cluster 

[Co4O4(OAc)4(py)4]44 and benzene tricarboxylic acid (H3BTC) in DMF results in the formation of 

violet plates of Co2–MOF after 72h. The use of the cubane cluster as starting material is key for 

the formation of Co2–MOF, unachievable with other common cobalt reagents (Figures S1 and 

S2). Single crystal X-ray diffraction reveals that Co2–MOF crystallizes in the monoclinic P21/n 

space group (Table S1). Two different dinuclear secondary building units (SBU), denoted SBU1 

and SBU2, are found in this structure (Figure 1). The SBU1 unit is the archetypal paddlewheel 

structure, formed by two crystallographically related Co2+ atoms (via an inversion center, more 

details in SI). The SBU2 unit is more atypical, formed by two crystallographically independent 
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Co2+ atoms, each of them with a different connectivity. One Co center is coordinated by six oxygen 

atoms from four BTC3– ligands, with Co–O distances in the range of other reported cobalt MOFs 

(Figure S3).45-50 Specifically, there are two ligands that chelate the metal center, whereas the two 

ligands coordinate in the classical way of a paddlewheel structure. The other Co center of the 

SBU2 unit is coordinated by three O atoms from three shared BTC3– ligands and three solvent 

molecules (one pyridine molecule and two DMF molecules), with distances in the range of other 

reported cobalt MOFs (Figure S1b). 

 

Figure 1. (a) Crystal structure of Co2-MOF; (b) Representation of the two dimeric SBUs found 

in compound 1: SBU1, the characteristic paddlewheel unit, and SBU2, with an unusual 

coordination of three solvent molecules to one metal center. Hydrogen atoms are omitted for 

clarity. 

The connection of these two different SBUs yield a 3D network with 1D channels parallel to the 

crystallographic a axis (Figure S4), which are filled with DMF molecules, as confirmed by 

thermogravimetric analysis (Figure S5). The microporosity of the material has been demonstrated 

upon activation at 100 ºC under vacuum, with a high CO2 adsorption capacity of 1.1 mmol/g at 
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0ºC and 100 kPa (Figure S6a-b), which corresponds with an apparent surface area of 233 m2/g. 

The value of isosteric heat of adsorption of CO2 at zero coverage (qst,0) calculated from the Henry 

constants is 30 kJ/mol (Figure S6c), being comparable to the one of a LTA zeolite of Si/Al ratio 

of 5.51 This value was set as a good compromise between adsorption capacity and regenerability 

for a CO2 adsorbent, due to the strength of the gas-solid interactions. The high pressure CO2 and 

CH4 isotherms (up to 10 bar) obtained at different temperatures (Figures S6d) supports that Co2–

MOF is a promising material for CO2/CH4 separation (Figure S6e) with very similar values to 

those of zeolitic molecular sieves.52 Although the selectivity decreases with the increase of 

pressure, it remains very high, even at 298 K and 500 kPa. Magnetic measurements of Co2–MOF 

(Figure S7) were also employed to characterize this new material. Finally, Co2-MOF was studied 

by FESEM (Field Emission Scanning Electron Microscopy) and EDX (Energy Dispersive X-ray 

spectroscopy) analysis (Figure S8), to provide further composition characterization and by XPS 

(X-ray photoelectron spectroscopy), in order to know more about the electronic structure. The 

photoelectron spectra of the Co 2p line for the Co2-MOF (Figure S9) and the fitting results are 

shown in Table S2. From this analysis, it could be confirmed that cobalt centers are exclusively in 

Co(II) oxidation state. 

Chemical stability of Co2-MOF. Despite the high thermal stability of Co2-MOF, a structural 

reorganization takes place in the presence of protic solvents such as ethanol, water and their 

mixtures (Figures S10, S11). Thus, Co2-MOF is transformed into a previously described 

mononuclear cobalt material of formula Co3(BTC)2(H2O)3, denoted as Co-MOF.53 This material 

forms a hydrogen-bonded 3D structure based of zig-zag chains in which coordinated water 

molecules interact with carboxylate groups of adjacent chains. In an effort to overcome this 

drawback, we have found that its dispersion in an alcoholic Nafion solution provides a composite 
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(Co2-MOF@Nafion) that is stable in water, as evidenced by the absence of significant changes in 

the X-ray power diffraction patterns measured for Co2-MOF@Nafion before and after being 

treated with water (Figures S12 and S13). According to recent studies with HKUST-1/Nafion and 

Zn(II) based MOF/Nafion composites,54,55 the enhancement of the MOF chemical stability can be 

ascribed to a lower water content in the composite compared to that in the absence of Nafion. 

These studies reported on a decrease of the water uptake by the composite upon increasing the 

amount of MOF, which was ascribed to the reduction of the number and size of the available pores. 

Apart from its protective role, Nafion also improves the adherence of Co2-MOF to graphite 

electrodes, enabling the study of its electrocatalytic performance for the water oxidation (vide 

infra). 

Electrochemical study over Co2-MOF and Co-MOF. The electrochemical behavior of Co2-

MOF was investigated by cyclic voltammetry employing a pyrolytic graphite electrode coated 

with a Co2-MOF@Nafion film in a solution containing 0.1 M [Et4N]BF4 in acetonitrile (Figure 

2a). The voltammogram consists of two well resolved quasi reversible waves at 1.02V (wave I) 

and 1.35V (wave II), superimposed on a rising background current. To get some clues of the redox 

conversion involved in each voltammetric wave, the voltammetric response of the mononuclear 

Co-MOF has been measured (Figure 2a). It also shows two well resolved voltammetric waves 

located at 0.61 V and 1.35 V, that correspond to the two consecutive monoelectronic redox 

conversions Co(II)/Co(III) (wave I) and Co(III)/Co(IV) (wave II), respectively (Scheme in Figure 

2b). The similarity on the charge under the baseline of the corrected voltammetric waves for both 

MOFs suggests that monoelectronic charge transfers are also taking place in the Co2-MOF, the 

first being ascribed to the Co(II)/Co(III) redox conversion. For the second wave, however, there 

are two plausible scenarios, namely, i) the Co(II)/Co(III) redox conversion of the second cobalt 
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center or ii) the Co(III)/Co(IV) redox conversion of the Co(III) center formed in the first anodic 

wave (Scheme in Figure 2c). Although we cannot discriminate among these two possibilities, the 

similarity in the peak potentials for the second anodic wave of both Co-MOF and Co2-MOF 

suggests that it may also correspond to the Co(III)/Co(IV) redox conversion for the dinuclear Co2-

MOF. Nevertheless, it cannot be discarded that both species Co(II)-Co(IV) and Co(III)-Co(III) 

could coexist in equilibrium as Nocera et al. have proposed recently for other dinuclear cobalt 

OER catalyst based on its specific electronic features.56, 57 

 

 

Figure 2. a) Cyclic voltammograms of a pyrolytic graphite electrode modified with Co2-

MOF@Nafion (red line) or hydrolyzed Co-MOF@Nafion (cyan line) recorded at 0.05 Vs-1 in a 

solution containing 0.1 M [Et4N]BF4 in acetonitrile at 25 ºC. b) and c) Redox conversions involved 

in the voltammetric response of coated (b) Co-MOF and (c) Co2-MOF. 

a)
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Additionally, it has been found that increasing the scan rate from 0.002 to 0.2Vs-1 results in a 

decrease of the faradaic voltammetric charge from ~7.5 to ~0.6 µC (Figures S14 and S15). This 

finding is consistent with a progressive limitation of the redox conversion by charge transport 

across a multilayered film.58-59 In addition, the small variation of the anodic peak potentials with 

the scan rate (Figures S14 and S15) is indicative of different local environments for the cobalt 

center along the film. Moreover, it should be noted that upon extending the potential scan to more 

negative values, two additional cathodic voltammetric waves at -0.450 and -0.870 V (vs. NHE), 

with their corresponding anodic waves at -0.317 and -0.080V (vs. NHE), appear (Figure S16). The 

fact that the more negative cathodic wave also appears in the Co2-MOF-free Nafion-coated 

graphite electrode reveals that only the first cathodic wave at -0.450 V can be ascribed to the 

reduction of the cobalt centers. The similarity of its baseline-corrected charge with the total charge 

exchanged in the two anodic waves preceding the OER signal suggests that it corresponds to the 

two monoelectronic Co(II)-Co(II)/Co(I)-Co(I) redox conversions. 

On the other hand, as shown in Figure 2a, the second redox conversion of cobalt MOFs is 

accompanied by a significant increase of the background current. The fact that this component of 

the overall current increases upon addition of variable volumes of an aqueous sodium phosphate 

buffer solution of pH 7 (Figure 3a) indicates that it corresponds to the Co2-MOF mediated 

electrocatalytic oxidation of water, commonly known as the oxygen evolution reaction (OER). 

The insensitivity of the voltammetric wave I to the presence of increasing amounts of water reveals 

that Nafion not only serves to anchor Co2-MOF to the electrode surface, but also to preclude its 

hydrolysis, since otherwise a shift of this voltammetric wave towards the one observed for the 

hydrolyzed Co-MOF would be expected. 
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Figure 3. a) Cyclic voltammograms of the Co2-MOF@Nafion modified pyrolitic graphite 

electrode recorded at 10 mVs-1 for the indicated acetonitrile:aqueous sodium phosphate buffer 

solution (pH 7) ratio. b) Cyclic voltammograms of a pyrolytic graphite electrode modified with 

Nafion (dashed grey line) or Co2-MOF@Nafion (red line) recorded at 10 mVs-1 in an aqueous 

solution containing 0.1 M sodium phosphate buffer pH 7 at 25 ºC. 

Figure 3b illustrates the voltammetric response of Co2-MOF deposited onto a graphite electrode 

measured in a deaerated 0.1M sodium phosphate buffer solution (SPB) of pH 7. Only one 

voltammetric wave (wave I) is observed at 0.98 V vs. NHE due to the broad overlapping of the 

exponentially increasing OER electrocatalytic current with the voltammetric wave involving the 

Co(III)/Co(IV) redox conversion. Under these conditions, the scan rate dependence of the 

voltammetric peak parameters of wave I is similar to the ones found in acetonitrile (Figure S17), 
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so that the rate of the redox conversion is limited by charge transport across the film, and different 

local environments exist for the cobalt centers along the film.58-59 

 

Electrocatalytic Performance for the Oxygen Evolution Reaction. To explore the 

electrocatalytic activity of Co2-MOF toward the OER in neutral media, rotating disk voltammetry 

was employed to obtain nearly steady state polarization curves. All measurements were carried 

out with a scan rate of 5 mVs-1 and a rotation rate of 4000 rpm, to preserve a uniform concentration 

profile around the working electrode and to prevent the accumulation of O2 bubbles. A typical 

polarization curve is depicted in Figure 4a, which shows a sharp rise of the anodic current at 1.68V 

vs. RHE that is associated with the onset of the electrocatalytic OER, while there is no appreciable 

current signal in the absence of the catalyst. In the same experimental conditions, the hydrolyzed 

mononuclear Co-MOF produces smaller electrocatalytic currents, with almost the same onset 

potential, than its dinuclear counterpart Co2-MOF. The similarity between their electrocatalytic 

onset potentials and their redox potential for the Co(III)/Co(IV) conversion suggests that the 

electrocatalytic oxidation of water being driven by Co(IV). An important operating parameter for 

the OER performance evaluation is the overpotential at a fixed current. Taking the thermodynamic 

OER potential value of 1.23 V vs. RHE as reference, the PG/Co2-MOF@Nafion electrode shows 

overpotential values of 460 and 537 mV at 2 and 5 mAcm-2, respectively. These overpotential 

values are lower than those determined for the mononuclear Co-MOF (565 and 687 mV at 2 and 

5mAcm-2, respectively) and those previously reported for MOF based catalysts operating in neutral 

media, with the exception of the hybrid MOF MCF-4960 (Table S3 in SI). Moreover, a comparison 

of the polarization curves of Co2-MOF with those obtained for the well known IrO2 and RuO2 

OER electrocatalysts reveals the excellent OER performance of the herein constructed cobalt 

based MOF (Figure S18 in SI). 
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Figure 4. (a) Rotating disk voltammograms of a pyrolytic graphite electrode modified with Co2-

MOF@Nafion (red line) or hydrolyzed Co-MOF@Nafion (cyan line) recorded at 5 mVs-1 and 

4000 rpm in an aqueous solution containing 0.1 M sodium phosphate buffer pH 7 at 25 ºC. Dashed 

grey line is the corresponding cyclic voltammogram of a pyrolytic graphite electrode modified 

with Nafion. (b) Potentiostatic chronoamperograms of a pyrolytic graphite electrode modified with 

Co2-MOF@Nafion (red line) or Co-MOF@Nafion (cyan line) recorded at 4000 rpm for 

incremental potential steps of 0.02 V, from 1.59 V to 1.85 V, in an aqueous solution containing 

0.1 M sodium phosphate buffer pH 7 at 25 ºC. (c) Tafel plots of the steady state current density 

data of b). 

The electrocatalytic kinetics of the OER were estimated from the corresponding Tafel plot 

obtained from the steady state current density data recorded in the 1.59-1.85V vs. RHE potential 

range by means of potentiostatic chronoamperometry, with a potential step of 0.02V (Figure 4b). 

At least three Co2-MOF@Nafion electrode replicates were used in the chronoamperometric 
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measurements for the determination of Tafel slope, with an electroactive cobalt surface 

concentration (Г) in the 15 < Г <30 nmoles cm-2 range. Co2-MOF exhibits a Tafel slope of 

105 ± 5mV decade-1 in 0.1M SPB pH 7, being, to our knowledge, the best value among known 

cobalt MOFs catalysts60 (Table S3 in SI). In the same experimental conditions, the Tafel slope for 

the mononuclear Co-MOF is 125 ± 5 mV decade-1. 

The turnover frequency number (TOF) was determined from the expression 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑗𝑗𝑗𝑗/(4𝑇𝑇𝐹𝐹), 

where j is the current density at a given overpotential, A is the geometrical surface area of the 

graphite electrode, F is the Faraday constant and m is the mole number of electroactive cobalt 

participating in the catalytic process. The amount of electroactive cobalt was determined from m =

𝑄𝑄/(𝑛𝑛𝑇𝑇), where Q is the faradaic charge under the baseline-corrected voltammetric peak preceding 

the electrocatalytic wave, and n is the number of electrons transferred per cobalt center. A value 

of 0.026 ± 0.005 s-1 was obtained for the TOF number of Co2-MOF at an overpotential of 400 mV 

with m = 1.70·10-9 moles and n = 1 (Figure 4c). This value is superior to the one determined for 

the mononuclear Co-MOF (0.014 ± 0.005 s-1 with m = 1.75·10-9 moles and n = 1) and to those 

values reported for similar electrocatalysts (Table S3 in SI). 

The influence of the redox electroactive surface concentration of Co2-MOF on the 

electrocatalytic water oxidation was also evaluated. Figure 5a shows how the current density 

increases and the corresponding overpotential at a given current density decreases upon rising the 

redox electroactive surface concentration. As shown in Figure 5b, the estimate TOF number for 

Co2-MOF at an overpotential of 400mV decreases upon growing the catalyst loading, until it 

levels off at ~ 0.045s-1 for a surface concentration of redox active cobalt of 1.7·10-8 moles cm-2. 

This leveling off effect may result from agglomeration of the catalyst grains upon increasing their 
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surface concentration that may limit the solvent exposed catalytic surface area and change the 

surface mass transport regime from cylindrical to planar symmetry. 

 

Figure 5. (a) Rotating-disk voltammograms of a pyrolytic graphite electrode modified with 

different electroactive amounts of Co2-MOF@Nafion in the 0.1-3.9·10-9 mole number range, 

recorded at 5 mVs-1 and 4000 rpm in an aqueous solution containing 0.1 M sodium phosphate 

buffer pH 7 at 25 ºC. Inset plot: baseline-corrected voltammetric wave I. (b) Estimated TOF 

number at an overpotential of 400mV as a function of electroactive cobalt surface concentration. 

The green dashed line is just an eye guide. 

To assess the stability of the electrocatalyst during the OER, we have compared the polarization 

curves measured before and after performing 500 consecutive cyclic voltammograms in the 0.8-

1.9 V (vs. RHE) potential window, at a sweep rate of 0.2 Vs-1. As shown in Figure 6a the 

polarization curves shape barely changes after this extensive cycling. Moreover, the robustness 

and long-term durability of the catalyst have been evaluated under operating conditions by 

recording the chronoamperometric current at 1.80V for 4 hours (inset of Figure 6b). As shown in 

the inset of Figure 6b, the chronoamperogram is characterized by an initial decrease of the current 

until it approaches a steady state value of ~55% of the initial current at long times. The invariance 

of the voltammograms recorded before and after the chronoamperometric experiment (Figure 6b) 
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reveals that the decrease of the chronoamperometric current is not due to a loss of Co2-MOF, but 

to mass transport limitation within the multilayered film. Formation of oxygen microbubbles at 

the electrode surface may affect water transport inside the film. Nevertheless, the preservation of 

the voltammetric features after such long term electrolytic experiment proves the good stability of 

the catalyst. In order to estimate the Faraday efficiency of Co2-MOF for OER, the oxygen 

production during the water electrolysis ∆𝐹𝐹𝑂𝑂2has been measured with a polarographic oxygen 

sensor. A Faraday efficiency of 87% was determined from the slope of the plot of ∆𝐹𝐹𝑂𝑂2 against 

the charge consumed during the electrolysis Q as illustrated in Figure S19, indicating that the 

current intensity mostly originates from water oxidation as evidenced by the formation of oxygen 

bubbles on the electrode surface (Figure S20 in SI). 

Finally, it should be noted that the present Co2-MOF retains its electrocatalytic activity and 

stability toward the OER in aerated conditions (Figure S21), which is demanded for practical 

applications. Moreover, the stability of Co2-MOF@Nafion after water electrolysis has been 

proved employing XPS and EDX analysis (Figure S22 and S23, respectively). EDX (Figure S23) 

shows that cobalt is well distributed on the composite as happened in Co2-MOF, and metal 

aggregations are not detected. In addition, XPS data of the composite (Figure S22, table S4) 

supports that cobalt remains in the same oxidation state and the small shift appreciated (1.4 eV) in 

Eb Co 2p is associated with the presence of fluorine in the composite. It is well known that fluorine 

tends to induce large chemical shifts in other elements. 
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Figure 6. (a) Rotating disk voltammograms for a Co2-MOF@Nafion modified graphite electrode 

measured at 5 mVs-1after recording 1 scan (dashed orange line), 20 consecutive scans (dashed blue 

line) and 500 consecutive scans (dashed cyan line) at 0.2 Vs-1 in an aqueous solution containing 

0.1 M sodium phosphate buffer pH 7 at 25 ºC. Inset plot: voltammograms recorded at the indicated 

number of scans with 0.2 Vs-1. (b) Rotating disk voltammograms for a Co2-MOF@Nafion 

modified graphite electrode measured at 5 mVs-1 before (dashed orange line) and after (dashed 

cyan line) recording the chronoamperometric current at 1.80V vs. RHE for 4h are depicted in the 

inset plot. The corresponding cyclic voltammograms at 0.2 Vs-1 before (orange line) and after (cyan 

line) electrolysis experiment are depicted in the inset plot. 
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CONCLUSIONS 

In summary, we have developed the synthesis of a new microporous MOF based on two SBU 

with dinuclear cobalt centers. In this sense, the employing of a well-defined cobalt cluster drives 

force an unusual topology for Co-MOFs, where one of the cobalt has three open coordination 

positions, which has not precedent in MOF materials based on cobalt. In addition, the largest 

channel size is in the range of 10 to 12Å. Adsorption isotherms have revealed that Co2-MOF is 

selective for CO2 adsorption versus CH4 with similar values to those of zeolitic molecular sieves. 

Dispersion of Co2-MOF in an alcoholic solution of Nafion gives rise to a composite (Co2-

MOF@Nafion) with a high resistance to hydrolysis in aqueous media. The obtained composite 

shows good adherence to graphite electrodes, where it exhibits a high electrocatalytic performance 

for water oxidation in neutral media, with a TOF value superior to the one determined for the 

mononuclear Co-MOF and to those reported for similar electrocatalysts. Overall, this work has 

provided a basis for the rational design of new cobalt OER catalysts and related materials 

employing well defined metal clusters as directing agents of MOF structure. 

 

EXPERIMENTAL SECTION. 

All chemicals were purchased from the Sigma Aldrich Chemical Co. and used as received. 

[(Co4O4)(OAc)4(Py)4] was synthesized according to published procedures.44 

Synthesis of Co2-MOF. Solvothermal conditions were employed to generate Co2-MOF using 

[(Co4O4)(OAc)4(Py)4]44 as building block of the final materials. It was synthesized from 2.7 

equivalents of H3BTC (2.38 mmol) per each equivalent of [Co4O4(OAc)4(py)4] (0.89 mmol) which 

were dissolved in two different solutions with 25 mL DMF each one. The two solutions were 

mixed and 8 equivalents of trifluoroacetic acid were added to reaction mixture. The resulting 
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solution was introduced into a stainless steel autoclave, being heated at 135ºC for 72 hours under 

autogeneous pressure and static conditions. Once cooled to room temperature, the solution was 

filtered and the collected purple crystals were washed with acetone in order to remove the 

remaining DMF solvent molecules. Finally, the material was isolated and dried under vacuum at 

room temperature. Anal. Calcd for C35H39Co3N5O16: C, 43.676; H, 4.084; N, 7.276; Co, 18.369. 

Found: C, 43.947; H, 4.005; N, 7.593; Co, 18.570. 

Chemical analysis: Elemental analysis of nitrogen, carbon and hydrogen (N, C, H) contents of 

isolated solid materials were determined with a Carlo Erba 1106 elemental analyzer using 

sulfanilamide as reference. Also, a Varian 715-ES inductively coupled plasma atomic emission 

spectrometer (ICP-AES) was used in order to determine the content of Co. (More information in 

SI).   

Thermogravimetric analysis (TGA). It was carried out in a Netzsch TGA/STA 449 F2 Jupiter 

apparatus; using a heating rate of 10 ºC/min in an air stream of 100 mL/min until a temperature of 

600 ºC was reached. 

X-ray Powder Diffraction. The X-ray Diffraction measurements were acquired according to 

the powder method, in Bragg-Bretano geometry using a CUBIX diffractometer from PANalytical 

equipped with a PANalytical X'Celerator detector. X-ray radiation of Cu Kα was used and the 

measurement range was from 2.0º to 40º (2θ) with a step of 0.020º (2θ). 

Single-crystal X-ray diffraction. A single crystal of Co2-MOF was mounted on a cryoloop 

using a viscous hydrocarbon oil to coat the crystal. X-ray data were collected at 120 K on a 

Supernova diffractometer equipped with a graphite-monochromated Enhance (Mo) X-ray Source 

(λ = 0.71073 Å). (More information in SI).  
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Scanning electron microscopy of field emission. FESEM images of Co2-MOF were acquired 

using a Ultra 55 (Zeiss), operating at 2.0 KV, using powder samples prepared on a sample holder 

with a double-sided adhesive tape for the dispersion of the sample. Samples were coated with 

platinum in order to avoid charging effect. 

Magnetic measurements. Magnetic susceptibility measurements were carried out on a 

polycrystalline sample with a Quantum Design MPMS-XL-5 SQUID susceptometer. The 

susceptibility data were corrected from the diamagnetic contributions as deduced by using Pascal’s 

constant tables. 

X-ray photoelectron spectra. X-ray photoelectron spectra of the catalysts were recorded with 

a SPECS spectrometer equipped with a Phoibos 150MCD-9 multichannel analyzer using non 

monochromatic MgKα (1253.6 eV) irradiation. Spectra were recorded using an analyzer pass 

energy of 30 eV and an X-ray power of 100W under an operating pressure of 10-9 mbar. (More 

information in SI).  

Adsorption Measurements. High resolution adsorption isotherms up to 1 bar were measured 

in a Micromeritics ASAP 2010. Approximately 150 mg of solid were immersed in a liquid 

circulation thermostatic bath within a glass sample holder. The samples were degassed overnight 

at 333 K under high vacuum before each isotherm. Then, CO2 adsorption isotherms were acquired 

at 273, 283, 298, 313 and 333 K. 

High pressure adsorption isotherms were evaluated in an IGA-3 gravimetric analyzer (Hiden 

Isochema). About 50 mg of sample were loaded into the hanging pan and degassed at 333K under 

high vacuum during 4 hours. No weight loss was recorded at the end of the degasification process. 

The sample was then cooled down to the adsorption temperature under vacuum prior the isotherms 
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acquisition. Pure CO2 and CH4 isotherms were measured up to 1 MPa (10 bar) at 283, 298, 313 

and 333 K. (More information in SI). 

Electrochemical Measurements. Linear scan voltammetric measurements were performed 

with an AUTOLAB PGSTAT 30, from Eco Chemie B.V, in a three electrode undivided glass cell, 

equipped with a gas inlet and thermostated with a water jacket. The counter and reference 

electrodes were a Pt bar and an Ag|AgCl|NaCl saturated electrode, respectively. The reference 

electrode was connected to the cell solution via a salt bridge, and kept at room temperature (25 ± 

1ºC) in a non-isothermal configuration. The working electrode was a homemade pyrolytic graphite 

electrode constructed by fitting a rod of highly oriented pyrolytic graphite from Mineral 

Technologies into a PEEK casing, so that it exposed the edge of the graphite planes with a circular 

geometric area of 0.07 cm2. Prior to cobalt MOFs coating, graphite electrodes were polished with 

abrasive P2400 sandpaper, then they were rinsed with Millipore water and dried. To modify the 

electrode, suspensions of 5 mg mL 1 of Co2-MOF, hydrolyzed Co-MOF, IrO2 or RuO2 

electrocatalyst in a Nafion solution (5 wt. % in lower aliphatic alcohols and 15 20% water solution, 

from Sigma Aldrich) were prepared by ultrasonication for 15 minutes. Then, a volume of ~ 5µL 

of this suspension was dropped cast onto the graphite electrode and dried at room temperature 

overnight. 

Before electrochemical measurements, cyclic voltammetry (CV) was performed in the potential 

range of 0.2 1.3 V at a sweep rate of 50 mVs 1 to obtain a stable CV profile. Ohmic drop was 

compensated using the positive feedback compensation implemented in the instrument. The 

current density was referred to the geometrical electrode area. (More information in SI). 
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