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ABSTRACT:  

Microorganisms can produce a wide variety of compounds and are key factors for 

understanding the behavior of ecological systems. Metagenomics is the tool for achieving this 

knowledge, studying microorganisms directly from their source through different approaches: 

focusing on sequencing marker genes (metataxonomics) or puzzling up the whole genetic 

material into separate genomes (metagenomics). In the recent past, Illumina has been the most 

sequencing technology used. However, short reads generated by Illumina are hard to assemble, 

and they produce very fragmented metagenomes. Despite their high intrinsic error, third 

generation sequencing platforms harbor the potential to overcome this issue thanks to their 

ability to generate longer reads. In this regard, MinION (Oxford Nanopore Technologies) is very 

advantageous for metagenomics applications, since it is cheap, portable and provides 

information in real-time.  

Many assemblers have been designed for dealing with error-prone data, but there is not 

a clear consensus about the tools to use to achieve the best results when handling MinION data. 

It is thus necessary to benchmark these tools and state what, why and when to use them. For 

that, using the best performing assemblers we know in the present, the aim of the present work 

is to analyze sequencing data from microbial communities of different complexities and 

systematically compare the metagenomes retrieved. The final goal of the study is to provide 

guidance for other scientists to choose the proper software, and to stimulate the rational 

development of tools and methodologies for this field. 
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ABSTRACT:  

Los microorganismos producen compuestos muy variados y son esenciales para 

entender el comportamiento de sistemas ambientales. La metagenómica es la vía para obtener 

este conocimiento, estudiando los microorganismos directamente desde su hábitat usando 

diferentes enfoques: centrarse en secuenciar genes marcadores (metataxonómica), o montar 

todo el material genético en genomas separados (metagenómica). En los últimos años, Illumina 

ha sido la tecnología más usada para secuenciar; sin embargo, las lecturas cortas que genera 

Illumina son difíciles de ensamblar, y producen metagenomas muy fragmentados. A pesar de su 

alto error intrínseco, las plataformas de tercera generación tienen potencial para superar este 

inconveniente gracias a que pueden generar lecturas más largas. En este contexto, MinION 

(Oxford Nanopore Technologies) es muy conveniente para aplicaciones metagenómicas; ya que 

es barato, portable y proporciona información en tiempo real.  

Se han diseñado muchos ensambladores para tratar con datos de mayor error intrínseco, 

pero no hay un consenso en cuanto a las herramientas que se deben usar para obtener los 

mejores resultados cuando se usa MinION. Es por tanto necesario evaluar estas herramientas y 

definir qué, por qué y cuándo usarlas. Para este propósito, y usando los mejores ensambladores 

que se conocen actualmente, la finalidad de este proyecto es analizar datos secuenciados de 

comunidades microbianas de varias complejidades y comparar sistemáticamente los 

metagenomas obtenidos, con el objetivo de orientar a otros científicos para elegir el software 

adecuado y estimular el desarrollo racional de nuevas herramientas y estrategias para este 

campo. 

PALABRAS CLAVE: 

MinION; Secuenciación Nanopore; Metagenómica; Ensamblaje; Bioinformática; Evaluación 
sistemática 

Autora: Morgane Blanot 

Tutor académico: Prof. José Gadea Vacas 

Cotutora externa: Dr. Cristina Vilanova Serrador 

Cotutor colaborador externo: Adriel Latorre Pérez 



 

 

 

 

AKNOWLEDGEMENTS / AGRAÏMENTS 

En el transcurs de l’orientació professional, i en la consecució de projectes, n’hi ha 

moments decissius que definixen la direcció d’una carrera. Moments decissius que requerixen 

molta gent decissiva, que t’espenten cap a una o altra direcció. 

Voldria donar les gràcies a Pepe per animar-me, recolzar-me en les meues caramboles 

amb empreses, creure en el meu potencial i recomanar-me. A Manel, per donar-me varios tours 

pels laboratoris en què treballa, aceptar-me i obrir-me la porta al seu món. Al personal dels 

laboratoris de Darwin i del I2SysBio per acollir-me i tractar-me tan bé el poc temps que els vaig 

acompañar, i especialment a Marta i Javi, per instruïr-me. A Cristina, per confiar en mi i no 

donar-me’n uno, sinó dos TFGs quan el confinament va cancel·lar el primer projecte, i per 

avaluar-me, aconsellar-me i ajudar-me a millorar. A Adriel, per la seua infinita paciència, ànims, 

coaching, consells, temps, coneixement, guia i amabilitat. A Pascual, per obrir-me el camí amb 

el seu treball. 

Y de quienes influyen de casa, quería agradecer a José Antonio, Paco e Inma, por 

introducirme en el mundo de las ciencias biológicas; y a mi hermana, por haber sido mi modelo, 

inspirarme y hacerme ayudarla a estudiar Ciencias Naturales cuando aún no sabía multiplicar. 

A mi padre, por darme todo lo que sabe y puede, haberme hecho trabajadora y desearme lo 

mejor. A Aitor, por mudarse tres veces en un año, aguantarme todos los días con mis inestables 

estados anímicos y todos mis desastres, hacerme café y seguir ahí. A la gente que me acompaña, 

por darme paz y alegría, juegos, memes y cerveza.



 

 

 

 

 

 



I 

 

 

  

LIST OF CONTENTS 

1. Glossary .................................................................................................................................................... 1 

2. Introduction ............................................................................................................................................. 3 

2.1-Why should this topic matter in the current world? ................................................................... 3 

2.2-Glasses for reading: DNA sequencing ............................................................................................. 3 

2.3-Reading the microenvironment: metagenomics ........................................................................... 4 

2.4- Oxford Nanopore technologies: the revolution of long-read sequencing ............................. 8 

2.5-Evaluating what works best: benchmarking ................................................................................. 9 

3. Objectives .................................................................................................................................................... 10 

4. Materials and methods ............................................................................................................................. 11 

4.1-Environment and background ......................................................................................................... 11 

4.2-Overall project workflow ................................................................................................................. 11 

4.3-Nanopore data obtention. ................................................................................................................. 12 

4.4-Mock communities and reference genomes obtention ............................................................. 13 

4.5-Data preprocessing............................................................................................................................. 15 

4.6-Metagenome assembly ...................................................................................................................... 16 

4.7-Assessing assembly quality .............................................................................................................. 18 

4.8-Polishing ............................................................................................................................................... 18 

4.9-BCGs prediction. ................................................................................................................................. 19 

4.10-Equipment details ............................................................................................................................. 19 

5. Results and discussion. ............................................................................................................................. 20 

5.1-General performance ......................................................................................................................... 20 

5.1.1-Recovered metagenome fraction. ............................................................................................. 20 

5.1.2.-Contiguity and computational efficiency .............................................................................. 24 

5.2-Accuracy and polishing .................................................................................................................... 26 

5.3- BGCs prediction from complete datasets (BenchEV and MSA2006) .................................... 30 

6. Concluding remarks. ................................................................................................................................. 33 



II 

 

 

  

7. Conclusions ................................................................................................................................................. 35 

7.1-Future work ......................................................................................................................................... 35 

8. Bibliography................................................................................................................................................ 36 

9. Supplementary data .................................................................................................................................. 41 

S.1-Supplementary codes: ....................................................................................................................... 41 

S.2-Assembly complications and solutions ......................................................................................... 50 

S.3-Supplementary figures ...................................................................................................................... 51 

 

  



III 

 

 

  

LIST OF FIGURES 

Figure 1 The concept of metagenome.. ....................................................................................................... 5 

Figure 2. Metataxonomics, metagenomcis and metatranscriptomics approaches overview and 

most important application.. ................................................................................................................ 7 

Figure 3. General overview of the Project methodology. .................................................................... 11 

Figure 4. Total metagenome assembled fraction per assembly and community.. ......................... 20 

Figure 5. Genome fractions (%) recovered per microorganism (up) and plasmids (down) for 

each mock community.. ...................................................................................................................... 21 

Figure 6. General performance of assemblers.. ....................................................................................... 25 

Figure 7. Accuracy statistics for assemblies after first obtention (draft), Racon polishing and 

Medaka polishing. ................................................................................................................................. 28 

Figure 8. Mismatches per 100kpb compared to genome recovery for each microorganism in the 

BenchHE and BMock12 mock communities, after the polishing pipeline.. ........................... 29 

Figure 9. Predicted BCGs for the reference metagenome and for each polished assembly of the 

MSA2006 (up) and BenchEV (down) mock communities. .......................................................... 32 

LIST OF TABLES 

Table 1. Main differences between metataxonomics and metagenomics.. ........................................ 6 

Table 2. Summary of data size and obtention. ........................................................................................ 13 

Table 3. Mock communities compostition and IDs. .............................................................................. 14 

Table 4. Assembly tools characteristics.. .................................................................................................. 17 

Table 5. Complete commands for each assembler used.. ..................................................................... 17 

Table 6. Best and worst of each assembler herein tested. .................................................................... 34 

LIST OF SUPPLEMENTARY FIGURES 

Supplementary figure 1. List of studies containing ONT metagenomic data considered for this 

project.. ....................................................................................................................................................... 51 

Supplementary figure 2. General performance of assemblers (higher size). ................................... 52 

Supplementary figure 3. Indels per assembler and microorganism, after Polishing.. ................... 53 



 

 

 

 

  



 

 

1 

 

1. Glossary 

 

Metagenomics: The study of the 

composition and functionalities of the 

microbial communities, from a shotgun 

sequencing-based approach. 

Metataxonomics: The study of the 

composition of the microbial communities 

through marker genes sequencing. 

Shotgun sequencing: Sequencing 

approach that focuses on targeting the 

whole (meta)genome instead of discrete 

regions, to obtain the whole sequence. 

NGS: Next Generation Sequencing, a group 

of sequencing technologies that sequence in 

a much faster and cheaper way than the 

first sequencing methods, namely Sanger, 

producing high throughput data. 

Read: Piece of information obtained 

through sequencing that corresponds to a 

fragment of the DNA of interest in an 

assembly experiment. This information is 

integrated to conform the genome of 

interest. 

Contig: Fragment of DNA sequence 

originated as a result of an assembly of 

sequenced reads.  

Assembly: Integration of sequencing data 

to form the genome of interest. 

Coverage: Parameter for describing the 

sequencing depth, it is the amount of times 

a genome has been sequenced and therefore 

the number of fragments each spot in the 

genome has in the reads pool. The higher, 

the better the final genome accuracy. 

Draft sequence: Resulting preliminar 

sequence of the assembly and each round of 

a polisher. 

Base pairs (bp): Length unity used in 

genetics and genomics, that includes one 

pair of complementary bases of the DNA.  

Kilobase (kpb): A thousand base pairs. 

Megabase (Mb): A million base pairs. 

N50: Minimum contig length needed to 

cover 50% of the genome (or metagenome). 

If contigs sizes of size N50 or greater are 

added, the result is, at least, the size of half 

the metagenome. It is used for quality 

assessment as an indicator assembly 

contiguity, considered generally the highest 

the better.  

L50: Total number of contigs that have a 

length equal or superior to the N50 value; 

that is, they contain at least half the bases 

of the metagenome. This is also a quality 

assessment parameter that provides 
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contiguity information. Generally, the 

lowest its value, the better.  

ANI: Average Nucleotide Identity, 

sequence coincidence between two 

microorganisms. The more related they are, 

the higher the ANI is. If ANI is very high, 

the assembly cannot differentiate the 

microorganisms involved. 

Indel: Short for insertions and deletions of 

genomic bases in a sequence. In the context 

of assembly, these are mutations originated 

during the assembly, dependent on the 

assembly algorithm, that can cause 

truncated interpretation of protein regions 

through frameshifts or premature stop 

codons. 

Mismatch: SNP (single nucleotide 

polymorphism), variants in the identity of a 

base in a genomic sequence. In the context 

of assembly, it consists on a wrong base 

assignment.  

Polishing: Correction step for improving 

the accuracy of an assembly draft. Consists 

on using the input reads to obtain, through 

iterations, a consensus sequence that better 

applies to the sample. 

Annotation: Functional analysis and 

assignation of the obtained sequencing 

data, to obtain the functional, expressing 

profile of the organism. 

Biosynthetic gene cluster (BCG): Group 

of genes regulated together that are 

involved in a certain process that belongs to 

the secondary metabolism. They are 

repetitive and sensitive to frameshift 

mutations. 
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2. Introduction 

2.1-Why should this topic matter in the current world? 

Humankind has been using technology to increase its quality of life for centuries. From 

fire, to the wheel, to electricity, medicine and machines of every kind, constant efforts for 

increasing our well-being are constantly made. However, in the recent past those efforts have 

come with great environmental damage, depending mostly on fossil fuels and processes that, 

even though they have helped to achieve a great deal of products and possibilities not even 

imagined by our ancestors, they jeopardize the surroundings integrity and the possibility of 

maintaining our activities for a long time (Cavicchioli et al., 2019).  

Now, we live in a very dynamic world in which science evolves fast. Industry evolves 

fast. We search for advances to improve our performance or being able to develop new products, 

and we look for solutions to diminish our damage to the planet. There is a clear need for change 

in the way industry is built, how we obtain primary resources and energy; and a need to develop 

fast ways of obtaining relevant information, to obtain the most from the least (Lorenz and Eck, 

2005). 

Microorganisms are extraordinary creatures, that shape our environment and drive 

energy and matter flowing in collaboration with other organisms and geology. They live in 

virtually any environment and their presence affect the capability of an ecosystem to respond 

to a certain situation (Cavicchioli et al., 2019; Ratzke and Gore, 2018). They possess an enormous 

variety of functionalities, which makes them treasures of industrial interest. Transformations 

not possible in other conditions and products incredibly difficult to imagine and obtain 

synthetically are made by microorganisms, and they can be modified to produce a wide range 

of molecules in an efficient way (Priscu and Christner., 2003; Correa and Abreu, 2020). Industrial 

usage of microorganisms is a very old practice, and now we are switching to a model in which 

we control the conditions and the products of this usage more precisely, from a proof-based to 

a rational-based methodology (Demain et al., 2016; Cassidy et al., 1996), for which metagenomics 

is proving to have a lot to contribute. 

 

2.2-Glasses for reading: DNA sequencing 

In the past few decades, we have been living in the “sequencing era”. Sequencing is a 

technique by which a genome is “read”, meaning, the sequence –order and identity–of its bases 

is determined. Many techniques have been developed for this aim, in what are known as 
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sequencing technologies (McCombie et al., 2019). The beginning of the sequencing era 

culminated with the Human Genome Project, the sequencing of the human genome (Venter et 

al., 2001). 

According to the technicalities of the process and the timeline in which they have been 

developed, sequencing techniques are divided in three generations. The first generation 

started with Sanger sequencing, which was based on chain-termination method, that is very 

slow but accurate. Applications of Sanger sequencing have been centered on small genomes and 

target genes obtention (Metzker, 2010), but as omic sciences started to gain importance, there 

was a clear limitation in both speed and cost (McCombie et al., 2019). Second generation 

platforms produced high throughput data of short reads by reading thousands of templates at 

the same time. It has been mostly represented by Illumina in the last years, which became the 

most used technology for ‘omic’ analyses (Kim et al., 2013; Metzker, 2010). The third 

generation, represented initially by Pacific Biosciences (Pacbio) and now by Oxford Nanopore 

Technologies (ONT), kept the high throughput concept and is based on outputting long reads—

in contraposition to the short reads produced by Illumina that increase computational 

demands—obtained through single-molecule sequencing. The main drawback of this group has 

been its high error rate (Kim et al., 2013; McCombie et al., 2019). On the whole, DNA sequencing 

is a very versatile technique and its utility has only been increasing since ‘omic’ studies arose 

and became a regular research approach.  

 

2.3-Reading the microenvironment: metagenomics 

Once we acknowledged the opportunities existing in the microbial world and we aim 

to understand those organisms, the arising problem is how to do so. Classical microbiology is 

focused on the isolation and growth of the microorganism. However, this approach is limited 

since most microorganisms on the planet cannot be cultured with traditional techniques –

according to most estimations 99% are not culturable, and the culturable 1% is not representative 

of the whole bacterial diversity (Arya, 2020)–. In this context, metagenomics has received more 

and more attention in the recent years (Schloss and Handelsman, 2005; Handelsman, 2004). 

‘Omic’ studies are based on integrating data to obtain a descriptive, functional or overall 

picture. Typically, an omic study will employ lots of experimentally obtained data and will aim 

to obtain a general overview of what is being studied (Evans, 2000). They allow for 

understanding nature and systems in a holistic way. The term ‘metagenomics’ was born in 1998 

when Handelsman et al. used it when describing the “collective genomes of soil microflora” 

(Highlander, 2014) (Figure 1). However, it was not until 2004 when the first two metagenomic 
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studies were published: one describing sequencing and analysis of a metagenome representing 

a handful of organisms forming an artificially simple community of a biofilm growing on the 

surface of an acid mine drainage (Tyson et al., 2004); and the other describing a metagenome of 

a much more complex community of the Sargasso Sea microbiome (Venter et al., 2004). It has 

since increasingly acquired popularity, becoming a common research tool nowadays 

(Hugenholtz and Tyson, 2008; Jansson and Baker, 2016).  

 
Figure 1 The concept of metagenome. Adapted from Bharti and Grimm, (2019). 

Strictly speaking, ‘metagenomics’ does not include every culture-independent, 

sequence-based approach for microbiology research, but only the ‘shotgun’ sequencing of the 

DNA from the whole community, and further assembly –puzzling up that sequencing data— or 

taxonomic/functional analysis. When marker genes (16S, 18S, ITS…) are amplified and 

sequenced in order to obtain taxonomic information of the sample, the approach used is 

‘metataxonomics’ or amplicon sequencing (Marchesi and Ravel, 2015); and when the focus is 

on sequencing the total RNA of the microbial community to see what is the expression profile 

of that community, the approach used is called ‘metatranscriptomics’ (Breitwieser and 

Salzberg, 2019). Each strategy has its own advantages and disadvantages and is more suitable 

depending on the objective of the study (Tringe et al., 2005; Breitwieser and Salzberg, 2019; 

Morgan and Huttenhower, 2012) (Table 1, Figure 2). 

Metataxonomics is cheaper, faster and requires less computational resources than 

metagenomics, but the information that can be obtained from this approach is limited since it 

only focuses on one or few genes, and those genes are compared to databases that include 

already established knowledge (Breitwieser and Salzberg, 2019). Furthermore, for targeting only 

those few genes, the PCR primers used must be designed. This leads to biases towards species 

that are known in detriment of new species that might not be amplified because they contain 

genetic sequences different from the standards, thus failing to obtain the complete picture of 

the sample in some cases. The same problem applies when estimating sample abundances 

(Bharti and Grimm, 2019). Despite the bias, metataxonomics achieves better screening of less 

abundant microorganisms (Breitwieser and Salzberg, 2019) because the PCR amplification 

allows for targeting a taxonomic group, thus increasing screening capacity.  
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Using metagenomics is advantageous for estimating abundances more accurately, 

obtaining draft and reference genomes and reconstructing functional and ecological profiles 

(Tringe et al., 2005), which is of most interest when dealing with unknow microbiomes, specially 

from the environment, that potentially contain new species and unique physiological functions. 

In those cases, shotgun metagenomics and assembly allow for a more complete qualitative 

analysis of the sample and obtention of new information in terms of new microbial species, 

combinations, and synergies; as well as detecting other features that affect the community, such 

as plasmids and viruses (Breitwieser and Salzberg, 2019). Technical limitations of this approach 

are related to both the experimental data obtention and analysis, but as sequencing and 

bioinformatic tools develop, the cost both monetary and computational is progressively 

decreasing, making it more affordable for regular scientists (Breitwieser and Salzberg, 2019; 

Bharti and Grimm, 2019; Tringe et al., 2005).  

Table 1. Main differences between metataxonomics and metagenomics. Adapted 
from Breitwieser and Salzberg, (2019). 

Strategy Concept Advantages and challenges Main applications 

Meta 
taxon 
omics 

Using 
amplicon 

sequencing 
of the 16S or 

18S rRNA 
gene or ITS 

+ Fast and cost-effective identification of a 
wide variety of bacteria and eukaryotes 

* Profiling of what is 
present 

* Microbial ecology 
* rRNA-based phylogeny 

− Does not capture gene content other than 
the targeted genes 
− Amplification bias 

− Viruses cannot be captured 

 

 

Meta 
    gen 

omics 

Using 
random 
shotgun 

sequencing 
of DNA or 

RNA 

+ No amplification bias 
+ Detects bacteria, archaea, viruses and 

eukaryotes 
+ Enables de novo assembly of genomes 

* Profiling of what is 
present across all 

domains 
* Functional genome 

analyses  
* Phylogeny 

* Detection of pathogens 
* New microorganisms 

obtention 

 

 

 

− Requires high read count 
− Many reads may be from host 

− Requires reference genomes for 
classification 

−More expensive and machine demanding 

 

 

 

 

 

Finally, metatranscriptomics is the approach that actually confirms any information 

that either metataxonomics or metagenomcis can provide, because it allows for screening the 

real activity of the sample: which microorganisms are alive and which functionalities are being 

expressed (Breitwieser and Salzberg, 2019). The main limitation of this approach –although also 

bioinformatically challenging–is rather experimental, as it is based on mRNA obtention and 
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RNA is very fragile –samples are unstable and degrade fast–, which makes this analysis a 

difficult practice (Bharti and Grimm, 2019). 

 
Figure 2. Metataxonomics, metagenomcis and metatranscriptomics approaches overview and 

most important application. Adapted from Bikel et al., (2015). 

 

Metagenomics therefore appears as the most convenient strategy for industrial 

development, I+D, product discovery and environmental assessment, that is, for bioprospecting, 

through sequencing and assembling the microbial DNA into genomic drafts (Priscu and 

Christner, 2004; Breitwieser and Salzberg, 2019); and improvement of this discovery approach 

needs for sequencing and computational development and optimization. Assembling –

constructing draft genomes computationally from the sequencing data–properly the 

metagenome is crucial for good results obtention, and it is the first big computational step of 

the analysis. However, community complexity –which makes it difficult to discern whether a 

read is part of one microorganism or the other–and performance of the assembly programs in 

terms of screening capacity, metagenomic datasets, speed and computing resources usage, are 

variables that have to be considered when choosing an assembler or a sequencing technique 

(Teeling and Glöckner, 2012). In this regard, Illumina sequencing shows limitations. 



 

 

8 

 

2.4- Oxford Nanopore technologies: the revolution of long-read sequencing 

Importantly, when dealing with metagenomic data, short reads increase drastically the 

computing power required for data analysis and assembly, and the resulting metagenomes are 

highly fragmented due to the difficulty on creating scaffolds –bridges between reads that serve 

to put them together and order them in the overall sequence— when the genomes have similar 

sequences, repetitive or complex genomic regions (Zavodna et al., 2014; Kim et al., 2013). As 

mentioned above, the major drawback in third generation sequencing is the high error rate they 

carry (McCombie et al., 2019). Consequently, combining second and third generation 

sequencing has arisen as a solution for the drawbacks that both technologies carry, and has 

drastically increased assembly contiguity while maintaining accuracy (Bertrand et al., 2019; 

Giguere et al., 2020; Moss et al., 2020), although at least two technologies and several processing 

steps need to be combined thus making the overall process more complex. 

Among the long-read technologies, using Oxford Nanopore Technologies (ONT) 

produces longer fragments, increases assembly contiguity, and decreases false redundancies 

when comparing it to Pacific Biosciences (PacBio) (Lang et al., 2020; Moss et al., 2020). Although 

better accuracy is achieved by PacBio (Lang et al., 2020), ONT solves computational processing 

by aiming for very long read size; and with new advances on the technology, it has become very 

suitable for metagenomic analysis. Firstly, its chemistry –conformation of the pore that reads 

the DNA base passing through it–and basecalling –obtaining the DNA base from the 

sequencing signal—are increasing accuracy thus diminishing error rates (OXFORD NANOPORE 

TECHNOLOGIES, 2020b; OXFORD NANOPORE TECHNOLOGIES, 2020c). Secondly, format 

variation of devices, namely the development of MinION devices, is making in situ applicability 

available, which allows for analyses to be made easily in many environments and situations –

from forensics, clinical, environmental and in-space (Burton et al., 2020; Burgess, 2020; Hall et 

al., 2020; Chan et al., 2020; Carradec et al., 2020)–, as well as reducing the cost and time needed 

for sequencing, making it a cheap, portable, accessible and highly versatile technology with 

much potential to obtain highly complete microbial genomes from metagenomic samples 

(Deamer et al. 2016; Hasnain et al. 2020). 

With the fast development of MinION and in general Oxford Nanopore Technologies, 

new assemblers are being developed to deal with their data. As there is not a standard guideline 

for best results when assembling metagenomes with ONT, doubts arise when scientists not 

familiarized with all tools attempt to assemble a metagenome and do not know which one to 

choose. 
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2.5-Evaluating what works best: benchmarking 

A benchmark, or evaluation, is a type of study in which the objective is to measure the 

yield of one or more tools and use this knowledge to apply it to similar systems (Anand and 

Kodali, 2008). In bioinformatics, this approach is used to validate workflows, pipelines, 

strategies, and to test improvements of existing tools (Agers et al., 2018; Goderis et al., 2009; 

Angers-Loustau et al., 2018).  

For these types of studies, it is necessary to use reliable and known data, from which 

the interpretation of the results can be more accurate; and for that, it is useful to employ mock 

communities as microbiome genetic material source (Sun et al., 2012; Leidenfrost et al., 2020; 

Singer et al., 2016). Mock communities are defined microbial communities, composed by 

known microorganism with an available reference genome (Highlander, 2014). Using a 

community whose composition you already know is most useful to asset how well a pipeline 

has worked. Moreover, the proportion of each organism in the mixture can be modified to 

simulate different complexities, harder to analyze (Bokulich et al., 2016; Leidenfrost et al., 2020). 

However, this type of approach has the risk of overfitting since it is based on an 

oversimplification of real microbial communities. For that reason, it is of most importance to 

use variated and more representative data to conduct benchmarking studies (Hawkins, 2004), 

and to keep validating the results said studies obtain. 

There is a need for developing tools for other scientists to use and improve the research 

field, but there is also a need to validate these improvements and state how well they work by 

comparing them to other alternatives available, and provide less-experienced scientists on the 

field of guidelines they can follow, if we want to make science, and concretely bioinformatic 

analysis, more available (Aniba et al., 2010). The world is digitalizing and biological sciences 

should not fall behind. 
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3. Objectives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Keeping in mind the discussed context and considerations, the main objectives of this 

project are to: 

1. Delve into benchmarking ONT assembly tools, discerning which provide the best 

metagenomes from mock communities when dealing with ONT Nanopore data. 

2. Assess Nanopore data capacity of reconstructing different microbial communities on 

its own.  

And the secondary objectives are to: 

3. Contribute to tools criteria homogeneity and provide guidance to other scientists, 

extending assembly analysis accessibility. 

4. Stimulate rational development of tools and strategies for metagenomic assembly and 

ONT data analysis for better results obtention. 
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4. Materials and methods 

4.1-Environment and background 

This project was developed in coordination and under the supervision of Darwin 

Bioprospecting Excellence –referred as Darwin throughout the text–, that provided the in silico 

equipment for analysis, and guidance. In the bioinformatics department of Darwin, research 

regarding benchmark of metagenomic assemblers using MinION reads was already being made. 

In that regard, this project was originated as a continuation and deepening of the previous work 

done by Latorre-Pérez et al. (2019), in which they assembled data of mock communities 

generated by Nicholls et al. (2019). Due to the Covid19 lockdown situation, the non-essential access 

to the Universitat de València Parc Científic -in which Darwin is located- was forbidden and I did 

all of my activities from my home. To access the computer from Darwin I used the remote PC 

controller TeamViewer.  

4.2-Overall project workflow 

Briefly, sequencing data from metagenomic mock communities was obtained, 

assembled, polished, and results were evaluated in function of contiguity and accuracy 

parameters (Figure 3). 

 

Figure 3. General overview of the Project methodology. 
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4.3-Nanopore data obtention. 

When this project was started, the ongoing situation —the COVID-19 pandemic crisis 

and lockdown restrictions in Spain— made it not possible to work on the laboratory and obtain 

data for the study. Despite these initial constraints, this issue could be solved thanks to 

nowadays scientific policies on OpenAccess and public data availability, as researchers are 

required to make the data they have used for their study accessible on public repositories such 

as SRA (under BioProject accessions) or ENA (in EMBL). This cloud system allows for available 

data to be reused using different study approaches. Data of sequenced mock communities that 

had not been analyzed using the same strategies or in the same depth as herein arose as the 

most convenient option for performing the whole project in silico, and were employed instead. 

Therefore, metagenomic Nanopore sequencing data was searched in the literature to find 

studies providing sequencing data. The complete list of results can be consulted in 

Supplementary Figure 1.  

The first criteria for studies selection included: 

❖ Metagenomic studies. 

❖ Data generated from real communities using Oxford Nanopore MinION, 

PromethION or GridION -preferably MinION-, using flowcells with R9.4 pore. 

❖ Aim for data of mock communities (defined and validated, with reference 

genomes available). 

The search was made through the official Oxford Nanopore Technologies site -in which 

every study that is related to or uses their technologies is published- using the ‘metagenomic’ 

filter and the ‘most recent’ order, and through Google Scholar using key words such as ‘ONT’, 

‘Nanopore’, ‘MinION’, ‘Metagenomics’, ‘Mock community’, and filtering by most recent 

publications -1 and 2 years-. Pubmed and PLOS were searched but they included the results 

already found in either Google Scholar or Oxford Nanopore. Elsevier provided only general 

titles, mainly not relevant. The title and abstract of the retrieved results were revised, and if 

relevant information was found, the full text was accessed and read. A list containing study 

details of the results was elaborated, and the 9 most promising studies were selected for further 

filtering. 

The list was then filtered according to more restrictive criteria: 

❖ Data had to be available to download. 

❖ Sequencing depth had to be as high as possible, ideally greater or equal to 4Gbp. 
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❖ The basecaller had to be preferably Albacore if raw signal files were available, 

or Guppy if no signal files were available.  

Finally, three studies generating Nanopore sequencing data were selected (Leidenfrost 

et al., 2020; Sevim et al., 2019; Moss et al., 2020). Fastq files (Table 2) were downloaded from the 

publicly available SRA repositories, that were searched using the BioProject IDs provided by 

the researchers. Direct download was not available for the data generated by Sevim et al. (2019). 

In that case, the fastq reads were only available as an SRA file, thus the SRA toolkit was used to 

obtain the data and transform the file from SRA to fastq format using the commands “prefetch” 

and “fastq-dump”. 

Table 2. Summary of data size and obtention. 

Study fastq obtention fastq size Dataset details 

Leidenfrost et al., (2020) Direct download from SRA 4,6 GB and 7,9 GB Both datasets 

Sevim et al., (2019) Direct download from SRA 7,5 GB 10kb size-selected  

Moss et al., (2020) Obtained using SRA toolkit 62,3 GB atcc dataset 

 

4.4-Mock communities and reference genomes obtention 

Leidenfrost et al. (2020) generated a community that is a mixture of 12 type strains of 

gram positive and gram negative bacteria with varying GC content available in either the 

German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), the National 

Collection of Type Cultures (NCTC) or the American Type Culture Collection (ATCC), with 

published reference genomes at the National Center for Biological Information (NCBI), that was 

blindly sequenced by a different sequencing laboratory. Two samples were generated prior to 

sequencing this community: one sample with equimolar microorganism composition –referred 

in the text as BenchEV–, and one sample with logarithmic scale-like heterogeneous 

microorganism composition –referred in the text as BenchHE— (Table 3). 

The community generated by Sevim et al. (2019) is also a mixture of 12 bacterial strains, 

but since the aim of this work was to generate sequencing data for different technologies, it was 

designed to be especially difficult to sequence. It contains variations in terms of genome size, 

GC content, repeat content; and taxonomic complexity factors such as several strains belonging 

to the same genus of Actinobacteria with high average nucleotide identity (ANI), two different 

proteobacterial classes –alpha and gamma–, and two different phyla –Flavobacteria and 

Actinobacteria. This community is here referred with the same name as the authors used in their 

study, BMock12 (Table 3). 
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Table 3. Mock communities compostition and IDs. (1) All are IDs from Refseq. (2) All are 
taxomnomic IDs from IGM. (3) All are IDs from Refseq, except from that of Yersinia enterocolitica, that 
was only available at the ATCC website. 

COMPOSITION OF COMMUNITIES 

BenchEV and BenchHE BMock12 MSA2006 

Size (bp) 56430306 Size (bp) 59520276 Size (bp) 46750506 

Estimation 56.4 MB Estimation 59 MB Estimation 47 MB 

NAME ID (1) NAME ID (2) NAME ID (3) 

Xanthomonas 
campestris 

NC_003902.1 
Muricauda  
ES.050 

2615840527 Bacteroides fragilis  NC_003228.3 

Chromobacterium 
violaceum  

NC_005085.1 
Thioclava  
ES.032 

2615840533 
Bacteroides fragilis 
pBF9343  

NC_006873.1 

Corynebacterium 
glutamicum  

NC_003450.3 
Cohaesibacter  
ES.047 

2615840601 Bacteroides vulgatus NC_009614.1 

Staphylococcus 
saprophyticus  

NC_007350.1 
Propionibacteriaceae 
bacterium 

2615840646 
Fusobacterium 
nucleatum  

NZ_CP028101.1 

Staphylococcus 
saprophyticus pSSP1 

NC_007351.1 
Marinobacter  
LV10R510-8 

2615840697 Salmonella enterica NC_006511.1 

Staphylococcus 
saprophyticus pSSP2 

NC_007352.1 
Marinobacter  
LV10MA510-1 

2616644829 Helicobacter pylori  NC_000915.1  

Bacillus licheniformis  NC_006270.3 
Psychrobacter  
LV10R520-6 

2617270709 Escherichia coli  NZ_CP009685.1  

Micrococcus luteus  NC_012803.1 
Micromonospora 
echinaurantiaca 

2623620557 Enterobacter cloacae NC_014121.1 

Paenibacillus odorifer  
NZ_CP009428.
1 

Micromonospora 
echinofusca 

2623620567 
Enterobacter cloacae 
pECL_A  

NC_014107.1  

Serratia fonticola 
NZ_CP011254.
1 

Micromonospora 
coxensis 

2623620609 
Enterobacter cloacae 
pECL_B 

NC_014108.1 

Achromobacter 
xylosoxidans 

NZ_LN831029.
1 

Halomonas HL-4 2623620617 
Lactobacillus 
plantarum  

NC_004567.2  

Dickeya solani 
NZ_CP015137.
1 

Halomonas  
HL-93 

2623620618 Enterococcus faecalis NC_004668.1 

Enterobacter 
hormaechei subsp. 
Steigerwaltii 

NZ_CP017179.
1     

Enterococcus faecalis 
pTEF1  

NC_004669.1 

Cronobacter sakazakii  
NZ_CP011047.
1     

Enterococcus faecalis 
pTEF2  

NC_004671.1  

Cronobacter sakazakii 
CSK29544_1p 

NZ_CP011048.
1     

Enterococcus faecalis 
pTEF3  

NC_004670.1  

Cronobacter sakazakii 
CSK29544_2p 

NZ_CP011049.
1   Clostridioides difficile  NZ_LN614756.1  

Cronobacter sakazakii 
CSK29544_3p 

NZ_CP011050.
1   

Clostridioides difficile 
pCD630 

NC_008226.2  

      
Bifidobacterium 
adolescentis 

NC_008618.1 

      Yersinia enterocolitica ATCC 27729 
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Lastly, the community used by Moss et al. (2020) is also a mixture of 12 bacteria, of equal 

composition (8.3%), that was obtained from the ATCC –distributed under the item name “MSA-

2006” –. This community was designed for human gut microbiota experiments; therefore, it 

contains bacteria typically present in human gut microbiota, among which there are bacteria 

from the same genus. Here it is referred as MSA2006 (Table 3). 

All reference genome sequences were obtained from either the National Center for 

Biotechnology Information (NCBI) Refseq or the Integrated Microbial Genomes and 

Microbiomes (IGM) databases. As a rule of thumb, NCBI reference sequences were chosen over 

other platforms, unless the sequence was not available. In the case of the BMock12 community, 

all sequences were obtained from IGM (as specified by the researchers in their work). Reference 

metagenomes were independently constructed by concatenating all the genomes and plasmids 

comprising each mock community. After creating the reference file, the total metagenome size 

was calculated and used as input for the genome size parameter of the assemblers, when 

necessary (Table 3). 

 

4.5-Data preprocessing 

Before proceeding with the assembly, the adapters added to the sample DNA for 

sequencing must be removed to avoid including them in the metagenome. Porechop 

(https://github.com/rmcolq/Porechop) is the most established tool for adapter trimming and 

removal of Oxford Nanopore reads. 

Therefore, all fastq files were processed using the following command line: 

 

Where the parameter -i is for the input file, -o is for the name of the processed file and 

-t is for thread number. 

The MSA2006 sample file was too big to be run in one single round because there was 

not enough RAM in the computer. In that case, reads were split in two files and each file was 

processed through Porechop and then concatenated to create one single file. 

 

porechop -i reads.fastq -o reads_after.fastq -t 16 

https://github.com/rmcolq/Porechop
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4.6-Metagenome assembly 

Although many assembly programs exist, most of them are designed for short reads, and 

there are not many that are suitable for third generation sequencing data. With recent 

improving of the technology, more have been developed. Among those, a selection was made 

for this study. 

Briefly, criteria for selection of assembler programs were: 

❖ Support ONT long-reads. 

❖ Reported to give good results from both the literature and the previous project 

of assemblers’ evaluation conducted in Darwin (Latorre-Pérez et al., 2019). 

❖ Free to download and use, and public documentation available. 

Assemblers meeting these criteria were downloaded or updated to the newest available 

release. The complete list of assemblers was: Flye (Kolmogorov et al., 2019a; Kolmogorov et al., 

2019b), Canu (Koren et al., 2017), Pomoxis (OXFORD NANOPORE TECHNOLOGIES, 2018), 

Raven (Vaser and Šikić, 2019), Redbean (Ruan and Li, 2020) and Necat (Chen et al., 2020). Among 

the selected assemblers, Necat was the only not being included in Latorre-Pérez et al. (2019) 

since it was released in February 2020. Assembler details are collected in Table 4. 

Documentation and usage for each of the assemblers was consulted in their GitHub 

repositories and official sites, and tools were run using the recommended parameters for 

metagenomic assembly. When authors did not mention any specific configuration for 

metagenomics, default parameters were used (Table 4 and Table 5). These criterion was 

established to use fair base conditions for all the assemblers, and under the reasoning that 

assembler developers are responsible for the development and optimization of these tools for 

other scientists that might, or not, be advanced in bioinformatics and need to use them. 

The order in which the communities were assembled –and the rest of the analyses were 

performed–was the following: BenchEV, BenchHE, BMock12, and lastly MSA2006. In all cases, 

equivalent parameters were filled with the same values, and all assemblers were run at the 

maximum computation power that the computer was capable of (16 threads). 
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Table 4. Assembly tools characteristics. Metagenomic settings availability was screened for best 
performance configuration. Metagenome size estimation requirement was noted. 

Assembler Version 
Metagenomic 

settings in 
documentation? 

Recommended settings for 
metagenomics 

Required size 
estimation? 

Flye 2.7 Yes 
–plasmids  

–meta 
Yes 

Canu 2.0 Yes 

corOutCoverage=10000 
corMhapSensitivity=high 

corMinCoverage=0 
redMemory=32 oeaMemory=32 

batMemory=200 

Yes 

Pomoxis 0.3.2 No Not specified Yes 

Raven 1.1.5 No Not specified No 

Redbean 2.5 No Not specified Yes 

Necat First available No Not specified Yes 

 

Table 5. Complete commands for each assembler used. $filepath: absolute path of the input reads; 
$resultdir: absolute path of the results directory (folder);$size: estimate genome size of the community 

(an approximate value). 

Assembler Complete command 

Flye 
flye –nano-raw $filepath –out-dir $resultdir/Flye –genome-size $size –threads 16  

–meta –plasmids 

Canu 
canu -p assembly -d $resultdir/Canu genomeSize=$size corOutCoverage=10000 
corMhapSensitivity=high corMinCoverage=0 redMemory=32 oeaMemory=32 

batThreads=16 batMemory=60 -nanopore $filepath 

Pomoxis mini_assemble -i $filepath -o $resultdir/Pomoxis -p assembly -l $size -t 16 

Raven raven –threads 16 $filepath > assembly.fa 

Redbean 
wtdbg2 -x ont -t 16 -g $size -i $filepath -fo step1 ; wtpoa-cns -t 16 -i step1.ctg.lay.gz -fo 

assembly.ctg.fa 

Necat necat.pl bridge config.txt 

 

Not all assemblers employed required a size estimation of the genomes, which can be 

useful in studies in which the sample is completely unknown and size estimation is tricky and 

can introduce bias in the assembly. Coverage parameters were not changed unless specified 
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otherwise in the recommendations, because coverage is also a rough estimate when dealing 

with unknown data, as it depends on genome size.  

Once settings were defined, a bash script was prepared to run all assemblers 

independently but automatically; count and store run times, store log data –program status data 

displayed otherwise on the terminal –and avoid time losses between runs. The complete bash 

script is included as Supplementary code 1.  

 

4.7-Assessing assembly quality 

The quality statistics of the draft assemblies –before and after polishing –were assessed 

using MetaQUAST (Mikheenko et al., 2016; Gurevich et al., 2013). Assemblies judgement and 

comparison was made in terms of performance and accuracy, using statistics provided by 

MetaQUAST. Regarding performance, parameters considered were: clock running time, 

percentage of recovered genome –total amount of the metagenome that was assembled–, and 

contiguity parameters such as total generated contigs –number of assembly fragments–, N50 

–size such as half of the metagenome is in contigs that are larger or equal than this size–, and 

L50 –number of contigs whose added size is equal or larger to the N50. With respect to accuracy, 

statistics of Indels –insertion or deletion of bases, that can cause frameshift mutations and 

premature stop codons–and mismatches –SNPs, that can cause point mutations–per 100kbp 

of assembly were used.  

Even though MetaQUAST requires reference genomes as input, it also provides 

statistics calculated without those reference genomes (i.e. N50, L50, number of contigs...).  

MetaQUAST commands were directly run in the shell as follows: 

 

Where the parameter -o is for the output directory path; -r is for a folder including all 

individual reference genomes; -L is for using folder name in the report graphics; –unique-

mapping is for forcing –ambiguity-usage ‘one’ in metaquast, which uses only best score 

alignments; $file1, $file2… are the location paths for each assembly draft.  

 

4.8-Polishing 

After first draft assemblies were obtained, a polishing step was performed to assess the 

impact of polishing in draft metagenomes obtention and whether the improvement of assembly 

metaquast.py -o $outdir -r $refsfolder -L –unique-mapping $file1 $file2… 
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accuracies improves overall accuracy results more in certain assemblers. The central pipeline 

followed was according to Oxford Nanopore Technologies recommendations of using one 

round of Racon (Vaser et al., 2017) and one of Medaka (OXFORD NANOPORE TECHNOLOGIES, 

2020a; https://github.com/nanoporetech/medaka). A comparison was then made between draft 

assemblies, drafts resulting from using one round of Racon, and drafts resulting from one round 

of Medaka after Racon. Complete bash scripts for Racon and Medaka polishing can be found as 

Supplementary code 2 (Racon) and Supplementary code 3 (Medaka). 

 

4.9-BCGs prediction. 

Biosynthetic gene clusters (BCGs) are genomic regions which encode biosynthetic 

pathways for the production of specialized metabolites (Medema et al., 2015). BCGs often consist 

of several kilobases and contain repetitive material, thus complicating the assembly process 

when using short reads. Despite increasing assembly contiguity, which is advantageous for BGC 

obtention, ONT reads are prone to errors -especially Indels- which truncate BGC prediction 

(Miller et al., 2017). Therefore, overall assembly performance and polishing success can be 

qualitatively evaluated through BGCs prediction (Watson and Warr, 2019). For assessing how 

well each assembly tool achieved functional depiction of the communities, an annotation 

analysis was made using antiSMASH bacterial version (Blin et al., 2019; Medema et al., 2011). 

Results obtained for each draft were compared to the BCG profile obtained for each reference 

metagenome. Restrictions were set as ‘relaxed’, which allows for the detection of well-defined 

and partial clusters, with all or missing a few functional parts. 

 

4.10-Equipment details 

All analyses performed throughout this work were run in a computer from Darwin, 

whose characteristics are: CPU: AMD RYZEN 7 1700X 3.4GHZ; Cores: 8; Threads: 16; RAM: 

Corsair Vengeance 64 GB; SSD: Samsung 860 EVO Basic SSD 500GB; HDD: x2 Toshiba Canvio 

Basics 2Tb, with Ubuntu 18.04 operating system.  

These working conditions are not the most powerful but belong to an average 

computing power that many research teams can achieve. They were considered the most 

appropriate for running the analysis because the MinION technology is meant to be widely 

spread among regular scientists for fast analysis in different laboratory environments, and 

computational resources for downstream analysis should be designed accordingly.  

https://github.com/nanoporetech/medaka
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5. Results and discussion. 

Throughout this work, the performance of six assembly tools designed to handle ONT 

sequences (Canu, Flye, Pomoxis, Raven, Redbean and Necat) was evaluated for metagenomic 

assembly. This benchmark was carried out using data generated from four different mock 

communities: BenchEV, BenchHE (Leidenfrost et al., 2020), BMock12 (Sevim et al., 2019) and 

MSA2006 (Moss et al., 2020). In total, 21 first-draft metagenome assemblies were obtained during 

this work, that were evaluated in terms of contiguity and accuracy. Note that in each section 

the main remarks are highlighted in a dotted square.  

5.1-General performance  

5.1.1-Recovered metagenome fraction. 

The first evaluation was in terms of overall (Figure 4) and individual (Figure 5) genome 

fraction recovery, which is the amount of DNA of the metagenome reference that is also present 

in the assembly.  

 

Figure 4. Total metagenome assembled fraction per assembly and community. Best 
values are highlighted in green and worst values are highlighted in red. Missing points are due 
to assembly failures and/or stopping (data after Polishing). 
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Figure 5. Genome fractions (%) recovered per microorganism (up) and plasmids (down) 
for each mock community. Each box is filled proportionally with its recovery fraction, and 
blank spaces represent lack of recovery. Assembly success is proportional to fullness ratio. Note 
that BenchEv and BenchHE share the same microorganisms. Complete microbial names were not 
included for space issues, but can be consulted in Table 3. (Data after Polishing). 

 

Canu Flye Necat Pomoxis Raven Redbean Canu Flye Necat Pomoxis Raven Redbean

C. glutamicum 99.05 99.05 99.04 99.05 99.05 99.00 99.03 99.05 99.05 99.05 99.05 0.27

B. licheniformis 100.00 100.00 99.89 99.82 100.00 99.83 99.99 100.00 99.93 100.00 99.99 100.00

X. campestris 99.91 99.93 99.89 99.93 99.89 99.73 7.86 11.90 - 0.56 - 3.64

E. hormaechei 99.99 100.00 99.93 99.58 99.31 75.88 99.85 99.33 86.38 94.43 90.41 98.67

S. fonticola 100.00 100.00 100.00 99.71 99.51 93.59 100.00 99.95 100.00 100.00 99.55 99.81

A. xylosoxidans 99.83 99.99 99.88 99.78 99.90 99.00 0.25 - - - - 0.01

M. luteus 98.08 98.08 98.08 98.08 98.08 97.50 28.63 55.31 - 5.85 0.73 7.73

Cr. sakazakii 99.95 99.44 99.50 96.15 87.84 71.04 99.97 99.61 99.73 99.99 99.78 23.88

S. saprophyticus 100.00 100.00 100.00 100.00 99.99 99.75 - - - - - -

Ch. violaceum 99.92 99.92 99.91 99.76 99.75 99.47 - - - - - -

P. odorifer 100.00 100.00 99.99 99.91 100.00 99.66 - - - - - -

D. solani 100 100 100 100 100 94.54 - - - - - -

Flye Necat Pomoxis Raven Redbean Flye Necat Raven Redbean

Cohaes. ES047 99.65 100.00 99.85 99.85 99.59 Enterobacter 99.56 9.07 95.64 83.90

Halomonas HL4 99.48 94.75 99.98 97.74 21.18 Bacter. 9343 99.99 99.94 99.93 95.72

Halomonas HL93 88.99 95.68 86.40 98.19 16.69 Bifidobacterium 100.00 - 99.70 57.55

Marin. LV10M 99.96 100.00 100.00 100.00 97.77 Clostridioides 90.33 90.37 90.34 85.60

Marin. LV10R 100.00 99.98 100.00 99.97 98.55 E. coli K12 99.82 - 82.06 75.13

Micr. DSM43904 78.27 - 29.65 24.98 20.53 Bacter. 8482 99.66 - 99.06 95.26

Micr. DSM43913 90.89 - 45.99 36.39 22.87 Salmonella 99.90 3.26 98.22 85.26

Micr. DSM45161 - - - - - Fusobacterium 99.99 - 99.77 29.31

Muric. ES050 100.00 100.00 99.99 100.00 100.00 Helicobacter 100.00 96.17 100.00 99.42

Propion. ES041 100.00 1.31 92.29 81.41 70.08 Lactobacillus 100.00 100.00 99.99 99.78

Psychr. LV10R 100.00 99.88 100.00 100.00 99.24 Enterococcus 100.00 100.00 99.48 99.56

Thioclava ES032 99.76 99.57 99.64 99.64 99.76 100.00 1.45 98.39 97.28

Canu Flye Necat Pomoxis Raven Redbean Canu Flye Necat Pomoxis Raven Redbean

Cr. sakaz. CSK1 100.00 99.99 100.00 100.00 99.90 98.73 100.00 99.99 100.00 99.72 99.96 9.10

Cr. sakaz. CSK2 99.98 99.94 - 98.95 - - 100.00 99.96 - - - -

Cr. sakaz. CSK3 100.00 100.00 100.00 99.68 99.96 100.00 100.00 100.00 68.95 99.71 99.56 100.00

S. sapr. pSSP1 99.99 99.99 99.99 99.65 99.75 58.02 - - - - - -

S. sapr. pSSP2 99.92 99.94 99.92 99.97 99.68 23.42 - - - - - -

Flye Necat Raven Redbean

Enter. pECLA 99.47 61.95 98.20 84.15

Enter. pECLB 100.00 83.13 - 99.42

Enteroc. pTEF1 100.00 100.00 38.14 -

Enteroc. pTEF2 99.99 100.00 86.85 -

Enteroc. pTEF3 100.00 99.99 98.75 -

Bacter. pBF9343 100.00 100.00 99.78 5.20

Microorganisms

Plasmids

MSA2006

BenchEV BenchHE

BMock12 MSA2006

Yersinia

BenchEV BenchHE
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The BenchEV mock community contained a total of 17 genomes from 12 bacteria and 

5 plasmids. Most assemblers performed well, being the worst recovery percentage of 93.916%, 

by Redbean. The highest genome fraction was recovered by Flye (99.864%), followed by Canu 

(99.847%) and Necat (99.811%) (Figure 4). All bacteria and plasmids were successfully assembled 

except from the Cronobacter plasmid CSK2, that was only recovered by Flye, Canu and Pomoxis 

(Figure 5). The worstly recovered organism by Flye and Canu was Micrococcus luteus (99.08%), 

as well as by Necat (98.077%). For Pomoxis and Raven, it was Cronobacter sakazakii (96.153% 

and 88.199%, respectively); and for Redbean, it was the plasmid pSSP2 from Staphylococcus 

saprophyticus (23.424%). Except from Redbean and Raven, all assemblers recovered more than 

90% of all microorganisms. 

Due to the heterogeneous log-scale like composition of the BenchHE mock community 

(Leidenfrost et al., 2020), not all microorganisms had enough coverage to be assembled, and 

many were very little or not recovered. The highest overall recovery was achieved by Flye 

(44.179%) and Canu (42.654%), followed by Pomoxis (40.544%), Raven (39.844%), and finally 

Redbean (29.284%) (Figure 4). Paenibacillus odorifer, Corynebacterium glutamicum, Dickeya 

solani and Spathylococcus saprophyticus could not be recovered, which is of note because the 

least recovered bacteria (Chromobacterium violaceum, Paenibacillus odorifer, Acromobacter 

xylosoxidans, Dickeya solani, Staphylococcus saprophyticus, Xantomonas campestris and 

Micrococcus luteus) were coincident with the bacteria described by Leidenfrost et al. (2020) to be 

on the lowest concentration in the sequenced samples. When not enough coverage is achieved, 

assemblers do not have enough sequences to form an assembly for that microorganism and it 

ends scarcely assembled or undetected. Again, the CSK2 plasmid from Cronobacter sakazakii 

was not recovered by all assemblers, but only by Flye and Canu (Figure 5). In this case, however, 

the CSK3 plasmid was also roughly obtained by Necat. Although Flye and Canu had the best 

overall recovery rates, Flye recovered better the two partially recovered microorganisms 

Xantomonas campestris and Micrococcus luteus (Figure 5).  

The BMock12 community was composed of 12 bacterial genomes, with many 

similarities between them. Given the high assembly times and the community complexity 

described by Sevim et al. (2019) the expectations were that the results would be worse or similar 

to the BenchHE assembly, but the overall recovery percentage was ranged from ~51%, (Necat) 

to ~79% (Flye) (Figure 4). However, there were originally three strains of Micromonospora in the 

community, and one of them, DSM45161, was not assembled by any tool (Figure 5). 

Micromonospora strains were purposely put in the community due to their high ANI (Average 

Nucleotide Identity, the fraction of coincident genomic nucleotides between two 
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microorganisms), anticipating that they could lead to assembly inaccuracies. The two remaining 

strains of Micromonospora were the least recovered microorganisms, being only recovered in a 

range of 20 to 46% by Pomoxis, Redbean and Raven, not discriminated by Necat, and only 

recovered in a range of 78 to 91% by Flye (Figure 5). These results are tricky because contigs 

belonging to DSM45161 were most probably mapped into the other two Micromonospora strains. 

Different strains are very difficult to distinguish by assemblers because high ANI can make 

differences between strains seem as polymorphisms or be as low as the sequencing basal error 

rate. Necat failed to obtain all Micromonospora strains and Popionibacteriaceae ES.041, while the 

rest of assemblers obtained more than 70% of this last microorganism, and at least part of two 

of the Micromonospora strains. Nevertheless, Raven and Necat were better screening the 

Halomonas HL93 than the rest, having more than 98% recovered in the case of Raven and 95% 

in the case of Necat, while Flye and Pomoxis only achieved 86 to 89% of recovery and Redbean 

roughly achieved 16% (Figure 5). Flye, was the only tool having more than 78% in all 

microorganisms except for Micromonospora DSM45161. 

A total of 18 genetic sequences (12 bacterial genomes and 6 plasmids) composed the 

MSA2006 mock community. Since this dataset was obtained from a defined ATCC community 

and had a defined even distribution –8.3% for each microorganism— (Moss et al., 2020; ATCC, 

2019) the complexity of this assembly relied more on the high amount of data that was used as 

input (Table 2). The original dataset consisted of ~60 Gb and failed to be assembled 

(Supplementary data S2). The reduced ~30Gb dataset was successfully assembled by all 

assemblers but Pomoxis. Despite the high coverage of the data, only Flye and Raven recovered 

a significant fraction of the metagenome (98.888% and 95.776%, respectively) (Figure 4). Necat 

performance was dramatically diminished for this dataset (only 39.119% of the metagenome was 

recovered): it retrieved neither Bacteroides 8482, Bifidobacterium, Escherichia coli, or 

Fusobacterium nucleatum; and less than 10% of Enterobacter and Salmonella, while all 

Enterococcus plasmids were fully or almost fully recovered (Figure 5). Redbean failed to assemble 

all Enterococcus and Bacteroides plasmids and recovered Fusobacterium nucleatum in less than 

30%. Raven, on the other hand, failed to assemble one of Enterobacter’s plasmids and roughly 

assembled one of Enterococus’s. Finally, Flye had the best overall results, with a genome fraction 

recovery over 90% in all genomes, and over 99% in all microorganisms but Clostridioides.  
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5.1.2.-Contiguity and computational efficiency 

The second evaluation of the assembly tools was in terms of computational resources 

and contiguity (Figure 6). Running time was used for computational resources, and contiguity 

metrics such as the length containing at least half of the assembled metagenome, N50, the 

number of contigs containing at least half of the assembled metagenome, L50, and total obtained 

contigs were used for evaluating whether the assembly tools had been able to recover 

contiguous genomes or not. Although N50 and L50 statistics are good parameters for continuity 

assessment, there has to be kept in mind that no straightforward conclusion can be made only 

taking into account these statistics, as they do not consider the amount of total metagenome 

assembled but only length and contig number. Furthermore, they depend on the total assembled 

metagenome size, which can lead to have good parameters –long N50 and low L50–in a very 

incomplete assembly.  

With regards to the computational resources, Canu was, by far, the slowest and least 

versatile assembler: it took nearly 12 and half hours to assemble the BenchEV community while 

Flye, Pomoxis, Raven and Redbean took less than an hour; and more than 5 whole days to 

assemble the BenchHE community, while the rest of the assemblers took less than 3 hours 

(Figure 6). After the BenchHE assembly, it was decided that Canu would be stopped every time 

the assembly was more than 6 times slower than the second slowest assembler, and therefore it 

was stopped for both the BMock12 and the MSA2006 assemblies. On the contrary, Redbean 

was the fastest assembler in all cases: it took 16 minutes for the BenchEV dataset and the highest 

amount of time it needed was 30 minutes for the MSA2006 dataset. In accordance with dataset 

In overall, the most completely recovered community was BenchEV, then MSA2006, 

then BMock12 and finally BenchHE, in agreement with their taxonomical and ANI 

complexities. Flye had the highest or among the highest recovery percentages in all datasets, 

and the higher recovery percentages for microorganisms that were more roughly obtained 

by the other assemblers (Figure 4 and Figure 5). Redbean, on the contrary, had the worst 

recovery percentages. Necat and Canu had good recovery in the datasets they could 

function, but their performance was truncated due to dataset size or complexity in the case 

of Necat; and due to dataset complexity in the case of Canu, as it will be further explained 

in the next section. Raven and Pomoxis remained constant and gave overally good results 

although Pomoxis failed to run the MSA2006 dataset. From these data, the most reliable 

assembler for diversity screening appears to be Flye, followed by Raven, Necat and Pomoxis. 
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complexity and size, the BenchHE mock community assembly times were importantly higher 

with respect to those of the BenchEV community (Figure 6), BMock12 and BenchHE times were 

similar, and the higher assembly times were those of the MSA2006 assembly. After Redbean, 

Raven, and then Flye, were the fastest assemblers. 

 

Figure 6. General performance of assemblers. Contigs (pink), N50 (blue), L50 (green) and time 
(purple) are displayed. Running times of Canu were too high and are not included for easing 
visualization. Best values are highlighted in green and worst values are highlighted in red (data 
after Polishing). (This Figure can be found in higher size as Supplementary Figure 2). 

 

In terms of contiguity, in the BenchEV mock community it was Necat that produced 

the lowest amount of contigs (17), followed by Canu (23) and Flye (31). Canu obtained the 

highest N50, followed by Flye and Necat, while Redbean obtained the lowest N50 (Figure 6). L50 

values for the entire metagenome ranged from 5 (Canu, Flye and Necat) to 7 (Redbean). All tools 

were able to recover highly contiguous genomes, only in a few contigs. This scenario changed 

in the BenchHE mock community, since the assemblies were more fragmented, thus contig 

number increased and N50 decreased. Necat was also the assembler that made the lowest 

amount of contigs (32), followed this time by Raven (34), then Flye, Canu and Pomoxis, and 

finally Redbean, that decreased its total contigs (135) since it recovered less metagenome. 

Redbean had the highest N50 and the lowest L50 (2), followed by Flye and Canu in both 

parameters and Necat in the L50 (3); while the highest L50 was obtained by Pomoxis (7). For 
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this case, it should be noted that Redbean N50 metrics were probably artificially high due to its 

lower metagenome recovery in comparison to other tools (Figure 4). Lower recovery fraction 

can increase N50 since there is less total metagenome to compare the longest contig to. The 

BMock12 metagenome assembly was more fragmented than the BenchHE assembly, as it was 

overally more recovered but had a complex composition that challenged the assembly. Necat 

was the assembler that obtained the lowest amount of contigs (15) and the highest N50, followed 

by Raven and Flye, in both cases. Necat and Raven had the lowest L50 (4 and 5, respectively) 

and the rest had an L50 of 6. Nevertheless, Necat results could be considered artificially high 

due to its low metagenome recovery fraction (Figure 4). Lastly, in the MSA2006 assembly Necat 

was the assembler with the lowest contig production (30) once again, followed by Flye (50), 

Raven (62) and Redbean (161). The highest N50 was obtained by Flye and Necat. In agreement 

with its low recovery ratio in in this community, the lowest L50 was obtained by Necat (3). 

 

 

 

 

 

 

 

 

 

 

5.2-Accuracy and polishing 

The third evaluation of the assemblies was in terms of accuracy, which was measured 

through the number of Indels and SNPs per 100kbp of metagenome obtained. As discussed 

previously, long read sequencing technologies have high error rates (McCombie et al., 2019). 

When dealing with Nanopore data, this issue is addressed using coverage for correction, that is, 

generating a consensus sequence with the highest possible number of reads. Furthermore, 

assembly algorithms also influence error rates, and not all assemblers are equally accurate 

To sum up, except Canu (and Pomoxis in the MSA2006 assembly), all assemblers 

were very efficient computationally, being able to obtain assemblies in less than 3 hours in 

all cases. In general, the metagenomes here obtained were very continuous, especially when 

comparing the herein obtained metrics with those usually obtained in Illumina and even 

hybrid assemblies (Koren and Phillippy, 2015; Frank et al., 2016). Necat was very efficient in 

contig obtention, while Redbean obtained the highest number. As community complexity 

increased, two general tendencies were observed depending on the assembler: assemblers 

with higher microbial screening capacity (Canu, Flye, Raven and Pomoxis) produced more 

complete but more fragmented metagenomes, with higher number of contigs and L50 as 

well as lower N50. On the contrary, assemblers with lower microbial screening capacity 

(Redbean and Necat) obtained less complete but more contiguous metagenomes, with higher 

N50 and lower L50 and total contig number.  
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(Wick and Holt, 2019). Once the draft assemblies are generated, for best result obtention those 

drafts have to be polished, which allows for Indels and SNPs correction (Chin et al., 2013). The 

errors are detected through aligning the draft assemblies to the input reads, measuring 

similarity between the reads and the assembly draft, and creating a more accurate consensus 

draft accordingly. In this work, the most recently recommended polisher pipeline was followed; 

that is, one round of Racon followed by one round of Medaka (OXFORD NANOPORE 

TECHNOLOGIES, 2020a), which improved the general assembly accuracy statistics. Accuracy 

metrics before and after polishing are summarized in Figure 7. 

 

 

 

 

 

 

More in detail, and starting with the BenchEV mock community, in the 1st draft 

assemblies Pomoxis and Redbean had the highest mismatches values per 100kbp (149 and 148 

per 100kbp, respectively), while Canu had the lowest values of mismatches (98 per 100kbp) 

(Figure 7). In contrast, Flye was the tool that introduced the least Indels (305 per 100kpb), 

followed by Raven and Pomoxis. After polishing, the Flye assembly kept having the lowest 

Indels (194 per 100kbp), while the lowest mismatches were obtained by Necat (97 per 100kbp). 

The most Indel-containing assembly was that of Pomoxis and the most mismatches-containing 

assembly was that of Redbean. Indels reduction after polishing was more acute than mismatches 

reduction for all assemblers. After the Medaka round all Indels were reduced in at least 100 per 

100kbp. Differences between assemblers were residual in this community.  

In the BenchHE community 1st draft assemblies, Canu obtained the lowest number of 

mismatches again (144 per 100 Kbp), while Flye retrieved the highest (309 per Kbp). It is 

important to highlight that most of the detected mismatches for Flye came from barely 

recovered genomes (Figure 8). Due to the high species screening capacity of Flye, contigs for 

the least abundant microorganisms are recovered despite having low coverage. The lower 

coverage also reduces mismatches correction with respect to the more abundant species, thus 

increasing error ratios (Figure 8). Raven retrieved the least Indels per 100kbp (420), while  

After the polishing pipeline, Indels were reduced in all assemblies (Figure 7). The reduction 

after the polishing step with Medaka was, in all cases, of at least 100 Indels per 100kbp, and 

in most cases it was halved. The response of each assembler upon polishing—the shape of the 

curve seen in Figure 7— was similar among communities, which suggests that the effect of 

polishing on draft total Indels is constant and is dependent on the assembler. Mismatches 

were, however, not as clearly improved as Indels after polishing (Figure 7), and were in 

general minimally varied after polishing. In fact, mismatches rates were only clearly 

improved in Flye and Necat assemblies for all the mock communities.  
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Figure 7. Accuracy statistics for assemblies after first obtention (draft), Racon polishing 
and Medaka polishing. Accuracy statistics include Indels (up) and mismatches or SNPs (down). 
Raven and Pomoxis have default Racon rounds included, and therefore their draft and Racon data 
are equal and only one point is included. Best values for each assembly are highlighted in green and 
worst values are highlighted in red. Indels for each microorganism after polishing can be consulted 
in Supplementary Figure 3. 
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Redbean (896) and Canu (681) retrieved the most. After polishing, the least Indel- and 

mismatches-containing assembly was that of Necat, followed by Raven’s. Indels were most 

abundant in the Redbean assembly, while mismatches were higher for Flye.  

 

Figure 8. Mismatches per 100kpb compared to genome recovery for each microorganism 
in the BenchHE and BMock12 mock communities, after the polishing pipeline. Only Flye 
and Necat results are pictured here. Mismatches (dots line) are similar between the two assemblers 
for the microorganisms recovered in a similar amount. This behavior changes for microorganisms 
recovered by Flye but not by Necat, as Flye has a bias towards higher mismatches ratios in these 
microorganisms, evidencing that it also recovers incomplete genomes. 

 

For the BMock12 mock community 1st draft assembly, Necat obtained the lowest 

mismatches (109) and Indels per 100kbp (484). Conversely, Flye obtained the highest number of 

mismatches (628 per 100kpb), and the second highest number of Indels per 100kbp (841) behind 

Redbean. After polishing with Racon and Medaka, the most accurate assembler for Indels and 
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mismatches was Necat, while the least was Flye. These results are also biased due to Flye’s high 

recovery ratio. In fact, Flye was in the same range of accuracy as the rest of the assembly tools 

when considering the recovered genome of each microorganism (Figure 8) and demonstrated 

to be the most accurate assembler for some completely recovered genomes (Figure 7 and Figure 

8).  

In the MSA2006 community 1st drafts, Redbean obtained both the highest mismatches 

(466) and Indels (1082) per 100kbp, while Necat obtained the lowest mismatches (119) and Raven 

obtained the lowest Indels (230). This time, Flye’s accuracy was the best, proving that this tool 

has fine accuracy when enough coverage of microorganisms is achieved. After polishing with 

Racon and Medaka, Flye had both the lowest Indels (82.91) and mismatches (128.28) per 100kpb, 

while Redbean still had the highest (100.53 and 217.38). 

 

 

 

 

 

 

 

 

5.3- BGCs prediction from complete datasets (BenchEV and MSA2006) 

After polishing the assembly drafts, an annotation analysis using antiSMASH bacterial 

version (Blin et al., 2019; Medema et al., 2011) was made for further assembly quality assessment. 

BGCs –biosynthetic gene clusters, operons involved in secondary metabolites production that 

are grouped together in the prokaryote genome—prediction analysis was selected as being of 

most interest for addressing accuracy in functionality terms. BGCs are complex regions under 

tight regulation, containing repetitive sequences and very sensitive to frameshift mutations 

(Watson and Warr, 2019; Millet et al., 2017). High contiguity obtained with ONT long reads 

should theoretically be advantageous for resolving repetitive regions present in BGCs better 

than short-read technologies, but since Nanopore reads are prone to SNPs and specially Indels 

In purely accuracy parameters, both prior and after polishing Necat provided best 

results in the BenchEv, BenchHE and BMock12 communities, and Flye obtained best results 

for the most homogeneous BenchEV and MSA2006 communities. Flye, however, obtained 

more genomes from each community than Necat, which decreased accuracy in the 

heterogeneous communities BenchHE and BMock12, as less coverage provided less material 

for consensus sequence generation. Therefore, Flye increases diversity screening at the 

expense of accuracy in less abundant genomes (Figure 8). Despite including default 

polishing rounds with Racon, Raven and Pomoxis did not specifically outstand in accuracy. 

However, Raven did perform well in the MSA2006 and BenchHE assemblies, although not 

as well as Necat or Flye. Canu did not outperform any other assembler in accuracy after 

polishing, which further discards its suitability for metagenome assembly. 
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errors (Amarasinghe et al., 2020), the prediction can be truncated thus affecting the functional 

analysis of the community (Millet et al., 2017). The most accurately recovered mock 

communities —the BenchEV and MSA2006 mock communities—were selected for conducting 

this analysis. Both their references and the drafts resulting from the polishing pipeline using 

Racon and Medaka were analyzed using the online antiSMASH platform, and restrictions were 

set as relaxed, that allow for well-defined and partial clusters, with all or missing a few 

functional parts (Figure 9). 

The MSA2006 community reference was predicted to contain 26 BGC regions, and 

none had a matching known cluster with more than 88% of similarity. Flye, Raven and Redbean 

predicted 24 BGCs, and Necat predicted 12. This is consistent with the recovery and accuracy 

results explained in the previous sections. Both Raven and Flye obtained a very similar profile 

than that of the reference, while Redbean obtained a less accurate profile. Necat gave the worst 

prediction (Figure 9). The BenchEV community reference, on the other hand, was predicted to 

contain 75 BGC regions in the reference metagenome, from which 8 had been assigned to a 

known cluster with 100% similarity. Canu predicted 70, with 7 having 100% similarity to known 

clusters, Flye and Necat predicted 68 and had 6 regions with 100% similarity to known clusters. 

Redbean and Pomoxis predicted 67, and Raven predicted 66, all having 5 regions with 100% of 

similarity to known clusters. All profiles were overally similar to that of the reference, being 

the most complete those of Flye, Pomoxis and Canu (Figure 9). 

 

 

 

BGCs prediction gave more complete results in the BenchEV community than in 

the MSA2006, but predicted groups were more accurate in the MSA2006 community than 

in the BenchEV community (Figure BCG). Reasons for this, besides assemblers’ 

performance, might be just due to best knowledge of functional groups of the 

microorganisms included in the BenchEV community, since the reference of the MSA2006 

also gave an overall lower number of predicted BGCs. The fact that for most assemblers the 

predicted BGCs were similar in both quantity and identity to those obtained using the 

reference suggests that assemblies were overally contiguous and inaccuracies remaining 

after polishing did not substantially change the functional profile of the community. Flye 

and Raven obtained the most similar profile to the reference in the MSA2006 community, 

while Flye, Pomoxis and Canu obtained the most complete profiles in the BenchEV 

community. Flye was, overall, the most robust among communities.  

 



 

 

32 

 

 

 

 
Figure 9. Predicted BCGs for the reference metagenome and for each polished assembly of 
the MSA2006 (up) and BenchEV (down) mock communities. Note that in the BenchEV 
prediction all asemblers introduced at least one new region (grey shades), and several regions were 
only predicted for the reference. 
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6. Concluding remarks. 

In the course of this work data from four mock communities has been assembled and 

polished with the aim of benchmarking the assembly tools most suitable for metagenomics 

assembly of ONT-obtained reads. A total of six assemblers were tested in communities of 

different complexities and data sizes, and the results were evaluated in terms of contiguity, 

accuracy, and computer resources consumption.  

Redbean was the fastest assembler, which is its main advantage when comparing it 

with other assembly tools, but also obtained the lowest genome fractions for all the datasets. 

Raven was also fast and had relatively good results even though it used no genome size 

estimation parameter, which can be of advantage when dealing with unknown communities. 

Pomoxis in general achieved better genome fractions and accuracy than Redbean and similar 

to Raven, but was slower, and had memory issues when dealing with the deep-sequenced 

dataset (MSA2006). It had a general good performance but even when it recovered more genome 

fraction than Necat it had much lower accuracy. Necat was inconsistent, since it had very good 

contig formation, accuracy and speed, as well as genome recovery fraction for most datasets, 

but it made an incomplete assembly for MSA2006 and BMock12. Therefore, higher accuracy, 

higher N50, lower L50 and lower total contig formation seen in Necat were most probably at 

the expense of recovered genomes and species. Canu is known for its high accuracy, but despite 

its accuracy, the amount of time that Canu needed for performing the assemblies in relatively 

small datasets –specially for the BenchHE and BMock12 communities—when comparing it to 

the other assembly tools was disproportionate. Its performance is seriously compromised by 

community complexity, which is an important drawback for metagenomic analysis, where 

complex communities are the most common case scenario. High computational requirements 

and time consumption are too unpractical for Canu to be the general usage assembler. Not only 

that, results obtained with Canu were similar, but generally not better, than those obtained with 

Flye, which makes Canu’s drawbacks more relevant. Finally, Flye attempted to assemble 

genomes in lower abundance than other assemblers, obtaining the highest microbial diversity, 

but at the cost of accuracy. This is a behavior that can be both an advantage and a drawback. In 

certain conditions, Canu or Necat could outperform Flye in terms of contig formation or 

accuracy. However, the gap in those cases is very small, and Flye outperforms all other 

assemblers in communities more heterogeneous, which are more similar to real communities. 

Once accuracy issues are solved—which is fastly evolving with new pore chemistries and 

basecalling algorithms–, low-accuracy assemblies of least abundant microorganisms will have 

an increased quality confidence. Furthermore, imperfect assemblies of least abundant 
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microorganisms can be discarded further in the analysis process, and for that, having at least 

signs of their presence is of interest to understand the community. 

Table 6. Best and worst of each assembler herein tested. 

Assembler BEST  WORST 

Redbean Speed Metagenome recovery 

Raven 
No need of genome size estimation, 

overally good  
Did not excel in any parameter  

Pomoxis Overally good Memory issues 

Necat Contigs, accuracy, speed Inconsistent in heterogeneous communities 

Canu Accuracy and metagenome recovery Speed 

Flye Microbial screening Accuracy 

 

The assembly tools herein tested performed heterogeneously on the datasets used. 

Despite the variability, all the tools retrieved highly contiguous metagenomes. The number of 

contigs was way smaller and contigs were longer than in traditional Illumina metagenome 

sequencing, or hybrid sequencing (Koren and Phillippy, 2015; Frank et al., 2016). Total contig 

formation was dependent on community complexity –being higher for the communities harder 

to assemble—and assembler –being Necat, Canu, and Flye the assemblers obtaining the least 

contigs–. Draft assembly polishing and annotation were only briefly treated here, as assembly 

is upstream on the analysis process and is therefore more urgent to treat; but also because there 

is less variability in either pipelines and more standardized protocols exist. Polishing was, 

however, proved to be a very useful and necessary step when analyzing ONT data, as it 

improved accuracy and Indels, that are the main errors obtained through ONT sequencing. 

In overall, the results obtained in this study agree with and validate the results 

dilucidated by Latorre-Pérez et al. (2019), and ease the path for Nanopore metagenomic 

assembly standardization by supporting the usage of Flye as the by-defect metagenomic 

assembly tool. In this work, the current panorama of the best assembly tools for Nanopore data 

is depicted and compared, and through different mock communities’ comparison, said assembly 

tools have been evaluated and discussed. For maximized versatility, Flye arises as the most 

convenient choice. However, it is not to be ignored its drawbacks and flaws, that should be kept 

present when making any analysis with this tool. Hopefully, benchmarking studies and rational 

development of metagenomic analysis, as well as validation of pipelines through real 

communities-analysis will end uncertainty in this field.  



 

 

35 

 

7. Conclusions 

Summarizing, the overall conclusions of this research project are: 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
7.1-Future work  

This study opens other questions to conduct further research: 

❖ Comparing assembly and BCG obtention results with the same analyses but 

using the high accuracy basecaller instead of the older and less accurate 

versions used by the researchers that sequenced the communities. 

❖ Using only one round of Medaka for polishing, to assess if Racon is necessary 

for best accuracy results. 

❖ Expanding the datasets to include data from real communities. 

  

1. Assembly tools performance for metagenomic data is variable and depends on the 

dataset, hence benchmarking is necessary. 

 

2. In this work, and in accordance to other evaluations, Flye was the most robust assembler: 

it provided the most complete results among datasets and conditions. 

 

3. Pomoxis and Raven also have a good performance among datasets, in spite of being less 

powerful for screening. Raven was more efficient and balanced. 

 

4. Canu and Necat are very accurate assemblers and provide very good results in some 

cases, but their performance, especially for Canu, is easily jeopardized by dataset 

complexity. 

 

5. The polishing step in ONT data is necessary and very useful for accuracy improvement, 

especially for Indels correction. 

 

6. In spite of the high error rate associated to date to nanopore sequencing, Oxford 

Nanopore MinION is a versatile technology that allows for continuous and highly 

complete genomes obtention from metagenomes. 
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9. Supplementary data 

S.1-Supplementary codes: 

Supplementary code 1. Bash script for assemblies. Each assembler command line is inserted into a 

time command for measuring the total assembly time. $filepath is the variable including the absolute path 

of the input reads. $resultdir is the variable including the absolute path of the results directory (folder) 

and $size is the variable including the estimate genome size of the community. 

#!/bin/bash 

#Ask for fastq file path 

echo Please enter absolute path of file: 

read filepath 

echo Now please enter absolute path of results directory: 

read resultdir 

cd $resultdir 

#All results are in $resultdir  

#____________________________________________________________________________ 

echo ~~~ Calling assemblers ~~~ 

#Create txt for time recording 

touch assembly_tpo.txt 

#NECAT_______________________________________________________________________ 

echo ~~~ Starting NECAT ~~~ 

#NECAT in time file 

echo Time NECAT: >>assembly_tpo.txt 

cd NECAT/ 

#CORRECTION + ASSEMBLY + BRIDGING 

{ time Necat.pl bridge config.txt 2>> ../assembly.stderr ; } 2>> ../assembly_tpo.txt 

#Separation in time file 

echo    >> ../assembly_tpo.txt 

echo ~~~ NECAT finished ~~~ 
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cd $resultdir 

#RedBean (wdtgb2)____________________________________________________________ 

echo ~~~ Running RedBean ~~~ 

#Redbean in time txt 

echo Time Redbean: >>assembly_tpo.txt 

echo    >>assembly_tpo.txt 

#Folder for RedBean results 

mkdir Redbean 

cd Redbean/ 

echo ~~~ Step1. wdtgb2 starting ~~~ 

echo Step1: >>../assembly_tpo.txt 

#Assembler  

{ time /home/darwin/Descargas/Programas/Redbean/wtdbg2/wtdbg2 -x ont -t 16 -g 47m -i 

$filepath -fo step1 2>>../assembly.stderr ; } 2>> ../assembly_tpo.txt 

#Space  

echo   >>../assembly_tpo.txt 

echo ~~~ Step2. wtpoa-cns starting ~~~ 

echo Step 2: >>../assembly_tpo.txt 

#Consenser 

{ time /home/darwin/Descargas/Programas/Redbean/wtdbg2/wtpoa-cns -t 16 -i 

step1.ctg.lay.gz -fo assembly.ctg.fa 2>>../assembly.stderr ; } 2>> 

../assembly_tpo.txt 

#Space 

echo   >>../assembly_tpo.txt 

echo ~~~ RedBean finished ~~~ 

#Return to directory of results 

cd $resultdir 

#Raven_______________________________________________________________________ 

echo ~~~ Running Raven ~~~ 
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echo Raven: >>assembly_tpo.txt 

mkdir Raven 

cd Raven/ 

#Running Raven and storing the time 

{ time raven –threads 16 $filepath > assembly.fa 2>>../assembly.stderr ; } 

2>>../assembly_tpo.txt 

echo   >>../assembly_tpo.txt 

echo ~~~ Raven finished ~~~ 

cd $resultdir 

#Flye________________________________________________________________________ 

echo ~~~ Running metaFlye ~~~ 

#Flye in txt 

echo Time Flye: >>assembly_tpo.txt 

#Running Flye and measuring the time 

{ time flye –nano-raw $filepath –out-dir $resultdir/Flye –genome-size 47m –threads 16 

–meta –plasmids 2>>assembly.stderr ; } 2>>assembly_tpo.txt 

#space on file 

echo    >>assembly_tpo.txt 

echo ~~~ metaFlye finished ~~~ 

#Pomoxis_____________________________________________________________________ 

#The environment for Pomoxis must be previously initialized, the command can be found 

in activate.txt, among Pomoxis program files 

echo ~~~ Running Pomoxis ~~~ 

echo Time Pomoxis: >>assembly_tpo.txt 

#Running Pomoxis and measuring time  

{ time /home/darwin/Descargas/Programas/pomoxis/scripts/mini_assemble -i $filepath -o 

$resultdir/Pomoxis -p assembly -l 47mb -t 16 2>>assembly.stderr ; } 

2>>assembly_tpo.txt 

echo    >>assembly_tpo.txt 

echo ~~~ Pomoxis finished ~~~ 
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#Canu________________________________________________________________________ 

echo ~~~ Running Canu 2.0 ~~~ 

echo Canu: >>assembly_tpo.txt 

#Running Canu and measuring time  

{ time /home/darwin/Descargas/Programas/canu-2.0/Linux-amd64/bin/canu -p assembly -d 

$resultdir/Canu genomeSize=47m corOutCoverage=10000 corMhapSensitivity=high 

corMinCoverage=0 redMemory=32 oeaMemory=32 batThreads=16 batMemory=60 -nanopore 

$filepath 2>>assembly.stderr ; } 2>>assembly_tpo.txt 

#batThreads was set to 16 and the recommended batMemory=200 was changed to 60 due to 

canu failure and warnings of CPU resources when 1st running it 

echo ~~~ Canu finished ~~~ 

echo ~~~ All assemblies finished. You can now check your results ~~~ 
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Supplementary code 2. Bash script for Racon polishing. $reads is the variable including the path to 

the fastq file containing the sequenced reads. The file containing each assembly draft is assembly.fasta, 

and assembly_racon.fasta is the file containing the new polished draft. 

#!/bin/bash 

#This script is for running minimap2 + racon. Run the script on the target folder 

Correction 

#Raven and Pomoxis already have run racon as part of their pipeline (2 and 4 times 

respectively) 

# First, we create the alignment using minimap2, then we use that alignment for 

running Racon once, then we erase sam files  

echo Please enter fastq reads file absolute path 

read reads 

echo Starting correction with Racon 

echo Redbean 

mkdir Redbean 

cd Redbean 

echo Indexing draft assembly 

minimap2 -x map-ont -d indexed_draft.mmi assembly.fasta 

echo Aligning 

minimap2 -ax map-ont assembly.fasta $reads > aln.sam 

echo Polishing with racon 

racon -t16 $reads aln.sam assembly.fasta > assembly_racon.fasta 

rm aln.sam 

cd ../ 

echo NECAT 

mkdir NECAT 

cd NECAT 

echo Indexing 

minimap2 -x map-ont -d indexed_draft.mmi assembly.fasta 

echo Aligning 
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minimap2 -ax map-ont assembly.fasta $reads > aln.sam 

echo Polishing 

racon -t16 $reads aln.sam assembly.fasta > assembly_racon.fasta 

rm aln.sam 

cd ../ 

echo Flye 

mkdir Flye 

cd Flye 

echo Indexing 

minimap2 -x map-ont -d indexed_draft.mmi assembly.fasta 

echo Aligning 

minimap2 -ax map-ont assembly.fasta $reads > aln.sam 

echo Polishing 

racon -t16 $reads aln.sam assembly.fasta > assembly_racon.fasta 

rm aln.sam 

cd ../ 

echo Canu 

mkdir Canu 

cd Canu 

echo Indexing 

minimap2 -x map-ont -d indexed_draft.mmi assembly.fasta 

echo Aligning 

minimap2 -ax map-ont assembly.fasta $reads > aln.sam 

echo Polishing 

racon 

rm aln.sam 

cd ../ 

echo Racon polishing finished 
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Supplementary code 3. Bash script for running medaka after Racon polishing. Valid for running 

Medaka without Racon if the input files are substituted by the draft assemblies obtained after first 

assembly. 

#!/bin/bash 

#Run from Toshiba/Morgane_TFG cd Benchmarking_SRA/Assembly_even 

#Bench data: for Albacore v2.0.2, recommended model is r941_trans, but it is not 

supported in new versions of medaka 

#The data will be run in Mekaka v 0.11.5 with its default model. 

echo Starting correction with Medaka 

echo Bench data polishing 

echo Starting with BenchEv dataset 

echo Redbean 

medaka_consensus -i equimolar_all.fastq -d ./Correction/Redbean/assembly_racon.fasta 

-t 16 -o ./Correction/Redbean 

echo Raven 

medaka_consensus -i equimolar_all.fastq -d ./Assembly/Raven/assembly.fa -t 16 -o 

./Correction/Raven 

echo Pomoxis 

medaka_consensus -i equimolar_all.fastq -d ./Assembly/Pomox_2/assembly_final.fa -t 16 

-o ./Correction/Pomoxis  

echo NECAT 

medaka_consensus -i equimolar_all.fastq -d ./Correction/NECAT/assembly_racon.fasta -t 

16 -o ./Correction/NECAT 

echo Flye 

medaka_consensus -i equimolar_all.fastq -d ./Correction/Flye/assembly_racon.fasta -t 

16 -o ./Correction/Flye 

echo Canu 

medaka_consensus -i equimolar_all.fastq -d ./Correction/Canu/assembly_racon.fasta -t 

16 -o ./Correction/Canu  

cd ../Assembly_uneven 

echo Starting with BenchHE dataset 

echo Redbean 
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medaka_consensus -i heterogeneous_all.fastq -d 

./Correction/Redbean/assembly_racon.fasta -t 16 -o ./Correction/Redbean 

echo Raven 

medaka_consensus -i heterogeneous_all.fastq -d ./Assembly/Raven/assembly.fa -t 16 -o 

./Correction/Raven 

echo Pomoxis 

medaka_consensus -i heterogeneous_all.fastq -d ./Assembly/Pomox_2/assembly_final.fa -

t 16 -o ./Correction/Pomoxis 

echo NECAT 

medaka_consensus -i heterogeneous_all.fastq -d 

./Correction/NECAT/assembly_racon.fasta -t 16 -o ./Correction/NECAT  

echo Flye 

medaka_consensus -i heterogeneous_all.fastq -d ./Correction/Flye/assembly_racon.fasta 

-t 16 -o ./Correction/Flye 

echo Canu 

medaka_consensus -i heterogeneous_all.fastq -d ./Correction/Canu/assembly_racon.fasta 

-t 16 -o ./Correction/Canu 

cd ../../BMock12_SRA 

#BMock12 dataset, obtained with Albacore v2.3.1, recommended model r941_trans 

echo Starting with BMock12 dataset 

echo Redbean 

medaka_consensus -i BMock_por.fastq -d ./Correction/Redbean/assembly_racon.fasta -t 

16 -o ./Correction/Redbean 

echo Raven 

medaka_consensus -i BMock_por.fastq -d ./Assembly/Raven/assembly.fa -t 16 -o 

./Correction/Raven 

echo Pomoxis 

medaka_consensus -i BMock_por.fastq -d ./Assembly/Pomoxis/assembly_final.fa -t 16 -o 

./Correction/Pomoxis 

echo NECAT 

medaka_consensus -i BMock_por.fastq -d ./Correction/NECAT/assembly_racon.fasta -t 16 

-o ./Correction/NECAT 

echo Flye 
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medaka_consensus -i BMock_por.fastq -d ./Correction/Flye/assembly_racon.fasta -t 16 -

o ./Correction/Flye 

cd ../atcc_subsample 

#MSA2006 dataset, obtained with Guppy v2.3.5 

echo Starting with MSA2006 dataset 

echo Redbean 

medaka_consensus -i first_half_pore.fastq -d 

./Correction/Redbean/assembly_racon.fasta -t 16 -o ./Correction/Redbean  

echo Raven 

medaka_consensus -i first_half_pore.fastq -d ./Assembly/Raven/assembly.fa -t 16 -o 

./Correction/Raven 

echo NECAT 

medaka_consensus -i first_half_pore.fastq -d ./Correction/NECAT/assembly_racon.fasta 

-t 16 -o ./Correction/NECAT 

echo Flye 

medaka_consensus -i first_half_pore.fastq -d ./Correction/Flye/assembly_racon.fasta -

t 16 -o ./Correction/Flye 

echo Polishing with Medaka finished. 
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S.2-Assembly complications and solutions 

These events helped tunning assembly parameters and input data. 

When trying to run Canu for the first sample, an error message was displayed with 

respect to the machine configuration memory. It advised to change batMemory and batThreads 

parameters: “16 CPUs and 63 GB detected, cannot run task, change batMemory and/or 

batThreads. The values were therefore changed to 60 and 16, respectively.  

Furthermore, the MSA2006 dataset had to be subsampled because it was too large 

(60.2Gb) to be porechoped or assembled in the Darwin computer. Flye and Pomoxis and 

Porechop failed, while Necat gave a very low assembled fraction. For this reason, the datased 

was split in two and the assembly was run again, using only the first half of the reads.  
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S.3-Supplementary figures 

 

Supplementary figure 1. List of studies containing ONT metagenomic data considered for 
this project. Studies were retrieved during the first two weeks of April 2020. Green = selected 
studies. Red = discarded after first filtration. Yellow = discarded after second filtration. Grey = Not 
evaluable (data employed by Latorre-Pérez et al. (2019)). 

Title

Benchmarking the MinION : Evaluating long reads for microbial profiling

Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies

Complete, closed bacterial genomes from microbiomes using nanopore sequencing

Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain 

Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis

De novo Nanopore read quality improvement using deep learning

Implications of error-prone long-read whole-genome shotgun sequencing on characterizing reference microbiomes

Discovering and exploiting multiple types of DNA methylation from individual bacteria and microbiome using nanopore sequencing

Preprint: Analysis procedures for assessing recovery of high quality, complete, closed genomes from Nanopore long read metagenome 

Pathogen Detection and Microbiome Analysis of Infected Wheat Using a Portable DNA Sequencer

Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana

Near-complete Lokiarchaeota genomes from complex environmental samples using long and short read metagenomic analyses

Novel prosthecate bacteria from the candidate phylum Acetothermia

Generating closed bacterial genomes from long-read nanopore sequencing of microbiomes

New tools for diet analysis: nanopore sequencing of metagenomic DNA from rat stomach contents to quantify diet

Deciphering taxonomic and functional diversity of fungi as potential bioindicators within confluence stretch of Ganges and Yamuna Rivers, 

Improving recovery of member genomes from enrichment reactor microbial communities using MinION–based long read metagenomics

Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens

Genetic repertoires of anaerobic microbiomes driving generation of biogas

Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain 

Stationary and portable sequencing-based approaches for tracing wastewater contamination in urban stormwater systems

Ultra-deep, long-read nanopore sequencing of mock microbial community standards
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Supplementary figure 2. General performance of assemblers (higher size). 
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Supplementary figure 3. Indels per assembler and microorganism, after Polishing. Squares are 
filled proportionally to the number of total Indels. 

Canu Flye Necat Pomoxis Raven Redbean Canu Flye Necat Pomoxis Raven Redbean

C. glutamicum 202.08 188.29 193.50 192.38 203.14 201.90 179.41 148.69 155.77 233.13 158.24 501.80

B. licheniformis 357.43 341.88 344.34 351.86 346.47 346.69 263.63 249.63 254.50 431.01 254.66 252.36

X. campestris 84.14 71.74 72.57 81.65 72.62 78.96 1,070.57 1,555.09 - 1,263.61 - 1,195.75

E. hormaechei 262.75 250.53 248.83 365.97 328.64 303.40 339.82 319.80 365.48 421.13 368.12 368.02

S. fonticola 158.70 155.45 156.92 210.50 160.90 172.84 157.55 154.01 156.89 177.28 166.42 171.53

A. xylosoxidans 106.29 91.24 92.30 98.42 96.69 99.71 1,343.65 - - - - 1,353.09

M. luteus 205.70 186.38 198.40 214.10 220.09 203.73 1,396.93 1,793.14 - 1,272.67 843.27 1,437.65

Cr. sakazakii 297.34 291.56 286.36 461.85 339.79 337.85 236.78 205.64 204.57 449.77 230.17 260.19

S. saprophyticus 249.59 239.61 240.84 245.81 243.21 242.04 - - - - - -

Ch. violaceum 97.84 91.54 92.18 104.75 97.19 96.29 0.00 - - - - -

P. odorifer 316.46 313.22 314.64 323.56 318.55 316.12 - - - - - -

D. solani 147.00 146.85 145.70 185.74 155.43 163.31 - - - - - -

Flye Necat Pomoxis Raven Redbean Flye Necat Raven Redbean

Cohaes. ES047 182.89 183.65 189.98 188.99 186.36 Enterobacter 86.69 335.09 112.29 107.61

Halomonas HL4 205.26 197.20 399.01 228.29 243.59 Bacter. 9343 30.21 33.49 29.86 35.83

Halomonas HL93 248.50 228.04 383.95 245.84 241.91 Bifidobacterium 128.41 - 145.81 149.55

Marin. LV10M 203.71 206.36 223.19 216.64 215.84 Clostridioides 94.85 94.56 79.37 97.83

Marin. LV10R 162.99 163.59 173.84 173.20 171.63 E. coli K12 110.06 92.59 164.03 172.38

Micr. DSM43904 1,543.59 - 1,151.22 1,289.75 962.53 Bacter. 8482 35.69 - 32.90 42.17

Micr. DSM43913 1,546.92 - 1,162.35 1,280.16 1,182.66 Salmonella 111.44 222.83 166.34 157.75

Micr. DSM45161 - - - - - Fusobacterium 105.45 - 98.25 121.83

Muric. ES050 310.71 311.04 333.82 314.38 319.37 Helicobacter 364.30 386.17 360.65 378.02

Propion. ES041 860.16 712.89 924.70 909.67 935.06 Lactobacillus 20.46 21.07 20.86 22.11

Psychr. LV10R 222.83 222.81 279.50 226.65 228.92 Enterococcus 50.91 52.92 50.61 51.98

Thioclava ES032 185.64 190.57 199.33 195.31 196.22 60.37 170.26 67.01 70.14

Canu Flye Necat Pomoxis Raven Redbean Canu Flye Necat Pomoxis Raven Redbean

Cr. sakaz. CSK1 607.00 285.41 275.81 304.57 285.68 289.05 298.17 175.72 176.77 185.82 190.70 196.70

Cr. sakaz. CSK2 1,964.36 587.64 - 429.80 - - 567.03 202.55 - - - -

Cr. sakaz. CSK3 853.02 359.17 370.40 360.34 366.80 381.62 851.15 267.51 252.33 249.52 242.39 248.80

S. sapr. pSSP1 629.32 213.24 221.04 232.23 260.72 332.82 - - - - - -

S. sapr. pSSP2 2,789.68 315.02 385.07 1,351.11 381.51 486.77 - - - - - -

Flye Necat Raven Redbean

Enter. pECLA 76.58 101.82 87.70 130.24

Enter. pECLB 60.25 73.89 - 92.84

Enteroc. pTEF1 70.87 63.33 241.90 501.20

Enteroc. pTEF2 57.24 60.70 292.92 622.85

Enteroc. pTEF3 183.71 27.84 180.03 -

Bacter. pBF9343 60.18 51.97 46.60 44.58

Yersinia

Microorganisms

BenchEV BenchHE

BMock12 MSA2006

Plasmids

BenchEV BenchHE

MSA2006


