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Conspectus 

 

Zeolites are microporous crystalline materials with well-defined cavities and pores, which can 

be prepared under different pore topologies and chemical compositions. Their preparation is 

typically defined by multiple interconnected variables (e.g. reagent sources, molar ratios, ageing 

treatments, reaction time and temperature, among others), but unfortunately their distinctive 

influence, particularly on the nucleation and crystallization processes, is still far from being 

understood. Thus, the discovery and/or optimization of specific zeolites is closely related to the 

exploration of the parametric space through trial-and-error methods, generally by studying the 

influence of each parameter individually.  

In the last decade, machine learning (ML) methods have rapidly evolved to address complex 

problems involving highly non-linear or massively combinatorial processes that conventional 

approaches cannot solve. Considering the vast and interconnected multiparametric space in 

zeolite synthesis, coupled with our poor understanding of the mechanisms involved in their 

nucleation and crystallization, the use of ML is especially timely for improving zeolite synthesis. 

Indeed, the complex space of zeolite synthesis requires drawing inferences from incomplete and 

imperfect information, for which ML methods are very well-suited to replace the intuition-based 

approaches traditionally used to guide experimentation.  

In this Account, we contend that both existing and new ML approaches can provide the “missing 

link” needed to complete the traditional zeolite synthesis workflow used in our quest to 

rationalize zeolite synthesis. Within this context, we have made important efforts on developing 

ML tools in different critical areas, such as 1) data-mining tools to process the large amount of 

data generated using high-throughput platforms; 2) novel complex algorithms to predict the 

formation of energetically-stable hypothetical zeolites and guide the synthesis of new zeolite 

structures; 3) new “ab-initio” OSDA predictions to direct the synthesis of hypothetical or known 

zeolites; 4) an automated tool for non-supervised data extraction and classification from 

published research articles.  

ML has already revolutionized many areas in materials science by enhancing our ability to map 

intricate behavior to process variables, especially in the absence of well-understood 

mechanisms. Undoubtedly, ML is a burgeoning field with many future opportunities for further 

breakthroughs to advance the design of molecular sieves. For this reason, this Account includes 

an outlook of future research directions based on current challenges and opportunities. We 

envision this Account will become a hallmark reference for both well-established and new 

researchers in the field of zeolite synthesis. 
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1.- Introduction 

Designing crystalline materials with tailored physicochemical properties is critical to industries 

spanning chemicals and petroleum to pharmaceuticals and electronics. Zeolites are crystalline, 

microporous aluminosilicates with well-defined cavities and pore topologies of molecular 

dimensions that directly impact the global economy with their ubiquitous use in many large-

scale catalytic and absorption processes. Few crystalline materials exhibit the level of synthetic 

complexity encountered in the preparation of zeolites, where multiple parameters (i.e. reagent 

sources, molar ratios, ageing treatments, reaction time and temperature, among many others) 

can be used to alter the outcome.1 The objective of selecting the appropriate synthesis 

conditions is to arrive at a crystal structure that has the desired physicochemical properties, but 

this point is very difficult because zeolite crystallization is not well understood. Zeolite 

crystallization is an interfacial phenomenon where the nucleation and crystallization of solute 

molecules is mediated by interactions with structure directing agents (SDAs), mainly organic and 

inorganic cations, that vary both in size and composition. In general, zeolites require the use of 

organic SDAs (OSDAs), which typically are amines and ammonium cations, featuring sizes and 

shapes commensurate with the geometry of porous channels/cages, to direct pore formation.2-

3 Preferentially, these OSDAs are amines, ammonium  However, today, most zeolite discovery 

efforts continue to be based on trial-and-error approaches with minimal control over the 

resulting structures.1-2  

 

Recent advances in artificial intelligence (AI) coupled with increased accessibility to large data 

sets has allowed the development of new algorithms and statistical methods capable of 

extracting relationships between variables in multidimensional systems.4 In particular, the use 

of machine learning (ML)—a subfield of AI that relies on complex mathematical models that can 

effectively “learn” from past data to find complex patterns embedded within large data sets—

in materials science has revolutionized our ability to map intricate behavior to process variables, 

especially in the absence of well-understood mechanisms. Considering the vast and 

interconnected multiparametric space in zeolite synthesis, our poor understanding of the 

control of mechanisms involved in their nucleation/crystallization, and the large amount of 

empirical data existing in the field, the use of ML is especially timely for improving zeolite 

synthesis. We expect these advances will have a dramatic impact on predicting hypothetical and 

known zeolites, as well as their synthesis conditions, undoubtedly accelerating the discovery of 

target microporous materials and ultimately improving our fundamental understanding.   
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To accomplish this goal, we must incorporate both existing and new ML approaches within the 

“traditional” zeolite synthesis workflow featuring well-established high-throughput 

synthesis/characterization devices and data-mining software (see Figure 1). We contend that 

ML will have a pivotal role in extracting, classifying, and interconnecting information across four 

critical research areas, namely i) high-throughput synthesis efforts, ii) design of feasible 

hypothetical zeolites, iii) “In-silico” prediction of OSDAs for target zeolites, and iv) automated, 

non-supervised data extraction from published literature. We note that most ML algorithms 

require “learning” from existing data sets to improve their accuracy, thus requiring effective 

methods to generate, organize, extract, and utilize existing and new information from 

computational and experimental outputs.  

 

In this account, we present, within the context of concurrent efforts by many other research 

groups, the main tools developed by our group at the ITQ that have helped advance each of the 

above-mentioned research areas. First, we describe data-mining tools developed to process the 

large amount of data generated at the advent of high-throughput infrastructure. Next, we 

describe the development of complex algorithms to predict the formation of energetically-

stable hypothetical zeolites, the “ab-initio” OSDA predictions to direct the synthesis of 

hypothetical or known zeolites, and, finally, the non-supervised data extraction and 

classification from literature. We conclude with an outlook of future research directions based 

on current challenges and opportunities.  

 

2.- “High-Throughput” platforms for zeolite synthesis 

In the late 1990’s, the empirical data acquisition process for zeolite synthesis was greatly 

accelerated with the implementation of “high-throughput” (HT) synthesis methods.5-7 These HT 

systems featured robotic multireactor systems operating under the tenets of automation, 

parallelization, and miniaturization that could explore many synthetic parameters automatically 

with drastic reductions in cost and time.8 Unlike those used in the pharmaceutical industry, HT 

reactors for zeolite synthesis needed to be re-engineered to i) handle harsher temperature 

(∼150-200°C), pressure (∼1.5 MPa) and alkaline conditions, ii) dispense both liquid and solids of 

varying physicochemical properties, and iii) be compatible with automated and parallelized 

characterization techniques using microgram scale solids. The use of these HT devices fast-

tracked the discovery of some novel zeolitic materials.9-10 The fast rates and large amounts of 

data generated in these systems required the development of “data-mining” methods for rapid 

and unsupervised analyses (see Figure 1).11  
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2.1.- High-Throughput synthesis 

The first multiautoclave designs consisted of a metal block containing Teflon-lined cylindrical 

chambers presenting diverse volumes, mostly between ∼0.5-1 ml (see Figure 2A).6-7, 12-13 We 

developed a multiautoclave for an in-house HT robotic system (see Figure 2B), based on 15 

individual portable Teflon vessels with intermediate volumes of ∼1-2 ml.14 This feature was an 

important breakthrough in the design of multiautoclaves for zeolites because it allowed precise 

weight control during the entire gel preparation process. Modern multiautoclave designs also 

permit the in-situ filtration of the gels by connecting the vessels to a sealed, vacuum-pumped 

chamber.15-16   

 

In general, the manufacture of fully automated devices for HT zeolite synthesis is restricted to 

large HT technology producers (e.g., Unchained Labs, Avantium, HTE, Bosch, Chemspeed and 

Zinsser), who can integrate robotics, engineering, and data-management into customer-tailored 

commercial instruments. Unlike simpler multiautoclave reactors, these highly-modular systems 

integrate liquid/powder dosing, stirring/mixing, milling/grinding, pH control, heating/cooling, 

among other requirements that can be included depending on the customer necessities. Several 

years ago, we developed an in-house automated system for zeolite synthesis at the ITQ (see 

Figure 2B), composed of a robotic arm that handled the vials, a liquid/solid dosing station, and 

a stirring/evaporation station.14 Seven calibrated syringe pumps allowed precise liquid dosing, 

while the accurate control of the liquid/solid additions and liquid evaporations were 

accomplished through analytical balance measurements.  

 

2.2.- High-Throughput characterization 

HT zeolite synthesis requires concomitant topological, textural, and/or chemical analysis to be 

performed at commensurate timescales to avoiding workflow bottlenecks. Powder X-ray 

diffraction (PXRD) is the most common technique to identify crystalline microporous structures. 

Commercial vendors tackled automated collection of multiple PXRD patterns from large sample 

libraries by incorporating flat stages that could be moved in all directions (XYZ-stages, see Figure 

2C). Gas sorption to probe zeolite porosity also required unique adaptation for HT analysis 

because these measurements may last several hours. In order to circumvent this bottleneck, a 

system for screening the porosity of large number of microporous materials was developed 

using the heat generated during gas adsorption for quantification.17 Other characterization 

techniques, such as X-ray fluorescence (XRF),18 IR spectroscopy combined with the 

adsorption/desorption of probe molecules,19  and temperature programmed desorption (TPD),20 

have also been adapted for HT systems. 
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2.3.- Data-Mining Techniques 

The development of the first automated HT zeolite synthesis systems drastically increased the 

number of experiments that could be performed in parallel and, consequently, increased the 

number of variables that could be explored simultaneously (see Figure 3).6, 13-14 Accordingly, 

data-mining techniques begun their development almost simultaneously with HT synthesis as a 

means to aid in the exploration of broad synthesis spaces through careful design of experiments 

(DoE) and to analyze the large quantities of data generated by these experiments (see Figure 1).  

 

2.4.1.- Design of Experiments (DoE)  

In HT zeolite synthesis, selecting which variables to investigate during the initial DoE is a very 

challenging task because the effects that individual variables have on nucleation/crystallization 

mechanisms are highly intercorrelated. The first DoE for early HT zeolite synthesis campaigns 

were based almost exclusively on classic exploratory factorial designs.6, 13-14 These designs 

involve generating possible combinations of two or more variables, which presenting different 

levels or values. Full factorial designs allowed to exploring the effect of each synthesis variable 

on zeolite crystallization, as well as the influence of interconnected variables (see Figure 3A).6 

We systematically studied the system TEA:SiO2:Na2O:Al2O3:H2O by HT methods, where TEA is 

tetraethylammonium, in order to synthesize the Beta zeolite with high yields while using a low 

OSDA content in the synthesis gel.14 Following a full-factorial design (see Figure 3B), a high-silica 

Beta with low OSDA contents (TEA/Si∼0.27) and excellent crystallinity was obtained when using 

concentrated synthesis gels (e.g., H2O/Si∼5). The factorial design approach has also yielded new 

zeolite structures. For instance, researchers at UOP systematically explored simple mixtures of 

tetramethyl and tetraethylammonium OSDAs, ultimately discovering conditions that crystallized 

UZM-4 (12x8-rings) and UZM-5 (8x8-rings).9 

 

In this respect, our group initiated some of the first efforts to incorporate simple statistics to 

properly evaluate the impact of the different synthesis variables during HT synthesis processes. 

Our objective was to direct the synthesis conditions more effectively in the second generation 

of experiments.  

 

The discovery of ITQ-33 started by performing a very large initial factorial design (3×43) to 

explore unusual synthesis conditions using flexible OSDA molecules (e.g. hexamethonium).10, 21 

The initial proposed conditions totaled 192 experiments, spanning the following precursor 

ranges: Si/Ge∼2-30, B/(Si+Ge)∼0-0.05, OH/(Si+Ge)∼0.1-0.5, H2O/(Si+Ge)∼5-30. This campaign 
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resulted in some phase-pure zeolites and several multi-phase mixtures, one of which contained 

an unknown phase that was named ITQ-33. The results were subjected to Pareto analysis in 

order to plan a second generation of experiments aimed at isolating ITQ-33.21 The Pareto 

analysis showed that ITQ-33 was most influenced by Si/Ge and OH/(Si+Ge) (see Figure 3C). In 

light of these findings, a second set of 18 experiments was proposed that yielded phase-pure 

ITQ-33—a unique extra-large pore zeolite interconnected bidirectionally with 10-ring channels 

exhibiting remarkable selectivity to diesel and propylene in the cracking of vacuum gasoil.10, 21  

 

In a similar way, the discovery of ITQ-30—a zeolite with excellent catalytic performance for the 

alkylation of benzene with propylene to produce cumene—involved studying the directing role 

of the rigid and bulky N-methyl-sparteinium OSDA across 144 experiments spanning a broad 

range of synthesis conditions.22 These experiments generated ITQ-21 (a large-pore zeolite) and 

an unknown phase named ITQ-30. Further statistical analysis revealed that the crystallization of 

ITQ-30 was negatively influenced by increasing water and Al contents, regardless the Si/Ge ratio 

(see Figure 3D). Accordingly, the next generation of experiments afforded the crystallization 

phase-pure ITQ-30 zeolite under Ge-free conditions.22  

 

Advanced methods, including artificial neural networks (ANNs) and genetic algorithms (GAs), 

are necessary for cases in which simple statistics cannot effectively guide experimental design.14, 

23 ANNs are non-linear systems that can model complex multidimensional studies through nodes 

with connections reminiscent of those found in a biological brain (see Figure 4A). GAs operate 

with similar mechanisms to those behind Darwinian evolution, where the best variables 

dominate the next generation population by selecting the proper operators (e.g., selection, 

crossover, and mutation). As a standout example, we combined ANNs and GAs to improve the 

catalytic behavior of Ti-silicates for the selective epoxidation of olefins.23 Specifically, we used 

ANNs to predict the internal relationships between different synthesis variables after being 

properly trained with previous data, and then used GAs to optimize the next generation of 

material synthesis experiments considering the knowledge extracted by the ANN. Different 

synthesis variables were considered (e.g. surfactant, organic modifier, OH or titanium contents). 

Three generations of 38 samples were synthesized using the NN-GA optimization process, 

achieving an outstanding improvement of both catalytic activity and epoxide selectivity each 

generation (see Figure 4B). The improved catalytic behavior was found when decreasing the 

amount of the organic modifier while keeping the OH/Si molar ratio at ∼0.2.23 

 

2.4.2.- Data extraction and classification 
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Data extraction and classification from HT experiments can become a major bottleneck if not 

managed properly. For this reason, significant efforts have been dedicated to develop non-

supervised data analysis tools with the aim of generating new Data-Mining mapping/exploration 

methods that allow facile and rapid data extraction and visualization.  

 

Clustering using k-means and Principal Component Analysis (PCA) 

Clustering analyses of raw PXRD data permits non-supervised classification of crystalline 

materials into diverse groups based on similarities in the diffraction patterns. This technique is 

particularly useful for discriminating and identifying pure-phases in mixed systems. By 

considering the PXRD patterns as structural vectors, the classification or clustering of the 

achieved solids can be carried out by applying statistical tools, such as k-means clustering and 

PCA. 

 

The k-means clustering algorithm assigns n samples into k clusters with the nearest mean (a 

value which is updated every time a new component is added to the cluster) and this process is 

repeated until all components are classified into different clusters. We utilized the k-means 

clustering algorithm for classifying HT synthesis raw data, by selecting all the PXRD patterns 

obtained from the 144 syntheses carried out during the ITQ-21/ITQ-30 synthesis campaign 

described in the previous section (see Figure 5A).11 The k-clustering analysis binned the raw 

PXRD data results into three well-defined clusters:  amorphous (cluster 1), ITQ-21 (cluster 2), 

and ITQ-30 (cluster 3) (see Figure 5B). Interestingly, the overall match between real phases and 

the proposed clusters following the k-means analysis was ∼90%, demonstrating the high 

potential of this tool. 

 

The PCA uses statistical methods to reduce the information contained within a long descriptor 

(e.g., an individual PXRD pattern containing all the diffraction intensities), into three structural 

principal components (SPCs) while conserving all the information of the original data. We 

applied the PCA analyses to the data from the same ITQ-21/ITQ-30 synthesis campaign,11 

achieving a dimensional reduction to just three components for each PXRD pattern, ultimately 

providing a very simple 3D cluster visualization (see Figure 5C) that allowed us to correlate the 

SPC projections with the crystallinity and chemical composition of each synthesized material.  

 

Adaptable Time Warping (ATW) models 

Our group has developed protocols to extract and predict structural parameters of synthesized 

materials in order to classify and relate structural features to synthesis variables.24-25 For 



10 
 

example, a common issue in the analysis of diffraction data is that the PXRD pattern of a specific 

crystalline structure can present large differences, both in peak intensity and 2θ shifts, 

depending on its crystal size or chemical composition. This complicates non-supervised 

structural recognition, particularly when mixed phases are present. Our ATM algorithm allows 

searching distances to detect 2θ shifts between the input and the reference pattern instead of 

comparing the value of the input pattern at a specific 2θ angle with a reference at the same 2θ 

angle (see Figure 6A).24-25 The method was successfully validated when the diffraction patterns 

for eight different crystalline zeolites were correctly identified with a classification error of <3% 

from the complex diffractogram of the mixed solids (see Figure 6B).24-25  

 

3.- Computational methods and machine learning techniques for zeolite synthesis  

Modern zeolite synthesis requires close integration between experiments and computation to 

gain insight into the fundamental underpinnings linking structure and property to the synthesis 

recipe. Computational methods, including molecular dynamics simulations, electronic structure 

calculations using first principles, Monte Carlo techniques, and continuum macroscopic 

approaches, have been developed hand-in-hand with experimental methodologies to 

understand the assembly of microporous materials.26 Theoretical simulations can in principle 

require less time compared to experimental measurements, thereby accelerating the discovery 

of new materials, reducing both time and cost expenditures. However, unlike well-established 

HT experimental protocols, most computational techniques used to date cannot be 

implemented in a HT manner without jeopardizing accuracy given the need to use expensive 

high-level quantum chemistry methods to correctly calculate the complex energy landscape of 

hydrothermal crystallization processes. In this respect, the use of ML algorithms offers an 

attractive avenue to accelerate the discovery and optimization of molecular sieve synthesis by 

bypassing the need for resource-intensive simulations and instead use learned patterns from 

training examples to estimate properties or predict outcomes under unexplored conditions. In 

the next section we present some of our efforts towards the development of computational 

tools for enabling the use of ML for zeolite synthesis.  

 

3.1.- Hypothetical structures and phase identification 

To date, approximately 240 distinct zeolite structures have been successfully synthesized, which 

is in stark contrast to the millions of hypothetical structures generated using mathematical 

constructs. Hypothetical zeolites have been generated using symmetry-constrained geometric 

linkage of subunits, tiling theory, and genetic algorithms coupled with bonding rules and lattice 

energy minimization programs to down select chemically-feasible structures.27-28 Deem and co-
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workers who used Monte Carlo simulations coupled with interatomic potential refinement to 

investigate the arrangement of Si atom positions, unit cells, space groups, and framework 

densities in porous materials, generating over 2.6 M predicted zeolite-like materials.29 Since 

then, the chemical feasibility of these hypothetically structures has been evaluated by various 

groups using more complex methods, including local interatomic distances (LIDs), TTT angles, 

minimum 5-th neighbor distance, average tetrahedral order parameter, and pore dimensionality 

to further refine the subgroup of synthetically accessible materials.30-31 

 

Evidently, these hypothetical structures can be used to identify new zeolites synthesized in the 

laboratory. For instance, when we obtained the structure of ITQ-51 (see Figure 7A), an extra-

large pore zeolite with 16-rings synthesized using bulky proton sponges as OSDAs, we realized 

that the structure was included in Deem’s database as a pure-silica analog.32 This encouraged us 

to explore analogous structures, an exercise that revealed extensive similarities between ITQ-

51 and AlPO-31. Using this information, we surmised that if the 4-rings forming the 12-ring 

channel in AlPO-31 were substituted by six helical 4-ring chains, a hypothetical 18-ring zeolite 

(denoted as T18MR, see Figure 7B) would be formed.32 This approach was extended to generate 

three additional hypothetical large-pore structures that are currently important synthetic 

targets in our laboratory. 

 

Hypothetical zeolite construction is also a powerful tool when used to narrow down the 

structural space for unknown, highly-complex crystals for which limited available 

characterization data is available. ITQ-43 is a hierarchical zeolite featuring a very open structure 

(11.4 T-atoms/1000 Å3) and cloverleaf-like channels formed by 28-rings (see Figure 7C).33 When 

we first synthesized ITQ-43, we knew from PXRD data that the crystal structure was built either 

by C222, Cmm2, Cm2m, C2mm, or Cmmm space groups. However, due to its large cell 

parameters and low stability in its calcined form, we could not extract reliable structural 

information from either diffraction or HR-TEM data. With limited characterization data, we 

relied on an in-house simulation program to generate a feasible set of potential structural 

candidates.33-34 More specifically, we developed an evolutionary algorithm deployed using GPU 

hardware that independently manipulated fixed arrays of variables corresponding to atoms 

coordinates belonging to the asymmetric unit cell. By using suitable fitness evaluation and 

optimization criteria we generated the 50 most-viable structures. The resolved crystal structure 

of ITQ-43 was shown to be one of these predicted structures, thereby demonstrating the 

usefulness of hypothetical structures generated through experimentally-imposed constrains.  
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In a very elegant attempt to predict the synthesis of hypothetical zeolites, Yu et al. have 

described a multidatabase, Zeobank, containing synthesis conditions, known structures, and 

hypothetical structures to perform computational-guided studies between synthetic 

parameters and zeolite structures.35-37  Different data-mining techniques, as support vector 

machines (SVM) and neural networks (NN), were investigated for correlating experimental 

conditions and crystalline products.    

 

3.2.- OSDA-zeolite prediction 

For zeolites, we now understand that coupled thermodynamic and kinetic factors, mainly in the 

form weak van der Waals interactions between OSDAs and inorganic moieties that influence 

nucleation events, are responsible for determining the synthesis product. Accurately capturing 

the fine interplay between organic and inorganic species at the molecular level necessitates the 

development of the appropriate computational tools. 

 

Inspired by the work of Catlow et. al.,38 we used Monte Carlo and energy minimization molecular 

dynamics simulations to rationalize the effect of OSDA stabilization on the zeolite structure.39-40 

Specifically, by explicitly including the OSDA-OSDA and OSDA-zeolite interactions in the potential 

energy function, we established a simple, yet powerful framework to approximate the energy 

change of the system upon OSDA incorporation. This approach allowed us to isolate one product 

out of two closely related zeolite structures, namely ITQ-7 and ITQ-17, by identifying an optimal 

OSDA out of several structurally-similar azocompounds.39 We used similar molecular simulations 

to predicted an optimal OSDA to synthesize phase pure Ti-containing BEC.40 Notably, the 

generality of the approach was demonstrated when a commercial tert-butyl-

iminotris(dimethylamino)phosphorane OSDA was identified amongst multiple phosphazenes to 

stabilize the structure of the elusive boggsite zeolite, enabling, for the first time, the synthesis 

of a molecular sieve that had only been obtained as a naturally-occurring mineral.41  

 

These results suggest that these computational methods allow the a priori prediction of an OSDA 

molecule to synthesize a desired framework. However, a major shortcoming of this approach is 

that molecules used in the calculation could be difficult to synthesize. A computational method 

to predict chemically synthesizable OSDAs for crystalline molecular sieves was reported by 

Deem, wherein transformations from organic chemistry were applied to a library of available 

reagents to generate molecules that were scored based on rigidity, volume, stability under 

synthesis conditions, and energy of interaction with the zeolite.42 Davis et. al. validated the 
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method experimentally by successfully synthesizing the SFW zeolite,43 and the enantioenriched 

polycrystalline STW zeolite (see Figure 8).44-45 

 

The time requirement to perform accurate molecular dynamics simulations is inextricably 

correlated with computing power and availability. For example, when predicting the suitability 

of a molecule to serve as an OSDA for a target zeolite, calculating the stabilization energy within 

the framework is one of the most intensive computational steps, requiring several hours of CPU 

time. Comparatively, trained ML algorithms are inherently more efficient and less 

computationally-intensive, making them ideally suited to replace computationally expensive 

molecular dynamics evaluations of the stabilization energy of the OSDA inside zeolites. Deem 

et. al. used a data set of 4781 OSDA stabilization energies previously computed for BEA zeolite 

to train a NN on the molecular structure descriptors of OSDAs to forecast their stabilization 

energies.46 Notably, the trained network was able to predict stabilization energies for new 

putative molecules with comparable accuracy to that obtained with molecular dynamics 

simulations, generating a list of new, chemically-synthesizable molecules that could be used to 

crystallize the elusive polymorph A of BEA.  

 

This approach could be applied to an even more ambitious goal: the synthesis of custom-

designed zeolites that are tailored for specific applications. We recently demonstrated a new 

concept in which a zeolite is prepared using OSDAs that mimic the transition state (TS) of 

preestablished reactions, resulting in drastically enhanced reaction rates and selectivities.47-49 

The idea of imprinting a TS within a rigid crystalline structure represents a disruptive departure 

from traditional catalysis and provides exciting opportunities for designing more selective, 

active, and responsive solids that can be further extended with the help of ML.       

 

3.3.- Literature Data extraction 

The full-scale implementation of ML techniques for zeolite synthesis is hindered by the 

challenges associated with data sparsity and scarcity. Indeed, open-access datasets and 

synthesis protocols for zeolites are smaller and more diverse compared to other efforts like the 

Materials Genome Initiative. Low availability of materials data causes underfitting and large 

prediction bias in ML models,50 and these shortcomings can be further exacerbated if negative 

examples are not included. In this respect, the prolific peer-reviewed manuscript and patent 

literature for zeolite synthesis offers a vast amount of data collected over a span of six decades. 

However, collecting the relevant data from tables, figures, and experimental sections of 

thousands of documents is an impossible task without automation. Leveraging recent advances 
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in natural language processing and text markup parsing tools, we recently developed a tool in 

collaboration with Olivetti and co-workers to automatically extract synthesis information and 

trends from zeolite journal articles (see Figure 9).51 Specifically, our pipeline automatically 

located, extracted, and organized zeolite synthesis data from both the tables and main text of 

thousands of articles. We validated the accuracy of the extracted data using a subset of articles 

related to the preparation of germanium-containing zeolites for which the pipeline accurately 

identified the complex relationships between the synthesis parameters and resulting topology. 

We envision that with future improvements and small changes in data engineering, this tool can 

be used to solve several other research questions in zeolite synthesis chemistry. 

 

4.- Frontiers of ML for zeolite synthesis  

The main challenge in zeolite synthesis is the incomplete understanding of the molecular-level 

interactions and the kinetic and thermodynamic driving forces that govern the adsorption and 

binding specificity of OSDAs to precursors leading to specific nucleation/crystallization events. 

A fundamental understanding of these processes and the ability to a priori control crystallization 

requires synergistic research efforts to probe atomic to macroscopic length scales. The complex 

and multidimensional space of zeolite synthesis requires drawing inferences from incomplete 

and imperfect information, for which ML methods are very well-suited to replace the intuition-

based, trial-and-error approaches traditionally used to guide experimentation.  

 

We showed how databases of hypothetical zeolites can play an important role in zeolite 

discovery. However, the standard representation of crystal structures has been optimized for 

human learning, which might not necessarily be optimal for ML. We need to develop improved 

descriptors that can capture the properties we intend to model in more effective ways. Thus, 

developing “ML-friendly” representations of crystal structures that are easily transferable across 

methods is essential for reaching the level of predictive sophistication we have acquired in 

molecular systems. In organic synthesis, NN have been used to create fingerprints or molecular 

fragments for molecules in reactions, leading to improved prediction capabilities.52 The field of 

zeolite crystallization could benefit tremendously from developing new approaches to define 

more efficient nomenclature and structural representations.   

 

Undoubtedly, new ML approaches will play an important role for enabling the computer-

assisted synthesis of organic molecules that could replace expensive OSDAs for known zeolites 

or predict the structure of molecules leading to new topologies. Recent work showing the use 

of ML to predict the stabilization energies of chemically-synthesizable OSDAs with an accuracy 
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commensurate to that of high-level molecular dynamic simulations is a true testament of the 

versatility of these algorithms. Future directions should leverage current efforts in ML-based 

automated organic molecule retrosynthesis,53 including the unsupervised selection of reaction 

conditions,54 catalysts, and reagents, to deploy AI-driven experimental platforms including full 

automation for highly parallelized OSDA synthesis. OSDA design could benefit from cutting-edge 

algorithms, such as generative adversarial networks and reinforcement learning already used in 

the design of biological compounds, in which new molecules with specific physicochemical 

features are produced using a punishment/reward system analogous to that in psychological 

conditioning.55 Further, given the limited amount of data compared to other fields, ML tools 

applied to zeolite synthesis will benefit from cutting-edge approaches in meta-learning, 

including neural Turing machines,56 and imitation learning.57 

 

Naturally, the efficacy of ML schemes hinges on both the quality and amount of data used to 

train the algorithms. We showed the tremendous advantages of natural language parsing tools 

capable of accessing the vast amount of experimental data published in patents and journal 

articles in an automated fashion. Future efforts should focus on developing improved ML and 

visual recognition AI algorithms used in face-recognition and self-driving vehicles to extract and 

classify data from figures (including diffractograms and spectrograms) in addition to written 

records, journal articles, patents, laboratory notebooks, and internal databases. In many cases, 

however, data is collected and stored in many disjoint formats without having validation or 

standardized metadata. It is essential, that we, as a community, create and adopt robust 

standardization protocols to make data/metadata accessible in a computer-readable form akin 

to those implemented in parallel fields, while also allowing for easily implementing changes as 

the data are updated or corrected.58   

 

The growth of ML tools used for zeolite design is exciting, but they cannot be used yet as a 

“silver-bullet” for solving all open questions in the field. It is imperative we understand the 

limitations of ML tools so that we can help them learn properly. We should keep in mind that 

predictive models developed by ML tools might not be interpretable to humans, given that the 

way ML models represent knowledge rarely mirrors that used by scientists. Therefore, as we 

embrace the ML-based design, we have to continue working on representing data in a manner 

that maximizes the amount that humans and machines learn from each other.  
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Figure 1. High Throughput discovery workflow for the synthesis of microporous materials 
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Figure 2. Images of the SINTEF multiautoclave (A), the in-house developed system for 

hydrothermal synthesis of zeolites built at ITQ (B) and a multisample preparation over an XYZ-

stage in a PANalytical diffractometer at ITQ (C). Reproduced with permission from ref. 6, 14. 

Copyright (1998 and 2005) Wiley and Elsevier, respectively. 
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Figure 3. (A,B) Factorial-based designs proposed for HT synthesis of zeolites by Akporiaye et al. 

and Corma et al., respectively. Reproduced with permission from ref. 6, 14. Copyright (1998 and 

2005) Wiley and Elsevier, respectively. (C) Statistical evaluation of the influence of different 

variables in HT zeolite synthesis. Reproduced with permission from ref. 21. Copyright (2008) 

Elsevier. (D) 3-D representation of the influence of different variables on the crystallinity of ITQ-

30. Reproduced with permission from ref. 22. Copyright (2006) Elsevier. 
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Figure 4. (A) Scheme of a Neural Network employed for modelling the dataset obtained during 

the HT synthesis study for Beta zeolite. Reproduced with permission from ref. 14. Copyright 

(2005) Elsevier. (B) Evolution of the catalytic activity for the epoxidation reaction after three 

evolved generations. Reproduced with permission from ref. 23. Copyright (2005) Elsevier. 
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Figure 5. (A) Phase diagram achieved when varying multiple variables using methyl-sparteine as 

OSDA. (B) Clusters achieved when applying the k-clustering analysis to the raw PXRD data results 

of the ITQ-21/ITQ-30 study (note that the 2θ angle section comprised between 24.5-27.5° is 

presented). (C) Simple 3-D zeolite cluster representation achieved by the statistical dimensional 

reduction of the entire PXRD patterns to just three interrelated variables using the Principal 

Component Analysis (PCA). Reproduced with permission from ref. 11. Copyright (2006) American 

Chemical Society. 
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Figure 6. (A) Adaptable time warping (ATW) approach applied to powder X-ray diffractograms, 

which allows excellent identification accuracies even when peak intensity and 2θ shifts are 

present (see inset). (B) Automatic analysis of a PXRD dataset achieved using hexamethonium as 

OSDA to identify the different crystallographic phases. Reproduced with permission from ref. 24-

25. Copyright (2009 and 2008) Wiley and RSC, respectively. 
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Figure 7. Zeolite structures of the ITQ-51 (A), the hypothetical T18MR (B) and ITQ-43 (C). 

Reproduced with permission from ref. 32-33. Copyright (2013 and 2011) National Academy of 

Sciences and AAAS, respectively. 
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Figure 8. Representation of the OSDA-zeolite interaction for the synthesis of a chiral zeolite. 

Reproduced with permission from ref.  45. Copyright (2017) National Academy of Sciences. 
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Figure 9. Scheme of the methodology employed for zeolite literature extraction from multiple 

aspects of a journal article (i.e. text and table data), modeling, and structure prediction (i.e. 

zeolite framework densities). Reproduced with permission from ref. 51. Copyright (2019) 

American Chemical Society. 
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