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In this paper, we have constructed a derivative-free weighted eighth-order iter-
ative method with and without memory for solving nonlinear equations. This
method is an optimal method as it satisfies the Kung-Traub conjecture. We have
used four accelerating parameters, a univariate and a multivariate weight func-
tion at the second and third step of the method, respectively. This method is
converted into with-memory method by approximating the parameters using
Newton's interpolating polynomials of appropriate degree to increase the order
of convergence to 15.51560 and the efficiency index is nearly two. Numeri-
cal comparison of our methods is done with the recent methods of respective
domain.
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1 INTRODUCTION

Finding solution of nonlinear equations f (x) = 0 is an important problem in various branches of science and engineering.
In the past decades, without-memory methods were considered enough for the approximation of roots. However, in the
recent years, without-memory methods which are extendable to with-memory methods without insertion of any extra
functional evaluation by using Newton's interpolating polynomials have gained attention. These iterative methods offer
a choice to achieve higher convergence order and increased efficiency. A first attempt of this kind is known from that of
Traub1 who gave the first with-memory scheme by modifying Steffensen's iterative scheme2

wn = xn + pn𝑓 (xn), pn ≠ 0,

xn+1 = xn − 𝑓 (xn)
𝑓 [xn,wn]

,n ≥ 0,

where x0, p0 are given and pn is a self-accelerating parameter given by

pn ≈ − 1
N′

1(xn)
,
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where N1(x) is the first degree Newton's interpolating polynomial given by

N1(x) = 𝑓 (xn) + (x − xn)𝑓 [xn, xn−1].

Order of convergence of this method is 2.41. Some three-step optimal eighth-order iterative methods have been developed
recently containing four parameters.3-5

In this paper, we construct a new four-parametric three-step with and without-memory family of methods with high
efficiency index. The scheme is constructed by modifying optimal fourth-order two-step King's method6 to an optimal
eighth-order three-step derivative-free method by the insertion of a new substep using four parameters and two weight
functions of one and two variables. Some special cases from the new scheme are compared with the methods of respective
domain using standard nonlinear test functions.

2 DERIVATIVE-FREE THREE-STEP OPTIMAL EIGHTH- ORDER CLASS
INVOLVING WEIGHT FUNCTIONS OF ONE AND TWO VARIABLES

The main purpose of this section is to construct an eighth-order derivative-free family of iterative methods by using four
parameters and two weight functions depending on one and two variables. This class can be modified in order to be
extended as a family of iterative schemes with memory. The order of convergence is increased by means of accelerating
parameters. The optimal fourth-order two-step King's method6 is

𝑦n = xn − 𝑓 (xn)
𝑓 ′(xn)

,n ≥ 0,

xn+1 = 𝑦n − 𝑓 (xn) + 𝛾𝑓 (𝑦n)
𝑓 (xn) + (𝛾 − 2)𝑓 (𝑦n)

𝑓 (𝑦n)
𝑓 ′(xn)

, 𝛾 ∈ ℝ.

By adding a Newton-type third step, we have

𝑦n = xn − 𝑓 (xn)
𝑓 ′(xn)

,n ≥ 0,

zn = 𝑦n − 𝑓 (xn) + 𝛾𝑓 (𝑦n)
𝑓 (xn) + (𝛾 − 2)𝑓 (𝑦n)

𝑓 (𝑦n)
𝑓 ′(xn)

, 𝛾 ∈ ℝ,

xn+1 = zn − 𝑓 (zn)
𝑓 ′(xn)

.

The values of the first derivative 𝑓 ′(xn) involved in the iterative expression are approximated by

𝑓 ′(xn) ≈ 𝑓 [xn,wn] + b𝑓 (xn),

at the first step,

𝑓 ′(xn) ≈
𝑓 [𝑦n,wn] + b𝑓 (wn) + q(𝑦n − wn)(𝑦n − xn)

S (un)
at the second step, and

𝑓 ′(xn) ≈
𝑓 [𝑦n, zn] + 𝑓 [zn, 𝑦n, xn](zn − 𝑦n) + 𝑓 [zn, 𝑦n, xn,wn](zn − 𝑦n)(zn − xn) + d(zn − wn)(zn − 𝑦n)(zn − xn)

J(un, tn)
,

at the third one, where un = 𝑓 (𝑦n)
𝑓 (xn)

, tn = 𝑓 (zn)
𝑓 (xn)

and 𝛾 ∈ ℝ. In addition, a, b, d, and q are real free parameters, S (un) and
J(un, tn) are weight functions.

By applying the above procedure, the resulting three-step derivative-free family of iterative methods without memory is

wn = xn + a𝑓 (xn),n ≥ 0,

𝑦n = xn − 𝑓 (xn)
𝑓 [xn,wn] + b𝑓 (wn)

,

zn = 𝑦n − S(un)
𝑓 (xn) + 𝛾𝑓 (𝑦n)

𝑓 (xn) + (𝛾 − 2)𝑓 (𝑦n)
𝑓 (𝑦n)

𝑓 [𝑦n,wn] + b𝑓 (wn) + q(𝑦n − wn)(𝑦n − xn)
,

xn+1 = zn − J(un, tn)
𝑓 (zn)

Pn
, (1)
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where un = 𝑓 (𝑦n)
𝑓 (xn)

, tn = 𝑓 (zn)
𝑓 (xn)

, 𝛾 ∈ ℝ, Pn = f [ yn, zn] + f [zn, yn, xn](zn − yn) + f [zn, yn, xn,wn](zn − yn)(zn − xn) + d(zn −
wn)(zn − yn)(zn − xn), a, b, q, and d are real free parameters and weight functions S(un) and J(un, tn) are chosen in such a
way that the members of the class are of optimal order eight. To show the order of convergence of class (1), the following
result is proven.

Theorem 1. Let us suppose that 𝑓 ∶ I ⊂ ℝ → ℝ is a real-valued nonlinear sufficiently differentiable function and 𝜎 is
a real simple zero of the function in the open interval I. If the initial guess x0 is close enough to 𝜎, then all the members of
the class of iterative methods (1) have optimal order eight, if weight functions S(un) and J(un, tn) satisfy conditions

S(0) = 1, S′(0) = −1, S′′(0) = −2

and
J(0, 0) = 1, Ju(0, 0) = 0, Jt(0, 0) = 0, Ju,u(0, 0) = 0 and Ju,u,u(0, 0) = 0.

Then, the error equation of the family is

en+1 = 1
(𝑓 ′(𝜎))2 (c2 + b)2

(
1 + a

(
𝑓 ′(𝜎)

)4
)

(
2𝛾a

(
𝑓 ′(𝜎)

)2 (b2 + 2bc2 + c2
2
)
+ 𝑓 ′(𝜎)

(
2𝛾b2 + 2bc2 + 4𝛾bc2 − c3 + 2c2

2 + 2𝛾c2
2 + q

))
(
− d + 𝑓 ′(𝜎)c4 + qc2 − 𝑓 ′(𝜎)c2c3 + 2𝑓 ′(𝜎)c3

2 + 2bc2
2𝑓

′(𝜎) + 2𝛾𝑓 ′(𝜎)c3
2 + 4𝑓 ′(𝜎)bc2

2

+ 2c2
(
𝑓 ′(𝜎)

)2 + 2𝛾c3
2a
(
𝑓 ′(𝜎)

)2 + 4𝛾bc2
2a
(
𝑓 ′(𝜎)

)2 + 2c2𝛾b2a
(
𝑓 ′(𝜎)

)2
)

e8
n + O

(
e9

n
)
, (2)

where ck = 𝑓 (k)(𝜎)
k!𝑓 ′(𝜎)

, k ≥ 2.

Proof. Let us define the error at the nth step as en = xn − 𝜎. By using Taylor series, we expand f (x) about the real
root 𝜎 as

𝑓 (xn) = 𝑓 ′(𝜎)
(

en + c2e2
n + c3e3

n + · · · + O
(

e9
n
))
, (3)

where ck = 𝑓 (k)(𝜎)
k!𝑓 ′(𝜎)

, k ≥ 2. By using Taylor series, the error term en,w = wn − 𝜎 = en + af (xn) is

en.w = (1 + a𝑓 ′(𝜎))en + a𝑓 ′(𝜎)c2e2
n + · · · + O

(
e9

n
)
.

Thus,
𝑓 (wn) = 𝑓 ′(𝜎)

[
(1 + a𝑓 ′(𝜎))en + a𝑓 ′(𝜎)c2e2

n + · · · + O
(

e9
n
)]
.

Therefore,

𝑓 [xn,wn] + b𝑓 (wn) = 𝑓 ′(𝜎) + 𝑓 ′(𝜎)
[
b(1 + a𝑓 ′(𝜎)) + c2(2 + a𝑓 ′(𝜎))

]
en

+ 𝑓 ′(𝜎)
[
𝑓 ′(𝜎)a(3 + a𝑓 ′(𝜎)) + (c3 + bc2) + 3c3 + c2

(
b + ac2

2𝑓
′(𝜎)

)]
e2

n + … + O
(

e9
n
)
. (4)

By using (3) and (4), we have
𝑓 (xn)

𝑓 [xn,wn] + b𝑓 (wn)
= en − (c2 + b)(1 + a𝑓 ′(𝜎))e2

n + · · · + O
(

e9
n
)
.

Now, by denoting en,y = yn − 𝜎, the error at the second step is

en,𝑦 = (c2 + b)(1 + a𝑓 ′(𝜎))e2
n + · · · + O

(
e9

n
)
.

Therefore,
𝑓 (𝑦n) = c1

[
(c2 + b)(1 + a𝑓 ′(𝜎))e2

n + … + O
(

e9
n
)]
.

Then, if Q = f [ yn,wn] + bf (wn) + q( yn − wn)( yn − xn), we have

Q = 𝑓 ′(𝜎) + 𝑓 ′(𝜎)(c2 + b)(1 + a𝑓 ′(𝜎))en

+ 𝑓 ′(𝜎)
[
2c2

2a𝑓 ′(𝜎) + c3 + 2a𝑓 ′(𝜎)c3 + c3a2
((
𝑓 ′(𝜎)

)2 + c2
2 + 2bc2 + 4bc2a𝑓 ′(𝜎)

+
(
𝑓 ′(𝜎)

)2bc2a2 + q(1 + a𝑓 ′(𝜎))
)]

e2
n + … + O

(
e9

n
)
.
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Therefore,

en,z = −(c2 + b)(1 + a𝑓 ′(𝜎))(−1 + S(0))e2
n

+
(
−2bc2 − 2c2

2a𝑓 ′(𝜎) + 3a𝑓 ′(𝜎)c3 − b2 − b2a
(
𝑓 ′(𝜎)

)2 − 2b2a𝑓 ′(𝜎) − 2c2
2 + 2c3 + c3a2(𝑓 ′(𝜎)

)2

− a2(𝑓 ′(𝜎)
)2c2

2 − bc2a2(𝑓 ′(𝜎)
)2 − 2S′(0)c2

2a𝑓 ′(𝜎) − S′(0)a2(𝑓 ′ (𝜎)
)2c2

2 − 2bc2a𝑓 ′(𝜎)

− 2S′(0)b2a𝑓 ′(𝜎) − S′(0)a2b2(𝑓 ′(𝜎)
)2 − 2S′′(0)c3 + S′′(0)c2

2 − 2S′(0)bc2 − 4S′(0)bc2a𝑓 ′(𝜎)

− 2S′(0)bc2a2(𝑓 ′(𝜎)
)2 − S′(0)c2

2 − S′(0)b2 − 2S′′(0)bc2a𝑓 ′(𝜎) − S′′(0)
(
𝑓 ′ (𝜎)

)2bc2a2 − 3S′′(0)a𝑓 ′(𝜎)c3

− S′′(0)c3p2(𝑓 ′ (𝜎)
)2
)

e3
n + · · · + O

(
e9

n
)
.

Substituting S(0) = 1, S′(0) = −1 and S′′(0) = −2 in the above expression, we have

en,z =
1

𝑓 ′(𝜎)

[(
1 + a

(
𝑓 ′ (𝜎)

)2
)
(c2 + b)

(
2𝛾

(
𝑓 ′ (𝜎)

)2b2a + 4𝛾
(
𝑓 ′ (𝜎)

)2c2ba + 2𝛾
(
𝑓 ′ (𝜎)

)2c2
2a + 2𝛾

(
𝑓 ′ (𝜎)

)2

+ 2𝑓 ′(𝜎)bc2 + 4𝛾𝑓 ′(𝜎)bc2 + 2𝛾𝑓 ′(𝜎)c2
2 − 𝑓

′(𝜎)c3 + 2𝑓 ′(𝜎)c2
2 + q

)]
e4

n + · · · + O
(

e9
n
)
.

Therefore,

𝑓 (zn) = 𝑓 ′(𝜎)
[(

1 + a
(
𝑓 ′(𝜎)

)2
)
(c2 + b)

(
2𝛾

(
𝑓 ′(𝜎)

)2b2a + 4𝛾
(
𝑓 ′(𝜎)

)2c2ba + 2𝛾
(
𝑓 ′(𝜎)

)2c2
2a + 2𝛾

(
𝑓 ′(𝜎)

)2

+ 2𝑓 ′(𝜎)bc2 + 4𝛾𝑓 ′(𝜎)bc2 + 2𝛾𝑓 ′(𝜎)c2
2 − 𝑓

′(𝜎)c3 + 2𝑓 ′(𝜎)c2
2 + q

)
e4

n + · · · + O
(

e9
n
) ]
.

Thus, by taking J(0, 0) = 1 and Ju(0, 0) = 0, we have the error term

en+1 = − 1
2𝑓 ′(𝜎)

[
Ju,u(0, 0)(c2 + b)3(1 + a𝑓 ′(𝜎))4

(
2𝛾

(
𝑓 ′ (𝜎)

)2b2a + 4𝛾
(
𝑓 ′ (𝜎)

)2c2ba

+ 2𝛾
(
𝑓 ′(𝜎)

)2c2
2a + 2𝛾

(
𝑓 ′(𝜎)

)2 + 2𝑓 ′(𝜎)bc2 + 4𝛾𝑓 ′(𝜎)bc2 + 2𝛾𝑓 ′(𝜎)c2
2

− 𝑓 ′(𝜎)c3 + 2𝑓 ′(𝜎)c2
2 + q

) ]
e6 + · · · + O

(
e9

n
)
.

Now, with Jt(0, 0) = 0, Ju,u(0, 0) = 0 and Ju,u,u(0, 0) = 0, finally the error equation is

en+1 = 1
((𝑓 ′(𝜎))2 (c2 + b)2(1 + a𝑓 ′(𝜎))4

(
2𝛾a

(
𝑓 ′(𝜎)

)2 (b2 + 2bc2 + c2
2
)
+ 𝑓 ′(𝜎)

(
2𝛾b2 + 2bc2 + 4𝛾bc2 − c3 + 2c2

2 + 2𝛾c2
2 + q

))
(
− d + 𝑓 ′(𝜎)c4 + qc2 − 𝑓 ′(𝜎)c2c3 + 2𝑓 ′(𝜎)c3

2 + 2bc2
2𝑓

′(𝜎) + 2𝛾𝑓 ′(𝜎)c3
2 + 4𝑓 ′(𝜎)bc2

2

+ 2c2
(
𝑓 ′(𝜎)

)2 + 2𝛾c3
2a
(
𝑓 ′(𝜎)

)2 + 4𝛾bc2
2a
(
𝑓 ′(𝜎)

)2 + 2c2𝛾b2a
(
𝑓 ′(𝜎)

)2
)

e8
n + O

(
e9

n
)
.

Let us remark that, as the error equation has (c2 + b)2 and (1 + a f ′(𝜎))4 as factors, it can be seen that this method is
extendable to with memory.

3 CONSTRUCTION OF THE FOUR-PARAMETRIC WITH-MEMORY
ITERATIVE CLASS

To increase the order of convergence of the family of iterative methods without-memory (1), we modify it in order to
include memory. Extension can be done by approximating the parameters at each step by using Newton's interpolating
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polynomials. It can be noted that the coefficient of e8
n in the error equation (2) disappears if a = −1

𝑓 ′(𝜎)
, b = −c2, q = 𝑓 ′(𝜎)c3

and d = f ′(𝜎)c4, being ck = 𝑓 (k)(𝜎)
k!𝑓 ′(𝜎)

, k ≥ 2. For construction of methods with memory, free parameters a, b, q, and d are
calculated by formulas

a ≈ an = − 1
N′

4(xn)
= −1
𝑓 ′(𝜎)

,n = 1, 2, … ,

b ≈ bn = −
N′′

5 (wn)
2N′

5(wn)
= − 𝑓

′′(𝜎)
2𝑓 ′(𝜎)

, (5)

q ≈ qn =
N′′′

6 (𝑦n)
6

= 𝑓 ′′′(𝜎)
6

,

d ≈ dn =
Niv

7 (zn)
24

= 𝑓 iv(𝜎)
24

,

where 𝑓 ′(𝜎), 𝑓 ′′(𝜎), 𝑓 ′′′(𝜎) and 𝑓 iv(𝜎) are approximations to 𝑓 ′(𝜎), 𝑓 ′′(𝜎), 𝑓 ′′′(𝜎), and 𝑓 iv(𝜎), respectively. These estima-
tions are made by using N4(xn),N5(wn),N6(yn) and N7(zn), Newton's interpolating polynomials of degree four, five, six and
seven respectively defined by:

N4(𝜁 ) = N4(𝜁 ; xn, zn−1, 𝑦n−1,wn−1, xn−1),
N5(𝜁 ) = N5(𝜁 ;wn, xn, zn−1, 𝑦n−1,wn−1, xn−1),
N6(𝜁 ) = N6(𝜁 ; 𝑦n,wn, xn, zn−1, 𝑦n−1,wn−1, xn−1),
N7(𝜁 ) = N7(𝜁 ; zn, 𝑦n,wn, xn, zn−1, 𝑦n−1,wn−1, xn−1),

for any n ≥ 2. The explicit representation of N4(𝜁 ),N5(𝜁 ),N6(𝜁 ) and N7(𝜁 ) is given below:

N4(𝜁 ; xn, zn−1, 𝑦n−1,wn−1, xn−1) = 𝑓 (xn) + 𝑓 [xn, zn−1](𝜁 − xn) + 𝑓 [xn, zn−1, 𝑦n−1](𝜁 − xn)(𝜁 − zn−1)
+ 𝑓 [xn, zn−1, 𝑦n−1,wn−1](𝜁 − xn)(𝜁 − zn−1)(𝜁 − 𝑦n−1)
+ 𝑓 [xn, zn−1, 𝑦n−1,wn−1, xn−1](𝜁 − xn)(𝜁 − zn−1)(𝜁 − 𝑦n−1)(𝜁 − wn−1). (6)

Also,

N5(𝜁 ;wn, xn, zn−1, 𝑦n−1,wn−1, xn−1) = 𝑓 (wn) + 𝑓 [wn, xn](𝜁 − wn) + 𝑓 [wn, xn, zn−1](𝜁 − wn)(𝜁 − xn)
+ 𝑓 [wn, xn, zn−1, 𝑦n−1](𝜁 − wn)(𝜁 − xn)(𝜁 − zn−1)
+ 𝑓 [wn, xn, zn−1, 𝑦n−1,wn−1](𝜁 − wn)(𝜁 − xn)(𝜁 − zn−1)(𝜁 − 𝑦n−1)
+ 𝑓 [wn, xn, zn−1, 𝑦n−1,wn−1, xn−1](𝜁 − wn)
(𝜁 − xn)(𝜁 − zn−1)(𝜁 − 𝑦n−1)(𝜁 − wn−1). (7)

Moreover,

N6(𝜁 ; 𝑦n,wn, xn, zn−1, 𝑦n−1,wn−1, xn−1) = 𝑓 (𝑦n) + 𝑓 [𝑦n,wn](𝜁 − 𝑦n) + 𝑓 [𝑦n,wn, xn](𝜁 − 𝑦n)(𝜁 − wn)
+ 𝑓 [𝑦n,wn, xn, zn−1](𝜁 − 𝑦n)(𝜁 − wn)(𝜁 − xn)
+ 𝑓 [𝑦n,wn, xn, zn−1, 𝑦n−1](𝜁 − 𝑦n)(𝜁 − wn)(𝜁 − xn)(𝜁 − zn−1)
+ 𝑓 [𝑦n,wn, xn, zn−1, 𝑦n−1,wn−1](𝜁 − 𝑦n)(𝜁 − wn)(𝜁 − xn)(𝜁 − zn−1)(𝜁 − 𝑦n−1)
+ 𝑓 [𝑦n,wn, xn, zn−1, 𝑦n−1,wn−1, xn−1](𝜁 − 𝑦n)(𝜁 − wn)(𝜁 − xn)(𝜁 − zn−1)
(𝜁 − 𝑦n−1)(𝜁 − wn−1). (8)
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and

N7(𝜁 ; zn, 𝑦n,wn, xn, zn−1, 𝑦n−1,wn−1, xn−1) = 𝑓 (zn) + 𝑓 [zn, 𝑦n](𝜁 − zn)(𝜁 − zn)(𝜁 − 𝑦n) + 𝑓 [zn, 𝑦n,wn]
+ 𝑓 [zn, 𝑦n,wn, xn](𝜁 − zn)(𝜁 − 𝑦n)(𝜁 − wn)
+ 𝑓 [zn, 𝑦n,wn, xn, zn−1](𝜁 − zn)(𝜁 − 𝑦n)(𝜁 − wn)(𝜁 − xn)
+ 𝑓 [zn, 𝑦n,wn, xn, zn−1, 𝑦n−1](𝜁 − zn)(𝜁 − 𝑦n)(𝜁 − wn)(𝜁 − xn)(𝜁 − zn−1)
+ 𝑓 [zn, 𝑦n,wn, xn, zn−1, 𝑦n−1,wn−1](𝜁 − zn)
(𝜁 − 𝑦n)(𝜁 − wn)(𝜁 − xn)(𝜁 − zn−1)(𝜁 − 𝑦n−1)

+ 𝑓 [zn, 𝑦n,wn, xn, zn−1, 𝑦n−1,wn−1, xn−1]
(𝜁 − zn)(𝜁 − 𝑦n)(𝜁 − wn)(𝜁 − xn)(𝜁 − zn−1)(𝜁 − 𝑦n−1)(𝜁 − wn−1). (9)

Hence, by replacing the free parameters a, b, d and q in (1) with self-accelerators an, bn, dn and qn, we have the following
class of root-solvers with memory,

wn = xn + an𝑓 (xn),n ≥ 2,

𝑦n = xn − 𝑓 (xn)
𝑓 [xn,wn] + bn𝑓 (wn)

, (10)

zn = 𝑦n − S(un)
𝑓 (xn) + 𝛾𝑓 (𝑦n)

𝑓 (xn) + (𝛾 − 2)𝑓 (𝑦n)
𝑓 (𝑦n)

𝑓 [𝑦n,wn] + bn𝑓 (wn) + qn(𝑦n − wn)(𝑦n − xn)
,

xn+1 = zn − J(un, tn)
𝑓 (zn)

Pn

where un, tn and Pn are the same given in (1). Also an, bn, dn and qn are described in (5). Now, we will use Herzberger's
matrix method7 to prove that root-solver with memory (10) has order of convergence 15.51560, almost doubling the order
of convergence of the original method.

Theorem 2. Let us suppose that 𝑓 ∶ I ⊂ ℝ → ℝ is a real-valued nonlinear sufficiently differentiable function and 𝜎 is a
real simple zero of the function in the open interval I. Let us also suppose that x0 and x1 are the initial guesses satisfactorily
close to the zero 𝜎 of f (x). If self-accelerating parameters an, bn, dn and qn are calculated from (5), then the R-order of
convergence of (10) is at least 15.51560 with efficiency index 15.51560

1
4 ≈ 1.98468.

Proof. We will determine the R-order of convergence of the class of iterative methods with memory (10) by means of
Herzberger's matrix method.7 Spectral radius of a matrix B (p) = (tij), 1 ≤ i, j ≤ p, associated with one step p -point
method with memory xm = Ψ(xm− 1, xm− 2, … , xm− p) is the lower bound of its convergence order. Associated matrix
has following elements:

t1,𝑗 = amount of information used at point xm−𝑗 , 𝑗 = 1, 2, … , p,
ti,i−1 = 1 for i = 2, 3, … , p,

ti,𝑗 = 0, otherwise.

The spectral radius of B1 · B2 · · · · · Bp is the lower bound of order of a p-step method Ψ = 𝛹1◦Ψ2◦… ◦Ψp, where
matrices Br corresponds to the iteration step Ψr, 1 ≤ r ≤ p. From (5) and (10), the construction of matrices is made
following the iterative expression of each step, starting from the last one. For

xn+1 = Ψ1 (zn, 𝑦n,wn, xn, zn−1, 𝑦n−1,wn−1, xn−1) ,

we have

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

zn = Ψ2 (𝑦n,wn, xn, zn−1, 𝑦n−1,wn−1, xn−1, zn−2) ,
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gives

B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝑦n = Ψ3 (wn, xn, zn−1, 𝑦n−1,wn−1, xn−1, zn−2, 𝑦n−2) ,

generates

B3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Similarly,

wn = Ψ4(xn, zn−1, 𝑦n−1,wn−1, xn−1, zn−2, 𝑦n−2,wn−2)
implies

B4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Then,

B(4) = B1 · B2 · B3 · B4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

8 8 8 8 8 0 0 0
4 4 4 4 4 0 0 0
2 2 2 2 2 0 0 0
1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Eigenvalues of B (4) are {0, 0, 0, 0, 0, 0, 15.51560977, −0.515609770}. Therefore, as the R-order convergence of
three-step method (10) is the spectral radius of matrix B(4), 𝜌(B (4)) = 15.51560.

Let us remark that, from Theorem 2, the R-order of convergence of presented class with memory (10) is 15.51560, with
the highest efficiency index 15.51560

1
4 ≈ 1.9847.

4 SOME SPECIAL CASES

To satisfy the optimality condition, we choose S(un) and J(un, tn) such that the following conditions are satisfied:

S (0) = 1, S′(0) = −1, S′′(0) = −2

and
J(0, 0) = 1, Ju(0, 0) = 0, Jt(0, 0) = 0, Ju,u(0, 0) = 0 and Ju,u,u(0, 0) = 0.

By using suitable choices of weight functions, different methods can be given. In particular, we propose two schemes
whose iterative expressions are as follows:

Method ZR1: For

S (un) = 1 − un − u2
n,

J(un, tn) = 1 + tnun,
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we have

wn = xn + an𝑓 (xn), n ≥ 2,

𝑦n = xn − 𝑓 (xn)
𝑓 [xn,wn] + bn𝑓 (wn)

,

zn = 𝑦n −
(
1 − un − u2

n
) 𝑓 (xn)
𝑓 (xn) − 2𝑓 (𝑦n)

𝑓 (𝑦n)
𝑓 [𝑦n,wn] + bn𝑓 (wn) + qn(𝑦n − wn)(𝑦n − xn)

,

xn+1 = zn − (1 + tnun)
𝑓 (zn)

Pn
,

being an = − 1
N′

4(xn)
, bn = − N′′

5 (wn)
2N′

5(wn)
, qn = N′′′

6 (𝑦n)
6

, dn = N(iv)
7 (zn)

24
, un = 𝑓 (𝑦n)

𝑓 (xn)
, tn = 𝑓 (zn)

𝑓 (xn)
and Pn = f [ yn, zn] + f [zn, yn, xn](zn −

yn) + f [zn, yn, xn,wn](zn − yn)(zn − xn) + dn(zn − wn)(zn − yn)(zn − xn).
Method ZR2: For

S (un) =
1

1 + un
,

J(un, tn) =
1

1 + untn
,

we have

wn = xn + an𝑓 (xn), n ≥ 2,

𝑦n = xn − 𝑓 (xn)
𝑓 [xn,wn] + bn𝑓 (wn)

,

zn = 𝑦n − 1
1 + un

𝑓 (xn)
𝑓 (xn) − 2𝑓 (𝑦n)

𝑓 (𝑦n)
𝑓 [𝑦n,wn] + bn𝑓 (wn) + qn(𝑦n − wn)(𝑦n − xn)

,

xn+1 = zn − 1
1 + untn

𝑓 (zn)
Pn

,

where an = − 1
N′

4(xn)
, bn = − N′′

5 (wn)
2N′

5(wn)
, qn = N′′′

6 (𝑦n)
6

, dn = N(iv)
7 (zn)

24
, un = 𝑓 (𝑦n)

𝑓 (xn)
, tn = 𝑓 (zn)

𝑓 (xn)
and Pn = f [yn, zn] + f [zn, yn, xn](zn −

yn) + f [zn, yn, xn,wn](zn − yn)(zn − xn) + dn(zn − wn)(zn − yn)(zn − xn).

5 NUMERICAL RESULTS

Here, we compare numerical results of our proposed methods with some existing ones. The computational order of
convergence (COC) of iterative methods was defined by Jay8 and is calculated as follows:

COC =
log |𝑓 (xn)∕𝑓 (xn−1)|

log |𝑓 (xn−1)∕𝑓 (xn−2)| .
We have considered the first three iterations of all proposed and known methods by using fixed floating point arithmetics

with 2000 digits of mantissa to measure the accuracy. We denote by 𝜎 the actual root of the nonlinear equation to be solved
and x0 is the initial approximation used.

Maple software is used for numerical computations. Now, we make a comparison of our proposed schemes ZR1 and
ZR2 with other four-parametric one, designed by Lotfi and Assari3 (denoted by LA)

wn = xn + 𝛾n𝑓 (xn),

𝑦n = xn − 𝑓 (xn)
𝑓 [xn,wn] + pn𝑓 (wn)

,

zn = 𝑦n − 𝑓 (𝑦n)
𝑓 [𝑦n, xn] + 𝑓 [wn, xn, 𝑦n](𝑦n − xn) + 𝜆n(𝑦n − xn)(𝑦n − wn)

,

xn+1 = zn − 𝑓 (zn)
Qn

,
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where 𝛾n = − 1
N′

4(xn)
, pn = − N′′

5 (wn)
2N′

5(wn)
, 𝜆n = N′′′

6 (𝑦n)
6

, 𝛽n = N(iv)
7 (zn)

24
and Qn = f [xn, zn] + ( f [wn, xn, yn] − f [wn, xn, zn] −

f [ yn, xn, zn])(xn − zn) + 𝛽n(zn − xn)(zn − wn)(zn − yn). With these accelerating parameters, the scheme LA reaches order
of convergence 15.51560.

We also compare our schemes with methods M1 and M2 appearing in the work of Cordero et al,4 whose order of
convergence is also 15.51560. The iterative expressions of the method M1 is as follows:

wn = xn + 𝜃1,n𝑓 (xn),n ≥ 0,

𝑦n = xn − 𝑓 (xn)
𝑓 [xn,wn] + 𝜃2,n𝑓 (wn)

,

zn = 𝑦n − (1 + 2un)(1 − un)
𝑓 (𝑦n)

𝑓 [𝑦n,wn] + 𝜃2,n𝑓 (wn) + 𝜃3,n(𝑦n − wn)(𝑦n − xn)
,

xn+1 = zn − 𝑓 (zn)
𝜓n

,

being 𝜃1,n = − 1
N′

4(xn)
, 𝜃2,n = − N′′

5 (wn)
2N′

5(wn)
, 𝜃3,n = N′′′

6 (𝑦n)
6

, and 𝜃4,n = N(iv)
7 (zn)

24
. Moreover, un = 𝑓 (𝑦n)

𝑓 (xn)
and 𝜓n = f [ yn, zn] +

f [ zn, yn, xn](zn − yn) + f [ zn, yn, xn,wn](zn − yn)(zn − xn) + 𝜃4,n(zn − wn)(zn − yn)(zn − xn).
Regarding scheme M2 from the work of Cordero et al,4 its iterative expression involves the same notations as M1 and it

can be expressed as

wn = xn + 𝜃1,n𝑓 (xn),n ≥ 0,

𝑦n = xn − 𝑓 (xn)
𝑓 [xn,wn] + 𝜃2,n𝑓 (wn)

,

zn = 𝑦n − (1 − un)
𝑓 (xn)

𝑓 (xn) − 2𝑓 (𝑦n)
𝑓 (𝑦n)

𝑓 [𝑦n,wn] + 𝜃2,n𝑓 (wn) + 𝜃3,n(𝑦n − wn)(𝑦n − xn)
.

xn+1 = zn − 𝑓 (zn)
𝜓n

.

We consider three nonlinear standard test functions for the sake of comparison. For all compared methods, we have
considered 𝛾0 = 𝜃1 = a0 = 0.01, p0 = 𝜃2 = b0 = 0.1, 𝜆0 = 𝜃3 = q0 = 0.01, and 𝛽0 = 𝜃4 = d0 = 0.01. When
the schemes use memory, these initial values allows us to calculate starting values required to initialize the process for
accelerating parameters and, then, continuing the iterative process with self-improving values of the parameters. When
the schemes do not change the values of the parameters, the iterative methods are without memory having eighth-order
of convergence and they are denoted by LA8, M18, M28, ZR18, and ZR28.

Example 1. Function 𝑓1(x) = ex2+x cos(x)−1 sin(𝜋x) + x log(x sin(x) + 1) has two real roots at 𝜎 = 0 and −1.2829, we
seek to approximate the null solution with x0 = 0.6 as initial estimation. When numerical tests are made on f1(x) by
using iterative schemes without memory (see Table 1), the best results in terms of precision are obtained by schemes
ZR18 and M28. In Table 2, the errors obtained by their with-memory schemes ZR1 and ZR2 are showing the smallest
error. In all cases, the COC coincides with the theoretical value.

Example 2. In function 𝑓2(x) = e−x2 (x − 2)(x6 + x3 + 1), the only real root is 𝜎 = 2, which is efficiently reached by
all proposed and known methods; however, the precision reached by iterative schemes with memory is much bigger
than the error of their without-memory partners. In Tables 3 and 4, it is shown that the best performance without
using memory is obtained by methods ZR1 and M2; when memory is used, the exact error is reduced by a factor of
almost 1∕5, being the more precise results given by our proposed methods ZR1 and ZR2.

TABLE 1 Comparison table for f1(x) using methods without memory

f 𝟏(x) = ex2+x cos(x)−1sin(𝛑x)+ x log(x sin(x)+ 1), x0 = 0 . 6.
LA8 M18 M28 ZR18 ZR28

|x1 − 𝜎| 6.639 × 10−2 8.537 × 10−4 1.193 × 10−3 7.193 × 10−4 1.639 × 10−3

|x2 − 𝜎| 4.331 × 10−19 7.754 × 10−24 9.837 × 10−25 1.564 × 10−25 1.958 × 10−22

|x3 − 𝜎| 1.579 × 10−148 3.566 × 10−184 2.123 × 10−193 7.795 × 10−199 7.937 × 10−174

COC 7.999 8.000 7.999 8.000 8.000

Abbreviation: COC, computational order of convergence.
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TABLE 2 Comparison table for f1(x) using methods with memory

f 1(x) = ex2+x cos(x)−1sin(𝛑x) + x log(x sin(x) + 1), x0 = 0 . 6
LA M1 M2 ZR1 ZR2

|x1 − 𝜎| 6.639× 10−3 8.537× 10−4 1.193× 10−3 7.193× 10−4 1.639× 10−3

|x2 − 𝜎| 1.440× 10−37 2.675× 10−48 4.512× 10−49 6.253× 10−49 2.828× 10−49

|x3 − 𝜎| 4.079× 10−569 5.575× 10−734 1.177× 10−737 1.332× 10−744 2.089× 10−749

COC 15.33 15.40 15.15 15.43 15.29

Abbreviation: COC, computational order of convergence.

TABLE 3 Comparison table for f2(x) using methods without memory

f 2(x) = e−x2 (x − 2)(x6 + x3 + 1), x0 = 1 . 8
LA8 M18 M28 ZR18 ZR28

|x1 − 𝜎| 1.185× 10−6 1.508× 10−6 5.633× 10−7 2.594× 10−7 7.558× 10−7

|x2 − 𝜎| 2.116× 10−47 1.760× 10−45 3.197× 10−50 1.213× 10−52 9.952× 10−50

|x3 − 𝜎| 2.189× 10−373 6.039× 10−357 3.439× 10−396 2.786× 10−415 8.992× 10−393

COC 7.999 7.999 7.999 7.999 8.000

Abbreviation: COC, computational order of convergence.

TABLE 4 Comparison table for f2(x) using methods with memory

f 2(x) = e−x2 (x − 2)(x6 + x3 + 1), x0 = 1 . 8
LA M1 M2 ZR1 ZR2

|x1 − 𝜎| 1.185× 10−6 1.508× 10−6 5.663× 10−7 2.594× 10−7 7.558× 10−7

|x2 − 𝜎| 7.208× 10−97 9.283× 10−96 6.033× 10−102 7.648× 10−103 1.564× 10−99

|x3 − 𝜎| 3.191× 10−1498 1.335× 10−1479 7.590× 10−1578 1.278× 10−1592 8.037× 10−1592

COC 15.53 15.51 15.54 15.59 15.52

Abbreviation: COC, computational order of convergence.

TABLE 5 Comparison table for f3(x) and methods without memory

f 3(x) = x5 + x4 + 1
x2+1

− 5
2

x2, x0 = 1 . 5
LA8 M18 M28 ZR18 ZR28

|x1 − 𝜎| 2.831 × 10−2 6.761 × 10−2 1.974 × 10−2 3.346 × 10−2 1.038 × 10−2

|x2 − 𝜎| 1.900 × 10−9 1.497 × 10−5 1.326 × 10−10 9.698 × 10−9 2.064 × 10−13

|x3 − 𝜎| 1.425 × 10−66 1.129 × 10−33 8.615 × 10−76 2.011 × 10−61 1.693 × 10−98

COC 7.963 7.472 7.944 7.990 7.937

Abbreviation: COC, computational order of convergence.

Example 3. Function 𝑓3(x) = x5 + x4 + 1
x2+1

− 5
2

x2 has three real roots, −0.566312746, 1, and 0.620346251, but the
desired one in the numerical tests is 𝜎 = 1. When the methods without memory are used (see Table 5), the best
results (lowest exact error) have been obtained by ZR28 and M28. Regarding the performance of iterative schemes
with memory (see Table 6), the lowest errors have been obtained by the proposed methods ZR1 and ZR2, although
the reduction of the error had a factor of 1∕4, approximately.

Example 4 (Continuous stirred tank reactor (CSTR)).
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TABLE 6 Comparison table for f3(x) and methods with memory

f 3(x) = x5 + x4 + 1
x2+1

− 5
2

x2, x0 = 1 . 5
LA M1 M2 ZR1 ZR2

|x1 − 𝜎| 2.831 × 10−2 6.761 × 10−2 3.607 × 10−2 3.346 × 10−2 1.038 × 10−2

|x2 − 𝜎| 3.345 × 10−19 6.912 × 10−13 5.721 × 10−17 1.802 × 10−17 1.924 × 10−25

|x3 − 𝜎| 5.898 × 10−290 3.448 × 10−188 1.611 × 10−253 1.510 × 10−261 3.509 × 10−389

COC 15.99 15.79 15.98 15.92 15.98

Abbreviation: COC, computational order of convergence.

TABLE 7 Comparison table for f4(x) and methods without memory

f 𝟒(x) = x𝟒 + 𝟏𝟏 . 𝟓𝟎x𝟑 + 𝟒𝟕 . 𝟒𝟗x𝟐 + 𝟖𝟔 . 𝟎𝟑𝟐𝟓x + 𝟓𝟏 . 𝟐𝟑𝟐𝟔𝟔𝟖𝟕𝟓, x𝟎 = −𝟏 . 𝟐
LA8 M18 M28 ZR18 ZR28

|x1 − 𝜎| 5.546 × 10−5 7.586 × 10−4 5.204 × 10−5 1.270 × 10−4 3.529 × 10−6

|x2 − 𝜎| 2.2504 × 10−33 2.372 × 10−22 1.643 × 10−33 1.643 × 10−30 1.213 × 10−42

|x3 − 𝜎| 1.654 × 10−260 2.205 × 10−170 1.626 × 10−261 1.304 × 10−237 2.366 × 10−334

COC 7.999 7.999 7.999 7.999 7.999

Abbreviation: COC, computational order of convergence.

TABLE 8 Comparison table for f4(x) and methods with memory

f 𝟒(x) = x4 + 𝟏𝟏 . 𝟓𝟎x3 + 𝟒𝟕 . 𝟒𝟗x2 + 𝟖𝟔 . 𝟎𝟑𝟐𝟓x + 51 . 𝟐𝟑𝟐𝟔𝟔𝟖𝟕𝟓, x𝟎 = −𝟏 . 𝟐
LA M1 M2 ZR1 ZR2

|x1 − 𝜎| 5.546 × 10−5 7.586 × 10−4 5.204 × 10−5 1.270 × 10−4 3.529 × 10−6

|x2 − 𝜎| 3.627 × 10−67 2.408 × 10−48 5.847 × 10−67 9.266 × 10−61 1.168 × 10−85

|x3 − 𝜎| 4.063 × 10−1062 2.591 × 10−760 3.771 × 10−1058 5.963 × 10−959 2.434 × 10−1357

COC 15.99 15.99 15.99 15.99 15.99

Abbreviation: COC, computational order of convergence.

Let us consider an isothermal continuous stirred tank reactor (CSTR). Components A & R are fed to the reactor at
rates of Q and q-Q respectively. The following reaction scheme develops in the reactor:

A + R → B
B + R → C
C + R → D
D + R → E.

The equation for the transfer function of the reactor is given as

KC
2.98(x + 2.25)

x4 + 11.50x3 + 47.49x2 + 86.0325x + 51.23266875
= −1,

where KC is the gain of the proportional controller. The control system is stable for values of KC that yields roots of the
transfer function having negative real part. If we choose KC = 0, we get the poles of the open-loop transfer function
as roots of the nonlinear equation

𝑓4(x) = x4 + 11.5x3 + 47.49x2 + 86.0325x + 51.23266875 = 0 (11)

given as −1.45, −2.85 (double root), and −4.35. For the numerical tests, we consider 𝜎 = −1.45 and the initial guess
x0 = −1.2.

In case of parametric eighth-order schemes (see Table 7), the best results are provided by ZR28 and M28 methods,
holding in all cases a computational order that agrees with the theoretical one. When methods with memory are used,
we can see in Table 8 that the most precise solution is obtained by ZR2 scheme, followed in a big distance by the
LA method. The process of using memory in the accelerating parameters has decreased the error in a factor of 1∕4,
approximately. The estimation of the order of convergence again agrees with the theoretical one.
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6 CONCLUSIONS

We have proposed new three-step four-parametric family of iterative methods by using two weight functions. We have
taken test functions of different types and have applied our newly proposed methods on them. We also have compared
our results with recent three-step four-parametric methods. In case of schemes without memory, our methods ZR1 and
ZR2 give much better accuracy and COC for test functions f1, f2, f3, and f4 as compared to the methods LA, M1, and M2. In
case of extension with memory of our methods, efficiency index is increased from 1.6817 to 1.9847 and we obtain much
better results and high COC. As a future extension, we can analyze the stability of the proposed family of methods using
complex dynamics similar to the works of Chun and Neta9 and Gdawiec.10
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