CONTENTS

I **introduction**
1 **introduction**
 1.1 Motivation
 1.2 Objectives
 1.3 Structure

II **preliminaries and state of the art**
2 **mde: automating coding in software development**
 2.1 Model Driven Engineering Open standards
 2.2 Model Driven Architecture
 2.3 Meta Object Facility
 2.4 Object Constraint Language
 2.4.1 Language features
 2.5 Query/View/Transformation
 2.5.1 Languages
 2.5.2 The *Relations* language
 2.6 Summary

3 **supporting technologies for mde**
 3.1 The Eclipse Platform
 3.1.1 Eclipse Modeling Framework
 3.1.2 Graphical Modeling Framework
 3.1.3 Model Development Tools
 3.2 MOMENT: A framework for Model Management
 3.3 ATLAS Transformation Language
 3.4 IBM Model Transformation Framework
 3.5 MediniQVT
 3.6 Summary

4 **software product lines**
 4.1 Software Product Line Engineering
4.2 Describing variabilities and commonalities
 4.2.1 Introduction
 4.2.2 Classic feature models
 4.2.3 FeatuRSEB and PLUSS feature models
 4.2.4 Cardinality-based feature models
 4.2.5 Feature model configurations
 4.3 Summary

III VARIABILITY VIEW ON MULTI-MODEL DRIVEN SOFTWARE PRODUCT LINES

5 MULTI-MODEL DRIVEN PRODUCT LINE ENGINEERING
 5.1 System views and the multi-model
 5.2 Views, models and metamodels in MULTIPLE
 5.3 Summary

6 FEATURE MODEL CONFIGURATION ISSUES
 6.1 Introduction
 6.2 Feature models, configurations and MOF
 6.3 Describing feature model configurations as instances
 6.4 Summary and conclusions

7 USING FEATURE MODELS IN MDE PROCESSES
 7.1 Process overview
 7.2 Cardinality-based feature metamodel
 7.2.1 Feature models structure
 7.2.2 Feature model constraints
 7.2.3 Cardinality-based feature metamodel in MOF
 7.3 The Domain Variability Model
 7.3.1 The structure of the DVM
 7.3.2 Constraints over the DVM
 7.4 Feature model configurations
 7.5 Summary and conclusions

IV THE MULTIPLE FRAMEWORK AND MMDSPL DEVELOPMENT AND ANALYSIS

8 THE MULTIPLE FRAMEWORK
8.1 Subsystems and components overview .. 118
8.2 The Eclipse Platform .. 123
8.3 Built-in metamodels ... 125
 8.3.1 Variability metamodel support ... 125
 8.3.2 FAMA metamodel support ... 138
 8.3.3 Modular metamodel support ... 146
 8.3.4 Component–connector metamodel support 154
 8.3.5 PRISMA metamodel support ... 161
8.4 Transformations Subsystem .. 166
 8.4.1 QVT engine ... 167
 8.4.2 QVT transformation invocation model support 168
 8.4.3 Traceability metamodel support .. 171
 8.4.4 QVT Launcher .. 178
 8.4.5 QVT Command-line interface ... 187
8.5 Validation Subsystem ... 194
 8.5.1 OCL Support ... 195
 8.5.2 OCL Support CLI .. 203
 8.5.3 Variability Model Checking .. 206
8.6 MULTIPLE EMF Utils ... 214
 8.6.1 EMOF Converter utility ... 214
 8.6.2 Register EMF utility ... 214
 8.6.3 Registry viewer utility ... 216
8.7 Summary and conclusions ... 216
9 MULTIPLE EMF FOR DIAGNOSTIC EXPERT SYSTEMS DEVELOPMENT 219
 9.1 Technological spaces .. 221
 9.2 Field Study: Diagnostic Expert Systems 222
 9.2.1 Diagnostic Expert Systems Reference Architecture 223
 9.2.2 Diagnostic Expert Systems Structural Variability 224
 9.2.3 Diagnostic Expert Systems Behavioral Variability 225
V THE MULTIPLE FRAMEWORK IN 3RD PARTY PROJECTS AND TOOLS 305
11 BIOLOGICAL DATA MIGRATION USING MULTIPLE 309
 11.1 Case study ... 311
 11.1.1 Toll-like receptors and the TLR4 signal
 transduction pathway 313
 11.1.2 An approach to the study of the TLR4 sig-
 nal transduction pathway 315
 11.2 A MDSD approach in biological data migration .. 317
 11.2.1 Architecture and overview of the tool 318
 11.2.2 Development of the source and the target
 models ... 319
 11.2.3 Transformation process 323
 11.3 Running example .. 324
 11.3.1 Result files ... 327
 11.3.2 Result file in CPN Tools 328
 11.4 Conclusions .. 329
12 SOFTWARE MEASUREMENT BY USING QVT TRANS-FORMATIONS 333
 12.1 Related works ... 335
 12.2 Software Measurement Framework 336
 12.2.1 Conceptual architecture 337
 12.2.2 Technological aspects 339
 12.2.3 Method .. 342
 12.3 Example ... 343
 12.4 Conclusions ... 347
13 MORPHEUS: A TOOL FOR THE ATRIUM METHODOLOGY 349
 13.1 ATRIUM at a glance .. 350
 13.2 MORPHEUS: a MDD supporting tool 353
 13.2.1 Requirements Environment 354
 13.2.2 Scenario Environment 357
 13.2.3 Software Architecture Environment 361
 13.3 Related works ... 363
 13.4 Conclusions and further works 364
VI CLOSURE
14 RELATED WORKS
 14.1 MULTIPLE feature models and other feature modeling proposals 370
 14.2 MULTIPLE and the OMG CVL 371
 14.3 Feature models and class diagrams 371
 14.4 Feature model constraints 372
 14.5 Feature models and other SPL approaches 373
15 SUMMARY AND CONCLUSIONS 377
16 PUBLICATIONS 385

APPENDICES
A TRANSFORMATION FEATURES2CLASSDIAGRAM 395
B TRANSFORMATION MODULES2COMPONENTS 407
C TRANSFORMATION COMPONENTS2PRISMA 413
D TRANSFORMATION MULTIPLEFEATURES2FAMAFEATU-RES 421
E FAMA XML SCHEMA DEFINITION 425
F RUNNING A QVT TRANSFORMATION USING MEDINI QVT 429
G TRANSPATH2CPN TRANSFORMATION 435

BIBLIOGRAPHY 445