
Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Writer identification in handwritten text images using
deep neural networks.

DEGREE FINAL WORK

Degree in Computer Engineering

Author: Akshay Punjabi Punjabi

Tutor: Enrique Vidal Ruiz

Experimental director: Jose Ramon Prieto Fontcuberta

Course 2019-2020

Acknowledgement

I wish to express my deepest gratitude to Enrique Vidal, who offered the opportunity to work with
the PRHLT research center, and to Jose Ramon Prieto Fontcuberta, who provided advice and
assistance during the course of this work.

I am also extremely grateful to my parents, who have always supported me through hard times,
for allowing me to study hard to this day and to have made a tremendous contribution to my life
and education. I thank my brother, who has a Cambridge C2 level of English, to review my work
and to share very interesting insights he gave me during the writing process. I would like to thank
my friends and my classmates for those moments of happiness and joy. Thanks also to all the
professors who were part of my studies at UPV, for enriching me with such valuable knowledge.

To everyone involved in this journey, thank you.

iii

iv

Resum
La identificació de l’escriptor que ha escrit un text és necessària en diverses aplicacions d’anàlisi

i reconeixement de documents. En particular, es requereix per a l’organització de manuscrits
històrics en arxius i biblioteques.

Els mètodes tradicionals solien basar-se en una segmentació de l’ text escrit en caràcters indivi-
duals, seguit d’una anàlisi més o menys heurístic de la forma dels caràcters. Aquest enfocament
ha proporcionat alguns resultats en casos simples on el text és prou clar com per permetre la
detecció i extracció de caràcters individuals. però falla completament quan l’escriptura és informal
o desordenada i / o quan es consideren estils d’escriptura antics. Per tant, els treballs modernes
segueixen enfocaments holístics en els que s’analitza l’estil d’escriptura sense detecció o extracció
prèvia de caràcters o paraules. A més, les tècniques de aprenentatge automàtic estan demostrant ser
molt adequades per a abordar el problema d’identificació de l’escriptor d’una manera totalment
holística i sense segmentació. En aquesta direcció, les xarxes neuronals convolucionals profundes
són els models més prometedors que s’han provat fins ara.

Aquesta proposta consisteix en el desenvolupament de mètodes d’aprenentatge profund per a la
classificació d’una imatge de text, o una part d’ella, en classes corresponents a les possibles mans
que han escrit el text. El treball també inclourà l’experimentació amb conjunts de dades públiques
de referència, així com en altres conjunts de dades del món real, que consisteixen en manuscrits
històrics.

Paraules clau: identificació de l’escriptor, aprenentatge profund, xarxes neuronals, CNN, xarxa
neuronal convolucional, pàgines escrites a mà, processament d’imatges de documents, identificació
de l’escriptor de documents històrics, reconeixement de patrons

v

Resumen
La identificación del escritor que ha escrito un texto es necesaria en varias aplicaciones de

análisis y reconocimiento de documentos. En particular, se requiere para la organización de
manuscritos históricos en archivos y bibliotecas.

Los métodos tradicionales solían basarse en una segmentación del texto escrito en caracteres
individuales, seguido de un análisis más o menos heurístico de la forma de los caracteres. Este
enfoque ha proporcionado algunos resultados en casos simples donde el texto es lo suficientemente
claro como para permitir la detección y extracción de caracteres individuales. Pero falla completa-
mente cuando la escritura es informal o desordenada y/o cuando se consideran estilos de escritura
antiguos. Por lo tanto, los trabajos modernas siguen enfoques holísticos en los que se analiza el
estilo de escritura sin detección o extracción previa de caracteres o palabras. Además, las técnicas
de aprendizaje automático están demostrando ser muy adecuadas para abordar el problema de
identificación del escritor de una manera totalmente holística y sin segmentación. En esta dirección,
las redes neuronales convolucionales profundas son los modelos más prometedores que se han
probado hasta ahora.

Esta propuesta consiste en el desarrollo de métodos de aprendizaje profundo para la clasificación
de una imagen de texto, o una parte de ella, en clases correspondientes a las posibles manos que
han escrito el texto. El trabajo también incluirá la experimentación con conjuntos de datos públicos
de referencia, así como en otros conjuntos de datos del mundo real, que consisten en manuscritos
históricos.

Palabras clave: identificación del escritor, aprendizaje profundo, redes neuronales, CNN, red
neuronal convolucional, páginas escritas a mano, procesamiento de imágenes de documentos,
identificación del escritor de documentos históricos, reconocimiento de patrones

vi

Abstract
The identification of the writer who has written a piece of text is needed in several applications

of document analysis and recognition. In particular, it is required for the organization of historical
manuscripts in archives and libraries.

Traditional methods used to relay on a segmentation of the written text into individual characters,
followed by more or less heuristic analysis of the shape of the characters. This approach has
provided some results in simple cases where the text is clear enough to allow the detection and
extraction of individual characters. However, it fails dramatically when the writing is sloppy and/or
when ancient scripts are considered. Therefore, modern works follow holistic approaches where
the writing style is analyzed without character or word detection or extraction. Moreover, machine
learning techniques are proving highly adequate to tackle the writer’s identification problem in a
fully holistic, segmentation-free way. In this direction, deep convolutional neural networks are the
most promising models tried so far.

This proposal consists of the development of deep learning methods for the classification of a
handwritten image, or a part thereof, into several classes corresponding to possible hands which
have written the text. This work will also include experimentation on public-domain, benchmark
datasets, as well as on other real-world datasets consisting of historical manuscripts.

Key words: writer identification, deep learning, neural networks, CNN, convolutional neural
network, handwritten pages, document image processing, historical document writer identification,
pattern recognition

Contents

Contents vii
List of Figures ix
List of Tables x

1 Introduction 1
1.1 Problem Statement . 1
1.2 Objectives . 1
1.3 Structure of the bachelor thesis . 2

2 Theoretical Background 3
2.1 Pattern Recognition and Computer Vision . 3
2.2 Machine Learning . 4

2.2.1 The goal of Machine Learning . 5
2.2.2 Types of Machine Learning . 5

2.3 Neural Networks . 6
2.3.1 Perceptron . 6
2.3.2 Multi-layer Perceptron . 7
2.3.3 Rectified Linear Unit . 9

2.4 Layers of deep neural networks . 10
2.4.1 Normalization Layers . 10
2.4.2 Convolution Layers . 11
2.4.3 Pooling Layers . 12

2.5 Influential neural networks . 13
2.5.1 AlexNet . 13
2.5.2 VGG . 14
2.5.3 Residual Networks . 15

3 Writer Identification 17
3.1 Typology . 18
3.2 Methods . 18
3.3 Evaluation . 19

4 State of the art 21
4.1 Feature-based methods . 21

4.1.1 Structure-based methods . 21
4.1.2 Texture-based methods . 22
4.1.3 Grapheme-based methods . 23
4.1.4 Combination of structure and grapheme based methods 24

4.2 Deep Learning based methods . 24

5 Approach 29
5.1 Model . 29

6 Experiments and results 33
6.1 Datasets . 33

6.1.1 Firemaker . 33
6.1.2 IAM Handwriting Database . 34

vii

viii CONTENTS

6.1.3 ICDAR 2017 . 35
6.1.4 Data Preprocessing . 36

6.2 Hardware and software specifications . 36
6.3 Hyperparameters optimization . 37
6.4 Experiments . 38

6.4.1 Experiment 1: Commonly used patch sizes in literature 38
6.4.2 Experiment 2: Using bigger patch size 40
6.4.3 Experiment 3: Using full-page images as input 41
6.4.4 Experiment 4: Historical Documents . 42

6.5 Results . 43

7 Conclusions and future works 45
8 Degree relationship 47
Bibliography 49

List of Figures

2.1 Object classification vs Object Detection . 3
2.2 ILSVRC competition errors . 5
2.3 Biological neural network . 6
2.4 Basic activation functions . 7
2.5 The Perceptron . 7
2.6 Multi-layer Perceptron . 8
2.7 ReLU activation function . 10
2.8 Dropout Architectures . 11
2.9 Edge detection convolution . 12
2.10 Convolutional Neural Networks (CNN) . 12
2.11 Illustration of Pooling algorithms . 13
2.12 AlexNet architecture . 14
2.13 VGG architecture . 14
2.14 Residual Learning . 15
2.15 ResNet Architectures . 16

3.1 Difference of writing between three writers . 17
3.2 Pipeline of writer identification system . 18

4.1 SIFT features from a sample . 22
4.2 Texture generated from a sample . 23
4.3 Examples of different codebooks . 23
4.4 Architecture of DeepWriter . 25
4.5 Architecture of FragNet . 26

5.1 Resnet18 architecture . 30
5.2 Proposed voting scheme . 31

6.1 Firemaker sample images . 34
6.2 IAM sample images . 34
6.3 ICDAR 2017 sample images . 35
6.4 Text padding example . 37
6.5 Best results with the patch size used in literature with IAM and Firemaker 39
6.6 Best results with big patch sizes never used in literature with IAM dataset 40
6.7 Best results with big patch sizes never used in literature with Firemaker dataset . . 41
6.8 Accuracy on IAM and Firemaker with the pages model 42
6.9 Accuracy on ICDAR 2017 with the pages model 42
6.10 Best results with big patch sizes never used in literature with ICDAR 2017 43

ix

List of Tables

4.1 Review of state of the art . 27

5.1 Model sizes and parameters . 29

6.1 Summary of the datasets constructed. 36
6.2 Best results with the patch size used in literature with IAM and Firemaker 39
6.3 Best results with big patch sizes never used in literature with IAM and Firemaker 40
6.4 Best hyperparameters found for pages with IAM and Firemaker. 41
6.5 Best hyperparameters found for pages on ICDAR17 42
6.6 Best results found for patches in ICDAR17. 42
6.7 Summary of state of the art in writer identification methods in IAM dataset . . . 44
6.8 Summary of state of the art in writer identification methods in Firemaker dataset . 44

x

CHAPTER 1

Introduction

For centuries, handwriting has been an important part of civilization, not only for the daily
communication between human beings but also for the transmission of wisdom between generations.
Accordingly, there is a vast literature of historical works of earlier centuries with great historical
significance that need to be researched. However, many of these writings are quite difficult to
read due to calligraphy or the language. Because of that, information such as who wrote the text,
where or when it was written is difficult to extrapolate. All these details are of great importance
for researchers as a means to understand, for example, how an author has evolved, differentiating
between authors or inferring where and when was a manuscript written.

Manual extraction about the information of the huge amount of handwritten documents is
very time consuming and expensive. Therefore, there is a need for automatic methods that help
researchers in this process. In this way, fields like Handwritten Text Recognition (HTR) have
emerged to extract text automatically from printed or handwritten images. Consecutively, Natural
Language Processing (NLP) focuses on processing this huge amount of text and categorizing it and
Natural Language Understanding (NLU) focuses on understanding the language or the meaning of
the data.

In this bachelor thesis, however, we focus on writer identification of a document solely using
the visual attributes, without taking into account the content of the text. This is also known as text-
independent writer identification. Historians could use this system to verify document authorship
or determine the authorship of an ancient unlabeled document. Furthermore, modern applications
that include forgery detection and forensic science in criminal cases or financial activities such as
confirmation of bank procedures would also benefit from writer identification.

1.1 Problem Statement

An effective automatic writer identification method would facilitate the research of old manuscripts
and save a lot of time and money. Most writer identification methods follow traditional handcrafted
approaches. With the success of deep neural networks in all kinds of computer vision tasks, it
would be interesting to use them in writer identification. This is the motivation of our bachelor
thesis. We propose to create a writer identification system based on a deep learning neural network.
The neural network would receive a handwritten image and output an ordered list of the most
probable writers.

1.2 Objectives

Our main objectives for this project are:

1

2 Introduction

• Study the state of the art of writer identification approaches including deep learning ap-
proaches as well as traditional approaches.

• Build a deep neural network model that performs writer identification and evaluate it on
typically used contemporary datasets, to contrast them with other studies using these datasets.

• Analyze and test the impact of different sized image inputs in the deep neural network built.

• Test the performance of our deep neural network on historical manuscripts.

1.3 Structure of the bachelor thesis

The bachelor thesis is structured in eight chapters. In Chapter 2, we explain the theoretical concepts
behind neural networks and how they work. Chapter 3, introduces the task of writer identification,
describing the concepts and methodology followed in this field. In Chapter 4, an up to date study
is conducted of the state of the art methods in writer identification, which includes traditional
methods as well as new deep learning methods. In Chapter 5, we introduce our proposed model.
Chapter 6, presents the experiments conducted along with the results obtained. Software and
hardware specifications and the datasets used for our experiments are also described in this chapter.
We will give our conclusions in Chapter 7 presenting our findings and proposing possible future
works. Finally, in Chapter 8 we will explain the relationship of the bachelor thesis to the computer
engineering degree.

CHAPTER 2

Theoretical Background

2.1 Pattern Recognition and Computer Vision

Human beings have been searching for patterns in data since their existence. It is our curiosity
of questioning the nature around us and the patterns it follows that has gotten us so far. Pattern
recognition is the process of automatically discovering patterns in a sequence of data by using
mathematical models and computers. With this information, we can automatically perform a variety
of tasks such as classification of data into different categories.

In this chapter, we will first start by talking about the history of computer vision and how it
lead to the current state of the field in which neural networks have been the protagonist. After that,
we will talk about some of the theoretical foundations of neural networks and their derivatives.

Computer Vision

Computer Vision is one subfield of pattern recognition which explores how computers can under-
stand and obtain patterns from images or videos. Several tasks exist in computer vision recognition
such as resolving if an image data contains some particular object, feature, or activity. Common
recognition tasks are:

Figure 2.1: Illustrating the difference between classification, object detection, and object segmentation.

• Image classification. Classifying objects in an image to different predefined categories. For
example, in the left image of Figure 2.1 a cat image is classified to the class cat. For a dog
image, it would be classified as the class dog. Other examples include identification of a
specific person’s face or fingerprint, identification of handwritten digits, or identification of a
specific vehicle.

• Object detection. Particular objects or parts of an object are detected in images. Normally
it involves specifying coordinates of the object or bounding boxes. Some examples are the

3

4 Theoretical Background

detection of vehicles and pedestrians in a road for autonomous vehicles or the estimation
of the number of people in a location. In the center image of Figure 2.1 you can see how a
bounding box is created for each animal.

• Image segmentation. All pixels of the images are classified. For example, in the right
image of Figure 2.1 you can see how some pixels are correctly categorized to different types
of animals and the rest of the pixels are categorized as background. It differs from object
detection as it is very specific and categorizes pixel by pixel which allows us to get more
meaningful results. Common applications are in medical imaging, for instance, locating
tumors, better visualization of medical images, or detecting regions of abnormalities. Object
detection tasks could also be approached this way to achieve better solutions.

History of Computer Vision

The ability to see with our eyes is a remarkable capacity essential for human endeavors. In the
1960s, a series of experiments in cats and monkeys done by David Hubel and Torsten Wiesel led to
understanding the information processing in the visual cortex for which they later won the 1981
Nobel Prize in Physiology or Medicine.

Inspired by the findings of Hubel and Wiesel, the field of computer vision began at universities
in the 1960s. They were trying to mimic the human visual system to start the creation of artificial
intelligence. Initial works were so promising about the future of artificial intelligence that they were
convinced that it would be achieved very soon. Their optimism soon faded away as they failed to
obtain any meaningful result. Early computing resources were not enough to handle the complexity
of the problems. As such, the research for this area stagnated and scientists stopped pursuing it
altogether. One important paper created in this time is the Neocognitron [1], which would inspire
in the future the creation of neural networks.

After more than 50 years, in 2012, a breakthrough was made in neural networks. A convolutional
neural network called AlexNet [2] won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [3] . The ILSVRC is an annual image classification competition that allows researchers
to evaluate algorithms on a very large dataset of images. Until then, the error rate for ILSVRC
competitors was around 26.2%. Surprisingly, AlexNet won the competition with an error rate of
15.3%. With these results, AlexNet set a precedent that started a new era for neural networks and
computer vision tasks.

Nowadays, convolutional neural networks have become the best algorithms for computer vision.
Numerous different tasks ranging from classification to segmentation, have greatly benefited from
deep learning algorithms. Each year new developments in neural networks achieve lower and lower
error rates (Figure 2.2), even surpassing the performance of human beings.

2.2 Machine Learning

Machine Learning algorithms are capable to learn the relationship between the input data and the
output data and as a consequence perform complex tasks. It is quite remarkable how powerful these
algorithms are. Machine learning is a very wide field and there exist multiple types of machine
learning algorithms like k-nearest neighbor (KNN), linear regression, logistic regression, Support
Vector Machines (SVM), neural networks, and more.

As such, there are several topics to explore in the field of machine learning. However, in this
project we will work fundamentally with neural networks, so we will only focus and explore the
theoretical concepts behind neural networks 1.

1Most of the theory comes from the book Deep Learning by Ian Goodfellow [5]

2.2 Machine Learning 5

Figure 2.2: ILSVRC competition errors each year. Image from [4].

2.2.1. The goal of Machine Learning

Normally when we try to solve some sort of problem through a computer we manually design
algorithms that give the computers the specific instructions to perform a task. In machine learning,
instead, we give the computer information in the form of data or patterns that it can learn from, and
let the computer try and figure out what those patterns are so that it can perform a task on its own.

The objective of a machine learning algorithm is to map an input space to another output space
f (x) = y. Finding this exact function is not possible so we instead try to approximate f to a
hypothesis function h(x) = y. The goal of machine learning is learning and finding the function h.

2.2.2. Types of Machine Learning

As the book Artificial Intelligence: A Modern Approach puts it:

“ Learning is a search through the space of possible hypotheses for one that will
perform well, even on new examples beyond the training set. ”

Page 695, Artificial Intelligence: A Modern Approach, 3rd edition, 2015,

Depending on how a machine learning algorithm trains with the input data and how it produces
an output, learning can be categorized in supervised, semi-supervised, or unsupervised.

• Supervised Learning. The learning algorithm uses as an input train data with is correspon-
dent target data, tunes and learns the features and verifies the predicted target to the true
target. After that, a test data distinct from the training data is used to measure the accuracy of
the algorithm. In the case of discrete categories, it is called classification and in the case of
continuous variables, it is called regression. An example of a regression problem would be
the prediction of the market price of a house in a certain neighborhood.

• Unsupervised Learning. In the case of unsupervised learning, the training data does not
contain the corresponding target values. The goal of unsupervised learning is then to get

6 Theoretical Background

as good as an approximation as possible of similar groups within the data (clustering) or to
determine the distribution of data within the input space (density estimation).

• Semi-supervised Learning. Semi-supervised learning is halfway between supervised learn-
ing and unsupervised learning. The training examples use both labeled samples and unlabeled
samples. The idea surges so that all the available data is used. In some cases, it has been
shown that this approach is better than unsupervised learning [6].

2.3 Neural Networks

In this section, we explain the theoretical fundamentals of neural networks. Particularly, we will
talk about the perceptron which is the fundamental unit of a neural network and the multi-layer
perceptron which is an extension of the perceptron.

2.3.1. Perceptron

As many of our creations, artificial neural networks were inspired by biological processes, hence
the word artificial. Broadly speaking, a biological neural network consists of neurons that are
connected and receive electrical signals from other neurons as seen in Figure 2.3. Neurons process
these input signals and can be activated or not.

Figure 2.3: Biological neural network. Image from [7].

To create the artificial neural network (ANN) instead of having biological neurons we will use
what we are going to call units. Units are going to be connected with each other with edges. As
seen before, we want to find h that maps input to outputs to perform some sort of classification.
Given inputs x1 and x2 of a simple example ANN we will try to approximate the function h:

h(x1, x2) = w0 + w1x1 + w2x2 (2.1)

where w are the weights we will need to adjust to determine what values to multiply our inputs to
get some sort of result. Of course, we also need a threshold to perform classification. We will use
the simple function g:

g(x) =

{
1, if x ≥ 0
0, otherwise

(2.2)

This is also called as activation function, a function that determines when it is that this output
becomes active. Function 2.2 works only for binary classification, if we do not want a binary

2.3 Neural Networks 7

classification and we want real values a better function would be the logistic sigmoid function that
has an S-shaped curve:

g(x) =
ex

ex + 1
(2.3)

The logistic sigmoid function produces a real value between 0 and 1. Figure 2.4 shows these
different activation functions graphically:

Figure 2.4: Basic activation functions. (a) step function, output would be 0 or 1.
(b) logistic sigmoid, output between 0 and 1. Image from [8].

With an activation function h would become:

h(x1, x2) = g(w0 + w1x1 + w2x2) (2.4)

For now, the example described before only had two inputs but we could have as many inputs as
necessary. Generalizing, the general formula of the model is:

h(x1...xn) = g(
n

∑
i=1

xiwi + w0) (2.5)

and the visual representation can be seen in Figure 2.5. This is also called perceptron and was
proposed in 1958 by Roseblatt [9]. This model is the foundation of neural networks algorithms.

Figure 2.5: The Perceptron, the fundamental unit of a neural network. Image from [10].

2.3.2. Multi-layer Perceptron

The perceptron proposed before can handle the classification of linearly separable data but is not
able to handle more complex non-linearly separable data. Because of this, the perceptron was
extended to multi-layer perceptron (MLP), which is also sometimes called a feed-forward neural

8 Theoretical Background

network. An MLP network (Figure 2.6) has input layers, output layers, and at least one hidden
layer. The universal approximation theorem stated by Cybenko in 1989 [11] says that an MLP with
only one single hidden layer and with sigmoid activation functions can approximate any continuous
function. This means an MLP can be applied to solve any type of problem. However, it is more
efficient to use multiple hidden layers. MLPs with a large number of hidden layers are called deep
neural networks (DNN).

Figure 2.6: A Multi-layer perceptron with three inputs, two hidden layers and one output. Image from [12].

Optimization

To measure how well the model is working and try to get even better models we need a way to
evaluate the model. For that, we use a loss function, which expresses how poorly a model performs.
Most neural networks use Cross Entropy Loss:

L(yt, yp) = −
C

∑
c

yt · log yp (2.6)

where yt is the true class of the input, yp is the predicted class by the model and C is the number of
classes.

With the information of the loss function the model can adapt at run-time with the objective to
minimize this loss function and change its parameters accordingly. The typical algorithm for this
procedure is Gradient Descent which minimizes the loss function by calculating in which direction
of the state space the loss is minimized and following that direction.

Algorithm 2.1 Gradient descent algorithm

PARAMETERS

Learning rate η, weights w, loss function L, number of data points N
Initialize weights w randomly
loop

Calculate gradients based on all data points direction that will lead to decreasing loss:
∆w = w− η · 1

N ∑N
i L(yi

t, yi
p)

Update weights according to gradient: w = w− ∆w
end loop

This algorithm takes into account all data points which is not feasible in practical situations
where we have huge amount of data points. Instead we use Stochastic Gradient Descent (SGD)
where we use only a batch of data points:

2.3 Neural Networks 9

Algorithm 2.2 Stochastic gradient descent algorithm

PARAMETERS

Learning rate η, weights w, loss function L, batch size Nb
Initialize weights w randomly
loop

Calculate gradients based on a batch of Nb data points direction that will lead to decreasing
loss: ∆w = w− η · 1

Nb
∑Nb

i L(yi
t, yi

p)
Update weights according to gradient: w = w− ∆w

end loop

where new parameters η which are the learning rate and batch size Nb are tuned to find a good
model. Choosing these parameters is critical for creating a good neural network model. A large
learning rate may perhaps miss an optimal minimum. On the other hand, a small learning rate may
slow down the training time or get stuck in a local minimum. In practice, different values are tested
until finding a suitable one.

Backpropagation

The first problem that arises with MLPs is that we cannot know how to change the weight values of
these new hidden layers. So the backpropagation [13] algorithm was proposed:

Algorithm 2.3 Backpropagation algorithm

Compute the derivative of the loss function with respect to the output layer
for layer in layers-1 do

Compute the derivatives of the loss function with respect to the inputs of layer+1
Compute the derivatives of the loss function with respect to the weights between layer and
layer-1
Compute the derivatives of the loss function with respect to layer-1

end for
Update weights

Given the loss of the output layer, the backpropagation algorithm estimates the amount of the
error that is caused by each unit in the hidden layers. After that, it propagates the corresponding
error of each unit to the preceding hidden layers to update the weights accordingly. This is achieved
by using derivatives (remember the derivative of a function measures the ratio of change of the
output depending on the change of the input) and recursive applications of the chain rule.

2.3.3. Rectified Linear Unit

The true power of MLPs is due to non-linear activation functions. Up until 2012, the non-linear
sigmoid function was used predominantly. Hereafter, the use of the sigmoid function was mostly
replaced with the rectified linear unit (ReLU):

g(x) = max(0, x) (2.7)

The advantages of ReLU over the sigmoid function include fewer vanishing gradient problems
compared to sigmoid and that it is much more efficient and faster. In Figure 2.7 a visual illustration
is shown.

10 Theoretical Background

Figure 2.7: ReLU activation function. The output is 0 for negative values, 0 to ∞ for positive values.

2.4 Layers of deep neural networks

The hidden layers of a deep neural network are formed by different types of layers. In this section,
we will explain some of the typically used layers.

2.4.1. Normalization Layers

One of the most common problems while creating neural network models is when a model
memorizes the training set and does not generalize well. As a result, it performs worse on new
data or test set. This is called overfitting. It especially occurs in small datasets or working with big
models with a lot of parameters that can easily overfit in small datasets. In that event, regularization
techniques are necessary.

Dropout

Srivastava et al. [14] propose Dropout as a technique for addressing the overfitting problem.
Dropout consists of randomly dropping units (hidden and visible) along with its connections with
a probability p (normally p = 0.5). A visual representation can be seen in Figure 2.8. Because
of that, the next layer of the network will have to adapt to work with less information, making
the hidden unit more robust without the need to rely heavily on other hidden units and as a result,
generalizing better.

This technique has been widely adopted in all types of neural network applications and is
commonly used when there are signs that the model is overfitting in the training set and performing
worse on the testing set. One of the drawbacks is longer training times, and more epochs would be
necessary until a good model is obtained. Another drawback is that it adds another hyperparameter
to be tuned. In our models, we use Batch Normalization [15] instead, which solves other problems
in neural networks and also removes the need to use dropout. In the next section, we will explain
Batch Normalization.

Batch Normalization

Initially, when a neural network is trained, input data is provided with certain distribution to the
input layer. For the next layer, the output of the previous layer becomes the input of the current layer,
but this input has no longer the same distribution as the initial data. The change of distributions
between layers in DNNs while training is called Internal Covariate Shift. Ioffe and Szegedy [15]

2.4 Layers of deep neural networks 11

Figure 2.8: Applying Dropout to a neural network. (a) A neural network with 2 hidden layers. (b) Applying
dropout to the network on (a). Units that have been dropped are marked with X. Image from [14].

put forward this issue of distribution change in each layer which as a result also makes the optimizer
readjust for the change each time. A fixed distribution would be more advantageous for training.

For this reason, they propose the Batch Normalization algorithm to reduce this internal covariate
shift which in consequence increases the training speed substantially. A normalization step that fixes
the means and variances of layer inputs is applied. This normalization is contained inside a new
trainable layer which is part of the neural network. Normally, it is included after the convolution
layer. This new layer, however, adds more parameters to train: γ and β used to shift and scale the
activations obtained in the normalization step and the batch mean µB and variance σB.

Solving the internal covariance shift problem removes optimizer readjustment for the change
of distribution each time. This allows us to use much higher learning rates without the risk of
divergence. Besides, the regularization of the model with batch normalization removes the need for
Dropout.

2.4.2. Convolution Layers

In traditional feed-forward networks, each unit is connected to all the units of the next layer. This is
also called a fully-connected layer (FC). In the case of having images as input, this would mean for
each pixel there is a weight to be trained. For example, an image of size 224× 224× 3 (3 color
channels) would need a total of 150528 weights for only one hidden layer. With more and more
layers, this quickly becomes unfeasible for training a neural network. Moreover, it does not capture
the spatial dependencies between pixels in an image.

Image convolution is the process of applying a filter that adds each pixel value of an image to
its neighbors, weighted according to a kernel matrix. Image convolution allows us to extract useful
high-level features out of images, such as the edges that are shown in Figure 2.9.

In a convolution layer, the kernel moves through an image, as it is a moving window, performing
element-wise multiplication with the part of the input it is currently on, adding up the results into a
single output pixel. After applying convolution what we obtain as an output is a feature map with
size Ho ×Wo, which can be determined with the following equations:

Wo =
Wi + 2P− Kw

S
+ 1 (2.8)

Ho =
Hi + 2P− Kh

S
+ 1 (2.9)

12 Theoretical Background

Figure 2.9: Example of a convolution for edge detection. Source [16].

where Wi and Hi are the width and height of the input image, Kw and Kh are the width and height
of the kernel matrix, P is the amount of zeros to add in the boundaries as padding and S is the
number of pixels by which the window moves after each operation.

Convolutional neural networks (CNN) contains a set of convolutional layers where image
convolution is applied to an input image with many input filters learned automatically by the
network. Pooling layers are further used to down-samples images (explained in section 2.4.3) and
FC layers are used to make the final classification. It offers lower computation needs than if we just
use all the pixels to train the network. Additionally, it successfully captures spatial dependencies, it
is translation invariant and requires much less processing power.

In Figure 2.10, an example of the convolutional neural network pipeline can be seen. First,
a sequence of convolutional layers extracts the feature maps of the image. For each of these
convolutional layers, the features are down-sampled with a pooling layer. After that, we flatten the
final output feature map to be able to pass it over a fully-connected layer. Finally, an MLP classifies
the image based on the features obtained with the convolutional layers.

Figure 2.10: Example architecture of a CNN. Source [17].

2.4.3. Pooling Layers

Even when applying convolution to an image these images are usually still very big. When we
look at an image we are not interested in obtaining features from each pixel, but in regions of
pixels. That’s were a pooling layer can help us. The pooling layer aggregates the spatial activation
of each input feature map from a convolutional neural layer. The pooling is done in each feature
map independently and the final result is smaller sized feature maps. The dimension reduction of
pooling layers reduce the number of parameters and, as a consequence, decrease the computational
load. Most basic and popular pooling methods are Max Pooling and Average Pooling:

• Max Pooling returns the maximum value from the portion of the image covered by the
kernel window. For example, a max-pooling operation with stride 2 and filter size 2× 2 over

2.5 Influential neural networks 13

Figure 2.11: Most basic and popular pooling methods. Source [18].

a feature map of size 4× 4 would return a 2× 2 feature map with the max value of each
kernel.

• Average Pooling on the other hand returns the average of all the values from the portion of
the image covered by the kernel window. Visual illustrations of both methods in Figure 2.11.

Max Pooling has shown better performance than Average Pooling, thus it is more commonly used
in literature.

2.5 Influential neural networks

In this section, we will review some of the most influential deep neural networks in the last couple
of years. We will start first with AlexNet [2], the network that popularized DNN. After that, we
will cover another popular deep neural network, named VGG [19], which improved upon AlexNet
and has achieved very high performance. Finally, we will talk about residual networks (ResNet)
[20], which has set a new standard in the field and has become the most widely used network in
recent years.

2.5.1. AlexNet

As mentioned before, the success of AlexNet [2] in the ILSVRC competition popularized the
concept of neural networks. Let us see the specific details that made it so effective.

In the aspect of engineering details, AlexNet was one of the first neural networks to train in
multiple GPUs in parallel, making it much faster to train. This proved that training neural networks
are feasible despite the big amount of parameters to train. They also applied data augmentation
while training the network. In this manner, they generated random image patches of size 224× 224
that were randomly horizontally reflected, and also randomly RGB color shifted.

In the aspect of neural network architecture, AlexNet was a CNN starting with five convolutional
layers, followed by three fully-connected layers and ending with a softmax of 1000 class labels.
Max pooling was applied to the second, third, and fifth convolutional layers. ReLU activation
function was applied to the output of every layer. Dropout was also applied in the first two
fully-connected layers. Figure 2.12 depicts the architecture described for two GPUs.

14 Theoretical Background

Figure 2.12: Architecture of AlexNet. The network is divided into two different branches because each
branch is handled by a different GPU for parallel computation. Source [21].

2.5.2. VGG

VGG [19] is a DNN that won the ILSVRC 2014 challenge. Its architecture was inspired by AlexNet
but differed in some key aspects. First of all, it was a much deeper neural network, about 16-19
layers. To be able to do this without having a huge number of parameters they used very small 3× 3
convolutional filters. AlexNet had used filters of size 11× 11. They provide different configurations
of their network, but all the configurations share a common structure. They start with numerous
convolutional layers in which the amount varied depending on the depth needed. Next, they are
followed by three fully-connected layers, like AlexNet, with softmax of 1000 classes. All layers
also use the ReLU activation function. The same data augmentation as AlexNet was applied and
also the same dropout. The configurations can be seen in Figure 2.13.

Figure 2.13: Architecture of different configurations of VGG. Each configuration A to E increasingly varies
on the depth of weight layers. In bold the difference between the previous configuration. Source [19].

2.5 Influential neural networks 15

VGG became significantly important in the field of neural networks because it demonstrated
that deeper networks achieve higher performance. This finding has become a crucial part of the
design of neural networks and has been used in all future approaches.

2.5.3. Residual Networks

Typical networks continuously use stacked layers to fit a desired underlying mapping h(x). In
these networks, it can be seen that a degradation problem arises the deeper the networks get in. The
accuracy gets saturated and then degrades rapidly. This is called the vanishing gradient problem.

He et al. [20] suggest a new method to solve the vanishing gradient problem. They propose to
fit the stacked non-linear layer to a residual mapping f (x) = h(x)− x with the assumption that
the residual function h(x)− x is an approximate mapping of h(x). In this way h(x) = f (x) + x.
They adopt this residual learning creating the following elements for the neural network architecture.
First, a building block defined as:

y = f (x, wi) + x (2.10)

where x and y are the input and the prediction vectors. f (x, wi) is the new function to be
learned. This function can be represented by a CNN. f + x is computed with element-wise addition
on two feature maps and by a shortcut connection.

Figure 2.14: Residual learning: a building block. Taken from [20].

A residual network (ResNet) can be created with different configurations. Some examples can
be seen in detail in Figure 2.15. The difference between configurations depends on the number
of layers and the size of those layers. Each layer is made up of blocks, which are made up of
convolutional layers, batch normalization layers, and shortcut connections. A shortcut connection
is simply a direct connection between the input and output of a block. In Figure 2.14 there is an
example block with an identity residual connection.

With this idea, they compared plain VGGs network with their proposed ResNet. The results
show that their model manages to overcome the degradation problem and demonstrate accuracy
gains when the depth increases. It got state of the art results in the ImageNet dataset with the added
benefit of having fewer parameters (18% of VGG192 for ResNet34)

With this model, they got 1st place on the ILSVRC 2015 classification task and it has become
one of the most popular models used for computer vision tasks. Due to these facts, we use these
models for our experiments.

2To distinguish between configurations the model name is followed by the number of layers, for example, for
configuration D in Figure 2.13 we will call it VGG16.

16 Theoretical Background

Figure 2.15: Architectures for ImageNet. Building blocks are shown in brackets with the numbers of blocks
stacked. Down-sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

Taken from [20].

CHAPTER 3

Writer Identification

Handwriting is a behavioral biometric (other examples are voice, signature, gait) that varies between
individuals. When writing letters of a word, each person is used to writing in unique, characteristic
shapes, called allographs. As an example, we can see a clear variation of handwriting from three
different writers in Figure 3.1. It is this clear variation that permits writer identification even when
the same text is written.

Figure 3.1: An obvious difference of character shapes and writing style can be seen between three different
writers. Image from [22].

Historian and forensic examiners are some of the people who use writer identification heavily
in their fields where they manually try to identify the authorship of some handwritten document.
Manually operating with large numbers of handwriting documents involves laborious work and a
lot of time. Current databases of handwritten documents are usually quite large, and the hope is
that automated methods would assist researchers to work through these large collections. Hence,
writer identification aims to design computer algorithms that would identify the most probable
author given a sample from an unidentified author. The objective is not getting 100% right who is
the author, but rather, that the system at least finds the author, for example, in its top 10 list (getting
100% accuracy that the author is in this list would be a desirable system).

The typical writer identification system will get a query unlabeled sample that will be contrasted
with a database of samples of known authorship to produce the most probable list of writers. A
conceptual example of the system can be seen in Figure 3.2.

17

18 Writer Identification

Figure 3.2: The pipeline of a writer identification system.

3.1 Typology

Writer identification can be categorized depending on the data source and its text dependency.

Data source. On the one hand, it can be Offline which means images of handwritten physical
pages. This is the type of data in our case. CNN would be a good deep learning-based choice to
work with these images as the features are associated with words, characters, lines, or paragraphs.
On the other hand, the data source can be Online which consists of handwritten data associated with
temporal information. Usually, this is obtained by devices like tablets and a stylus which records
the pressure, speed, and angle on the surface of the tablet. In comparison to offline data, online data
has more available information with the speed and order of the writing (offline has only the final
result), so usually, models in this domain have better accuracy. Recurrent Neural Networks (RNN)
are better suited for this task because of the time dimension of the data. Zhang et al. [23] has good
results on an end to end model which uses an RNN model.

Text dependency. Text-dependent methods use specific text itself as information to distinguish
between authors. Because text-dependent methods need that the same text is written. One example
of tasks using these methods is signature verification where two signatures (same text) must be
contrasted to determine if it’s written by the same author. In contrast, text-independent methods use
the image characteristics of the words or letters and work for any text. Our work follows this last
line.

3.2 Methods

All writer identification methods consider two essential aspects. The first aspect is feature extraction,
in which discerning features are extracted from the document sample to later be contrasted with
other samples. The second aspect is a classification in which different algorithms are used to
compute the comparison of features and determine the authorship. The most critical aspect is
feature extraction for the creation of a good writer identification system.

Writer identification methods can be divided into two categories:

• Feature-based methods compare the handwriting samples according to grapheme, structural
or textural features. Texture features inform of texture changes in the handwriting that
normally occur because of how the pen is grabbed by the writer or because of the writing
inclination used. Grapheme features reveal the specific character shapes of the writer as
seen in Figure 3.1. Structural features are more related to a higher level of handwriting

3.3 Evaluation 19

characteristics, like contours and how letters are connected. Figure 4.2, Figure 4.3 and Figure
4.1 show examples of texture features, grapheme features and structural features respectively.

• Deep learning-based methods. The rapid rise of DNNs has attracted researchers to use them
in this domain. Most of the researchers use the DNN as a feature extractor and use other
techniques to classify based on the features extracted by the network. A few of them try to
build an end to end classification system with the DNN. In this work, we follow the latter
path of building an end to end classification system.

3.3 Evaluation

There are different evaluation metrics used for the writer identification task. The evaluation metrics
used are:

• Top-k accuracy. The most common metric used for any neural network model is accuracy
which measures the percentage of correctly predicted outputs among the total number of
predictions and it would be the same as top-1 accuracy with k=1. Top-5 accuracy means that
given the five highest probability predictions of the model any of these five predictions must
match the true target. Generalizing, Top-k accuracy is measuring the percentage of when the
correct prediction is in one of the k largest predicted values of the model.

In our experiments we measure accuracy (k=1), Top-5 (k=5) and Top-10 accuracy (k=10).

• Mean Average Precision (mAP). This metric is a common evaluation method for informa-
tion retrieval systems. It is calculated by taking the Average Precision (AP) over all ranks k
obtained by a given query q:

AP(q) = ∑n
k=1 P(k)r(k)

R
(3.1)

where k is the rank in the sequence of retrieved documents, n is the number of retrieved
documents, P(k) is the precision at rank k in the ordered list of retrieved documents, R is the
number of relevant documents, r(k) is an indicator function equaling 1 if the item at rank k
is a relevant document, zero otherwise.

The mAP is computed as the mean of AP for each query of the set of queries Q:

mAP =
∑q∈Q AP(q)
|Q| (3.2)

CHAPTER 4

State of the art

In the last chapter, we reviewed some of the concepts and algorithms required to approach the
offline text-independent writer identification problem. Now in this chapter let us look at some of
the work done in this field in the last few years. This analysis of the state of the art is mainly based
on [24] which does a review of methods between 2011 and 2016 across three major languages:
English, Chinese, and Arabic.

The chapter will follow the categorization proposed in this analysis and we will include another
category called deep learning methods, as it was not considered in this work. All results are listed
on Table 4.1.

4.1 Feature-based methods

Feature-based methods concentrate on extracting distinguishing features for writer identification.
Feature-based methods are further separated into three groups: texture-based methods, structure-
based methods, and grapheme-based methods. Texture based approaches focus on textural features
between the text and the image while the structure-based approach focuses on structural features of
the word and character positions. Grapheme-based methods generate from the handwritten texts a
codebook of graphemes with bag-of-words or bag-of-features techniques which are then used for
identification with the use of histograms.

4.1.1. Structure-based methods

There is one interesting study [25] in which they used the width of ink traces for writer identification.
They created the Quill feature which is a probability distribution of the relation between the ink
direction and the ink width. Pen properties and writer’s movement style are some examples of
Quill features. They also propose a variant of Quill named Quill Hinge which has good results and
proves that ink width patterns are useful.

Most common features in this category are based on the scale invariant feature transform (SIFT)
algorithm. SIFT features (Figure 4.1) encompass the entire structural information and is invariant
to the scale and orientation of the characters. The advantage of SIFT features is that its relative
positions do not change from image to image thus is useful for handling word and characters
structures in a text.

In [28] they used SIFT due to these properties. The authors first segment the words from the
handwritten images and extract SIFT descriptors (SDs) and the respective scale and orientations
(SOs) from the segmented words. From the SDs and SOs, they obtain signatures and histograms
respectively, which then are used to distinguish the style between writers.

21

22 State of the art

Figure 4.1: SIFT features on a handwritten sample image of the ICDAR 2017 dataset [26]. Image from [27].

The same authors also propose [29], where they modify descriptors (SDs and triangular
descriptor (TD)) to incorporate orientation information and named them as modified SD or MSD.
They use the proposed MSDs as they think orientation is important for writer identification and
SDs do not take into account the orientation. Similar to before they use MSDs to create the MSD
Histogram (MSDH) which is computed by using the bag-of-words technique. To further improve
performance TD Histogram (TDH) based on triangular contour points of handwriting is computed.
Finally, identification is determined with the distance between MSDHs and TDHs. Experimental
results show that this method is more effective than the mentioned before with the unmodified SIFT
descriptor.

All of these methods have the advantage of being language insensitive and can work well in
different languages.

4.1.2. Texture-based methods

Textures of handwriting texts are constructed based on the characteristic properties of the handwrit-
ten image. After that, a feature extraction algorithm is chosen and classification is done computing
the distance between features.

One of the first studies was of Said et al. [30] where the texture feature was extracted by Gabor
filters and grey level co-occurrence matrix (GLCM). He et al. [31] used Hidden Markov Tree
(HMT) model in the wavelet domain for feature extraction. Helli and Moghaddam [32] used Gabor
and XGabor filter for feature extraction.

Two more popular textural descriptors are Local Binary Patterns (LBP) and Local Phase
Quantization (LPQ) which have been used in a wide variety of applications with great success.
Bertolini et al. [33] attempted approaching writer identification with these descriptors. A texture
representation image is generated by compressing handwriting utilizing overlapping individual
connected components. As an example we can see a texture generated in Figure 4.2 where the text
is compacted removing all spaces but the original inclination of the characters is maintained. After
that, LBP and LPQ are used for feature extraction. Finally, the classification is done by a Support
Vector Machine (SVM).

In [34] the authors propose the identification of different writers by making use of novel
direction, curvature, and tortuosity based geometrical features. Furthermore, the paper proposed
the improvement of state of the art edge-based directional features by using a filled moving window
instead of edge moving window and chain code-based features by using a fourth-order chain-code
list to improve discriminative power.

Texture-based approaches need a considerable amount of data to be able to extract reliable
features, which is not always available.

4.1 Feature-based methods 23

Figure 4.2: Texture generated from a handwritten sample image on the IAM dataset with the method of
Bertolini et al. [33].

4.1.3. Grapheme-based methods

Grapheme based methods focus on the features of the characters of the handwriting itself. Features
like contours of characters, shapes, style, width, height, etc. The traditional pipeline of grapheme
based approach follows four stages: preprocessing of the handwriting document; generation of a
reference base codebook (Figure 4.3); feature extraction; and the classification stage. The main
phase is the generation of a codebook which consists of a collection of grapheme features. There
are many ways to generate this collection of features as well as there many ways to extract the
features from this collection.

Figure 4.3: Examples of codebooks with 400 graphemes. Taken from [22].

Jain and Doermann [35] proposes the generation of features for the codebook with K-Adjacent
Segment (KAS). The KAS method has better performance as a single feature descriptor than other
methods where many features are combined to create good acceptable results.

Kirli et al. [36] proposes a novel dynamic windows based feature extraction model. These
dynamic windows can adapt to any type of handwriting. They use the dynamic windows to extract
features from three special writing zones. As for classification for the writer identification they use
k-nearest neighbor (K-NN), Gaussian Mixture Models (GMM), and Normal Density Discriminant
Function (NDDF) Bayes classifiers.

Although graphemes features are normally used for the codebook generation, Fiel and Sablatnig
[37] extracted SIFT descriptors. After that, the histogram of occurrences of a new document
is then compared to the ones in the codebook. Finally, classification is done with the nearest
neighbor method. Using local SIFT descriptors has the added advantage of not needing binarization
preprocessing, avoiding information loss.

Ghiasi and Safabakhsh [38] introduce two new efficient methods for the generation of codebooks
from contours. The first method uses the actual pixel coordinates of contour fragments while the
other method computes the linear piece-wise approximation using segment angles and lengths. For

24 State of the art

feature extraction, they use the occurrence histogram of the shapes in the codebook as people’s
writing of characters is quite different and varies from person to person. They especially focus on
small fragments of the handwriting that frequently appear in various characters. The use of small
fragments leads to a faster generation of the codebook. Although generating the codebook is fast,
computational requisites are larger.

As we have seen, the usual approach includes using a single codebook of graphemes features.
The use of several different codebooks as an ensemble technique might be helpful to improve the
performance of writer identification. Khalifa et al. [39] applies this approach of an ensemble of
codebooks complemented with kernel discriminant analysis using spectral regression (SR-KDA).
SR-KDA is chosen as a way to reduce dimensionality and avoid over-fitting problems that arise
with combining multiple codebooks. The method improved classification accuracy using many
distinct codebooks from randomly generated grapheme features. This ensemble of codebooks has
shown an 11% increase compared to the use of a single codebook.

Garz et al [40] adopt a simpler and faster approach in contrast with the studies mentioned
before where complex methods and heavy preprocessing are done. Their approach consists of using
a set of novel descriptors extracted from geometrical interest points at various scales like from
strokes, junction, endings, and loops. The proposed descriptors reduce the compute time compared
to other methods and are more simpler and efficient to use. Another advantage of their approach
over other methods is that it does not require any type of image processing such as binarization or
segmentation which may introduce errors for the identification process. The only drawback of this
approach is the amount of data required to produce a good model with appropriate results.

More recently [41], used a combination of SIFT and RootSIFT descriptors in a set of Gaussian
mixture models (GMMs). SIFT and RootSIFT descriptors are extracted from handwritten word
images. Then, similarity and dissimilarity GMMs of every writer are generated using these
descriptors. After that, a new histogram-based method is used to generate an intermediate prediction
score. Finally, a score fusion function is used to get the final prediction score. With their method,
they have obtained the current best results in the Firemaker [42] dataset.

4.1.4. Combination of structure and grapheme based methods

Bulacu and Schomaker [22] methods work both at texture level and the character-shape (allograph
or grapheme) level. At the texture level, they use contour-based joint directional probability
distribution functions (PDFs) that encode orientation and curvature information of the writing style.
At the character-shape level, they use a random pattern generator of ink-trace fragments. The base
codebook is generated by segmenting the allograph into several fragments. Finally, the writer is
identified with the PDF of the patterns of the writing. The authors have also proposed several new
features, such as edge direction distribution, edge-hinge distribution, and directional co-occurrence.

Siddiqi and Vincent [43] also extracted features at the allograph level and texture level. At the
allograph level, they simply create a codebook of the most similar shapes used. At the texture level,
they extract features from the chain code of the handwriting contours. Finally, KNN with k = 1 is
used for classification.

The combination of different types of features makes these types of approaches very effective
for writer identification and are interesting to investigate.

4.2 Deep Learning based methods

Deep learning methods have been gaining significant momentum and is having wide success in
many different fields, such as computer vision, speech recognition, and natural language processing,

4.2 Deep Learning based methods 25

to name just a few. Interestingly, there have been few works in the field of writer identification and
most of the work is based on feature extraction for text retrieval and not end to end classification.

One of the first attempts at writer identification with deep learning methods was proposed
by Fiel and Sablatnig [44] in 2015. The authors proposed to train a CNN over the input images
which consisted of segmented words and line images and used the second last fully connected
layer as a feature vector after training is finished. The obtained feature vector is then compared
to precalculated feature vectors of the dataset by nearest neighbor classification. Note that they
did not use full pages as data but segmented words and lines images which were also binarized,
normalized, and deskewed. The data was also artificially augmented by random rotations of each
image by -25 to 25 degrees. The CNN model used was the popular AlexNet.

In the same year, [45] used a very similar approach differing in a few respects. They also used
the second to last layer of a CNN as a feature vector. However, in their case, the feature vector
that formed the second last layer was encoded to form a global feature vector through Gaussian
mixture models (GMM) super vector encoding. Apart from that, the CNN architecture used has
minor differences and the input data was in this case small image patches of size 32× 32 with no
preprocessing. They obtained better results than the model proposed by Fiel and Sablatnig.

Another interesting work is of [46]. First, the authors state that a large amount of data is
necessary to create a good model. For that reason, they propose a data augmentation technique
to generate 500 handwriting samples for each writer by generating extra lines in the images by
permuting words obtained by word segmentation on the original image. Secondly, they find that
global appearance is a more suitable feature than local features, so they extract global features of
the entire image instead. This differs from previous work were local features of smaller patches of
the entire image are extracted. As the other research mentioned before, they also extract features
with a CNN similar to AlexNet but use a joint bayesian technique to extract the most similar of the
precalculated features in comparison with the obtained feature. The results reported in this paper
are the best results for the ICDAR13 dataset of the CVL dataset.

Figure 4.4: Architecture of DeepWriter proposed by Xing et al. [47].

One successful approach that involves classification and not feature extraction, was of Deep-
Writer [47] a deep multi-stream convolutional neural network consisting of two branches sharing
the convolutional layers. The architecture of the proposed model can be seen if Figure 4.4. The
two branches are based on the AlexNet architecture and take a pair of adjacent 113× 113 image
patches as input for each branch. They obtained good results on the IAM dataset.

Nguyen et al. [48] propose another end to end CNN classifier which extracts local features
and combines the extracted features to form global features. First, they randomly sampled 64× 64
image patches from each writer to form n-tuple images. Afterward, every image from n-tuple
images is sent to two different branches of the CNN, one that extracts features at the sub-region level
and the other at the character level. The sub-region level branch targets individual writing strokes
features. The character level branch captures character shape features. Finally, the extracted local
features are aggregated into global features and sent to a softmax classifier to make a prediction.

26 State of the art

A very recent study [49] suggests a novel approach to writer identification by using word
images. They call their DNN implementation FragNet. FragNet has two branches: a feature
pyramid branch and a fragment branch. The feature pyramid branch is a traditional CNN used to
extract feature maps in different scales from an input word image. For the fragment branch, the
inputs consist of fragments that are segmented from the input word image and feature maps on the
feature pyramid. This is achieved inside the network by cropping out a square region from a feature
map of a convolutional layer. This fragment branch is trained so that the network can learn useful
information on the fragments. The combined pieces of evidence of all fragments are taken into
account to make the final prediction of the writer authorship. Figure 4.5 illustrates the architecture
of FragNet.

Figure 4.5: A FragNet network has two branches: feature pyramid (blue color) which accepts the whole
word image as the input and Fragment branch (green color) which accepts the fragment as the input. (P)-CBR
means the sequences of P: max-pooling, C: convolutional, B: batch normalization and R: ReLU layers. C
with circle is the concatenate operation. x2 means that two blocks stacked together.Gi and Fi are the i-th

feature maps in the feature pyramid and fragment branch, respectively. [49]

One of the major advantages of FragNet is that it can be interpreted. FragNet makes decisions
based on fragments, therefore fragments that contributed the most can be visualized.

4.2 Deep Learning based methods 27

Structure-based approaches
Year Feature Classifier Ref. DB Writers Top1 (%) Top5 (%) Top10 (%)
2014 MSDH + TDH KNN [29] IAM 657 97.1 98.8 99.2

ICDAR13 250 95.2 98.4 99
2014 SDS + SOH Euclidean [28] IAM 657 98.5 99.1 99.5

Firemaker 250 92.4 96.2 98.8
2012 Quill–Hinge NN [25] IAM 657 97 – 98

Firemaker 251 86 – 97
Texture-based approaches
Year Feature Classifier Ref. DB Writers Top1 Top5 Top10
2016 Chain code KDA [34] IAM 650 82.7 – 92.2
2013 Texture LPQ SVM [33] IAM 650 96.7 – –
Grapheme-based approaches
Year Feature Classifier Ref. DB Writers Top1 Top5 Top10
2019 SIFT + RootSIFT GMM [41] IAM 650 97.85 – –

Firemaker 250 97.98 – –
CVL 310 99.03 – –

2016 p(Is,I), p(IBOS) [40] IAM 657 86.9 91.6 94.7
2015 Graphemes SR-KDA [39] IAM 657 92 93 97
2013 Connected KNN, x2 [38] IAM 650 94.8 – –

Firemaker 250 95.2 – 99.2
2012 SIFT x2 [37] IAM 650 93.1 – –
2011 KAS SVM [35] IAM 650 92.1 94.5 95.8
2011 Global and local KNN, GMM, Bayes [36] IAM 93 98.76 – –
Combination of structure and grapheme based methods
Year Feature Classifier Ref DB Writers Top1 Top5 Top10

2010
Codebook
and contour

KNN [43] IAM 650 91 – 97

2007
Contour PDFs
and ink trace

PDFs [22] IAM 650 89 – 97

Firemaker 250 83 – 95
Large 900 87 – 96

Deep Learning-based approaches
Year Feature Classifier Ref. DB Writers Top1 Top5 Top10
2020 CNN with word fragments (FragNet-64) [49] IAM 657 96.3 – –

Firemaker 250 97.6 – –
CVL 310 99.1 – –

2019 CNN with tuples of images of size 64x64 [48] IAM 650 93.14 – –
Firemaker 250 93.56 – –
Large 900 94.75 – –

2016 Multi-stream CNN (DeepWriter) [47] IAM 657 97.3 – –
2016 CNN Joint Bayesian [46] CVL 310 99.7 99.8 100

ICDAR13 350 99 99.2 99.6
2015 CNN GMM [45] CVL 311 99.4 – –

ICDAR13 250 98.9 – –
2015 CNN KNN [44] CVL 311 98.9 99.3 99.5

ICDAR13 250 88.5 96 98.3

Table 4.1: Summary of state of the art in writer identification methods on IAM [50], Firemaker [42], IAM
and Firemaker combined (Large), ICDAR 2013 [51] and CVL [52] datasets with respect to the type of

approach. In bold best results in the respective dataset.

CHAPTER 5

Approach

As we have seen in the previous chapter there have been few deep learning works in the field of
writer identification. Interestingly, all of the approaches used as an input training sample for the
neural network, a small image patch. To the best of our knowledge, none of the works use a full
page as training input. As a result, we propose a model that works with full-page images as well
as comparisons with versions of the model working with image patches. In this chapter, we will
describe the implementation details of the proposed model. The next chapter will show the results
of our experiments.

5.1 Model

The neural network architecture used in our work is the well-known ResNet (Explained in 2.5.3), in
specific the ResNet18 version. Larger versions of ResNet were not used as they reported virtually
the same results while ResNet18, which is a much smaller model. Some preliminary tests were
done on other popular models like VGG[19], AlexNet [2], and DenseNet[53]. Table 5.1 shows the
size and the number of parameters of each model.

Model Size Parameters

AlexNet 233 MB 61 Millions
VGG11 507 MB 132 Millions
VGG16 528 MB 138 Millions
DenseNet121 33 MB 7 Millions
ResNet18 45 MB 11 Millions
ResNet34 83 MB 21 Millions
ResNet50 98 MB 25 Millions
MobileNet v2 14 MB 3 Millions

Table 5.1: Size and model parameters for each model tried.

Most of them reported worse results and required larger training time because of their large
number of parameters, so they were not included in our study. Other preliminary tests on
MobileNet(v2)[54] reported good results, which is an interesting finding because it has a much
lower number of parameters and the model size is also only a few megabytes, making it perfect
for mobile devices. However, in this study we will only work with ResNet18, MobileNet could be
studied in future work in case of the need for a small model.

ImageNet pre-trained models are often used in neural networks for faster training and better
performance. We also benefited from using pre-trained models. For this reason, we use pre-trained
models on ImageNet in all our experiments. As a result, our base model is a ResNet18 (Figure 5.1)

29

30 Approach

Figure 5.1: Our base ResNet18 model. The last layer output is changed to the number of classes of the
trained dataset. Modified from [20].

pre-trained on ImageNet with the output changed to the number of classes in the respective text
datasets discussed in 6.1. With this pre-trained model, we train it again in each dataset mentioned.
This is also called fine-tuning. Fine-tuning is done because pre-trained models have already learned
features for their tasks and these features could also be useful for other tasks. With this, there is no
need to train the model from scratch, which saves time and resources.

Additionally, we fine-tune two variants of our models based on the input image. The first
variant uses a full page as input. The second variant uses patch images of varying sizes, ranging
from 100×100 to 1500×1500.

For our pages based model, a full page which has been processed with text padding (explained
in Section 6.1.4) is received as training input. As test input, it also receives a full page.

Concerning our models that use patch images as input, as training input we extract randomly
from a page image, n number of square patches with size a× a, where n and a are chosen intuitively
by hand. Random extraction of patches implies that any patch could be extracted from all the
possibilities, meaning that there could be heavily overlapped patches.

5.1 Model 31

As testing/validation input, we extract the same sized patch a× a but with stride a× a so that
no overlapping patches are extracted and all the image information is received as input. We could
have followed the same procedure as in the training phase, extracting random patches, but we
believe obtaining all possible non-overlapping patches is a more consistent and robust manner to
tackle the testing phase since it removes the random factor.

Furthermore, our patch models perform a voting scheme for improved accuracy. This proposed
scheme can be seen in Figure 5.2. From all the patches extracted from a given page, predictions are
computed to determine the probabilities of the possible writers. The maximum predicted writer for
each patch is considered as a vote. As a result, the writer who receives the most votes is considered
as the predicted writer.

Figure 5.2: Visual illustration of the voting scheme used for our patch models. In green the true writer.

CHAPTER 6

Experiments and results

In this chapter, we present a set of experiments that investigate the performance of our proposed
model. Our main contributions are the experiments that will measure the impact of page images
and different image patch sizes.

First, we introduce the benchmark datasets used for our experiments in Section 6.1. After
that, we give details about our hardware and software specifications in Section 6.2. Section 6.3
will specify the chosen hyperparameters for our model and the procedure followed. Next, our
experiments will start in Section 6.4. In Section 6.4.1, we will analyze how our model performs with
patch images following common sizes used in literature as input data. In Section 6.4.2 we further
analyze our models on different sizes of patch images that were not tried previously. Additionally,
we will evaluate our model on the proposed full pages as input model in Section 6.4.3. Section
6.4.4 experiments with historical handwritten data. Finally, in Section 6.5 we present the results of
our best models and compare them with the state of the art.

Accuracy, top-5 accuracy, and top-10 accuracy (all explained in 3.3) were reported to measure
the performance of the experiments. Confidence intervals are not shown for clarity but the worst-
case 95% interval is ± 3%.

6.1 Datasets

In this section, we will describe the benchmark datasets used in this project and how we processed
these data to prepare them for our experiments.

6.1.1. Firemaker

Firemaker [42] is a dataset in which 250 writers provide four handwritten pages each. Each page
has a different writing condition and all are written in Dutch. The first page consists of a copy of a
specific text so that each of the 250 writers is copying the same text. On the second page, writers
use the same text mentioned before but written in upper case. The third page again contains the text
copied before but writers were given the condition of writing in a style different than their natural
style. The fourth and final page is a description of a cartoon comic image therefore each writer
provides a different text. As they did in [48], we use the first page as a training and validation set
and the fourth page as a test set. The second page written in uppercase is unusual to find in real
case datasets and the third page could be used for forged binary classification tasks but is not useful
for classification tasks and for that reason we did not use these pages for our experiments.

More information can be found in the document inside the dataset file [55] and some sample
images are shown in Figure 6.1.

33

34 Experiments and results

Figure 6.1: Three sample images from different writers that wrote the same text. Extracted from the
Firemaker dataset.

6.1.2. IAM Handwriting Database

The IAM Handwriting Database was first published at the ICDAR 1999 and is described in [50].
It contains 1539 pages of handwritten text from 657 writers who provide a different amount of
pages. They also provide labeled text lines and labeled words using automatic segmentation and are
manually verified, for solving text recognition tasks, which is not our case. Sample images from
three different writers can be seen in Figure 6.2.

Since the number of pages of each writer ranges from 1 to 58 pages in the original database,
we modified the dataset to have exactly two pages for each writer. For writers who contributed
more than two pages, we only keep the first two, and for writers with only one page, we cut the
respective pages in half. This is the procedure typically used in literature and it will be useful for
comparisons with the state of the art.

Figure 6.2: Three sample images from different writers extracted from the IAM dataset.

6.1 Datasets 35

6.1.3. ICDAR 2017

ICDAR 2017 dataset was proposed on the 2017 Competition on Historical Document Writer
Identification in the International Conference on Document Analysis and Recognition (ICDAR)
[26]. The objective of the competition was to retrieve the most similar documents given a query
document which consists of a historical handwritten page from the 13th to 20th century. For this
purpose, they provide a training dataset of 394 writers which provide 3 pages each and a testing
dataset of 720 writers which provide 5 pages each. These images consist of color images but they
also provide the same sets as binarized images. Figure 6.3 presents some images of this dataset.

Each of these sets has disjoint writers so that participants extract features from the training set
independent of the labels of the writers. This can be categorized as unsupervised feature learning in
the case of deep learning architectures. This is not the objective in our case as ours is classification,
we classify each page to a known writer. We use the test dataset of 3600 writers which provide 5
pages each, as an assessment of our models in historical handwritten data as well as for transfer
learning experiments.

Figure 6.3: Four sample pages from the ICDAR 2017 dataset. (a) and (b) come from the same writer. (c)
and (d) come from different writers. Image from [56].

It is interesting to note, that most of the participants in this competition used handcrafted
features and performed better than the only system relying on deep learning, which had the worst
results. It seems deep learning methods perform poorly in this dataset. This can also be seen in
[27].

36 Experiments and results

6.1.4. Data Preprocessing

As all these datasets were developed for tasks different from ours, we had to prepare our train,
validation, and test sets. In this section, we give details of the steps followed for each dataset.

A division of training data and testing data was performed for each dataset explained in 6.1. For
Firemaker we use the first page of the provided dataset as training and the fourth page as testing. In
the case of IAM, for writers who provided two or more images, we use the first image as training
as the second for testing. For writers who only provided one page, two halves are created, one for
training and one for testing. Finally, in ICDAR 2017 from the 5 pages provided in the test set we
use 3 as training, 1 as validation, and 1 for testing. All this information is also presented in Table
6.1.

Dataset Writers Training Validation Testing Total pages

Firemaker 250 1 page 1 page 500
IAM 657 1 page/ half page 1 page/ half page 1314
ICDAR17 720 3 pages 1 page 1 page 3600

Table 6.1: Summary of the datasets constructed.

For all the pages in every dataset, a cropped image is obtained with handwritten images as
compact as possible to avoid unnecessary blank backgrounds. As a result, we obtain a set of
different sized cropped images. Fixed-size images are needed for neural networks. For this purpose,
we define a novel technique called text padding. First, text padding pads a cropped image with a
white background to the maximum height and width of all cropped images. Then, text padding fills
the blank space with the original text, performing a copy from left to right and top to bottom, as
shown in Figure 6.4. This also can be seen as data augmentation. So, the aim of this technique is
twofold: getting fixed image sizes and data augmentation. Apart from text padding, no other data
augmentation techniques were used, even during training.

Normalization is done in every dataset by finding the mean and standard deviation of the dataset
and subtracting this mean of each image and dividing it to the standard deviation.

6.2 Hardware and software specifications

Hardware

For training, we use two Nvidia GeForce RTX2080 GPUs provided by the PRHLT Research Center.
The CUDA version used is the latest at the time of the writing (version 10.2).

Most of the time we use distributed training in these GPUs. We also use 16-bit precision
operations for faster training instead of the normally used 32-bit precision operations which are
used by default.

Software

All the implementation is programmed in Python. Specifically, for creating our neural network
models the open-source machine learning framework Pytorch version 1.5[57]. Pytorch is a fast
and flexible framework that leverages machine learning algorithms and is designed to provide easy
to learn tools for creating deep learning models. Its torchvision model zoo [58] provides popular
state of the art models architectures pre-trained on Imagenet [3], ready to be loaded and used for
finetuning or feature extraction. We use these models to create deep learning models and train them
in the context of our experiments.

6.3 Hyperparameters optimization 37

(a) (b)

Figure 6.4: Example of the proposed text padding. (a) original page (b) cropping and applying text padding
to (a).

Readers are invited to learn more about the implementation and to replicate the experiments, using
our publicly available code in:

https://github.com/akpun/writer-identification

6.3 Hyperparameters optimization

Hyperparameters are parameters of the model that can be changed to influence the model perfor-
mance. Some hyperparameters involve changing parameters of an algorithm, for example, the
learning rate of the optimizer function. We call them algorithm hyperparameters. Others involve
changing a part of the model architecture, for example, which optimizer algorithm to use. We call
them model hyperparameters. Neural networks are infamous for requiring extensive hyperparameter
tuning. In this section, we specify the procedure we followed for each hyperparameter.

Algorithm hyperparameters

The algorithm hyperparameters that need to be tuned in our case include the patch size of the image,
the number of patches to extract from a single page sample, the learning rate, and batch size.

For the case of patch size and the number of patches, as mentioned before, n is the number of
patches extracted with size a× a where n and a were chosen intuitively by hand. Therefore, we
evaluated the performance of each different size a and number n with a fixed batch size of 32 and a
learning rate of 0.01. The set of sizes a tested include 256, 300, 400, 500, 600, 800 and 1000. The
set of values n includes 10, 32, 64, 100, and 200.

https://github.com/akpun/writer-identification

38 Experiments and results

After obtaining the best combination of n and a, we first tune the batch size and learning rate
in the ICDAR 2017 dataset because is the only dataset that has a disjoint validation set. IAM and
Firemaker datasets use a validation set extracted from the training set. With the best parameters
obtained in ICDAR 2017, we can estimate the approximate range of the hyperparameters with good
accuracies for other datasets. This is done with the assumption that the hyperparameters follow
approximately the same distribution for all handwritten text datasets and our experiments appear to
work well with this assumption. For the case of batch size, the range is between 4 and 32 and it is
also limited by the data size. For the learning rate, it ranges between 0.0001 and 0.005.

On IAM and Firemaker we follow the same procedure of finding n and a, but for the batch size
and learning rate, a random search is done in the mentioned ranges to find the best accuracy.

For the full page case, we only need to tune the batch size and learning rate. That being so, a
random search is done in the same manner as in the patch case, trying to find the best batch size
and learning rate combination.

Model hyperparameters

Some parts of the model architecture can be interchanged with other methods for different results.
We chose to do all our experiments with the same methods. In the case of the optimizer algorithm,
the optimizers that were considered were Adam [59], AdamW [60], and stochastic gradient descent
(SGD). SGD was the optimizer chosen as it reported better results than the other alternatives. Cross
Entropy Loss is used as our loss function. Several different loss functions exist, but we have not
considered them as cross-entropy is a robust loss function that is known to work well.

6.4 Experiments

In this section, we will do a series of experiments to end up with a good performing model. We
start with an initial experiment working with commonly used patch image sizes in literature. Next,
we will extend this experiment trying even bigger patch sizes that never have been tried in literature.
After that, we will experiment with our proposed full-page input. Furthermore, we will investigate
the performance of our models in historical manuscripts, which is known to be a challenging task.
Finally, we present the results of our best models and compare them with the state of the art.

6.4.1. Experiment 1: Commonly used patch sizes in literature

First, we try our model with small-sized image patches. To do so, we employ the patch sizes found
in literature: 32× 32 [45], 64× 64 [48], 113× 113 [47, 49], 224× 224 [46] and 256× 256 used
by the University of Fribourg on the competition of ICDAR17. Normally, for patches of small sizes,
some preprocessing is done to choose patches that have a minimum type of information (there
may be the case where blank patches are extracted). This involves using different techniques for
measuring the amount of information in a patch, for example, the number of edges could be counted
to determine if there are any letters or words. However, we do not employ any preprocessing. We
expect that the model ignores uninformative patches. We train the models for 20 epochs but use a
fixed batch size of 32 and learning rate 0.01. Table 6.2 and Figure 6.5 presents the best results for
each patch size.

6.4 Experiments 39

Dataset Num patches Patch size Top1 (%) Patch Accuracy (%)

IAM 32 64 1.2 1.6
200 113 87.5 28.5
300 224 95.73 67.1
100 256 95.12 68

Firemaker 10 32 0.4 0.4
200 64 13.2 6
100 113 72.8 23.34
100 224 92.4 67.9
100 256 96 79.45

Table 6.2: Best results with the patch size used in literature. Top1 indicates the accuracy of the pages using
the voting scheme. Patch accuracy indicates the accuracy of the individual prediction of each patch.

(a) IAM accuracy (b) IAM patch accuracy

(c) Firemaker accuracy (d) Firemaker patch accuracy

Figure 6.5: Best results with the patch size used in literature. (a) and (c) indicates the accuracy of the
individual prediction of each patch. (b) and (d) indicates the accuracy of the pages using the voting scheme.

The blue line indicates the best results for each patch size.

40 Experiments and results

The graphs show that accuracy improves with bigger patch sizes. With a patch size of 256,
it reaches 95% and 96% accuracy for IAM and Firemaker, respectively. It seems that our model
is not capable of discerning any valuable features with small patch sizes, which can be observed
with dramatically low performance. Still, we can see in plots 6.5b and 6.5d that our voting scheme
seems to improve the accuracy noticeably for these cases. If we look at the number of patches,
we can see that a larger number of patches increases the performance of the model considerably,
even for cases where the patch size are small. Overall, we have obtained good results with patch
sizes 224 and 256. However, with the steep upward trajectory with bigger patch sizes, it will be
interesting to see until what size the accuracy peaks.

6.4.2. Experiment 2: Using bigger patch size

Looking at the results of our previous experiments, patch accuracy seems to be improved with
bigger patch sizes. This raises the question of whether even larger patch sizes will perform better.
We evaluate this hypothesis in the following experiments.

The chosen image sizes to test were of 3001, 400, 500, 600, 800, 1000, 1200 and 1500. Table
6.3 and Figure 6.6 and 6.7 show our best results.

Dataset Num patches Patch size Top1 (%) Patch Accuracy (%)

IAM 100 600 96.3 93.1
Firemaker 100 1500 99.2 99.2

Table 6.3: Best results with big patch sizes never used in literature. Top1 indicates the accuracy of the pages
using the voting scheme. Patch accuracy indicates the accuracy of the individual prediction of each patch.

(a) IAM accuracy (b) IAM patch accuracy

Figure 6.6: Best results with the bigger patch sizes never used in literature with IAM dataset. (a) indicates
the accuracy of the individual prediction of each patch. (b) indicates the accuracy of the pages using the

voting scheme. The blue line indicates the best results for each patch size.

For the IAM dataset, in the case of patch accuracy, it peaks with size 600 with accuracy 93%
and after that, it plateaus or slightly decreases with bigger sizes. In the case of the real voting based
accuracy, with a size of 300, it already achieves 93% accuracy. The best result is obtained with size
600 and after that, the results barely vary with only 1% difference.

1This refers to a square patch of 300× 300. To simplify we state a single value.

6.4 Experiments 41

(a) Firemaker accuracy (b) Firemaker patch accuracy

Figure 6.7: Best results with the bigger patch sizes never used in literature with Firemaker dataset. (a)
indicates the accuracy of the individual prediction of each patch. (b) indicates the accuracy of the pages

using the voting scheme. The blue line indicates the best results for each patch size.

For the Firemaker dataset, both the patch accuracy and the voting accuracy peak at size 600
with an accuracy of 96%, however, it keeps improving with increasing sizes. With the biggest size,
we were able to obtain an incredible result of 99.2%.

Overall, with bigger patches, we have obtained excellent results. It seems that having big
patches provides a lot of information to the neural network. Combining it with the voting scheme,
the model has less margin of error and obtains better results.

6.4.3. Experiment 3: Using full-page images as input

As mentioned before, all the deep learning approaches up to date use small image patches from
the original page. Observing that no studies use full pages as input images, we decided to use full
pages to see how well can the neural network perform with a full page.

We train our network for 100 epochs with different combinations of batch sizes and learning
rates. The best combinations for each dataset are shown in Table 6.4. The accuracy graphs for each
dataset can be seen in Figure 6.8.

Dataset Batch size Learning rate Top1 (%) Top5 (%) Top10 (%)

IAM 9 0.002 91.34 97.4 98
Firemaker 6 0.003 98.32 99.6 100

Table 6.4: Best hyperparameters found for pages with IAM and Firemaker.

We obtain a top 1 test accuracy of 91.32% in IAM and 98.32% in Firemaker. The results seem
to be quite satisfactory. Firemaker, in particular, achieves the state of the art results.

The results indicate that our proposed page model is less effective than all other models. The
voting scheme used for the patch models helps significantly it to perform better. The reason is that
when testing, the model has a bigger margin of committing errors in patch images, while in the
case of pages there is a single image.

42 Experiments and results

Figure 6.8: Validation accuracy on IAM and Firemaker with the pages model.

6.4.4. Experiment 4: Historical Documents

Previous experiments were done on IAM and Firemaker, which are contemporary datasets. His-
torical manuscripts have proven to be more challenging for writer identification. These types of
documents are quite noisy, suffer deterioration, and are normally written in cursive which is more
difficult to understand. In these circumstances, it is more than interesting to know how well can our
model cope with these types of datasets. We use the ICDAR 2017 dataset for this purpose. On the
one hand, Table 6.5 and Figure 6.9 shows our results with the pages model.

Dataset Batch size Learning rate Top1 (%) Top5 (%) Top10 (%)

ICDAR17 9 0.002 75.42 86.8 89.9

Table 6.5: Best hyperparameters found for pages on ICDAR17

Figure 6.9: Validation accuracy on ICDAR17 with the pages model.

On the other hand, Table 6.6 and Figure 6.10 shows our results with the best performing model
with patch images.

Dataset Num patches Patch size Top1 (%) Patch accuracy (%)

ICDAR17 64 800 83.75 80.1

Table 6.6: Best results found for patches in ICDAR17.

As seen before in the contemporary datasets, the big patches based model performs better. Our
best results are obtained with a patch size of 800. Increasing more the patch size does not improve
the performance, on the contrary, it slightly decreases. Besides this observation, based on our

6.5 Results 43

(a) ICDAR 2017 accuracy (b) ICDAR 2017 patch accuracy

Figure 6.10: Best results with the bigger patch sizes never used in literature with ICDAR 2017. (a) indicates
the accuracy of the individual prediction of each patch. (b) indicates the accuracy of the pages using the

voting scheme. The blue line indicates the best results for each patch size.

results, we can confirm the difficulty that faces writer identification on these types of datasets. In
general, the accuracy does not seem to go beyond the 80% mark. A comparison could be done with
the results obtained by the team of researchers of the University of Fribourg on the competition of
ICDAR 2017 [26] with 47.8% accuracy or with [27] with 88.9% accuracy. But it is not comparable,
as our test set is different because their test set was provided for writer retrieval purposes.

6.5 Results

In this section, we compare our results with the state of the art methods on the IAM and Firemaker
datasets in Tables 6.7 and 6.8. We include all methods up to date, as far as we have studied, including
handcrafted approaches and deep learning approaches. These results may not be comparable
because they are assessed for different tasks or carry out an evaluation in a different manner.
Still, we can say our methods have obtained a new state of the art results in Firemaker and
competent results in IAM. New deep learning approaches are producing incredible results for writer
identification, but handcrafted methods still are quite powerful.

44 Experiments and results

Year Feature Classifier Ref. Writers Top1 (%) Top5 (%) Top10 (%)

2020 CNN with word fragments (FragNet-64) [49] 657 96.3 – –
2019 SIFT + RootSIFT GMM [41] 650 97.85 – –
2018 CNN with tuples of images of size 64x64 [48] 650 93.14 – –
2016 Multi-stream CNN (DeepWriter) [47] 657 97.3 – –
2016 p(Is,I), p(IBOS) [40] 657 86.9 91.6 94.7
2016 Chain code KDA [34] 650 82.7 – 92.2
2015 Graphemes SR-KDA [39] 657 92 93 97
2014 MSDH + TDH KNN [29] 657 97.1 98.8 99.2
2014 SDS + SOH Euclidean [28] 657 98.5 99.1 99.5
2013 Texture LPQ SVM [33] 650 96.7 – –
2013 Connected KNN, x2 [38] 650 94.8 – –
2012 Quill–Hinge NN [25] 657 97 – 98
2012 SIFT x2 [37] 650 93.1 – –
2011 KAS SVM [35] 650 92.1 94.5 95.8

2010
Codebook
and contour

KNN [43] 650 91 – 97

2007
Contour PDFs
and ink trace

PDFs [22] 650 89 – 97

2020 CNN with patches of size 600 Ours 657 96.3 – –

Table 6.7: Summary of state of the art in writer identification methods in IAM dataset. In bold best results.

Year Feature Classifier Ref. Writers Top1 (%) Top5 (%) Top10 (%)

2020 CNN with word fragments (FragNet-64) [49] 250 97.6 – –
2019 SIFT + RootSIFT GMM [41] 250 97.98 – –
2019 CNN with tuples of images of size 64x64 [48] 250 93.56 – –
2014 SDS + SOH Euclidean [28] 250 92.4 96.2 98.8
2013 Connected KNN, x2 [38] 250 95.2 – 99.2
2012 Quill–Hinge NN [25] 251 86 – 97

2007
Contour PDFs
and ink trace

PDFs [22] 250 83 – 95

2020 CNN with patches of size 1500 Ours 250 99.2 – –

Table 6.8: Summary of state of the art in writer identification methods in Firemaker dataset. In bold best
results.

CHAPTER 7

Conclusions and future works

This bachelor thesis proposed developing a writer identification system with deep neural networks.
In this chapter, we summarize the main conclusions we can derive from our work as well as
proposing future lines of work. We will also explain how we achieved the initial objectives
proposed in the project.

Our first objective was to study the state of the art of writer identification approaches. In
Chapter 4 we did an exhaustive summary of writer identification methods, which included both
traditional methods and deep learning methods. We focused especially on papers that included their
results in benchmark datasets, and we list all these results in Table 4.1. We realized during this
review that the proposed deep learning approaches have worked only in patch images as input data,
instead of using the full pages as input data. Thus, one of our approaches included experimenting
with full pages.

After studying and analyzing the state of the art, our second objective was to create an end
to end writer identification deep neural network model. In Chapter 5, we developed a model that
would be the basis of several distinct approaches. Our different approaches vary depending on the
type of data, which can be patch images of different sizes and page images. In this manner, the
main contributions we have provided include a novel data augmentation method, a patch-based
model that uses a voting scheme, and a page-based model. We call the novel data augmentation
technique text padding, which instead of performing padding with blank values to an image, it fills
the padded area with handwritten text. Our patch-based models compute the most probable writer
for each patch and determine the writer for the full page based on the most voted writer over all the
patches. Finally, our page based model uses a single image of the full page to determine the writer.

We evaluate all our models and contrast them with known benchmark datasets in Chapter 6.
We obtained the state of the art results in the Firemaker dataset and competitive results on the IAM
dataset with big patch images. This seems to indicate that, at least in our model, global features
over the page can help us to better identify a writer than local features over words or lines. We
hypothesize that features like the spacing between lines or the spacing between words may play a
role in our improved results. Further studies need to be done to determine the real reasons behind
this phenomenon.

Other objectives proposed in our project were also included in Chapter 6. These objectives
were: analyzing the impact of different sized image inputs and testing our model in historical
manuscripts.

On the one hand, for the first objective, we created some graphs where the performance was
measured for each patch size. We observed an increase in performance with bigger patch sizes
reaching nearly 100% accuracy.

On the other hand, for the second objective, we evaluated our patch models as well as the page
models in the ICDAR 2017 dataset which consists of historical handwritten pages. Our models

45

46 Conclusions and future works

consistently achieve over 70% accuracy, our best model reaching over 80% accuracy. These results
indicate that our models are competent even for historical data but still proves that these type of
data are still more challenging than contemporary datasets.

For future work, several ideas can be explored to better understand the reasons behind the
performance and improve model performance.

In the case of patch-based models, if even more performance is needed we can improve our
voting system. The proposed voting system takes into account only the absolute number of most
voted writers. This can be modified to determine the sum of the probabilities for each writer and
make a decision based on these probabilities. Secondly, we could extract even bigger patches
because, in the end, our proposed text padding method allows us to create any size of patches.
However, there is probably a point of diminishing returns and it requires more computational
resources, so it should be explored cautiously.

For the case of historical datasets, the noise in these datasets can be damaging to our models.
Some good methods are needed to deal with the noise. There have been works of some neural
networks that perform well for cleaning the noise on documents, which could be used to solve this
problem. Data transformations, like random brightness reduction or addition, vertical flips, and
random Gaussian blur in the training dataset could help the model to be prepared for noisy inputs.

One of the limitations of the use of big patches is the need for large computational resources.
We could try to decrease this memory usage in some manner. Preliminary tests on small models
like MobileNet v2 obtain good results, which could be used as an alternative for lower memory
requirements.

Finally, our models only have been tested on English and Dutch languages. It would be
interesting to test our model in other Latin languages like Spanish or Italian, or even in foreign
languages like Chinese, Arabic, or Hindi.

CHAPTER 8

Degree relationship

This project could be created thanks to the knowledge obtained in the courses and some other
transversal competencies learned in my time at the university.

In particular, Machine Learning has helped enormously in understanding the inner workings of
neural networks, allowing me to write Chapter 2 without much difficulty. This corresponds to the
"Comprehension and integration" transversal competency.

Moreover, the experience obtained in programming related courses, especially courses where
the chosen language was Python, helped me write code fluently without the need to delve into
learning the programming language. Another tool I used was LaTeX for writing and organizing
the project document. Additionally, I had to use Linux to be able to use the provided GPUs. I did
not have any problems because I already worked a couple of types in the Linux environment in
many courses. Knowing all these tools corresponds to the "Specific instrumentation" transversal
competency.

For the realization of this bachelor thesis, I had to explore a new field, writer identification.
Writer identification is a very niche field in which I started with practically no knowledge. After
this project, my knowledge in the field has grown considerably and this goes together with the
"Continous Learning" transversal competency.

The creation of a good neural network model is not an easy task. Lots of models were created
and tried, most of them failed. Nevertheless, in the end, I was able to obtain a model with an
incredible state of the art results. "Creativity, innovation and entrepreneurship", "Application and
practical thinking" and "Analysis and problem solving" were transversal competencies essential for
overcoming the problems that arose during the creation of the neural network model.

Software management tools and concepts were also used, for example, version control with Git
and Conda for package management. Finally, my work would have not been completed without my
handmade Kanban boards for task management, and my calendar for time management. Personally,
I would never work on a project without a plan. I learned this through transversal competencies
like "Design and project" and "Planning and time management".

47

Bibliography

[1] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202,
1980.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[4] Curtis Langlotz, Bibb Allen, Bradley Erickson, Jayashree Kalpathy-Cramer, Keith Bigelow,
Tessa Cook, Adam Flanders, Matthew Lungren, David Mendelson, Jeffrey Rudie, Ge Wang,
and Krishna Kandarpa. A roadmap for foundational research on artificial intelligence in
medical imaging: From the 2018 nih/rsna/acr/the academy workshop. Radiology, 291:190613,
04 2019.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[6] Aarti Singh, Robert Nowak, and Jerry Zhu. Unlabeled data: Now it helps, now it doesn’t. In
Advances in neural information processing systems, pages 1513–1520, 2009.

[7] Connectionist ai. 2018. http://www.mysearch.org.uk/website1/html/106.
Connectionist.html.

[8] The differences between artificial and biological neural networks. 2018.
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-
networks.

[9] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6):386, 1958.

[10] Kritika Verma and Pradeep Singh. An insight to soft computing based defect prediction
techniques in software. International Journal of Modern Education and Computer Science,
7:52–58, 09 2015.

[11] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[12] Neural network with two hidden layers. 2018. https://brilliant.org/wiki/
feedforward-neural-networks/.

[13] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

49

http://www.deeplearningbook.org
http://www.mysearch.org.uk/website1/html/106.Connectionist.html
http://www.mysearch.org.uk/website1/html/106.Connectionist.html
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://brilliant.org/wiki/feedforward-neural-networks/
https://brilliant.org/wiki/feedforward-neural-networks/

50 BIBLIOGRAPHY

[14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958, 06 2014.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift.

[16] Kernel. 2018. https://en.wikipedia.org/wiki/Kernel_(image_
processing).

[17] A comprehensive guide to convolutional neural networks. 2018.
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks.

[18] Stack overflow, visualizing pooling. 2017. https://stackoverflow.com/questions/44287965/trying-
to-confirm-average-pooling.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition.

[21] Review: Alexnet, caffenet. 2018. .

[22] Marius Bulacu and Lambert Schomaker. Text-independent writer identification and verifi-
cation using textural and allographic features. IEEE transactions on pattern analysis and
machine intelligence, 29(4):701–717, 2007.

[23] X. Zhang, G. Xie, C. Liu, and Y. Bengio. End-to-end online writer identification with recurrent
neural network. IEEE Transactions on Human-Machine Systems, 47(2):285–292, 2017.

[24] Gloria Jennis Tan, Ghazali Sulong, and Mohd Shafry Mohd Rahim. Writer identification:
A comparative study across three world major languages. Forensic science international,
279:41–52, 2017.

[25] AA Brink, J Smit, ML Bulacu, and LRB Schomaker. Writer identification using directional
ink-trace width measurements. Pattern Recognition, 45(1):162–171, 2012.

[26] Stefan Fiel, Florian Kleber, Markus Diem, Vincent Christlein, Georgios Louloudis, Stam-
atopoulos Nikos, and Basilis Gatos. Icdar2017 competition on historical document writer
identification (historical-wi). volume 01, pages 1377–1382. IEEE, 2017.

[27] Vincent Christlein, Martin Gropp, Stefan Fiel, and Andreas Maier. Unsupervised feature
learning for writer identification and writer retrieval.

[28] Xiangqian Wu, Youbao Tang, and Wei Bu. Offline text-independent writer identification
based on scale invariant feature transform. IEEE Transactions on Information Forensics and
Security, 9(3):526–536, 2014.

[29] Youbao Tang, Wei Bu, and Xiangqian Wu. Text-independent writer identification using
improved structural features. In Chinese Conference on Biometric Recognition, pages 404–
411. Springer, 2014.

[30] H.E.S. Said, T.N. Tan, and K.D. Baker. Personal identification based on handwriting. Pattern
Recognition, 33(1):149 – 160, 2000.

[31] Zhenyu He, Xinge You, and Yuan Yan Tang. Writer identification of chinese handwriting
documents using hidden markov tree model. Pattern Recognition, 41(4):1295 – 1307, 2008.

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://stackoverflow.com/questions/44287965/trying-to-confirm-average-pooling-is-equal-to-dropping-high-frequency-fourier-co
https://stackoverflow.com/questions/44287965/trying-to-confirm-average-pooling-is-equal-to-dropping-high-frequency-fourier-co
https://medium.com/coinmonks/paper-review-of-alexnet-caffenet-winner-in-ilsvrc-2012-image-classification-b93598314160

BIBLIOGRAPHY 51

[32] Behzad Helli and Mohsen Ebrahimi Moghaddam. A text-independent persian writer iden-
tification based on feature relation graph (frg). Pattern Recognition, 43(6):2199 – 2209,
2010.

[33] Diego Bertolini, Luiz S Oliveira, E Justino, and Robert Sabourin. Texture-based descriptors
for writer identification and verification. Expert Systems with Applications, 40(6):2069–2080,
2013.

[34] Somaya Al-Maadeed, Abdelaali Hassaine, Ahmed Bouridane, and Muhammad Atif Tahir.
Novel geometric features for off-line writer identification. Pattern Analysis and Applications,
19(3):699–708, 2016.

[35] R. Jain and D. Doermann. Offline writer identification using k-adjacent segments. In 2011
International Conference on Document Analysis and Recognition, pages 769–773, 2011.

[36] Önder Kırlı and M Bilginer Gülmezoğlu. Automatic writer identification from text line images.
International Journal on Document Analysis and Recognition (IJDAR), 15(2):85–99, 2012.

[37] S. Fiel and R. Sablatnig. Writer retrieval and writer identification using local features. In 2012
10th IAPR International Workshop on Document Analysis Systems, pages 145–149, 2012.

[38] Golnaz Ghiasi and Reza Safabakhsh. Offline text-independent writer identification using
codebook and efficient code extraction methods. Image and Vision Computing, 31(5):379–391,
2013.

[39] Emad Khalifa, Somaya Al-Maadeed, Muhammad Atif Tahir, Ahmed Bouridane, and Asif
Jamshed. Off-line writer identification using an ensemble of grapheme codebook features.
Pattern Recognition Letters, 59:18–25, 2015.

[40] Angelika Garz, Marcel Würsch, Andreas Fischer, and Rolf Ingold. Simple and fast geometrical
descriptors for writer identification. Electronic Imaging, 2016(17):1–12, 2016.

[41] F. A. Khan, F. Khelifi, M. A. Tahir, and A. Bouridane. Dissimilarity gaussian mixture
models for efficient offline handwritten text-independent identification using sift and rootsift
descriptors. IEEE Transactions on Information Forensics and Security, 14(2):289–303, 2019.

[42] Vuurpijl L. Schomaker, L.R.B. Forensic writer identification: A bench-mark data set and a
comparison of two systems, technical report. Nijmegen University, Tilburg, The Netherlands,
2000.

[43] Imran Siddiqi and Nicole Vincent. Text independent writer recognition using redundant
writing patterns with contour-based orientation and curvature features. Pattern Recognition,
43(11):3853–3865, 2010.

[44] Stefan Fiel and Robert Sablatnig. Writer identification and retrieval using a convolutional
neural network. In International Conference on Computer Analysis of Images and Patterns,
pages 26–37. Springer, 2015.

[45] Vincent Christlein, David Bernecker, Andreas Maier, and Elli Angelopoulou. Offline writer
identification using convolutional neural network activation features. In German Conference
on Pattern Recognition, pages 540–552. Springer, 2015.

[46] Youbao Tang and Xiangqian Wu. Text-independent writer identification via cnn features
and joint bayesian. In 2016 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR), pages 566–571. IEEE, 2016.

[47] Linjie Xing and Yu Qiao. Deepwriter: A multi-stream deep cnn for text-independent writer
identification.

52 BIBLIOGRAPHY

[48] Hung Tuan Nguyen, Cuong Tuan Nguyen, Takeya Ino, Bipin Indurkhya, and Masaki Naka-
gawa. Text-independent writer identification using convolutional neural network. 121:104–
112, 2019.

[49] Sheng He and Lambert Schomaker. Fragnet: Writer identification using deep fragment
networks.

[50] Urs-Viktor Marti and Horst Bunke. The iam-database: an english sentence database for offline
handwriting recognition. International Journal on Document Analysis and Recognition,
5:39–46, 2002.

[51] F. Kleber, S. Fiel, M. Diem, and R. Sablatnig. Cvl-database: An off-line database for writer
retrieval, writer identification and word spotting. In 2013 12th International Conference on
Document Analysis and Recognition, pages 560–564, 2013.

[52] G. Louloudis, B. Gatos, N. Stamatopoulos, and A. Papandreou. Icdar 2013 competition
on writer identification. In 2013 12th International Conference on Document Analysis and
Recognition, pages 1397–1401, 2013.

[53] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700–4708, 2017.

[54] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[55] Louis Schomaker, Lambert; Vuurpijl. Firemaker image collection for benchmarking forensic
writer identification using image-based pattern recognition. 2000. https://zenodo.
org/record/1194612#.XqHAb8szbmE.

[56] Vincent Christlein, Lukas Spranger, Mathias Seuret, Anguelos Nicolaou, Pavel Král, and
Andreas Maier. Deep generalized max pooling. 2019 International Conference on Document
Analysis and Recognition (ICDAR), pages 1090–1096, 2019.

[57] Adam Paszke and Gross et al. Pytorch: An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[58] Torchvision models. 2020. https://github.com/pytorch/vision/tree/
master/torchvision/models.

[59] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

[60] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

https://zenodo.org/record/1194612#.XqHAb8szbmE
https://zenodo.org/record/1194612#.XqHAb8szbmE
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Objectives
	Structure of the bachelor thesis

	Theoretical Background
	Pattern Recognition and Computer Vision
	Machine Learning
	The goal of Machine Learning
	Types of Machine Learning

	Neural Networks
	Perceptron
	Multi-layer Perceptron
	Rectified Linear Unit

	Layers of deep neural networks
	Normalization Layers
	Convolution Layers
	Pooling Layers

	Influential neural networks
	AlexNet
	VGG
	Residual Networks

	Writer Identification
	Typology
	Methods
	Evaluation

	State of the art
	Feature-based methods
	Structure-based methods
	Texture-based methods
	Grapheme-based methods
	Combination of structure and grapheme based methods

	Deep Learning based methods

	Approach
	Model

	Experiments and results
	Datasets
	Firemaker
	IAM Handwriting Database
	ICDAR 2017
	Data Preprocessing

	Hardware and software specifications
	Hyperparameters optimization
	Experiments
	Experiment 1: Commonly used patch sizes in literature
	Experiment 2: Using bigger patch size
	Experiment 3: Using full-page images as input
	Experiment 4: Historical Documents

	Results

	Conclusions and future works
	Degree relationship
	Bibliography

