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RESUMEN 

La demanda creciente de alimento debido al aumento de la población requiere de una 

ganadería más eficiente y sostenible. En la ganadería lechera el 50-70% de los costos de 

producción se deben a la alimentación, por lo que es necesario optimizar los procesos y 

seleccionar animales con alto nivel productivo y bajo consumo, es decir, con alta eficiencia 

alimentaria (EA). No todas las granjas pueden estimar EA en su rebaño porque su medición es 

costosa; por ello, la genética juega un papel importante en la selección y predicción de este 

caracter. Este estudio intenta predecir la EA en vacas lactantes usando proxis de vacas adultas 

y terneras en edades tempranas, además se realiza un análisis genético de la EA en ambos 

grupos, vacas y terneras. 

Se estimaron y analizaron cuatro rasgos relacionados con la EA. En vacas: ingesta de 

materia seca (IMS), eficiencia de conversión de alimento (ECA), consumo residual (CR) y 

beneficio económico bruto (BB).  En terneras: IMS, ECA, CR y ganancia de peso diario (GPD). 

Para los análisis se utilizaron dos grupos, 1558 registros correspondientes a 104 vacas en 

producción, y 1141 registros correspondientes a 63 terneras de edades tempranas. Se realizó 

un análisis de predicción de los fenotipos de los caracteres relacionados con EA usando 

regresión lineal (LM) y tres algoritmos de aprendizaje automático: K-vecinos más cercanos 

(K-NN), redes neuronales (NNET), y árboles predictores (Bagging). La predicción se evaluó 

usando validación cruzada. Se estimaron los parámetros genéticos de cada uno de los caracteres 

usando inferencia bayesiana (heredabilidad y correlación genética). Se realizó un estudio de 

asociación del genoma completo a través de una regresión lineal frecuentista (GWAS), LASSO 

bayesiano, y bosques aleatorios. Finalmente se realizó una predicción genómica usando edades 

tempranas como proxis y GBLUP como modelo predictor, la precisión se evaluó con 

correlación genética y error cuadrático medio entre el valor de cría genómico estimado (GEBV) 

y el fenotipo corregido. 

Se obtuvieron correlaciones fenotípicas altas entre IMS y CR tanto en vacas como en 

terneras, mientras ECA y BB mostraron correlaciones altas entre sí. En la predicción fenotípica, 

el método estadístico con mayor precisión para IMS fue Bagging, para ECA fue LM y para BB 

fue NNET, mientras que para CR las precisiones fueron muy bajas con todos los modelos. Las 

estimas de heredabilidad fueron altas para todos los caracteres, sin embargo, las correlaciones 
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genéticas entre los caracteres de vacas y terneras fueron bajas. En los análisis de asociación se 

detectaron algunas regiones genómicas asociadas simultáneamente a varios caracteres de EA, 

sobre todo entre IMS y CR, y entre ECA y BB (GDP en terneras). En vacas se observó una 

mayor coincidencia de regiones comunes entre ambos métodos paramétricos (GWAS y 

LASSO). Finalmente, las predicciones genéticas tuvieron precisiones muy bajas. Estos 

resultados sugieren que la EA a edades tempranas está controlada por diferentes genes que en 

la EA en vacas en lactación. Debido a que el poder estadístico del tamaño de la muestra es muy 

bajo (<10%), no se pueden asumir conclusiones claras en los análisis genómicos. 

Palabras Clave:  

Eficiencia Alimentaria, GWAS, predicción genómica, ingesta de materia seca, selección 

genómica. 
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ABSTRACT 

The growing demand for food due to the increase in population requires a more efficient 

and sustainable cattle industry. In dairy cattle, 50-70% of production costs are due to feeding, 

so it is necessary to optimize processes and select animals with high production and low intake, 

that is, high feed efficiency (FE). FE is an expensive and difficult trait to measure; therefore, 

genetics plays an important role in the selection and prediction of this trait. This study tries to 

predict FE in lactating cows using proxies from adult cows and calves at early ages. Besides, 

genetic analysis of FE was performed in both calves and cows. 

Four traits associated with FE were estimated and analysed. In cows: dry matter intake 

(DMI), feed conversion efficiency (FCE), residual feed intake (RFI) and return over feed cost 

(ROFC). In calves: DMI, FCE, RFI and average daily gain (ADG). Two groups were used for 

the analyses, 1558 records from 104 Holstein cows in production, and 1141 records from 63 

Holstein calves of early ages. Prediction analysis of FE-phenotypes was performed using the 

statistical linear regression model (LM) and three machine learning algorithms: k-nearest 

neighbours (K-NN), neural networks (NNET), and predictive trees (Bagging). The prediction 

was evaluated using cross-validation. The genetic parameters of FE traits were estimated using 

Bayesian inference (heritability and genetic correlation). Genome-wide association studies 

were performed using a frequentist linear regression (GWAS), Bayesian LASSO, and random 

forest. Finally, genomic predictions in cows were development using early ages as proxies and 

GBLUP as predictor model, the accuracies were evaluated with genetic correlation and mean 

square error between the estimated genomic breeding value (GEBV) and the corrected 

phenotype. 

High phenotypic correlations were obtained between DMI and RFI in both cows and 

calves, whereas FCE and ROFC showed to be highly correlated. In phenotypic prediction, the 

statistical method with the highest accuracy for DMI was the Bagging method, for FCE the 

LM method and for ROFC the NNET method, while RFI presented very low precision with all 

models. Heritability estimates were high for all traits, however, genetic correlations of FE traits 

between cows and calves were low. Some genomic regions associated simultaneously with 

many FE traits were detected, especially between DMI and RFI and between FCE and ROFC 

(ADG in calves). A greater coincidence of common regions detected between both parametric 
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methods was observed. Finally, the genetic predictions had very low accuracy. These results 

suggest that FE at earlies ages is controlled by different genes than FE in lactating cows. The 

statistical power of the sample size is very low (<10%), then, clear conclusions cannot be 

assumed in genomic analyses. 

Keywords: 

Feed Efficiency, GWAS, genomic prediction, dry matter intake, genomic selection. 
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RESUM 

La demanda creixent d'aliment degut a l'augment de la població requereix d'una 

ramaderia més eficient i sostenible. En la ramaderia lletera el 50-70% dels costos de producció 

es deuen a l'alimentació, per la qual cosa és necessari optimitzar els processos i seleccionar 

animals amb alt nivell productiu i baix consum, és a dir, amb alta eficiència alimentosa (EA). 

No totes les granges poden estimar EA en el seu ramat perquè el seu mesurament és costós; 

per això, la genètica juga un paper important en la selecció i predicció d'aquest caràcter. Aquest 

estudi intenta predir l'EA en vaques lactants usant proxis de vaques adultes i vedelles en edats 

primerenques, a més es realitza una anàlisi genètica de l'EA en tots dos grups, vaques i vedelles. 

 Es van estimar i van analitzar quatre trets relacionats amb l'EA. En vaques: ingesta de 

matèria seca (IMS), eficiència de conversió d'aliment (ECA), consum residual (CR) i benefici 

econòmic brut (BB). En vedelles: IMS, ECA, CR i guany de pes diari (GPD). Per a les anàlisis 

es van utilitzar dos grups, 1558 registres corresponents a 104 vaques en producció, i 1141 

registres corresponents a 63 vedelles d'edats primerenques. Es va realitzar una anàlisi de 

predicció dels fenotips dels caràcters relacionats amb EA usant regressió lineal (LM) i tres 

algorismes d'aprenentatge automàtic: K-veïns més pròxims (K-NN), xarxes neuronals (NNET) 

i arbres predictors (Bagging). Es van estimar els paràmetres genètics de cadascun dels caràcters 

usant inferència bayesiana (heredabilidad i correlació genètica). La predicció es va avaluar 

usant validació creuada. Es va realitzar un estudi d'associació del genoma complet (GWAS) a 

través d'una regressió lineal freqüentista, LASSO bayesià, i boscos aleatoris. Finalment es va 

realitzar una predicció genòmica usant edats primerenques com proxis i GBLUP com a model 

predictor, la precisió es va avaluar amb correlació genètica i error quadràtic mitjà entre el valor 

de cria genómico estimat (GEBV) i el fenotip corregit. 

Es van obtenir correlacions fenotípicas altes entre la IMS i CR tant en vaques com en 

vedelles, mentre ECA i BB van mostrar correlacions altes entre si. En la predicció fenotípica, 

el mètode estadístic amb menor error quadràtic per a IMS va ser el mètode de Bagging, per a 

ECA el mètode de LM i per a BB el mètode de NNET; mentre que CR presente precisions molt 

baixes. Les estimes de heredabilidad van ser altes per a tots els caràcters; no obstant això les 

correlacions genètiques entre els caràcters de vaques i vedelles van ser baixes. Es van detectar 

algunes regions genòmiques associades simultàniament a diversos caràcters d'EA, sobretot 
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entre IMS i CR, i entre ECA i BB (GDP en vedelles). En vaques es va observar una major 

coincidència de regions comunes detectats entre tots dos mètodes paramètrics. Finalment, les 

prediccions genètiques van tenir precisions molt baixes. Aquests resultats suggereixen que l'EA 

a edats primerenques està controlada per diferents gens que en l'EA en vaques en lactació. Pel 

fet que el poder estadístic de la grandària de la mostra és molt baix (<10%), no es poden assumir 

conclusions clares en les anàlisis genòmiques. 

 Paraules Clau: 

Eficiència Alimentària, GWAS, predicció genòmica, ingesta de matèria seca, selecció 
genòmica. 
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1. INTRODUCTION
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1. INTRODUCTION 

1.1. Brief overview 

Currently, dairy cattle faces new challenges to satisfy market demands such as 

maintaining profitability and being environmentally friendly. Over time, the cost of raw 

materials, especially soybeans and corn have increased, which causes that 50-70% of the cost 

of production comes from feeding; this has generated through the genetic and nutrition area, 

an interest on improving feed efficiency (FE) that would allow maintaining profits per unit of 

production (Bozic et al., 2012; Bach, 2014).  

Historically, FE has been estimated through several traits; most of them need to measure 

dry matter intake (DMI) for their calculation. DMI is expensive to measure, and therefore it is 

challenging to select for. Nevertheless, with the arrival of genomic selection and the variety of 

statistical approaches, the prediction of difficult traits to measure has become affordable; this 

creates opportunities to integrate these into selection indices. Many studies have been carried 

out on cows and heifers; however, studies that incorporate FE in calves at early ages are scarce.  

According to the high relevance of genetics in current dairy production, this project aims 

to analyse FE in calves and adult cows. Different FE traits will be reviewed, and their prediction 

will be studied using statistical models. Phenotypic predictions of FE-traits will be evaluated 

using four predictive models. Variance components will be estimated under a Bayesian context 

for FE related traits in calves and cows. Then, genome wide associations analyses for FE traits 

will be implemented using three regression models in both calves and cows. Finally, FE traits 

will be predicted using genome wide information and early life predictors. 

1.2. Feed efficiency 

Feed efficiency (FE) is the ability of an animal to convert the nutrients from food into 

production units, in dairy cattle is a measure of the ability from the cow or calf-heifer to convert 

nutrients from the food intake into milk or growth, respectively (Connor, 2015). FE is crucial 

in the farm because it increases the economic income, and the main limitation is that these traits 

are expensive to measure (Pryce et al., 2015). Several traits and equations have been established 



 2 

to measure FE, and the convenience of each trait varies according to the type of animal, 

production system and research objectives. The main traits are expressed as "ratio traits" or 

"residual traits " (Pryce et al., 2014b). The most used ones will be described next. 

1.3. Measuring feed efficiency 

1.3.1. Dry matter intake 

Dry matter intake (DMI) is not a direct trait to measure FE, but it is an indispensable 

component to calculate FE. For this reason, DMI will be studied as a FE-traits. The National 

Research Council (2001) proposed to calculate dry matter intake as follow. 

DMI	(Kg d⁄ ) = (0.372 ∗ FCM4 + 0.0968 ∗ BW!.#$) ∗ ;1 − e%!.&'(∗(+,-./.0#)2?	 

where FCM4 is 4% fat corrected milk, BW is body weight, and WOL is week of lactation; 

	1 − e%!.&'(∗(+,-./.0#)2 is an adjustment term for depressed DMI in early lactating. One of the 

limitations when using this formula is that it tends to slightly overestimate the intake. 

Another method is to weigh the dry matter that is supplied to the animal and the food is 

restored every time it eats, in this way the actual intake of dry matter can be determined (Bach, 

2005). There are several ways to measure the dry matter content of the ration. In the farm an 

easy way to do it is by placing a sample (100 grams) in the microwave and heating it until it 

loses all the water, weigh the matter without water and draw the percentage ratio of dry matter 

(Bach, 2005). 

1.3.2. Ratio traits  

They can be described as the main relationship between two traits that reflects their 

proportion, The most popular ones are: through "Feed conversion ratio (FCR)" or "Feed 

conversion efficiency (FCE)" (Berry and Crowley, 2013). These traits have been extensively 

used in livestock species on the farm. (Beever and Doyle, 2007; Cottle and Kahn, 2014).  

1.3.2.1. Feed conversion ratio 

The feed conversion ratio (FCR) is a measure to quantify how efficient an animal is in 

transforming the feed it consumes into the units of production. It is calculated by dividing the 
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dry matter intake (DMI) for production unit either in growth or milk yield (Berry and Crowley, 

2013). In growing calves, it can be calculated as: 

FCR =
DMI
ADG =

∑ DMI34 5⁄
7894:
5;!

weight895(34) −weight<=>?=(34)
	lenght5

 

where, DMI is the dry matter intake on the days of the experiment and ADG means the 

average daily weight gain  (Khansefid, 2016). 

In lactating cows, FCR is generally estimated using the weight of protein and fat (WPF), 

that is calculated thought the average dairy milk (ADM) adjusted by the composition of fat and 

protein (Hall, 2011). 

FCR =
DMI
WPF =

∑ DMI34 5⁄
7894:
5;!

ADM34 5⁄ ∗ Mfat% + prot%100 S
 

For interpretation we assume that animals with a low FCR have a higher efficiency and 

animals with a high FCR have a lower efficiency, being FCR values of 13 poor and FCR values 

of 8 very good (Hall, 2011). 

1.3.2.2. Feed conversion efficiency 

Feed conversion efficiency (FCE) is very similar to FCR. They differ in their 

interpretation. The higher the FCE value, the more efficient the animal is, the calculation in 

growing calves or heifers is equal to: 

FCE =
ADG
DMI =

weight895(34) −weight<=>?=(34)
	lenght5

∑ DMI34 5⁄
7894:
5;!

 

In lactating cows, the formula can be adjusted using corrected energy milk (ECM) that 

refers to kg of milk of standardized composition for protein and fat concentrations and dividing 

this for DMI (Tyrrell and Reid, 1965; Beever and Doyle, 2007): 

FCE =
ECM
DMI =

ADM34 5⁄ ∗ (383 ∗ fat% + 242 ∗ protein% + 783.2)
3140

∑ DMI34 5⁄
7894:
5;!
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1.3.3. Residual traits 

Residual traits measure the observed intake values minus the expected intake values 

given productivity. They are usually calculated through a linear regression from the feed or 

energy intake, where the error corresponds to the residual trait. The most common is the 

residual feed intake (RFI) and residual energy intake (REI). The difference between them is 

that RFI uses DMI, while REI uses metabolic energy intake (MEI) for their estimations. The 

lower the value of the residual traits, the more efficient the animal is (Zamani et al., 2008; 

Pryce et al., 2014b). 

1.3.3.1. Residual feed intake 

Residual feed intake (RFI) was initially proposed by Koch et al. (1963), and it can be 

defined as the observed DMI minus the expected DMI. RFI is obtained from the residual of a 

linear regression over DMI as follow: 

In growing calves: 

DMI = 𝜇 + 𝑏&ADG + 𝑏(MWT + 𝑒 

In lactating cows: 

DMI = 𝜇 + 𝑏&ADG + 𝑏(MWT + 𝑏/BSC + 𝑏AFY + 𝑏$PY + 𝑏0LY + 𝑒 

where DMI is the average intake level of the animal during the experiment; 𝜇 is the 

intersection of the model or the general mean; ADG is the average daily gain; MWT is the mid 

test body weight; FY, PY, LY refers to the fat, protein and lactose yielding respectively; 

𝑏&, 𝑏(, 𝑏/, 𝑏A, 𝑏$, 𝑏0 are the regression coefficients; and the residual e is RFI;  the measurements 

are expressed in units of weight (Berry and Crowley, 2013; Macdonald et al., 2014; Khansefid, 

2016). The formula can be adjusted to the study population. 

1.3.3.2. Residual energy intake  

The residual energy intake (REI) has the same mechanism as RFI but uses values in 

metabolic energy, that is, all energy parameters must be considered as milk yield, pregnancy, 

growth, mobilization of body tissues, walking, etc. (Pryce et al., 2014a). It can be interpreted 

as follow: 
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NEI = 𝑏&NEB + 𝑏(NE7 + 𝑏/NEC?84 + 𝑏ABWCE + 𝑒 

where NEI is the net energy consumption; NEB, 	NE7, 	NEC?84, BWCE are estimates of 

energy requirements for maintenance, lactation, pregnancy and energy changes in body weight 

respectively, and 𝑒 is REI. The values are expressed in energy/day  (Zamani et al., 2008). 

1.3.4. Other traits for measure feed efficiency 

Other traits to measure FE have been described or interpreted by some authors and these 

are subject to the study population. Milk and bodyweight was an alternative in the past to select 

for FE, but this is no longer a priority (Gonzalez-Recio et al., 2014). Seymour et al. (2020) 

describe the return over feed cost (ROFC) as a FE-trait, which is obtained from the subtraction 

from the price of milk (penalized by fat and protein) of the cost of cow feeding. In calves, a 

simple method of measuring FE could be ADG. That means FE can be adjusted to the farmer's 

needs and according to the database availability. 

1.3.5. Advantages and limitations of each FE trait 

Advantages for ratio traits 

• Relatively straightforward to measure or calculate in stable systems with controlled feeding 

(Beever and Doyle, 2007). 

• A quick measuring tool, so FCR and FCE are useful for monitoring the feeding and milk 

yielding (Hall, 2011; Shike, 2013). 

• Easy interpretation. 

Limitations for ratio traits 

• FCR and FCE are correlated with weight gain, and this results in larger animals that eat 

more (Shike, 2013). 

• Ratio traits are correlated with production (Van Arendonk et al., 1991). Genetic 

improvement already selects based on milk, fat and protein yield; this means, many of their 

genetic value is already caught in current selection index. 
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• In cows with the same ratio, it is not possible to distinguish their proportions from 

DMI/milk production; e.g. cows with low DMI and low milk production could have the 

same ratio as cows with high DMI and high production (Pryce et al., 2014b). 

• Ratio traits do not consider significant effects on production such as lactation, days in milk, 

age, weight, energy expenditure or metabolic energy. They also do not take into account 

environmental effects such as herd, season or feed quality; so, the efficiencies could be 

falsely masked by other factors. (Veerkamp et al., 1995; Dechow et al., 2002; Hutjens, 

2012). An alternative solution could be to correct the FCR or FCE value by these significant 

effects. 

Advantages for residual traits 

• RFI and REI take into account the environmental and significant effects for DMI and NEI, 

respectively; therefore, they are traits that catch the variations of the significant effects in 

their population (Rauw, 2009).  

• The correlation with production is very weak, whereas the correlation with DMI is strong. 

This presents an opportunity to improve the FE (less consumption) without affecting yield 

(Sainz and Paulino, 2004). 

• The correlation with weight is very low, making it possible to select animals with better 

production without increasing the weight (Rauw, 2009). 

• RFI has no strong correlation with other production traits. This implies that it has an 

appreciable margin for improvement (Sainz and Paulino, 2004). 

Limitations for residual traits 

• Residual traits estimation requires linear models, which is more complex to calculate than 

ratio traits. 

• The correlation between body condition score (BSC) and inter and intramuscular fat (InFat) 

is weak, so changes and movements of fatty tissue could be underestimated (Pryce et al., 

2014b). 

• Accuracy and reliability of residual traits are relatively low. The reference population needs 

to be increased, it should be as large as possible (Pryce et al., 2012, 2014b, 2015). 
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• A partial problem for RFI is that it has a negative value for efficient cows. This could make 

their interpretation difficult.  

• If BSC is used in RFI estimation, it is a subjective score and could change according to by 

the professional interpretation that evaluates it (Pryce et al., 2014b). 

Table 1. Advantages and disadvantages for feed efficiency traits. 

R
at

io
 tr

ai
ts

 

 Advantages  Disadvantages 

Straightforward to measure in stable systems 

(controlled feeding). 

High correlation with body weight, selecting for 

ratio traits results in larger animals. 

Easy calculation. Ratio traits are correlated with production. 

Genetic programs already select by production. 

Easier interpretation.  Not possible to distinguish cows with high or low 

yield. 

Useful to evaluate FE in the farm. Not consider significant effects on production 

such as age, lactation stage or days in milk. 

R
es

id
ua

l t
ra

its
  

 Advantages  Disadvantages 

Residual traits consider associated effects on intake. More complex to calculate than ratio traits. 

 

Selecting by residual traits without affecting yield is 

possible. 

EBV reliability compared to productive traits. 

Improve the production without increasing the weight. BCS is a subjective score. 

Is possible to use residual traits in genetic selection. Interpretation not easy. 

1.4. Genetics of feed efficiency 

1.4.1.  Heritability 

Heritability for FE traits ranges between 0.06 and 0.56 depending on the study. Authors 

like Robinson and Oddy. (2004) and Ngwerume and Mao. (1992) have reported low 

heritabilities of 0.06 (FCR) and 0.016 (REI) in beef and dairy cattle, respectively; whereas 

authors such as Arthur et al. (2001b) and Veerkamp et al. (1995) have reported higher 

heritabilities of 0.46 (FCR) and 0.38 (RFI) in beef and dairy cattle, respectively. However, 

most authors agree that FE is moderately heritable and that it can be included in genetic 

selection indices. 

Higher heritability estimates were reported in beef cattle compared to dairy cattle, 

probably because most studies are carried out on young animals and FE traits have less 
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environmental effects. The most common traits are DMI, FCR and RFI. In dairy cattle, FE 

target change according to age. In growing calves, the FE is measured with weight gain, 

whereas in lactating animals FE is measured with milk production; the most commonly studied 

traits are DMI, FCE and RFI. 

DMI is the most important trait because other traits are calculated from it, and it has the 

same interpretation in beef and dairy cattle. Table 2 shows some heritability estimates for FE 

traits in the literature. 

Table 2. Heritability with its standard error in parenthesis for feed efficiency traits in different 

cattle types and ages by some authors. 

Trait Reference Cattle type- age h2 

DMI Robinson and Oddy. (2004) Young beef cattle 0.27 (0.06) 

DMI Hoque et al. (2007) Young beef cattle 0.20 (0.12) 

DMI Torres-Vázquez et al. (2018) Young beef cattle 0.55 (0.08) 

FCR Robinson and Oddy. (2004) Young beef cattle  0.06 (0.04) 

FCR Arthur et al. (2001b) Young beef cattle  0.46 (0.04) 

RFI Robinson and Oddy. (2004) Young beef cattle  0.18 (0.06) 

RFI Arthur et al. (2001a) Young beef cattle  0.39 (0.03) 

RFI Arthur et al. (2001b) Young beef cattle  0.43 (0.04) 

RFI Hoque et al. (2007) Young beef cattle  0.33 (0.14) 

DMI Williams et al., (2011) Growing dairy calves 0.17 (0.10) 

DMI Korver et al. (1991) Lactating dairy heifers 0.56 (0.11) 

DMI Zamani et al. (2008) Lactating dairy cows 0.12 (0.02) 

FCR Korver et al. (1991) Growing dairy heifers 0.18 (0.08) 

FCE Van Arendonk et al. (1991) Lactating dairy heifers 0.37 (0.14) 

RFI Williams et al., (2011) Growing dairy calves 0.27 (0.12) 

RFI Korver et al. (1991) Lactating dairy heifers 0.22 (0.11) 

RFI Van Arendonk et al. (1991) Lactating dairy heifers 0.19 (0.12) 

RFI Veerkamp et al. (1995) Lactating dairy cows 0.38 (0.15) 

RFI Pryce et al. (2015) Lactating dairy cows (Australian) 0.20 (0.20) 

RFI Pryce et al. (2015) Lactating dairy cows (UK and Dutch) 0.35 (0.06) 

REI Ngwerume and Mao. (1992) Lactating dairy cows 0.016 (n/a) 

REI Zamani et al. (2008) Lactating dairy cows  0.21 (0.02) 

Where, DMI: dry matter intake; FCR: feed conversion ratio; FCE: feed conversion efficiency; RFI: residual feed 
intake; REI: residual energy intake; and n/a: not available. 
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1.4.2. Genetic correlation with another traits 

Some studies have been carried out to evaluate the relationship of feed efficiency with 

other productive traits. Robinson and Oddy (2004), Hoque et al. (2007), and González-Recio 

et al. (2014) showed negative correlations between size and FE traits (RFI and FCR) in growing 

animals, indicating that efficient cows tend to be larger than less efficient cows.  

Koch et al. (1963) and Hoque et al. (2007) showed that the correlation of weight with 

ratio traits (FCR-FCE) is strong; whereas Arthur et al. (2001a) and Robinson and Oddy (2004) 

showed that residual traits (RFI) has a weak correlation with weight (Table 3). Hence, selecting 

for lower FCR (efficient) would produce heavier cows that could eat more; while selecting by 

low RFI (efficient) would produce cows with lower DMI without an increase in weight. Some 

studies reported that the correlation between DMI and ratio traits is moderate or low, and the 

correlation between DMI and residual traits is moderate or high (Table 3).  

Several studies showed that the correlation of productive traits such as milk, fat and 

protein with residual traits are strong whereas the correlation between productive traits and 

ratio traits is weaker; this could be due to FCR and FCE consider production per unit of intake 

while RFI and REI measure the efficiency based on the animal's feed intake and these are 

corrected by production factors. Gonzalez-Recio et al. (2014) showed a high correlation (0.71) 

between RFI and BCS while Robinson and Oddy (2004) showed that RFI-InFat correlation 

was moderate (0.22); this seems to indicate that BCS does not explain all the intramuscular fat 

mobilization. Robinson and Oddy, (2004) and Lin et al. (2013) showed that the correlation 

between RFI and feeding time (FT) was positive; this indicates that animals with lower RFI 

take less time to eat; this is also verified by Green et al. (2013). 

In Angus cattle, Hegarty et al. (2007) showed a positive correlation between methane 

emission and RFI (0.12). This study showed that the reduction of the daily methane emission 

would reduce when selecting by RFI. Delgado et al. (2019) presented a relationship between 

RFI and the ruminal microbiota in Holstein cows. The predictive accuracy in cows could be 

improved using the metagenome information. 

In beef cattle, Archer et al. (2002) showed a high correlation for dry matter intake (DMI) 

and RFI between weaned calves and adult cows (0.94 and 0.98 respectively), while the 

correlation with FCR was 0.20. It showed that DMI and RFI are very similar between cows 
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and weaned calves, whereas FCR does not. Table 3 shows some estimates found in the 

literature. 

Table 3. Genetic correlation with its standard error in parenthesis (standard deviation in bold) 
between productive traits and feed efficiency in different cattle types and ages by some authors. 

    Residual Ratio 

 Trait1 Author Cattle type- Age RFI REI FCE FCR 

si
ze

 

STAT Gonzalez-Recio et al. (2014) Dairy heifers -0.50 (0.22)    

MWT Robinson and Oddy (2004) Finished beef C. -0.20 (0.16)   -0.62 (0.18) 

MWT Hoque et al. (2007) Young beef C. -0.61 (0.30)   -0.62 (0.35) 

W
ei

gh
t  

ADG Arthur et al. (2001a) Young beef C. -0.04 (0.08)   -0.62 (0.06) 

ADG Hoque et al. (2007)  Young beef C. -0.95 (0.08)   -0.77 (0.11) 

WG Koch et al. (1963) Young beef C.   0.79 (n/a)  

WG Robinson and Oddy (2004)  Finished beef C. 0.09 (0.20)   -0.86 (0.10) 

Fe
ed

 in
ta

ke
 

DMI Zamani et al. (2008) Dairy cows   0.61 (n/a)   

DMI Gonzalez-Recio et al. (2014) Dairy heifers 0.03 (0.07)    

DMI Lin et al. (2013) Dairy heifers 0.45 (0.13)    

DMI Koch et al. (1963) Young beef C.   0.04 (n/a)  

DMI Arthur et al. (2001a) Young beef C. 0.69 (0.03)   0.31 (0.07) 

DMI Robinson and Oddy, (2004) Finished beef C. 0.43 (0.15)   -0.49 (0.22) 

Y
ie

ld
in

g 

MY Van Arendonk et al. (1991) Dairy heifers 0.02 (n/a)   -0.64 (n/a) 

MY Zamani et al. (2008) Dairy cows   -0.05 (n/a)   

MY Gonzalez-Recio et al. (2014) Dairy heifers 0.07 (0.08)    

FY Gonzalez-Recio et al. (2014) Dairy heifers 0.02 (0.07)    

PY Gonzalez-Recio et al. (2014) Dairy heifers 0.03 (0.07)    

FPCM Van Arendonk et al. (1991) Dairy heifers 0.02 (n/a)   -0.93 (n/a) 

FPCM Zamani et al. (2008) Dairy cows   0.08 (n/a)   

FT
 

FT Robinson and Oddy (2004) Finished beef C. 0.35 (0.17)   0.78 (0.16) 

FT Lin et al. (2013) Dairy heifers 0.27 (0.15)    

O
th

er
s  

BCS Gonzalez-Recio et al. (2014) Dairy heifers 0.71 (0.32)    

InFat Robinson and Oddy (2004) Finished beef C. 0.22 (0.17)   0.08 (0.28) 

ClvI Gonzalez-Recio et al. (2014) Dairy heifers -0.13 (0.15)    

CH4 Hegarty et al. (2007) Finished Beef C. 0.12 (n/a)    

Where, MWT: metabolic weight STAT: stature; WG: weight gain; ADG: average daily gain; DMI: Dry matter 

intake; MY: Milk yield; PY: protein yield; FPCM: fat protein corrected milk; ClvI: calving interval; BCS: Body 

condition Score; InFat: intramuscular fat; RFI: residual feed intake; FT: feeding time; Finished beef C.: Finished beef 

cattle; n/a: not available. 

1.4.3. Genomic regions associated to feed efficiency 

Several exploratory studies have been developed to investigate associated regions that 

contribute to understanding the phenotypic expression of FE. Some of them are shown below. 
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• Khansefid et al. (2017) found 6,143 genes expressed in RFI-associated muscle, liver, and 

blood tissue of Angus bulls and Holstein cows, and 2,343 genes associated with RFI-EGBV 

(estimated genetic value). This study concludes that the expression of many genes with 

various biological functions are associated with RFI. 

• Sherman et al. (2009) showed several quantitative trait loci (QTL) associated to FE in beef 

cattle: 19 QTL for RFI. The most significant QTL was on BTA 3. Twelve QTL were found 

for FCR; the most significant one was found on chromosome 24. Finally, four QTL were 

found associated to DMI, of which the most significant one located on BTA 7. The closest 

genes were not reported. 

• Yao et al. (2013) found 188 SNP surpassing the significance threshold for RFI using 

random forest in Holstein cows. Thirty-eight of them were located on QTLs regions 

associated to RFI in beef cattle by Sherman et al. (2009); these SNPs were on BTA 3, 4, 7, 

11, 12, 18, 19, 23, 24 and 25, and their closest genes were LOC5309292, KLF1, REV1, 

AFF3, TBC1D8, COL4A12, GAS6, LOC510844, USP43, SLC47A1, LOC784682, 

LOC100139490, PARN, GNA12. 

• Rolf et al. (2012) found 53 SNPs explaining 54.12% of the additive genetic variation 

(AGV) in steer breeding value for feed intake along the BTAs 11, 14, 15, 17, 19 and 21. 

They also found 66 SNPs explaining  62.69% of the AGV for RFI in BTAs 3, 5, 6, 12, 15, 

17 and 21. The closest genes are involved in metabolic pathways, feeding and digestion 

functions. 

• Bolormaa et al. (2011) found 75 SNPs significantly associated with RFI located in 24 

different BTAs in cross beef cattle; The most significant SNPs were located on BTA 3, 5, 

7, and 8. 

• Salleh et al. (2017) found 70 and 19 significant differentially expressed genes (SDR) from 

liver tissue associated to RFI in Holstein and Jersey, respectively. These genes act in the 

regulation of immunity mechanisms, steroid hormone synthesis, retinol metabolism, 

arachidonic acid, lipids, sugars and protein metabolism, among others. 

• Hou et al. (2012) identified 240 and 274 copy number variation (CNV) in cows with low 

and high RFI respectively. The specific genes from low RFI (efficient cows) were mainly 

related to the immune response, and the specific genes from high RFI (inefficient cows) 

were mainly involved in the cell cycle and the development of organs and bones. 
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1.4.4. Countries selecting by feed efficiency 

The inclusion of FE in the breading goals has been limited due to difficulties on for data 

collection (especially DMI). With the advent genomic selection, Australia, USA, New Zealand 

and the Netherlands have already implemented direct selection on FE. 

In 2002, the Australian beef cattle industry incorporated the net feed intake (NFI) in the 

BREEDPLAN EBVs (https://breedplan.une.edu.au/about/history/). In April 2015, dairy cattle 

in Australia incorporated RFI in the Australian Profit Ranking (APR), the project is detailed in 

Pryce et al. (2015) incorporates a new breeding value based on RFI. In 2016, Netherlands also 

incorporated a breeding value in bulls for feed intake into their selection indices (Veerkamp et 

al., 2014; Jong et al., 2016).  

Many countries are interested in improving feed efficiency in cows. In the study by de 

Haas et al. (2015), feed intake data from countries (Australia, Canada, Denmark, Germany, 

Ireland, the Netherlands, the United Kingdom, New Zealand, and Iowa and Wisconsin in the 

United States) were collected to improve the accuracy of genomic estimated breeding value for 

dry matter intake using a common reference population. 

1.4.5. Selecting by feed efficiency 

FE is a heritable trait and hence genetic selection is possible. However classical selection 

is economically unfeasible. Due to large cost of phenotyping the alternative was by indirect 

selection through highly correlated traits, that are cheaper and easier to measure such as body 

weight or milk yield. Examples of new phenotypes are hormones, metabolites or MIR specters. 

Genomic selection, with a proper reference population is an efficient strategy to select for FE 

(Pryce et al., 2015). 

1.5. Brief overview of genomic selection 

Genomic selection has revolutionized the genetic improvement programs in dairy cattle. 

It is the process that allows estimating the breeding value using a dense panel of single 

nucleotide polymorphisms (SNP-chip) and use it for breeding value purposes. Genomic 

selection has been extensively used for traits prediction and association studies. A summary of 

its characteristics and development follows: 
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1.5.1. History 

In cattle, before the GS, the best linear unbiased predictor (BLUP) model was the top 

reference for genetic selection that uses the inverse of the pedigree relationship matrix to 

estimate the animal breeding value (Henderson, 1975, 1976). In the late 1970s, the genetic 

markers were discovered, and later Soller and Beckmann (1983) described a possible use of 

these markers for breeding purposes. It consisted of more precise relationships between 

animals using markers intimately linked to a quantitative trait locus (QTL). The high costs of 

genotyping limited this technology in its period (Lourenco et al., 2017).  

Marker-assisted selection (MAS) has been also popular, which consists of generating a 

profile with some markers associated to genes of traits of interest. The problem was that most 

of the productive traits are controlled by infinite genes (Fisher, 1919), so this technique was 

losing interest (Lourenco et al., 2017).  

With the first draft of the human genome sequence in 2001, single nucleotide 

polymorphisms (SNPs) began to be an opportunity for genomic sciences. Meuwissen et al. 

(2001) proposed some methods for GS, which would take eight years to be applied. In 2009, 

the first bovine genome was sequenced (The Bovine Genome Sequencing and Analysis 

Consortium. 2009), which allowed to identify SNPs and generate commercial dense markers 

chips. In the same year, the first genomic evaluation was made by AGIL-USDA in Holstein 

and Jersey; the first genomic dairy bull named Freddie (Badger-Bluff Fanny Freddie) was 

evaluated, being the best genomic bull in the world which was verified three years later from 

his daughters. Since then, genomic selection models have been improved; the first model used 

was called multistep, which used multiple analyses to combine genealogical with genomic 

information. Few years later, single-step genomic BLUP (ssGBLUP) was developed. It 

combines pedigree, genotype and phenotype in one single evaluation. Genotyping in cattle 

rapidly increased to millions, improving the reliability of GEV from a genomic BLUP (GEBV) 

(Lourenco, 2017). 

1.5.2. Advantages over marker assisted selection 

The goal in MAS is to select genes associated with a trait or disease and use them in the 

breeding programs. The causal gene or genes are detected, then, genetic selection is performed. 

MAS works very well in traits that are controlled by a small number of genes (Mendel, 1996), 

such as the myostatin gene with effect on the bovine musculature (Grobet et al., 1997) or 
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calpain and calpastatin genes with effect on beef tenderness (Page et al., 2002). However, in 

complex traits (such as milk yield trait), many genes can control the trait expression (Fisher, 

1919). Boyle et al. (2017) postulated an omnigenic hypothesis; this proposes that the genes 

associated with a complex trait could be interconnected with many genes that do not appear to 

be related, and that part of the heritability could be explained by the effect of these genes. So, 

this revelated the limitation of MAS. 

Genomic selection uses panels of thousands of SNPs distributed throughout the genome. 

These SNPs are expected to be in linkage disequilibrium with at least one QTL. Hence, they 

can be used to predict the genomic estimated breeding value (GEBV) through the SNP effect 

on the trait (e.g. SNP-BLUP) or the genomic relationship matrix (e.g. GBLUP), the last is the 

most widely used in cattle. Effectiveness of genomic selection is given by the of phenotypic 

variance that can be explained by the SNPs (Blasco and Toro, 2014; Lourenco, 2017). Thus, 

the main differences between both MAS and genomic selection are: 

• MAS uses few markers; whereas genomic selection uses a panel of dense marker with 

many SNPs in LD. 

• MAS searches for specific genes associated with a trait; whereas genomic selection 

uses the effect of all SNPs together. 

Genomic selection has been more successful, and its advantages are evident: 

• Most productive traits are governed by many genes. 

• Genomic selection is more accurate than MAS and have proved to increase genetic 

progress. 

• Genomic selection is cheaper than MAS, and there are many SNPs chips on the market. 

1.5.3. GWAS vs GWP 

Whole-genome association study (WGAS) and genome-wide prediction (GWP) have 

different objectives; GWAS searches SNPs associated to quantitative traits of interest; whereas 

GWP tries to predict the genetic value through the variance explained by SNPs (Blasco and 

Toro, 2014; Lourenco, 2017). However, both methods can be used to infer associations 

between genomic regions and the trait of interest. 

Traditional GWAS use a dense marker-panel and makes linear regressions SNP by SNP. 

The results are usually evaluated under the P-value criterion; the most significant SNPs (lowest 
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P-value) are assumed (incorrectly) to be associated with the trait under study. The 

representation is given by a Manhattan plot; which is a SNPs Scatter plot that shows the 

chromosomes on the x-axis and their P-value on the y-axis represented in −𝑙𝑜𝑔&! scale. GWAS 

has been widely questioned due to the presence of false associations and bias for variance 

overestimation. These problems can be reduced with large numbers of genotyped animals 

(Pearson and Manolio, 2008; Blasco and Toro, 2014). 

In the case of WGP multiple regression models are used to analyse the effect of all SNPs 

together. Some methods have been developed, for instance: 

• Ridge regression BLUP (RR-BLUP) or SNP-BLUP that assumes a normal distribution 

for SNP effects and its variance is constant (Meuwissen et al., 2001). 

• Bayesian methods, such as Bayes A, Bayes B, Bayes C and Bayes Lasso, where 

different variances are assumed for the SNPs (González-Recio and Forni, 2011; 

Jiménez-Montero et al., 2013). 

• GBLUP and single-step GBLUP use the BLUP methodology incorporating genomic 

data through the kinship matrix to estimate the genetic merit of the animals. GBLUP 

uses information from SNPs through the genomic relationship matrix (G) and 

ssGBLUP combines genomic information and pedigree to increase the accuracy in 

populations with deficient genomic data. In dairy cattle, the GBLUP is the most used 

to estimate the GEBV. 

• Machine learning algorithms are relatively new and present an interesting predictive 

ability. Among the most studied are random forest, boosting algorithm, and Bayesian 

neural network (González-Recio and Forni, 2011; González-Recio et al., 2014). 

Again, the lack of major genes in productive traits is a great challenge for association 

studies. However, under careful interpretation and in large populations, genomic associations 

can be a useful tool to analyse the genome in livestock. 

1.5.4. Implementation 

Genomic selection involves a set of steps, and they are all indispensable. The first step is 

to establish selection objectives; these must be clear and achievable. Second, selection of traits 

to be introduced in the selection indices; they must be measurable. Third, reference population 

establishment and genomic breeding value estimation. Four, data collection and DNA 



 16 

sampling. Fifth, predicting the genomic breeding value in candidates and finally, 

dissemination. Reference population, prediction, and dissemination are described below. 

1.5.4.1. Reference population 

The reference population is a set of animals that are phenotyped and genotyped with a 

dense panel of markers; these associations are used to obtain the GEBV in this population or 

predict the GEBV in other genetically close animals, these associations are given either directly 

with the SNPs, or through the genomic relationships matrix. The accuracy of genomic 

predictions depends on by the reference population size, the genetic relationship between the 

reference and prediction populations, and the trait heritability (Goddard and Hayes, 2007). 

1.5.4.2. Prediction 

The genomic value from animals can be estimated and predicted through several 

alternatives, but the most used in dairy cattle is the GBLUP that uses the traditional BLUP with 

the genomic relationship matrix instead of the genealogy to estimate the genetic merit of 

individuals. GBLUP allows to increase the accuracy between 20-50% concerning the BLUP. 

It can be solved by classical statistic or within a Bayesian approach (Clark and Van Der Werf, 

2013); in the last case, effects are assumed to have random distributions, and computationally 

it uses the Gibbs sampling algorithm from Markov chain Monte Carlo (MCMC) family to 

obtain a sequence of samplings approximated to a specified multivariate probability 

distribution (Blasco, 2017). 

1.5.4.3. Dissemination 

Farms must use GEBV of their animals, and animals with better GEBV must be selected 

and prioritized on the farm. The most effective method is through disseminating the semen of 

the bulls by artificial insemination. Embryo transfer is also a tool with high impact. 

Genomic selection has a significant impact on dairy cattle. The generation interval has 

been reduced in half and selection response has increased in low heritable traits and selection 

for expensive traits to measure is possible. 
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1.6. Research approach 

Considering the reviewed background and the scarce studies in calves at early ages, the 

following hypothesis has been proposed: It is possible to predict the FE of the adult cow by 

measuring FE when it is a calf. The genes that control the FE in calves are the same or close to 

the genes in cows.  For this reason, this thesis analyses the FE in calves and compares it with 

the FE in adult cows using genomic-wide associations and genomic prediction assays. Besides, 

phenotypic prediction studies of FE are carried out to find ways for reducing costs in estimating 

this trait. This study uses parametric and non-parametric regression models, with classical and 

Bayesian statistic to analyse different strategies. 
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2. OBJECTIVES 

 

 

2.1.  Main objective 

• Predict feed efficiency in Holstein cows from proxies in early and late life-stage. 

 

2.2.  Specific objectives 

• Predict FE-traits from proxies in cows. 

• Predict FE traits from early life proxies. 

• Analyse genomic regions involved in FE of calves and cows. 
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3. MATERIALS AND METHODS 

3.1. Data 

Phenotypic data: 

Data in this study were collected from two locations and two sets of animals: calves and 

adult cows.  Calves were fed ad libitum during two periods.  In the first period, intake from 26 

calves and their weights were recorded during 60 days. In the second period, 37 calves were 

monitorized under the same conditions, during 45 days.  A total of 3225 individual phenotypic 

records were obtained, with animal identification, dry matter intake and daily weight.  

Seventy adult Holstein cows were monitorized during 15 days in BLANCA from the 

Pyrenees farm located in Lleida, Spain. Phenotypic data included the cow ID, sire, birth date, 

calving date, dry matter intake, lactation number, days in milk, milk production, protein and 

fat percentage, body weight and age. A total of 1063 measures were obtained. Later, 480 

measures of dry matter intake from 32 cows were added for the genome association studies 

and genomic prediction for this trait. 

Genotypic data: 

Thirty out of the 63 calves were genotyped with the Affymetrix Axiom Bovine 

Genotyping Array 60K (60914 SNPs) and then, imputed to Illumina HD Bovine SNP chip with 

BEAGLE software (Browning and Browning, 2008) using sequences from the 1000 bulls 

genome reference population (www.1000bullgenomes.com). All cows were genotyped with 

the Illumina EURO12K SNP chip and imputed to Illumina Bovine 50k SNP chip (54,609 

SNPs) with BEAGLE software (Browning and Browning, 2008) using the Eurogenomics 

reference population  (www.eurogenomics.com) provided by CONAFE. Finally, the SNPs in 

common in both platforms (35300 SNPs) were selected using R environment. 

3.2. Traits 

3.2.1. Calves 

Four traits related to feed efficiency (FE) were studied:  
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1) The average daily gain (kg/day) during the sampling period (ADG). 

2) The mean dry matter intake (kg/day) during the sampling period (DMIDEFG).  

3) Feed conversion efficiency (FCEDEFG), estimated with the following formula. 

FCEDEFG =
ADG

DMIDEFG
 

Higher values  indicate more efficient animals and lower values less efficient animals. 

4) Residual feed intake (RFIDEFG), this was defined as the difference between actual and 

estimated feed intake, it was calculated using a linear model on DMIDEFG as follows: 

DMIDEFG = 	𝜇 + 𝑏&	PERIOD +	𝑏(ADG + RFIDEFG 

where, DMIDEFG was the mean daily dry matter intake during the period,  𝜇 was the 

intercept; 𝑏&	and	𝑏( were partial regression coefficients; PERIOD was a categorical trait of the 

period sampling, it has two levels; RFIDEFG was the residual term, it considers the lower values 

 for the more efficient animals and the highest values for the less efficient animals (Pryce et 

al., 2014b, 2015). The linear model was implemented with the glm function of the R Stats 

package by  R Core Team and contributors worldwide (2018). 

3.2.2. Cows 

In cows, four traits associated with FE were studied:  

1) The average daily DMI (kg/d) during the sampling period (DMIDHI). 

2) Feed conversion efficiency (FCEDHI) estimated as: 

FCEDHI =
ECM
DMIDHI

 

where, ECM was energy corrected milk, that refers to kg of milk of standardized 

composition with respect to protein and fat concentrations (Beever and Doyle, 2007), 

calculated as: ECM = MILK ∗ (/J/∗%	LMN.(A(∗%	OP,N.#J/.()
/&A!

. Higher values belong to more 

efficient animals whereas lower values indicate less efficient animals. 
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3) Residual feed intake in cows (RFIDHI) was calculated using a linear model on DMIDHI. The 

variables were selected according the criteria of t -value and the regression coefficient, as: 

DMIDHI = 𝜇 + 𝑏&	LACTDEQ + 𝑏(	DIMDEQ + 𝑏/	MILK + 𝑏A	%FAT + 𝑏$	%PROT + 𝑏0		BW!.#$

+ 𝑏#	(BW!.#$)( + 𝑏J	AGE + 𝑏'	AGE( + RFIDHI 

where, DMIDHI  was the mean daily dry matter intake collected from the study; 𝜇 was 

the intercept; 𝑏&, 𝑏(	, 𝑏/	, 𝑏A	, 𝑏$	, 𝑏0	, 𝑏#	, 𝑏J		and	𝑏'	 were partial regression coefficients; 

LACTDEQ was a categorical trait corresponding to the lactation, with two levels: first lactation 

and second or subsequent lactations. DIMDEQ was a categorical trait corresponding to the 

lactation period, with two levels (≤ 90 days in milk and > 90 days in milk). MILK was the 

average milk production (kg/d) during the trial period; %FAT and %PROT were mean fat an 

protein percentage; BW means body weight in the sampling period; AGE and AGE( were linear 

and quadratic traits for the mean age (in days) during the sampling period; RFIDHI was the 

residual term. Lower values indicate larger feed efficiency (Pryce et al., 2014b, 2015). The 

linear model was implemented with the glm function of the R Stats package by  R Core Team 

and contributors worldwide (2018), and the AIC function of the MASS package by Ripley et 

al. (2019) was used to select the variables. 

4) Return over feed cost (ROFC), which represents the gross income from the milk price by 

subtracting the feeding cost, it was calculated as follow: 

ROFC = 	MILKRSTDU€ − FEEDDHWQ€ 

where, MILKRSTDU€ was the price of milk adjusted by fat and protein penalties following 

(Charfeddine and Pérez-Cabal, 2019): MILKRSTDU€ = MILK34 ∗ c0.31€ + ;(%	Fat − 3.7) ∗

0.030€? + ;(%	Prot − 3.1) ∗ 0.040€?d. The FEEDDHWQ€  was the feeding cost which was 

referenced by CONAFE (2020).  The formula was: FEEDDHWQ€ = DMIDHI ∗ 0.18€. Higher 

values indicate more efficient animals. 

Density plots for productive and FE traits are shown in Annex 1 and Annex 2. 
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3.2.3. Phenotypic correlation 

Phenotypic correlations were correlated in an exploratory analysis as follow: 

rX&X( =
CovX&X(
𝜎X&𝜎X(

 

where, CovX&X( was the covariance between traits y& and y(; 𝜎X&	and	𝜎X( were the 

variances of the traits. For these correlations, the variables were corrected by systematic effects.  

3.3. Phenotypic prediction 

Phenotypic prediction of FE-related traits was performed using a set of covariates in 

cows. The traits were: DMI, FCE, RFI and ROFC. The covariates were selected according to 

their association with FE; for this, a linear regression on DMI (it was used as reference trait) 

was performed with all available phenotypic covariates. The covariates with the lowest t-value 

and the highest regression coefficient were selected. The package used were the glm function 

of the R Stats package by R Core Team and contributors worldwide (2018) and the AIC 

function of the MASS package of Ripley et al. (2019). The set of covariates included:  LACTDEQ, 

DIMDEQ, MILK, %FAT, %PROT, BW!.#$, (BW!.#$)(, AGE, AGE(. 

3.3.1. Prediction models. 

Four different statistical regression models were used in the prediction analysis, the 

classic parametric model and three non-parametric models of machine learning (detailed 

below). The traits used into the set of phenotypic variables were rescaled between 0 and 1 using 

the rescale function from the scales package by Wickham and Seidel (2019), the reason was 

the non-parametric models predict better when the variables were standardized, this has been 

corroborated with previous training predictions, in the parametric model the results of 

prediction were the same with variables rescaled and not rescaled.  

Let y = {yY} be a vector of a FE phenotypes for n cows; X is a p x n vectors of phenotypic 

traits: LACTDEQ, DIMDEQ, MILK, %	FAT, % PROT, BW!.#$, (BW!.#$)(, AGE, AGE( in cows. 

The regression models are shown below: 
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1) Linear regression (LM): the classical model used a multiple linear regression as follow: 

𝒚𝒊 = 𝜇 +i𝑏R𝐗RT + 𝑒T

[

R;&

 

where 𝜇 was the intercept; 𝑏! was the regression coefficient of the features XR; 𝑒T  was 

the error. 

2) k-Nearest Neighbors (K-NN): this nonparametric regression is based on distances from k 

closest variables, this model was inspired and detailed by Fix and Hodges (1989). The 

general formula is: 

𝒚l\ =
1
𝑘	i𝑓(𝑦T)

]

T;&

 

 where 𝒚l^ was predicted FE for an animal j; 𝑓(yY) was a function that select yY values 

from the training set based on Euclidean distance with formula:	d;XT , X\? =

p∑ (XRT − XR\)([
R;& ; where d;XT , X\? was the Euclidean distance between XT and X\, and k was 

the number of nearest Euclidean distances (nearest neighbors). In order to define k, previous 

training iterations were computed with different values for k; the one with least mean squared 

error (MSE) between real and predicted value was selected. In this study, the selected values 

for k were 4, 6, 8, and 4 for DMI, FCE, RFI, and ROFC respectively. 

3) Neural Networks (NNET): this algorithm is a set of functions known as neural networks, 

widely detailed by Jorge Matich (2001), the formula was given by: 

𝒇r(𝒙) = 𝒶 Mi 𝑤T𝑔(𝑥
T

)S 

where 𝒇r(𝒙) was a neuron function; 𝑤T𝑔T(𝓍) was the weight and function from another 

neuron and 𝒶 was an activation function for 𝒇r(𝒙). The machine learning works under the 

backpropagation algorithm developed by Riedmiller and Braun (1993). This model was built 

from one input, six hidden and one output neural layers and converge with 150 iterations on 

average. The structure of the neural layers in this model can be seen in Annex 3. 
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4) Bagging: This model generates T pseudo-training sets by bootstrapping from the original 

training sample, which reduces the variance and helps to avoid the overfitting, this is 

described by Breiman (1996). The algorithm builds T decision trees and average them as:  

𝒚l = 𝜇 +i𝑐QℎQ(𝑟; 𝐗)
_

Q;&

 

where 𝒚l  was the predicted phenotype; 𝑐Q was a factor that averages the regression trees; 

T was the number of trees in the forest, where each tree was built through bootstrap 

aggregation; ℎQ(𝑟; 𝐗) was a Bagging predictor tree, in which X contain the covariates. The loss 

function of the model was evaluated by MSE. 

Table 4. Statistical models for phenotypic prediction of FE 

Regression Model Formula Software 

Fitting Linear Model 
𝒚𝒊 = 𝜇 +%𝑏"𝐗"# + 𝑒#

$

"%&

 
R Stats by R Core Team and 

contributors worldwide (2018). R 

Package, version 3.5.2. 

k-Nearest Neighbor 
𝒚)' =

1
𝑘	%𝑓(𝑦#)

(

#%&

 

	d2X# , X'5 = 6%(X"# − X"'))
$

"%&

 

Package ‘FNN’ by Beygelzimer 

et al. (2019). R package, version 

1.1.3. 

Neural Networks  𝒇9(𝒙) = 𝒶 <%𝑤#𝑔#(𝑥
#

)@ Fit Neural Networks by Fritsch et 

al. (2019). R package, version 

7.3-13. 

Bagging 
𝒚) = 𝜇 +%𝑐*ℎ*(𝑟; 𝐗)

+

*%&

 
Ipred by Peters et al. (2019). 

R package, version 0.9-9. 

 

3.3.2. Cross-validation 

Cross-validation is a method used to evaluate the predictive ability of statistical methods 

or models. It consists of dividing the database into some partitions or generating random 

samplings; the model is trained with n-1 partitions (training set) and predicts on the data fold 

that stayed out of the training set (validation set). Then, predicted values (from the validation 

set) are compared with the observed value using a given metric, such as Pearson correlation or 
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mean square error (MSE). The same process is repeated with all the partitions (or the random 

samples) (Elkan, 2011). This process is performed with each model, and the correlation and 

MSE are evaluated. The type of CV depends on the partitions. This study used random CV 

(RCV). One hundred iterations per analysis were performed; where 75% of the database were 

randomly divided for the training set and 25% for the validation set. The MSE and correlation 

from real-predicted values were taken for the evaluation. The best models have lower values 

for MSE and higher correlations values.  

With these metrics, ANOVA and t-tests (Annex 4) were also performed to determine if 

there were statistically significant differences between prediction models . It was evaluated for 

each FE-traits. The package used was the Stats package by R Core Team and contributors 

worldwide (2018). 

3.4. Variance component estimation 

Variance components estimation (VCE) and consequently, correlations and heritabilities 

were estimated through a bivariate model in a Bayesian context: 

𝐲 = 𝐗𝐛 + 𝐙𝐠 + 𝐞 

where, y was a 2 x n vector from FE or productive traits; b corresponds to a vector from 

systematic effects ( LACT"#$  and  DIM"#$ in cows, PERIOD in calves); g was a 2 x n vector from 

genetic effects and e was a 2 x n vector of residual effects; X and Z were incidence matrices 

for the respective effects. Uniform prior distribution (−999, 999), were assumed for b. Then, 

𝐠 was assumed to be distributed as 𝐠~N;0, 𝐆	⨂	𝐕𝐠?, where 𝐕𝐠 = �
𝜎4,
( 𝜎4,-

𝜎4,- 𝜎4-
( �, and residuals 

as 𝐞~N(0, 𝐈	⨂	𝐕𝐞); where 𝐕𝐞 = �
𝜎8,
( 𝜎8,-

𝜎8,- 𝜎8-
( �.  G was the genomic relationship matrix and I 

was the identity matrix. The G matrix was estimated with the following formula: 

𝐆 = 	
1
𝑁 i 𝐆WbR./

c

WbR;&

=
1
𝑁 i

;𝑥WbR. − 2𝑝WbR? �𝑥WbR/ − 2𝑝WbR�

2𝑝WbR;1 − 𝑝WbR?

c

WbR;&

 

where, 𝑥T\ and 𝑥T]  were the genotype of a SNP (0, 1 or 2) of an individual i or j, N means 

the number of SNPs and 𝑝WbR means the allelic frequency in the population (VanRaden, 2008; 



 28 

Yang et al., 2010). The Gmatrix.f90 code in the Fortran language developed by Legarra et al. 

(2011) was used to calculate the G matrix. 

This study estimated genetic correlations between FE related traits in calves and cows. 

Cow phenotypes in calves were assumed as missing. Similarly, calf phenotypes in cows were 

assumed as missing. 

An adapted version of the TM by Legarra et al. (2011) was used. The sampling method 

was Gibbs and Markov Chain Monte Carlo (MCMC) widely described by Sorensen and 

Gianola (2007). A total of 100 000 iterations were run and the Bur-in selected was 30 000, it 

was decided through the Gelman diagnosis over MCMC convergence with Coda package by 

Plummer et al. (2019) (Annex 5 and Annex 7). 

3.4.1. Heritability 

Heritability was estimated using the following formula: 

ℎ( =
𝜎4(

𝜎4( + 𝜎8(
 

where, 𝜎%& was the additive variance and 𝜎'& was the residual variance. 

Heritability from the different analyses were averaged as: 

ℎd(��� =
1
𝑚iℎd(

e

d;&

 

where, 𝑚 was the number of bivariate analyses for the 𝑦 trait.  

3.4.2. Genetic correlations 

Posterior distribution for the genetic correlations were estimated. The correlations had 

the following formula: 

r4&,4( =
Cov4&,4(
𝜎4&𝜎4(

 

where, Cov4&,4( was the genetic covariance for trait 1 and 2 respectively. The correlations 

and their graphical presentations were developed using the Corrplot, R Stats and GGally 
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packages by Taiyun Wei et al. (2017), R Core Team and contributors worldwide (2018) and 

Schloerke and Crowley (2020) respectively. 

3.5. Genome wide association study 

Genomic regions associated with FE traits were investigated using whole genome 

information. Four steps were implemented: 1) Calculate the statistical power of the sample 

size, 2) principal component analysis of G matrix, 3) whole-genome association studies under 

three statistical models and 4) results interpretation.  

3.5.1. Statistical power of the sample size 

Finding a significant effect for an SNP among 35300 is like finding a needle in a 

haystack, and therefore genome-wide association studies require significantly large sample size 

to avoid spurious results. The classic significance method is determined by an alpha threshold 

given by a p-value (𝑝 = Pr	(𝑇 ≥ 	 𝑡gh<|𝐻!)). However, the p-value in genomics has been widely 

criticised. One of the main problems is that p-values have a poor relationship with the strength 

of the evidence for a real effect in different sample sizes. Bayesian inference using the Bayes 

factor (strength of evidence in the data), which uses prior distribution as a representation of our 

prior knowledge may alleviate this problem. In this study, the power of the sample size was 

estimated using a Bayes factor large enough to obtain reliable significant effects (Gondro et 

al., 2013). 

For this, some factors that affect the statistical power of the sample size were considered, 

these include the QTL frequencies (p and q), the heritability of the QTL  (ℎi
(), the linkage 

disequilibrium coefficient (D) and a required Bayes factor (𝛣) as Gondro et al. (2013):  

𝛣 =
Pr(𝑦|𝐻&)
Pr(𝑦|𝐻!)

=
Pr(𝐻!|𝑦)
Pr(𝐻&|𝑦)

= 𝛣 ×	
Pr(𝐻!)
Pr(𝐻&)

 

B represents the factor by which the prior odds increase to give later probabilities after 

observing the data. So, the calculation of the B in this study was determined as: 

𝐵 ≈ [4𝑛(𝑝/(1 − 𝑝)/]j& (⁄ �1 +
2

(𝑛 − 3)𝐹�
b
(k
 

where n was the total sample size and F was the classic value of F-value. 
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The calculation to estimate a given value of F (𝐹D) was: 

𝐹D =
𝑛 − 3
2 ;[4𝑛(𝑝/(1 − 𝑝)/	𝐵D(]& b⁄ − 1? 

Then, the statistical power of the sample size was implemented as: 

𝑃𝑤 = 1 − 𝐹(𝐹D; 𝑣&, 𝑣(, 𝛿) 

where 𝑣& = 2 was the degrees of freedom being tested and 𝑣( was the degrees of freedom 

of the error and 𝛿 was the non-centrality parameter. 

The statistical power of the size of a reliable sample is 0.80 with a Bayes factor = 20. We 

calculated the following statistics: 

• Statistical power that explains a 5% and 1% of the variation assuming an equivalence 

with a Bayes factor = 20.  

• The sample size required for a power of 0.8 and a Bayes factor = 20.  

We assumed a favourable linkage disequilibrium between the QTL and the marker of 

0.25, and values for both alleles p and q of 0.5. The estimation was done with the R LdDesing 

package developed by Ball (2012). 

3.5.2. Accounting for the polygenic effect in the GWAS 

A principal component analysis (PCA) to reduce the dimensionality of the G matrix was 

performed. It was calculated through the eigen decomposition of the correlation matrix of the 

G matrix. 

PC^ = α&^V&+. . +α9^V9 

Where coefficients αY^ were the elements of the eigen vector of the jth eigenvalue; V& to 

Vb were the variables of G matrix (Macciotta et al., 2010). The result was a set of PCs that 

explains the variance with fewer features. The PCs that explain more than 60% of the variance 

were selected. The R Stats and factoextra packages were used (R Core Team and contributors 

worldwide, 2018; Kassambara and Mundt, 2019). 
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3.5.3. Models 

Genome-wide association studies (GWAS) with FE in cows and calves were computed 

under three statistical models: frequentist linear regression, Bayesian linear regression with 

LASSO method, and Random Forest regression. The objective of using three association 

models was to evaluate the recurrence of relevant SNPs between models and between FE traits.  

3.5.3.1. Frequentist GWAS 

The classical GWAS model implements a simple linear regression SNP by SNP as 

follow: 

𝐲 = 𝐗𝐛 + 𝐒𝐍𝐏𝐢aY + 𝐏𝐂𝐂0!% + 𝐞 

where 𝐛 was the vector from systematic effects; 𝐒𝐍𝐏𝐢 was a vector with the SNPs 

genotypes ( AA, Aa or aa represented as 0, 1 or 2 respectively);	aY  was the allelic substitution 

effect from SNPY (Aguilar et al., 2019); 𝐏𝐂𝐂0!% was the PCs that explain more than 60% . The 

evaluation was performed through P-value test. 

The significance level chosen was 0.001, this mean 𝑃 < 𝛼 = 0.001 was considered 

significant. The linear regressions were estimated using the R Stats package. 

3.5.3.2. Bayes LASSO association 

This model is a combination of Bayesian regression with classic LASSO (Least Absolute 

Selection and Shrinkage Operator) regression developed by Tibshirani (1996). This approach 

shrinkages the marker effects to increase the effectiveness in specifics regions (De Los Campos 

et al., 2009). Bayes LASSO can be represented as: 

𝐲 = 	𝜇𝟏 + 𝐗𝐅 + 𝐙𝛃 + 𝐞 

where 𝐲 was a vector of phenotypes; 𝜇 was the population mean; 𝐗𝐅 was the systematic 

effects matrix composed by LACT"#$ , DIM"#$ , PCC()% in cows and PERIOD, PCC()%  in calves; 𝛃ª 

was the LASSO estimation and Z was the SNP incidence matrix (0, 1 or 2); 𝑒 was the vector 

from residual effects with normal distribution and unknown variance (𝐞~(0, 𝜎U()) (Park and 

Casella, 2008; González-Recio and Forni, 2011). 
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Within a Bayesian context, a posteriori distribution by LASSO is possible when the prior 

has an independent and identical double exponential distribution, also known as the Laplace 

distribution (De Los Campos et al., 2009). The prior was proposed as follow: 

𝑝(𝛃|𝜎U() =«
𝜆

2­𝜎U(
𝑒jm|o/|/

qr0-
R

\;&

 

where 𝜎U( was the residual variance, with a Scaled-inverse Chi-square density: 𝑝(𝜎U() =

χ((𝜎U(|SU , 𝑑𝑓U) and λ was a parameter that controls the level of shrinkage of the distribution 

(Park and Casella, 2008; González-Recio and Forni, 2011; Pérez and De Los Campos, 

2014).  In both groups, the prior density for 𝜎U( was assigned with: 𝑑𝑓 = 3; 𝑆 =0.25; and 𝜆 

prior parameters: shape=0.52, rate=1e-5, value = it was adjusted by posteriori 𝜆 results (Annex 

9 and Annex 10), type='random'. The computation was implemented under a Gibbs sampling 

with Markov chain Monte Carlo algorithm (MCMC) with 100 000 iterations, discarding the 

first 30 000 and drawing a value every 10 iterations. The BGLR package by Perez and De Los 

Campos (2018) was used. Additionally, the additive genetic variance was also estimated with 

the formula ℴ(sc[1 = SNPUGGUDQ((2𝑝𝑞) (Carvalho et al., 2020). 

3.5.3.3. Random forest 

Random Forest (RF) algorithm was proposed by Breiman (2001). RF is an ensemble 

learning method that creates a multitude of decision trees (forest) and outputs the mean 

prediction of the individual trees. This model generates T pseudo-training sets by bootstrapping 

from the original training sample, which reduces the variance and helps to avoid the overfitting. 

This algorithm differs from Bagging because during training the RF algorithm randomly selects 

a subset of available variables (SNPs) for selection in each split in the tree (Hempstalk et al., 

2015). This method was selected because the genome wide analysis implies analysing many 

SNP variables and it has shown robust results in association studies (González-Recio and Forni, 

2011; Yao et al., 2013; González-Recio et al., 2014; Hempstalk et al., 2015). The formula used 

was: 

𝐲 = 𝜇 +i𝑐QℎQ(r;𝐖B)
_

Q;&
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where y was a vector of phenotypes; μ was the population mean; ℎQ(r;𝐖B) was each 

random tree; W was to matrix effects composed by	

LACT"#$ , DIM"#$ , PCC()%	and	SNPs	genotype, and 𝑐Q was a shrinkage factor that averaged the 

trees.  

The parameters for this model were: T = 10000 trees; a maximum branches per tree = 

5000; 𝑚 ≈	­𝑛t. The Loss function was evaluated by the MSE. This analysis was performed 

with RanFoG Software by Gonzalez-Recio (2010). SNPs with highest importance within a 

quantile >0.999 were selected and classified.  

Variable importance 

The significance of the markers over the FE traits were measured by the importance of 

each SNP. The importance was a representation of the SNP influence on the prediction 

accuracy for the FE trait. It may be summarized as: 

1) In each random sampling to construct a tree, a smaller percentage of data called out of 

bag (OOB) remains. After each tree was formed, the prediction accuracy of the FE trait 

was calculated with the tree and OOB data. 

2) The values of the 𝑚Qu SNP in the OOB were permuted and the prediction accuracy was 

calculated again.  

3) The difference between these prediction accuracies (with original OOB and permuted 

OOB) were calculated. 

4) This process was repeated with all the SNPs and then, the difference between the 

prediction accuracies was averaged over all the trees of the RF. 

Finally, a value for each SNP was obtained which represent the SNP importance. 

3.5.3.4. Results Interpretation 

The following points were analysed for better interpretations of the results. 

• For GWAS, significant SNPs with 𝑃 < 𝛼 = 0.001 were considered. For Bayes 

LASSO, SNPs with the highest effect in a quantile> 0.999 were considered. For random 

forest, SNPs with the highest importance in a quantile> 0.999 were considered. 

• Number of SNPs in common between traits were calculated using the VennDiagram 

package by Maintainer and Boutros (2018) in R environment. Where, WGAS consider 
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a 𝑃 < 𝛼 = 0.001, while Bayes LASSO and random forest consider a quantile > 0.999 

as parameters to select SNPs. 

• The most significant SNPs where detected with their closest genes and their biological 

functions using the Ensembl organization (www.ensembl.org) and the uniport 

organization (www.uniprot.org). For this, GWAS select the SNPs with the lowest p-

value, while Bayes LASSO and random forest consider a quantile > 0.9999 to select 

the SNPs with the highest effect and importance, respectively. 

• In Bayes LASSO the additive genetic variance also was estimated, and it was 

represented in a Manhattan plot. 

3.5.3.5. Analysis between models 

Finally, a coincidence analysis of the relevant SNPs was performed to detect common 

regions between models. For this:  

• Significant SNPs from GWAS, Bayes LASSO and random forest (𝑃 < 𝛼 = 0.001 and 

quantile > 0.999, respectively) were matched and then identified. 

• The repeated SNPs in the three models were identified, then, the nearest genes and their 

biological function were searched using the Ensembl organization (www.ensembl.org) 

and the uniport organization (www.uniprot.org). 

• Besides, common SNPs between calves and cows within the significant SNPs were 
tried to identify. 

Graphics and SNPs identification were development with R Base, VennDiagram, and 

ggplot2 packages by R Core Team and contributors worldwide (2019), Maintainer and Boutros 

(2018), and Wickham et al. (2020) respectively. 

3.6.  Genome wide prediction 

Genomic prediction of breeding value of FE-traits (DMI, FCE and RFI) in cows was 

implemented using genomic and phenotypic data from calves at early life-stage. For this, 

genetic markers and phenotypic data collected from calves (DMI, FCE, RFI) were used as the 

reference population (training set). GBLUP model was used for all traits as follow: 

𝐲 = 𝟏𝐧𝜇 + 𝐗𝐛 + 𝐙𝐠 + 𝐞 
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where 𝐲 was a vector of phenotypes (cow’s phenotype were assumed as missing values); 

𝟏𝐧 was a vector of ones (1 x n); 𝜇 was the population mean; 𝐛 was a vector from systematic 

effects (PERIOD);	𝐠 was a vector of genomic breeding values; X and Z were respective 

incidence matrices (All cows were grouped at level 1 of PERIOD) and e was the residual 

vector. The effect distributions were previously described in VCE analyses (point 3.4). Then, 

the genomic breeding value was predicted as: 

ǵ = µ𝐙´𝐙 + 𝐆j&
𝜎U(

𝜎w(
·
j&

[𝐙´(y − 𝟏𝐧𝜇̂)] 

where ǵ was the vector of GEBV 𝐙´ was the transpose Z and 𝜇̂ was the estimated mean. 

The software used was an adapted version of the TM by Legarra et al. (2011) in a Bayesian 

context. 

3.6.1. Accuracy of prediction 

The objective of this analysis was to determine how close the predicted breeding value 

using in early life was to the true breeding value in cows. The true breeding value was 

unknown; however, the phenotypes were available, so the accuracy was evaluated using the 

phenotype corrected by systematic effects, the phenotypes were the same that were used by 

developing the BLUP; i.e. phenotypes were rescaled between 0,02 and 1. The accuracy of 

predictions was evaluated through two methods as follow:  

1) The correlation between the GEBV and the corrected phenotype as: 

ρ4x,X =
Cov4x,X
𝜎4x𝜎X

 

where  ǵ was the predicted breeding value (GEBV) and y was the phenotype corrected 

by LACT23* and DIM23*.  

2) The mean squared error (MSE) between the GEBV and the corrected phenotype as: 

MSE =
∑ (ǵT − yT)(b
T;&

𝑛  

where n was the number of cows used in the model. 

Figure 1 show an illustration of genomic prediction and accuracy evaluation. Accuracies 

were developed in R environment. 
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Figure 1. Summary of the prediction process and its accuracy evaluation 
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4. RESULTS AND DISCUSSION 

4.1. Exploratory data analysis 

In calves, FE-traits showed asymmetric bimodal distributions for DMI, FCE and ADG 

(Annex 1), this was clearly influenced by the sampling period as in period 1 the sampling was 

for 60 days, while in period two the sampling was for 45 days. This significantly affects the 

distribution the phenotypes. RFI had a unimodal distribution because it was the residual of a 

linear regression on DMI corrected by PERIOD.  

In cows, FE-traits distributions were slightly asymmetric for DMI, FCE and ROFC 

(Annex 1). This was caused by the environmental factors. The most relevant ones were 

lactation and days in milk. In the case of RFI it was the residual term, so it presented symmetric 

distribution.  

Herd summary: Most of the cows were young and were between the first and third 

lactation, therefore, the number of cows was represented in two groups, Primiparous and 

multiparous. Most cows were in the second third of the lactation, so DIM cat was categorized 

into two groups, until day 90 and from day 91 onwards, this was divided according to milk 

production. Yield traits, weight and age were within the breed parameters 

(www.mapa.gob.es/es/ganaderia; www.conafe.com/estadisticas.aspx). Table 5 and Table 6 

descriptive statistics of the data, while Annex 1 and Annex 2 show density curves for the 

variables on study. 

Table 5. Summary from FE-traits 

  DMI FCE RFI ADG/ROFC 

Calves Min 0.888 0.031 -0.485 0.067 
 Median 1.204 0.400 0.017 0.453 
 Mean 1.710 0.299 0.000 0.383 
 Max 2.789 0.588 0.286 0.691 

Cows Min 16.78 1.193 -5.013 4.992 
 Median 24.11 1.596 0.047 8.512 
 Mean 24.29 1.617 0.000 8.782 
 Max 28.58 2.356 3.898 14.198 

DMI= dry matter intake; FCE = feed conversion efficiency; RFI = residual feed intake; ADG = average daily 

gain; ROFC = return over feed cost. Higher values from RFI are for less efficient animals and lower values for 
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the more efficient animals; higher values from FCE, ADG and ROFC are from more efficient animals and lower 

values for less efficient animals. 

Table 6. Summary of productive traits in cows 

 DIM MILK % FAT % PROT ECM BW AGE 

Min 55.00 28.08 3.008 2.841 27.05 449.4 684.0 

Median 81.00 40.74 3.689 3.435 38.46 613.2 1151.0 

Mean 84.86 40.89 3.709 3.411 39.31 604.9 1205.5 

Max 130.00 55.50 4.639 3.862 56.09 739.2 2949.0 
DIM=days in milk; MILK= milk production expressed in kg/day; %FAT= fat production expressed in percentage; 

%PROT= protein production expressed in percentage; ECM= energy corrected milk; BW= body weight expressed 

in kg; AGE= age cow expressed in days. 

4.1.1. Phenotypic correlation 

 

Figure 2. Phenotypic correlations for traits under study, the traits were corrected by systematic 
effects. 

In calves, there was a strong correlation between DMI-FCE and ADG, all three traits 

were strongly correlated (between 0.93 and 0.97), while RFI had a low correlation with DMI 

(0.27) and was not correlated with any other trait. 

In cows, DMI had a strong correlation with RFI (0.86), indicating that cows that eat less 

were more efficient. DMI was moderately correlated with milk production (0.36), ECM (0.35) 
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and body weight (0.28), these correlations suggest that cows with higher feed intake produce 

more and had more weight but showed lower efficiency from RFI point of view. RFI was not 

correlated with productive traits; this was because it has been adjusted in the model. FCE was 

strongly correlated with ROFC (0.88), which both tend to classify the same animals as efficient; 

furthermore, FCE and ROFC were strongly correlated with MILK and ECM. Phenotypic 

correlations are shown in Figure 2. 

4.2. Phenotypic prediction 

As detailed in materials and methods, a phenotypic prediction of FE traits was performed 

with four statistical models, classical linear regression and three machine learning algorithms. 

Then, they were evaluated with random cross validation (RCV). The objective of phenotypic 

predictions was to find alternatives to expensive DMI measurements to estimate FE. Therefore, 

DMI was excluded from the training variables in all predictions. The results of the cross-

validation were the correlation (r) and the mean square error (MSE) between real and predicted 

values of FE-traits. 

4.2.1.   FE-traits comparative 

The accuracy from DMI prediction was moderate; it had r values between 0.47 and 0.58 

and MSE values between 3.53 (𝑘𝑔/𝑑)( and 4.95 (𝑘𝑔/𝑑)(. Bagging was the model with higher 

accuracy followed by LM; these results were higher than those of Roseler D. K. et al. (1997), 

who carried out studies in 241 Holstein cows from different EEUU regions, in which the lowest 

MSE was equivalent to 4.7 (𝑘𝑔/𝑑)(. This could be due to the selected variables for the training 

set, the trait variance in the sample population or maybe, to the predictor model. According to 

the linear regression, the variables with the greatest importance (regression coefficient) to 

predict DMI were body weight and age, indicating that weight and age directly influence in 

DMI. 

FCE had good accuracies, with r values between 0.71 and 0.85 and its MSE values were 

between 0.018 and 0.027; the models with the highest predictions for FCE were LM and 

NNET. According to the linear regression, the predictor variables with the greatest importance 

were Milk body weight. 

RFI had lower predictive accuracy, with negatives r values between -0.31 and 0.01, and 

its MSE values were between 3.20 Kg(/d and 4.74 Kg(/d. No model was phenotypically 
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correlated with this trait (Figure 3), probably because RFI was already indirectly adjusted for 

these traits. The predictor variables with the highest regression coefficient for RFI was age. 

However, they had low prediction accuracy of RFI. 

ROFC had high accuracies; it had r values between 0.88 and 0.99, and its MSE values 

were between 0.13 euros(/d and 1.2 euros(/d; the best predictors were LM and NNET; both 

had an excellent prediction capacity. Except for DMI, no references for phenotypic predictions 

have been found. The predictor variables with the greatest importance were MILK and body 

weight, which also suggests that ROFC was largely determined by the production and weight. 

4.2.2. Models comparative 

The model's accuracy differs between FE traits; this is shown in Figure 3. LM had shown 

great predictive ability in general; its highest precision was for FCE and ROFC. K-NN showed 

consistent accuracies.  

NNET showed high predictive ability for ROFC. This is shown in Figure 4. NNET was 

the only deep learning method in this study, and its algorithm may be limited by the amount of 

data for back-propagation training. Bagging showed large abilities, its highest predictions were 

for DMI. It performs random sampling, generates different trees and adjust the result by MSE; 

this avoids overfitting and produces reliable results. In general, Bagging and LM showed larger 

accuracy than the other models; in this study NNET is an algorithm that could be recommended 

to train with more databases and more variables to exploit all its advantages. KNN presented 

consistent accuracies in this study, although its algorithm has been successfully tested on traits 

with nonlinear behaviours and categorical variables.  

Table 7. Pearson correlation of RCV in phenotypic prediction of FE 

  DMI FCE RFI ROFC 
 Model r sd r sd r sd r sd 
COWS LM 0.547 0.174 0.852 0.052 -0.309 0.187 0.987 0.005 

 K-NN 0.480 0.240 0.715 0.129 -0.309 0.248 0.884 0.042 

 NNET 0.480 0.204 0.831 0.065 0.010 0.216 0.988 0.004 

 Bagging 0.582 0.162 0.807 0.046 -0.047 0.255 0.943 0.022 

Where r was the RCV results and corresponds to the mean from 100 Pearson correlations and its standard 
deviation. Higher values are desired, the model with the highest correlation is marked in boldface. LM= linear 
model; K-NN= k-nearest neighbor; NNET= neural network. 
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Figure 3. Correlation between the observed and predicted value from RCV, and its confidence 
interval. Each point represents a correlation and each colour represent a FE trait. Higher values 
are desirables. 

Table 8. MSE and its sd of RCV in phenotypic prediction of FE 

  DMI FCE RFI ROFC 

 Model MSE sd MSE sd MSE sd MSE sd 

COWS LM 3.863 1.222 0.018 0.008 3.701 1.250 0.126 0.040 

 K-NN 4.121 1.444 0.031 0.012 3.478 1.186 1.199 0.426 

 NNET 4.948 1.750 0.021 0.009 4.742 1.374 0.131 0.049 

 Bagging 3.527 1.097 0.023 0.009 3.196 0.967 0.589 0.265 
MSE = mean squared error, this was the RCV results and correspond to the mean from 100 mean squared errors 
and its standard deviation. Lower values are desired; the model with the highest correlation is marked in boldface. 
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Figure 4. Density plots of MSE from RCV. The four models in each FE trait are shown and 
are divided by colour. 

4.2.2.1. ¿Is there a statistical difference between the models? 

With the results of the accuracy predictions (r), ANOVA tests were performed to verify 

if there is a statistically significant difference between prediction models. The results register 

a significant difference between predictive models, this was repeated for all FE traits, where 

the Pr (>F) for DMI, FCE, RFI and ROFC were 7.107e-07, 7.049e-32, 1.351e-31 and 3.06e-

116 respectively. The t test  analysis were also performed to determine the difference between 

prediction models (two-by-two comparisons), these results reinforce the ANOVA analysis and 

its results are shown in Annex 4. 
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RFI ROFC 
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4.3. Variance components analysis 

4.3.1. Heritabilities 

In calves, the heritabilities of FE traits were high with values of 0.50 (0.27), 0.52 (0.24), 

0.50 (0.22) and 0.50 (0.26) for DMI (sd), FCE (sd), RFI (sd) and ADG (sd) respectively.  

In cows, the heritabilities for FE traits were also high. Interestingly, DMI had the lower 

estimate (h( = 0.38, sd = 0.25), these results are comparable to those in Spurlock et al. (2012) 

and Li et al. (2016) who presented heritabilities between 0.20 and 0.40. FCE showed high 

heritability (h(= 0.49; sd = 0.25) and these results were higher than those of Van Arendonk et 

al., (1991) and Vallimont et al. (2011), who reported heritabilities of 0.37 and 0.14 respectively. 

RFI presents a high heritability (h(= 0.44, sd = 0.25), these results were higher than those 

presented in Table 2. ROFC was less studied trait than the previous ones, and it also presented 

high heritability (h(= 0.50, sd = 0.24). The heritabilities of the productive traits were also 

estimated. Milk (sd), ECM (sd), and FAT (sd) had high heritability estimated with values of 

0.47 (0.21), 0.46 (0.21), and 0.58 (0.23), respectively; whereas protein and BW presented lower 

heritabilities (0.26 (0.18) and 0.34 (0.20), respectively). Heritabilities can be seen in Figure 5 

and its sd in Figure 6. 

4.3.2. Genetic correlations 

In calves, DMI showed high correlation with RFI (r = 0.99; sd = 0.01); as well as FCE 

and ADG presented a strong correlation (0.93; sd = 0.12). correlation between DMI with FCE 

was low (0.22; sd = 0.60) whereas DMI was moderately correlated with ADG (0.55; sd = 0.49). 

The correlation between RFI and FCE was weak (0.11, sd = 0.60); RFI and ADG showed 

moderate correlation (0.42, sd = 0.54). Correlations must be carefully interpreted because they 

had large sd and the sample size was low. The interpretations of traits must also be cautiously 

considered, RFI prioritizes feed saving while FCE prioritizes daily weight gain. No studies 

references have been found in calves of these ages. 

In cows, DMI showed strong correlation with RFI (r = 0.85, sd = 0.25), this indicates that 

cows with lower feed intake tend to save more food This value agrees with those of Arthur et 

al. (2001a)  and was higher than those of Lin et al. (2013) (Table 3). Furthermore, DMI and 

RFI showed positive correlations with fat, which suggest that cows with lower intake and lower 

RFI (higher saved food) produce a lower percentage of fat and protein; these results differ from 



 45 

those by Gonzalez-Recio et al. (2014) that presented correlation values of DMI (sd) and RFI 

(sd) with fat of -0.11 (0.08) and 0.03 (0.07) respectively, but using DMI recorded in heifers. 

RFI was negatively correlated with milk (r = -0.41; sd = 0.51) and ECM (r = -0.29; sd = 

0.56), however the sd were very large, so the interpretation must be cautious. Cows with lower 

RFI produce more milk, and the fat and protein percentages tend to decrease (this was why the 

correlation of RFI with fat and protein were positive); this was in agreement with the studies 

by Cue et al. (1987) that showed a negative correlation of milk production with fat and protein 

per cent. 

FCE presented a strong correlation with ROFC (r = 0.87; sd = 0.18) and both FCE and 

ROFC were strongly correlated with milk and ECM (Figure 5). Furthermore, FCE and ROFC 

were negatively correlated with fat percentage (due to the cows with high FCE and ROFC 

produce more milk and milk was negatively correlated with fat). ROFC showed weak 

correlation with body weight (r = 0.06; sd = 0.63). 

The genetic correlations between cows and calves were close to zero. DMI of calves with 

DMI of cows had r = 0.14 with a large sd (0.70); FCE of calves with FCE of cows had r = -

0.03 (sd = 0.72). Calf RFI showed r = 0.04 (sd = 0.69) with cow RFI; and the correlation 

between ADG and ROFC was r = -0.04 (sd = 0.72). The correlations between efficiency traits 

were weak or not correlated, in addition to presenting considerable standard deviations. This 

indicates that the FE-traits in calves were independent of the FE-traits in cows, and large sd 

indicates that larger sample size was needed to replicate the results. The genetic correlations 

can be seen in Figure 5 and their sd in Figure 6. 
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4.3.2.1. Genetic correlations between FE traits in calves and cows 

 

 

Figure 5. Heritabilities and genetic correlations for FE and productive traits in cows and calves. 
The green diagonal shows the heritability for each trait. 
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Figure 6. sd of the MCMC results for each heritability and genetic correlation. 
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4.4. Genome wide association study 

4.4.1. Statistical power of the sample size 

The data set used in this master thesis was too small to implement GWAS. Taking this 

into account, the objective of this section was to estimate the statistical power of the sample 

size to measure the reliability of the genome-wide association results (showed later). For this, 

the following parameters were considered as priors: 

• The QTL allele frequencies were 0.5 for both p and q. 

• Optimistically, we assume a linkage disequilibrium (D) of 0.25. 

Then, three points were calculated: The Bayes factor (B) for the sample size (n) in this 

study, the power of the sample size (Pw) if B = 20 (that explain 5% and 1% of the variance), 

and n required if Pw = 0.80 and B = 20. The results are explained below and detailed in Table 

9. 

a) Bayes factor (B) equivalent to the sample size in this study (n). 

•  In calves n = 30. In cows n = 70 (for FCE, RFI and ROFC) and n = 103 (for DMI). In 

both cases (calves and cows) B was less than 1 (Table 9), which suggests that the 

strength of the evidence was very small. 

b) Pw that explains 5% and 1% of the variation (ℎi
() assuming B = 20. 

• For ℎi
( = 0.05: Pw= 0.05, 0.09 and 0.14 for n = 30, 70 and 103 respectively.  

• For ℎi
( = 0.01: Pw= 0.02, 0.01 and 0.01 for n = 30, 70 and 103, respectively 

c) n required for a Pw = 0.8 and a B = 20. 

• when ℎi
( = 0.05, n required was 415.  

• When ℎi
( = 0.01 n required was 2566. Figure 7 shows an illustration of the relation 

between B and n for ℎi
( = 0.05 and 0.01. 
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Table 9. Results of the analyses for the statistical power of the sample size. 

Gr n 𝒑 𝒒 𝑫 𝒉𝑸
𝟐 Trait 𝑩 𝑷𝒘𝑩𝟐𝟎 𝒏𝑩𝟐𝟎 

Calves 30 0.5 0.5 0.25 0.05 DMI, FCE, RFI, ADG 0.22 0.052 415 
Calves 30 0.5 0.5 0.25 0.01 DMI, FCE, RFI, ADG 0.18 0.016 2566 
Cows 70 0.5 0.5 0.25 0.05 FCE, RFI, ROFC 0.15 0.091 415 
Cows 70 0.5 0.5 0.25 0.01 FCE, RFI, ROFC 0.08 0.012 2566 
Cows 103 0.5 0.5 0.25 0.05 DMI 0.18 0.143 415 
Cows 103 0.5 0.5 0.25 0.01 DMI 0.06 0.012 2566 

Where GR was the group of study; n was the sample size in this study; p and q were the QTL allele frequencies; 
D was the linkage disequilibrium; ℎ6

) was the QTL heritability or the explained variation; TRAIT refers to the 
FE trait studied; 𝐵$!.# was the Bayes factor for a statistical power of 0.8; 𝑃𝑤7$! was the statistical power of the 
sample size assuming a Bayes factor = 20; 𝑛7$! was the sample size required for Pw=0.8 and B=20. Note: DMI 
has n=103 because 33 cow’s data were added for DMI genome-wide association. 

 

Figure 7. Power of the sample size explaining the 5% (left-plot) and 1% (right-plot) of the 
variation. Where D = linkage disequilibrium, this is shown by colour. This was calculated with 
an allelic frequency of 0.5 and the result is the equivalent to Bayes factor = 20. 

These results suggest that the sample sizes were insufficient enough to give us reliable 

power. We have been optimistic with priors to estimate the strength of the evidence in the 

genome-wide association studies. However, the population size in this study did not represent 

a reliable power of the sample size. Therefore, genome association results should be interpreted 

with caution.  
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4.4.2. Models 

4.4.2.1. Frequentist GWAS 

 

Figure 8. FE Manhattan plots from frequentist GWAS. Above the blue line, are the SNPs with 
P-value < 0.001 

GWAS results were discussed through the SNP significance as follow:  

Significant SNPs (𝑷 < 𝜶 = 𝟎. 𝟎𝟎𝟏) for FE traits in GWAS 

An alpha (𝛼) 0.001 was established, being p < 0.001 a significant value for the SNP 

effect. Here, 28, 35, 25 and 22 significant SNPs were found for DMI, FCE, RFI, ADG, 

respectively in calves. Whereas 12, 34, 44 and 24 significant SNPs were found for DMI, FCE, 

RFI and ROFC, respectively in cows. For DMI in calves, 28 SNPs were identified on 13 

different chromosomes; whereas in cows 12 SNPs identified were distributed on 6 different 

chromosomes. For FCE in calves, 35 SNPs were identified along 13 different chromosomes, 

whereas 34 SNPs were identified in cows, distributed on 12 different chromosomes. For RFI 

in calves, 25 the SNPs identified were distributed on 10 different chromosomes whereas in 

cows 44 SNPs were found on 17 different chromosomes. For ADG in calves, 22 SNPs were 
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found on 10 different chromosomes.  For ROFC in cows, 24 significant SNPs were found on 

12 different chromosomes. Unfortunately, no common SNP were found for any FE traits 

between cows and calves. 

Table 10. Significant SNPs for P-values in GWAS 

 Calves  Cows 
P-value DMI FCE RFI ADG  DMI FCE RFI ROFC 

0.001 28 35 25 22  12 34 44 24 
Higher values are desired, the trait with the highest significant SNPs is marked in boldface 

Number of SNPs in common between traits (𝑷 < 𝜶 = 𝟎. 𝟎𝟎𝟏) in GWAS 

In calves, DMI and RFI had more common SNPs between them. These sixteen SNPs 

(chromosome, and nearest gene in parenthesis) were Hapmap43629-BTA-60810 (1), BTB-

01146938 (1), ARS-BFGL-NGS-116361 (1), ARS-BFGL-NGS-93995 (9), ARS-BFGL-NGS-

15511 (9), ARS-BFGL-NGS-17690 (9), Hapmap23835-BTA-161158 (9), ARS-BFGL-NGS-

113524 (9), ARS-BFGL-NGS-110434 (12), ARS-BFGL-NGS-60282 (12), Hapmap60144-

rs29013559 (13), UA-IFASA-5750 (14), Hapmap23726-BTC-051363 (14), ARS-BFGL-NGS-

44829 (20), BTA-86837-no-rs (20), ARS-BFGL-NGS-64656 (29). Also, FCE had more 

common SNPs with and ADG, these fourteen SNPs were ARS-BFGL-NGS-112477 (10), 

Hapmap48260-BTA-24589 (11), Hapmap47248-BTA-32461 (13), BTA-32556-no-rs (13), 

ARS-BFGL-NGS-71025 (13), BTA-115847-no-rs (13), Hapmap49962-BTA-32832 (13), ARS-

BFGL-NGS-2022 (13), Hapmap49963-BTA-33040 (13), ARS-BFGL-NGS-21830 (13), 

Hapmap44175-BTA-98206 (15), Hapmap52953-rs29025745 (22), Hapmap35936-

SCAFFOLD65654_2749 (22), UA-IFASA-3305 (27). DMI and ADM had only one SNP in 

common, this was Hapmap54267-rs29023167 (16). No more SNPs were found in common for 

other traits. 

In cows, DMI and RFI had two common SNPs, these were Hapmap48321-BTA-40830 

(17) and Hapmap49910-BTA-20754 (17); of them, none were found in common with the 

equivalent comparison in calves. FCE had seven SNPs in common, these were Hapmap41492-

BTA-26349 (3), ARS-BFGL-NGS-118243 (3), Hapmap50605-BTA-16738 (6), ARS-BFGL-

NGS-12483 (15), ARS-BFGL-NGS-61425 (15), ARS-BFGL-NGS-41288 (15), ARS-BFGL-

NGS-14291 (17); of them, none were found in common with the equivalent comparison in 

calves. No more SNPs were found in common for other traits. 
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In both cows and calves, DMI and RFI had more common SNPs, and FCE shared more 

SNPs with ADG (ROFC in cows). No SNPs have been repeated in the four FE-trait (DMI, 

FCE, RFI, ADG) in both calves and cows (Figure 9). 

            

Figure 9. Venn Diagrams from common SNPs for FE in GWAS model. significant SNPs with 
alpha < 0.001 are shown. In the left, SNPs for calves, in the right, SNPs for cows. 

The most significant SNPs and their closest genes and biological functions. 

The most significative SNPs (the lowest p-value) were selected. Then, the closets genes 

and their associated biological function were found. The results are discussed below, and the 

SNPs, genes and biological function are shown in Table 11 and Table 12 for calves and cows 

respectively. 

Most significant SNPs in calves in GWAS 

The markers associated to FE in calves were found on chromosomes 9, 13, 14 and 22. 

All significant SNPs (3 SNPs) for FCE were also significant for ADG, and two of three SNPs 

significant for DMI were significant for RFI, this corroborates the high genetic correlations 

between these traits (Figure 5). Genes linked to DMI and RFI were involved in immune 

response, nervous development and protein synthesis; whereas the FCE and ADG genes were 

involved with enzymatic activity (aminopeptidase), molecular processes (transcription and 

transduction) and metal ion binding. 

 Cole et al. (2011) showed an association of milk and fat production with the GNAS gene; 

in this study the same gene was associated with FCE and ADG; this makes sense because FCE 

was strongly correlated to milk production and ADG (Figure 5). Besides, the genetic 
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correlation of  𝐹𝐶𝐸DEF|UW and  𝐴𝐷𝐺DEF|UW with 𝐹𝐴𝑇DHIW was positive (Figure 5). El-Halawany 

et al. (2017) and Perez et al. (2018) have associated milk production and fertility with the 

CSMD3 gene. In this study, the same genes were associated with DMI and RFI, this is 

interesting because these production traits should be related to FCE, although it was also due 

to DMI and FCE  were correlated in calves. Mallikarjunappa et al. (2018) and de las Heras-

Saldana et al. (2019) show EIF3H associated with immunity and RFI respectively. In this 

study, the same gene was associated with DMI and RFI, this suggests again that immunity 

plays a vital role in feed intake and metabolism. 

Table 11. SNPs with lowest P-value and their nearest genes for FE traits in calves in GWAS. 

     REFERENCE 

Ch Marker Trait QTL Function Author 
Associated 

trait Specie 
9 ARS-BFGL-

NGS-113524 
DMI 
RFI 

SAMD3* Immune 
response 

   

13 ARS-BFGL-
NGS-21830 

FCE 
ADG 

NPEPL1* Aminopeptida
se activity 

   

 Hapmap4996
3-BTA-
33040 

FCE 
ADG 

GNAS* Molecular 
transducer 

Cole et al. 
(2011) 

Milk, fat Holstein 

   NELFCD* Transcription 
regulation 

   

14 Hapmap2372
6-BTC-
051363 

DMI  
RFI 

CSMD3* Regulation of 
dendrite 
development 

El-Halawany et 
al. (2017) 

Milk 
 

Buffalo 
 

     Perez et al. 
(2018) 

Scrotal 
circumference 
and pregnancy 

Nellore 

 UA-IFASA-
5750 

DMI 
RFI 

EIF3H** Protein 
biosynthesis 

Mallikarjunapp
a et al. (2018) 

Antibody to 
Johne's disease 

Holstein  

     De Las Heras-
Saldana et al. 
(2019) 

RFI 
 

Angus 

22 Hapmap5295
3-
rs29025745 

FCE 
ADG 

FGD5*  Metal ion 
binding 

   

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was within 
200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; when it 
does not present * it means that the SNP was within the gene. 

 

Most significant SNPs in cows in GWAS 

In cows, the most significant SNPs were found on chromosomes 13, 17, 2, 8 and 9, and 

the related genes can be seen in Table 12. Hapmap48321-BTA-40830 and Hapmap49910-

BTA-20754 SNPs match between DMI and RFI, whereas FCE and ROFC do not share genes 

within the most significant genes. The genes associated with RFI were involved in various 
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biological functions, including Insulin regulation, apoptosis processes, glycoprotein synthesis, 

cell development, spermatogenesis, organ development and immunity. The genes associated 

with FCE and ROFC were involved in the transcription process and cellular attachment, 

assembly and transport process. 

PRUNE2 and IL2 were associated with RFI; this association has also been reported by 

Lima et al. (2016) and Hou et al. (2012). EPB41L1 and SPRY1 genes that in this study were 

associated with RFI, in the investigations of Mudadu et al. (2016) and Zhou et al. (2019) have 

been associated with backfat thickness and gestation length; This could be due to feeding and 

saving intake could be affected by factors related to fat metabolism and energy expenditure by 

pregnancy. Three studies have referenced the NCOA6 gene and two the TP53INP2 gene, they 

related these to scrotal circumference in males, body fat, and milk fatty acids in females (Table 

12); in this study, both genes have been related to FCE; this suggests that feed efficiency in 

cows could be influenced by genes involved in the production, lipid metabolism and fertility. 

Among the QTLs reviewed in Table 11 and Table 12 no common genes (between most 

significant) were found between cows and calves. 
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Table 12. SNPs with lowest P-value and their nearest genes for FE traits in cows in GWAS. 

     REFERENCE 

Ch Marker Trait QTL Function Author 
Associated 

trait Specie 
2 BTB-

00093493 
RFI GRB14* Insulin receptor 

regulation 
   

8 ARS-BFGL-
NGS-17993 

RFI PRUNE2*  Apoptotic process Lima et al. 
(2016) 

RFI Nellore  

   GCNT1* Glycoprotein 
biosynthetic 

   
 

 BTB-
00631715 

RFI FOXB2* Anatomical 
structure 

   

9 BTB-
00389188 

ROFC TRAPPC3L
*   

Golgi vesicle-
mediated transport 

   

   CALHM6*   cation channel 
activity 

   

   CALHM5*   cation channel 
activity 

   

13 ARS-BFGL-
NGS-63663 

RFI CNBD2* spermatogenesis 
 

   

   EPB41L1*   actomyosin and 
actin organization 

Mudadu et 
al. (2016) 

back fat 
thickness 

Nellore  

 Hapmap540
34-
rs29026486 

FCE PIGU* 
 

Attachment of GPI 
anchor to protein 

   

   NCOA6*  Transcription 
coactivator activity 

Irano et al. 
(2016) 

Scrotal 
circumference 

Nellore  
 

     Júnior et 
al. (2016) 

Back fat 
thickness 

Nellore 

     Olsen et al. 
(2017) 

milk fatty 
acids 

Dairy 
cattle 

      Knutsen et 
al. (2018) 

milk fatty 
acids 

Dairy 
cattle 

   TP53INP2* Autophagosome 
assembly 

1. Irano et 
al. (2016) 

1. scrotal 
circumference 

Nellore  

17 Hapmap483
21-BTA-
40830 

DMI 
RFI 

SPRY1** animal organ 
development 

Zhou et al. 
(2019) 

1. gestation 
length 
 

Xinjiang 
Brown 
cattle 

 Hapmap499
10-BTA-
20754 

DMI 
RFI 

IL21* adaptive immune 
response 

1. Hou et 
al. (2012) 

1. RFI 1.Holste
in cattle 

     Gurgul et 
al. (2019) 

Inmune response Polish 
cattle 

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was within 
200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; when it 
does not present * it means that the SNP was within the gene. 

4.4.2.2. Bayes LASSO association 

For the Bayes LASSO analysis, the comparison was made through the SNP effect and 

the discussion of the results are shown below.  
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Figure 10. FE Manhattan plots from Bayesian-LASSO association. Above the blue line, are 
the SNPs with quantile > 0.999. 

Significant SNPs (quantile> 0.999) for FE traits in Bayes LASSO 

The analyses of this section were performed based on the SNP effect. The additive 

genetic variance of the SNPs was estimated being always <1% (Figure 12). Thus, these results 

were not used in the comparative analyses. Approximately, 35 SNPs with larger effect 

(quantile> 0.999) from each trait were selected, these are shown in Figure 10. For DMI, the 

SNPs identified in calves were distributed on 13 different chromosomes; whereas in cows the 

SNPs were distributed on 17 different chromosomes. Unlike GWAS and random forest, in 

Bayes LASSO 1 SNP in common between calves and cows was found, this SNP was 

Hapmap48117-BTA-90454 and it was found on chromosome 12. For FCE, the SNPs identified 

in calves were distributed on 20 different chromosomes, whereas in cows they were distributed 

on 17 different chromosomes and do not share SNPs between cows and calves. For RFI in 

calves, the SNPs identified were distributed on 21 different chromosomes whereas in cows 

they were found on 15 different chromosomes, one of them also was found in common between 

cows and calves, this SNP was BTA-43831-no-rs and it was found on chromosome 18 (none 

SNP in common was found between cows and calves in GWAS and RF). For ADG in calves, 
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the SNPs were found on 22 different chromosomes. Finally, for cow ROFC, significant SNPs 

were found on 18 different chromosomes. For the interpretation of these results, one aspect to 

consider is that lambda convergence was not too good in both calves and cows (Annex 9 and 

Annex 10). 

Number of SNPs in common between traits (quantile > 0.999) in Bayes LASSO 

In calves, Only DMI and RFI shared two SNPs in common, these SNPs were ARS-BFGL-

NGS-41287 (1) and BTA-86837-no-rs (20). No more SNPs were found in common for other 

traits. 

In cows, DMI had three SNPs in common with FCE, these were ARS-BFGL-NGS-41523 

(2), ARS-BFGL-NGS-103734 (17), and ARS-BFGL-NGS-111019 (28). DMI and RFI had six 

common SNPs, these were BTB-00901654 (8), ARS-BFGL-NGS-85644 (8), BTB-01286081 

(16), BTB-00393938 (16), Hapmap26379-BTA-130999 (17), ARS-BFGL-NGS-75936 (18). 

DMI had two SNPs in common with ROFC, these were ARS-BFGL-NGS-54368 (16) and ARS-

BFGL-NGS-111019 (28). FCE had two SNPs in common with RFI, there were ARS-BFGL-

NGS-95329 (2) and BTB-01195369 (3). FCE had six SNPs in common with ROFC, these were 

BTB-01450068 (4), BTB-00493207 (12), ARS-BFGL-NGS-61425 (15), ARS-BFGL-NGS-

82204 (19), ARS-BFGL-NGS-118018 (19), ARS-BFGL-NGS-111019 (28). RFI had one SNP 

in common with ROFC, this was Hapmap34677-BES4_Contig489_1116 (8). DMI, FCE y 

ROFC had one SNP in common, this was ARS-BFGL-NGS-111019 (28). No more SNPs were 

found in common for other traits and no SNPs were found in common with the equivalent 

comparisons in calves. 

In both cows and calves, DMI and RFI had more common SNPs, while FCE shared more 

SNPs with ROFC only in cows, this differs from the analyses found in GWAS. No SNPs have 

been repeated in the four FE-trait (DMI, FCE, RFI, ADG) in both calves and cows (Figure 11).  
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Figure 11. Venn Diagrams of common SNPs for FE in Bayes LASSO association. SNPs with 
highest effect in the quantile > 0.999 are shown, In the left, SNPs for calves, in the right, SNPs 
for cows. 

Most significant SNPs in calves (quantile > 0.9999) in Bayes LASSO 

In calves, within the SNPs with the most significant effect (q> 0.9999) there were no 

SNPs in common between FE traits, this differs with the traditional GWAS analysis. The 

biological functions in which the genes were involved were diverse. RFI and DMI showed 

association with the immune response, behaviour and bone development; whereas the genes 

most associated with FCE and ADG were involved in cell replication, transport and calcium 

regulation. Each gene and their most associated functions are detailed in Table 13. 

Only one gene associated with RFI was referenced in another study, this gene was 

INSIG2 associated with MILK in Deng et al. (2016). The PCDH7 gene was associated with 

DMI, De Lima et al.  (2017) found a relationship between this gene and RFI (this gene had 

significant activity in the liver). Five other genes that were associated with DMI in this analysis, 

in other studies these were associated with body size, body fat, abomasum displacement, meat 

quality and bone development. Association of FCE with the ARHGAP20 and DOCK1 genes 

was found, the studies of Zhang et al. (2017) and Neupane et al. (2017) associated these genes 

with body size and fertility in heifers respectively. The ATP2B2 gene that in this study was 

associated with ADG, Gonçalves et al. (2018) associates it with beef tenderness in Nellore 

cattle. In general, several significant genes that were appreciated in this analysis, in other 

studies have been associated with production and fertility. The genes found in this study were 

not matched with genes in GWAS analyses; this shows the role and importance of several genes 

within different physiological routes influencing the FE of animals. 
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Table 13. SNPs with the highest effect (quantile > 0.9999) and their nearest genes for FE traits 
in calves in Bayes LASSO. 

     REFERENCE 

Ch Marker Trait QTL 
Associated 
Function Author 

Associated 
trait Specie 

2 ARS-BFGL-
NGS-20993 

RFI INSIG2** Cholesterol 
metabolic process 

Deng et al. 
(2016) 

MILK Chinese 
buffaloes 

 ARS-BFGL-
NGS-88046 

RFI EN1* 
 

Behaviour and 
brain development 

   

   MARCO* Scavenger receptor 
activity 

   

3 Hapmap5006
8-BTA-69023 

RFI BEND5** Transcription, 
DNA-templated 

   

6 BTA-76341-
no-rs 

DMI PCDH7* Cell adhesion 
 

An et al. 
(2020) 

Body size Simmental 
cattle  

     De Lima et 
al.  (2017) 

RFI Nellore 
cattle 

7 Hapmap5356
5-rs29013278 

DMI CETN3** Calcium ion 
binding 

1. Hardie et 
al. (2017) 

Metabolic 
body weight 

Holstein 
cattle 

8 Hapmap4942
4-BTA-
105436 

ADG ROR2 ATP binding    

9 Hapmap4678
0-BTA-18414 

DMI HTR1B** Bone remodeling Duncombe 
(2016) 

Carcass fat 
 

Beef cattle 

12 BTB-
02009715 

DMI SLITRK5* Adult behavior 1. Biffani et 
al. (2014) 

abomasum 
displacement 

Holstein 
cattle 

13 ARS-BFGL-
NGS-23363 

FCE SLC24A3 Calcium ion 
transport 

   

15 Hapmap4119
2-BTA-16797 

FCE ARHGAP2
0* 

Signal transduction 
 

Zhang et al. 
(2017) 

Body size Chinese 
Holstein 

18 ARS-BFGL-
NGS-33562 

DMI WWOX* Cellular response to 
transforming 
growth factor beta 
stimulus 

Lee et al. 
(2018) 

meat colour 
bone  

Korean 
cattle 

    Ramayo-
Caldas et al., 
(2016) 

metabolism 
 

French 
cattle 

22 ARS-BFGL-
NGS-110768 

DMI SLC6A11 Neurotransmitter 
uptake 

   

 ARS-BFGL-
NGS-62254 

ADG ATP2B2 
 

Cellular calcium 
ion homeostasis 

Gonçalves et 
al. (2018) 

Beef 
Tenderness 

Nellore 
cattle 

   SEC13* COPII-coated 
vesicle budding 

   

24 BovineHD40
00000094 

ADG PIK3C3** Autophagosome 
assembly 

   

26 ARS-BFGL-
NGS-74523 

FCE C26H10orf
90** 

Regulation of 
centriole replication 

Neupane et 
al. (2017) 

heifer 
fertility 

Beef cattle 

   DOCK1* Cell migration    
 Hapmap5851

3-rs29024371 
ADG VAX1* Brain development Cai et al. 

(2020) 
Milk and fat 
yield 

Holstein 
cattle 

   KCNK18* Ion transport    
27 ARS-BFGL-

NGS-114154 
RFI PPP1R3B* Carbohydrate 

metabolism  
   

 ARS-BFGL-
NGS-45124 

RFI MCPH1** Cerebral cortex 
development 

   

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was within 
200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; when it 
does not present * it means that the SNP was within the gene. 
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Most significant SNPs in cows (quantile > 0.9999) in Bayes LASSO 

In cows, the most significant SNPs were found on various chromosomes (between 2 and 

28). The functions of the nearest genes were involved with various molecular and biological 

routes and processes, and there was no clear pattern that relates these with a specific FE trait. 

However, these genes can be classified as follow: DMI associated genes were involved in 

system nervous, transcription, fertility and cellular maintenance process; FCE associated genes 

were involved in regulatory functions, oxidoreduction and immunity; RFI associated genes 

were involved in ionic transport and various cellular functions, and ROFC-associated genes 

were involved in the development of the central nervous system, protein localization and 

activation. Between the most significant SNPs, no marker shared between FE traits were found. 

From the SNPs whit the highest effect, seven referenced genes have been found in other 

studies. However, none have been directly associated with FE traits. The NCKAP5, TBCK and 

NPNT genes, which in this study were found to be significant for RFI, the first has been 

referenced by Wu et al. (2016) in association with feet and legs disorders in multi-breed cattle, 

and the other two have been referenced by Carvalho et al. (2020) in association with muscle 

tissues and cartilage development in Nellore cattle. The USP24, NCOA6, TP53INP2 and PSAP 

genes in this study were associated with FCE; Cai et al. (2020), Olsen et al. (2017), Irano et al. 

(2016) and Guo et al. (2016) associated these genes with milk yield (dairy cattle), milk fatty 

acids (dairy cattle), scrotal circumference (Nellore cattle) and meat quality (Simmental cattle), 

respectively. The CDH2 gene was significant for ROFC and Zhou et al. (2019) relates it to 

milk production in dual-purpose cattle. Traditional GWAS with Bayes LASSO models match 

one SNP, this was Hapmap54034-rs29026486 and it was significant for FCE in cows. 



 61 

Table 14. SNPs with the highest effect (quantile > 0.9999) and their nearest genes for FE traits 
in cows in Bayes LASSO. 

     REFERENCE 

Ch Marker Trait QTL 
Associated 
Function Author 

Associated 
trait Specie 

2 ARS-BFGL-
NGS-115279 

RFI NCKAP
5** 

microtubule 
formation 

Wu et al. 
(2016) 

feet and legs 
disorders 

Multi-
breed 
cattle 

 ARS-BFGL-
NGS-95329 

RFI DPP10** ion channel binding    

3 BTB-
01195369 

FCE USP24** protein 
deubiquitination 

1. Cai et al. 
(2020) 

Milk yield  Holstein 
cattle 

 Hapmap53424
-rs29019267 

FCE CYB561
D1* 

oxidoreductase 
activity 

   

6 ARS-BFGL-
NGS-118535 

RFI TBCK* 
NPNT* 

intracellular protein 
transport 
calcium ion binding 

Carvalho 
et al. 
(2020) 

muscle tissues 
and cartilage 
development 

Nellore 
Cattle 

9 ARS-BFGL-
NGS-29072 

DMI MCHR2
* 

neuropeptide 
signaling  

   

 BTB-
00393938 

DMI FHL5* transcription by 
RNA polymerase II 

   

 BTB-
01286081 

RFI GPR63* G protein-coupled 
receptor signaling 

   

13 Hapmap54034
-rs29026486 

FCE NCOA6* Transcription 
coactivator activity 

Irano et al. 
(2016) 

scrotal 
circumference 

Nellore 
cattle 

     Júnior et 
al. (2016) 

back fat 
thickness 

Nellore 
cattle 

     Olsen et al. 
(2017)  

Milk fatty 
acids 

Dairy 
cattle 

     Knutsen et 
al. (2018) 

milk fatty 
acids 

Dairy 
cattle 

   TP53INP
2* 

Autophagosome 
assembly 

Irano et al. 
(2016) 

scrotal 
circumference 

Nellore 
cattle 

15 ARS-BFGL-
NGS-61425 

FCE SERGEF regulation of 
protein secretion 

   

16 ARS-BFGL-
NGS-15747 

DMI NPHP4*
* 

flagellated sperm 
motility 

   

19 ARS-BFGL-
NGS-109844 

ROFC ALDH3
A2* 
 

central nervous 
system 
development 

   

 ARS-BFGL-
NGS-82204 

ROFC AKAP10
* 

protein localization 
 

   

   ULK2* activation of protein 
kinase activity 

   

24 BovineHD240
0007677 

ROFC CDH2** Calcium-dependent 
cell adhesion 
protein 

1. Zhou et 
al. (2019) 

Fat yield Xinjiang 
Brown 
cattle 

25 ARS-BFGL-
NGS-7049 

DMI KCTD13
* 

cell migration    

28 ARS-BFGL-
NGS-111019 

FCE PSAP* antigen processing 
and presentation 

Guo et al. 
(2016) 

carcass 
composition 
and meat 
quality 

Chinese 
Simmenta
l-cross 
cattle 

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was within 
200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; when it 
does not present * it means that the SNP was within the gene. 
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Proportion of genetic additive variance in Bayes LASSO 

The proportion of the genetic variance explained by the SNPs was estimated. Their 

results presented very low values: 

• The highest value for DMI was 1.69e-09 in calves and 4.98e-09 in cows. 
• The highest value for FCE was 4.19e-10 in calves and 2.71e-09 in cows. 
• The highest value for RFI was 3.89e-09 in calves and 7.41e-09 in cows. 
• The highest value for ADG in calves was 7.86e-10 and the highest value for ROFC in 

cows was 2.13e-09. 

The genetic variance explained can be seen in Figure 12. 

 

 

Figure 12. FE Manhattan plots of proportion of genetic additive variance from Bayesian-
LASSO. 
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4.4.2.3. Random forest 

For the random forest analysis, the comparison was made through the SNP importance 

and the results are shown and discussed below.  

 

Figure 13. FE Manhattan plots from random forest association. Above the blue line are the 
SNPs with quantile > 0.999. 

Significant SNPs (quantile> 0.999) for FE traits in random forest 

Approximately the 35 more important SNPs from each trait were selected (Figure 13). 

For DMI, the SNPs identified in calves were dispersed on 13 different chromosomes; in cows, 

the SNPs were also distributed on 13 chromosomes but different from those on calves. For 

FCE, the SNPs identified in calves were founded on 19 different chromosomes, whereas in 

cows they were distributed on 15 different chromosomes. For RFI in calves, the SNPs 

identified were distributed on 16 different chromosomes; whereas in cows they were found on 

16 different chromosomes. For ADG in calves, the SNPs were found on 18 different 

chromosomes. Finally, for ROFC in cows, the most important SNPs were found on 16 different 

chromosomes. 
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Number of SNPs in common between traits (quantile > 0.999) in random forest 

In calves, DMI and RFI had twenty-two SNPs in common, these were ARS-BFGL-NGS-

98459 (1), BTA-114651-no-rs (1), BTB-00032205 (1), Hapmap41227-BTA-32644 (1), 

Hapmap39468-BTA-120746 (1), BTB-00031796 (1), ARS-BFGL-NGS-26880 (1), 

Hapmap34848-BES1_Contig523_1341 (2), BTB-01330347 (4), ARS-BFGL-NGS-94147 (7), 

ARS-BFGL-NGS-57673 (8), ARS-BFGL-NGS-105601 (8), Hapmap45972-BTA-102617 (8), 

BTB-01364009 (8), BTA-119672-no-rs (11), Hapmap41707-BTA-99303 (13), ARS-BFGL-

NGS-100055 (14), ARS-BFGL-NGS-36291 (19), ARS-BFGL-NGS-20300 (20), ARS-BFGL-

NGS-17910 (20), Hapmap60719-rs29027054 (20), and Hapmap24609-BTC-015462 (25). 

DMI and ADG had one SNP in common, this was BTB-01630036 (11). FCE and ADG had 

sixteen SNPs in common, these were ARS-BFGL-BAC-31482 (1), ARS-BFGL-NGS-118362 

(2), Hapmap25108-BTA-18447 (4), ARS-BFGL-NGS-70470 (6), ARS-BFGL-BAC-12872 

(10), ARS-BFGL-NGS-103742 (10), ARS-BFGL-NGS-31962 (10), ARS-BFGL-NGS-79766 

(10), Hapmap44164-BTA-92933 (11), ARS-BFGL-BAC-15043 (12), Hapmap52923-

rs29015102 (13), ARS-BFGL-NGS-113153 (17), ARS-BFGL-NGS-4366 (17), ARS-BFGL-

NGS-110727 (28), Hapmap60788-rs29017234 (X), Hapmap59288-rs29021774 (X). No more 

SNPs were found in common for other traits. 

In cows, FCE and RFI had two SNPs in common, these were BTB-00283498 (6) and 

BTB-00770436 (20). FCE and ROFC had twelve SNPs in common, these were BTB-01558306 

(7), ARS-BFGL-NGS-108870 (7), Hapmap47162-BTA-103817 (7), ARS-BFGL-NGS-201 

(7), BTB-01182727 (9), ARS-BFGL-NGS-113647 (13), ARS-BFGL-NGS-118018 (19), ARS-

BFGL-NGS-109844 (19), BTB-00770436 (20), UA-IFASA-6258 (21), Hapmap47360-BTA-

63966 (28), Hapmap60265-rs29024291 (32). FCE, RFI and ROFC had one SNP in common, 

this was BTB-00770436 (20). No more SNPs were found in common for other traits and no 

SNPs were found in common with the equivalent comparisons in calves. 

In calves DMI and RFI had more common SNPs, and FCE had more SNPs in common 

with ADG, whereas in cows only FCE with ROFC share more common SNPs. (Figure 14). 
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Figure 14. Venn Diagrams for common SNPs for FE in random forest association. SNPs with 
highest effect in the quantile > 0.999 are shown, In the left, SNPs for calves, in the right, SNPs 
for cows. 

Most significant SNPs in calves (quantile > 0.9999) in random forest 

The closest genes to the most important SNPs for FE traits were selected and they were 

detailed in Table 15, these were distributed between chromosomes 1 and 20.  DMI and RFI 

share three genes in common: SYK, HGE1 and DEPDC1B; of which, the first has been 

referenced by Buitenhuis et al. (2014) and associates it with milk fat. FCE and ADG share two 

genes in common: MDGA2 and MBNL2, and curiously, Yao et al. (2013) associate the first 

one with RFI in Holstein cattle, this shows the similarity between efficiency traits in calves 

even between FCE and RFI. The CAVIN4 gene had a significant effect on DMI, Uemoto et al. 

(2020) also associate this gene with DMI and CH4 per DMI units (CH4 / DMI) in Japanese 

Black steers. The LRRTM4 and GNAS genes were associated to ADG and these genes were 

associated with milk and fat production by Li et al. (2014) and Cole et al. (2011), respectively. 

Cai et al. (2020) also associate the LRRTM4 gene with milk yield and mastitis resistance. The 

GNAS gene was also significant in the analysis of traditional GWAS in calves.  

In general, the genes associated with DMI and RFI were involved in fat cell 

differentiation, immune response, organ development, and cell maintenance functions. Genes 

related to FCE and ADG were involved in nervous system development, ion binding and 

transduction functions. So, as in previous analyses, FCE and ADG were referenced with 

association studies on productive traits, and one observation was that some RFI and DMI 

markers were also associated with productive traits. 
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Table 15. The most important SNPs and their nearest genes (quantile > 0.9999) for FE traits 
in calves in random forest association. 

     REFERENCE 

Ch Marker Trait QTL 
Associated 
function Author 

Associated 
trait Specie 

1 BTB-00030894 FCE GAP43 Nervous system 
development 

   

 BTB-00031796 DMI 
RFI 

OSBPL11 Fat cell 
differentiation 

   

8 ARS-BFGL-
NGS-105601 

RFI SYK Immune 
response 

Buitenhuis et 
al. (2014) 

Milk fat Danish 
Holstein 

 Hapmap45972-
BTA-102617 

DMI SYK** Immune 
response 

Buitenhuis et 
al. (2014) 

Milk fat 
 

Danish 
Holstein 

   DIRAS2* Signal 
transduction 

   

 BTB-01364009 DMI CAVIN4* Muscle organ 
development 

Uemoto et al. 
(2020) 

CH4/DMI 
and DMI 

Japanese 
steers 

10 ARS-BFGL-
NGS-103742 

FCE 
ADG 

MDGA2 NA Yao et al. 
(2013) 

RFI Holstein 
cattle 

11 Hapmap44164-
BTA-92933 

ADG LRRTM4* Neurexins and 
neuroligins 
Relation with 

Li et al. 
(2017) 

Yearling 
weight 

Korean 
cattle 

    Cai et al. 
(2020) 

Milk yield 
and mastitis 
resistance 

Holstein 
cattle 

     Li et al. 
(2014) 

Saturated 
fatty acid 

Chinese 
Holstein 

12 ARS-BFGL-
BAC-15043 

FCE 
ADG 

MBNL2* Metal ion 
binding 

   

13 Hapmap49963-
BTA-33040 

ADG GNAS* Molecular 
transducer 

Cole et al. 
(2011) 

Milk and fat Holstein 
cattle 

17 ARS-BFGL-
NGS-113153 

FCE NOC4L Protein 
glycosylation 

   

20 ARS-BFGL-
NGS-17910 

RFI NDUFAF2
* 

Cellular 
respiration 

   

 Hapmap60719-
rs29027054 

DMI 
RFI 

DEPDC1B
* 

Cell migration    

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was 
within 200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; 
when it does not present * it means that the SNP was within the gene. 

Most significant SNPs in cows (quantile > 0.9999) in random forest 

In cows, the closest genes to the most important markers on FE traits were identified and 

they were detailed in Table 16. DMI and RFI did not match SNPs in this category and their 

associated genes were involved in behaviour, ion binding, transcription, and immune response 

functions. Particularly the IL10RA and IL21 genes, which have been referenced by Gurgul et 

al. (2019) and Salleh et al. (2018) who related these genes with RFI and the immune system. 

FCE shares three genes in common with ROFC, these were TSPAN17, EIF4E1B and 

TSPAN17, and they were associated with protein maturation, transduction and cell 

maintenance. Two common SNPs were found between traditional GWAS and random forest 
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association in cows; these markers were BTB-00631715 and Hapmap49910-BTA-20754, and 

their nearby genes were FOXB2 and IL21, respectively. In Table 16, some genes associated 

with DMI were compared to studies that associate them to fatty acids in milk, weaning weight, 

weight carcasses and feed intake. 

Table 16. The most important SNPs and their nearest genes (quantile > 0.9999) for FE traits 
in cows in random forest association. 

     REFERENCE 

Ch Marker Trait QTL 
Associated 
function Author Associated trait Specie 

1 BTB-
00037209 

DMI EHHADH* 
 

Fatty acid beta-
oxidation 

Shi et al. 
(2019) 

milk fatty acids Chinese 
Holstein 

   C1H3orf70* Circadian 
behaviour 

   

5 ARS-BFGL-
NGS-3503 

RFI ATXN7L3B
** 

Regulation of 
gene expression 

Li et al. 
(2017) 

weaning weight Korean 
cattle 

   CAPS2** Calcium ion 
binding 

   

7 ARS-BFGL-
NGS-108870 

FCE 
ROFC 

TSPAN17* Protein 
maturation 

   

 ARS-BFGL-
NGS-201 

ROFC STK32A Intracellular 
transduction 

   

 BTB-
01558306 

FCE 
ROFC 

EIF4E1B RNA 7-
methylguanosin
e cap binding 

   

8 BTB-
00631715 

RFI FOXB2* Anatomical 
structure 

   

11 BTB-
01763350 

DMI CNOT11* Deadenylation 
of mRNA 

   

13 ARS-BFGL-
NGS-113647 

FCE NFATC2* DNA binding    

 BTB-
01329459 

DMI ZNF217* Regulation of 
transcription 

Mullen et 
al. (2011) 

increased cow 
carcass weight 

Holstein 
cattle 

   TSHZ2* Transcription by 
RNA 
polymerase II 

Gan et al. 
(2019) 

triiodothyronine 
concentrations 

Holstein 
cattle 

    Lindholm
-Perry et 
al. (2016) 

Feed Intake beef 
steers 

15 BTB-
00590603 

RFI IL10RA* Immune 
response 

Salleh et 
al. (2018) 

 RFI Jersey 
cattle 

     Gurgul et 
al. (2019) 

Immune 
response 

Polish 
cattle 

     Zhou et 
al. (2018) 

Immune 
response 

Holstein 
cattle 

   TMPRSS4* Scavenger 
receptor activity 

   

17 Hapmap4991
0-BTA-20754 

RFI IL21** Immune 
response 

1. Hou et 
al. (2012) 

RFI Holstein 
cattle 

     Gurgul et 
al. (2019) 

Immune 
response 

Polish 
cattle 

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was 
within 200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; 
when it does not present * it means that the SNP was within the gene. 
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4.4.2.4. Analysis between models 

Comparative analysis between models was performed. With the significant SNPs at 𝑃 <

𝛼 = 0.001 in GWAS and quantile effect and importance > 0.999 in Bayes LASSO and RF, 

respectively.  

Coincident SNPs between GWAS and Bayes LASSO 

In calves:  

• for DMI, three common SNPs were found, these SNPs (and their BTA) were 

Hapmap43629-BTA-60810 (1), Hapmap51428-BTA-26864 (1) and BTA-86837-no-rs 

(20).  

• For RFI, two common SNPs were found: Hapmap41613-BTA-67108 (19) and BTA-

86837-no-rs (20), the last one was also coincident with DMI.  

• There were no common SNPs between FCE and ADG. 

In cows: 

• For DMI, five common SNPs (BTA) were found, these were ARS-BFGL-NGS-29072 

(9), BTB-01286081 (9), BTB-00393938 (9), Hapmap48321-BTA-40830 (17) and ARS-

BFGL-NGS-18633 (28); of which, the second and third one were at a distance of 

approximately 62 kb. 

• For FCE , ten SNPs (BTA) were found, these were BTB-01195369 (3), BTB-00493207 

(12), ARS-BFGL-BAC-13721 (12), Hapmap54034-rs29026486 (13), BTA-28181-no-rs 

(13), ARS-BFGL-NGS-61425 (15), ARS-BFGL-NGS-110736 (15), ARS-BFGL-BAC-

33541 (15), Hapmap48340-BTA-43615 (18) and ARS- BFGL-NGS-111019 (28); of 

which, the seventh and eighth one were located at a distance of approximately 70 kb.  

• Eight SNPs (BTA) were found for RFI, these were BTB-00035766 (1), BTB-01141030 

(2), UA-IFASA-4367 (8), ARS-BFGL-NGS-85644 (8), BTB-00631737 (8), BTB-

00631715 (8), Hapmap34677-BES4_Contig489_1116 (8) and Hapmap26379-BTA-

130999 (16); of which, the fifth and sixth one were located at a distance of 

approximately 24 kb.  

• Seven SNPs (BTA) were found for ROFC, these were Hapmap45649-BTA-29691 (2), 

ARS-BFGL-NGS-118243 (3), Hapmap35523-SCAFFOLD5083_24631 (13), ARS-

BFGL-NGS-61425 (15), ARS-BFGL-NGS-82204 (19), ARS-BFGL-NGS-118018 (19) 
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and ARS-BFGL-NGS-109844 (19); of which, the distance between the last three was 

less than 200 kb; besides, the marker ARS-BFGL-NGS-61425 was also coincident for 

FCE.  

The common markers between these two models in cows was larger than in calves, 

probably because the association in calves had a smaller sample size (n = 30). 

Common SNPs between GWAS and random forest 

In calves:  

• for DMI, one common SNPs (BTA) was found, this was BTB-00031796 (1).  

• For FCE no common SNPs were found. 

• For RFI, one common SNP was found, this was ARS-BFGL-NGS-116361 (1).  

• For ADG, two common SNPs were found, these were Hapmap49963-BTA-33040 (13) 

and ARS-BFGL-NGS-21830 (13), and they were located at approximately 200 kb apart. 

In cows:  

• For DMI, one common SNP (BTA) was found, this was ARS-BFGL-NGS-89583 (11).  

• There were no common SNPs for FCE.  

• For RFI, nine common SNPs (BTA) were found, these were ARS-BFGL-NGS-17993 

(8), BTB-00631737 (8), BTB-00631715 (8), Hapmap34677-BES4_Contig489_1116 

(8), ARS-BFGL-NGS -117511 (9), ARS-BFGL-NGS-22941 (10), ARS-BFGL-NGS-

63663 (13), Hapmap49910-BTA-20754 (17) and Hapmap39026-BTA-42843 (18), of 

which the second and third were located at approximately 24 kb apart.  

• For ROFC, two common SNPs (BTA) were found, these were ARS-BFGL-NGS-

118018 (19) and ARS-BFGL-NGS-109844 (19), the two were located at approximately 

206 kb apart.  

In this section, it can also be observed that there were more common SNPs between 

models for cows than for calves. 
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Common SNP between Bayes LASSO and random forest 

In calves: 

• Only one SNP in common was found for DMI, this SNPs (BTA) was BTB-00029666 

(1).  

• For the other FE traits, there was no coincidence of SNPs.  

In cows:  

• None common SNP (BTA) was found for DMI.  

• For FCE, three common SNPs were found, these were Hapmap53424-rs29019267 (3), 

ARS-BFGL-NGS-82204 (19) and ARS-BFGL-NGS-118018 (19); the last two were at 

approximately 58 kb.  

• For RFI, four common SNPs (BTA) were found, these were BTB-00631737 (8), BTB-

00631715 (8), Hapmap34677-BES4_Contig489_1116 (8) and ARS-BFGL-NGS-3005 

(10); of which, the first and second one were located at approximately 24 kb between 

them.  

• For ROFC, two common SNPs were found, these were ARS-BFGL-NGS-118018 (19) 

and ARS-BFGL-NGS-109844 (19), these were located at approximately 106 kb between 

them; besides, ARS-BFGL-NGS-118018 was also significant for FCE. 

As in the two previous comparisons, cows presented more coincidence of SNPs between 

models than calves. These results were summarized in Figure 15. 
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Figure 15. SNPs in common between models and between groups. SNPs with alpha <0.001 
and quantile > 0.999 are shown in blue. In the upper-right and lower-left corner, the SNPs in 
common between cows and calves are shown. 

In a general, the common SNPs between models was scarce in calves, while in cows the 

GWAS and Bayes LASSO models share more SNPs in common. Furthermore, the SNPs shared 

between cows and calves was practically null and only in the Bayes LASSO, two shared SNPs 

(BTA) were found, these were: 

• Hapmap48117-BTA-90454, this was located on chromosome 12, the closest gene 

was ENSBTAG00000053445 (approximately 200kb away) and its associated 

biological process was the negative regulation of phosphatase activity.  

• BTA-43831-no-rs, this was found on chromosome 18, it was found within the 

LOC785907 gene and its associated molecular function is symporter activity. 

 

COWS
GWAS Bayes RF GWAS Bayes RF

CALVES

DM
I
FC
E

RF
I

AD
G

DM
I
FC
E

RF
I

AD
G

DM
I
FC
E

RF
I

AD
G

DM
I
FC
E

RF
I

RO
FC

DM
I
FC
E

RF
I

RO
FC

DM
I
FC
E

RF
I

RO
FC

DMI 28 0 16 1 3 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

FCE 35 0 14 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

RFI 25 0 2 0 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

ADG 22 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

DMI 36 0 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

FCE 36 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

RFI 36 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ADG 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMI 39 0 22 1 0 0 0 0 0 0 0 0 0 0 0 0

FCE 38 0 16 0 1 0 0 0 0 0 0 0 0 0 0

RFI 41 0 0 0 0 0 0 0 0 0 0 0 0 0

ADG 37 0 1 0 0 0 0 0 0 0 0 0 0

DMI 12 0 2 0 5 0 2 0 1 0 1 0

FCE 34 0 7 1 10 1 5 0 0 0 0

RFI 44 0 6 1 8 1 0 0 9 0

ROFC 24 0 4 0 7 0 3 0 2

DMI 96 3 6 2 0 0 0 0

FCE 67 2 6 0 3 1 1

RFI 60 1 0 0 4 0

ROFC 77 0 3 1 2

DMI 36 0 0 0

FCE 36 1 12

RFI 36 2

ROFC 36

GWAS Bayes RF GWAS Bayes RF

CO
W
S

CA
LV
ES

GW
AS

Ba
ye
s

RF
GW

AS
Ba

ye
s

RF

W
GA

S
Ba

ye
s

RF
GW

AS
Ba

ye
s

RF



 72 

SNPs in common in the three statistical models 

SNPs were selected at alpha <0.001, effect at quantile > 0.999 and importance at quantile 

> 0.999 for GWAS, BL and RF, respectively. Two points were reported as relevant. 

• Only three common SNPs for RFI and two for ROFC were recurrent in cows in the 

three statistical models (detailed in Table 17) These genes have not been found in other 

association studies related to food production or efficiency.  

• When SNPs were compared between cows and calves, none were common between FE 

traits. 

 

Figure 16. Common SNPs in the three models, with alpha <0.001 and quantile 0.999. The 
upper right quadrant shows the common SNPs between cows and calves. 

Table 17. SNPs in common in the three statistical models. 

Ch Marker Trait QTL Associated function 
8 Hapmap34677-

BES4_Contig489_1116 
RFI FAM205C** 

 
Protein coding 

   ENSBTAG0000
0050015* 

Peptidyl-prolyl cis-trans isomerase 
activity 

 BTB-00631715 RFI FOXB2* Anatomical structure 
 BTB-00631737 RFI FOXB2* Anatomical structure 
19 ARS-BFGL-NGS-118018 ROFC ALKBH5 cell differentiation 

mRNA processing 
spermatogenesis 

 ARS-BFGL-NGS-109844 ROFC TOM1L2 intracellular protein transport 
negative regulation of mitotic nuclear 
division 

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was 
within 200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; 
when it does not present * it means that the SNP was within the gene. 

DMI FCE RFI ADG DMI FCE RFI ROFC

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
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4.5. Genome wide prediction 

As mentioned above (item 3.6); predictions in cows were implemented using genomic 

information from calves and their phenotypes. To evaluate the accuracy of the results, two 

evaluations were developed, 1) the correlation between the cows GEBV and their phenotypes 

(corrected by systematic effects) and 2) the mean squared error (MSE) between the cows 

GEBV and their corrected phenotype.  

It should be remembered that the phenotypes used in the GBLUP were rescaled between 0.02 

and 1 (the same ones used in these evaluations). The results are detailed below in Table 18 and 

Figure 17 and Figure 18. 

4.5.1. Accuracy of prediction 

Table 18. Correlation and MSE from genomic prediction of feed efficiency in cows 

 r  MSE 
DMI -0.00484 0.3262046 

FCE -0.0705 0.2428647 

RFI 0.0421 0.3567229 

r = correlation between the GEBV and phenotype (corrected by systematic effects) in cows; MSE = mean squared 
error between the GEBV and scaled phenotype (corrected by systematic effects) in cows. 

Correlations between GEBV and phenotype: 

Genomic predictions showed unfavourable accuracy for cows; the correlation between 

cows GEBV and their corrected phenotype were -0.005, -0.071, and -0.042 for DMI, FCE, and 

RFI, respectively. Figure 17 show that, cow GEBV (estimated with the genotype and 

phenotype from calves) were no related with their phenotype. These results suggest that FE 

traits in calves were different from their homologous in adult cows. 
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Figure 17. Scatter plots for GEBV (with calves genomic data as proxies) with scaled and 
corrected phenotype. In grey colour the relation between the calves GEBV with their phenotype 
is observed, these values make a visual reference for better visualization of the results in cows. 

These studies were not conducted in early calves, and do not coincide with other 

prediction with heifers; Davis et al., (2014) showed that it was possible to discriminate by RFI 

in lactating cows from the estimated GEBV in growing heifers. Macdonald et al. (2014b) 

conclude that calves diverging for RFI during growth (6-9 months of age) were also divergent 

for RFI during lactation and although the difference in lactation was small, this was statistically 

significant. The calves in this study were in early life-stages, so that ruminal development was 

limited, and this could explain the genetic difference of FE traits between cows and calves. 

 

 

 

−0.10

−0.05

0.00

0.05

0.00 0.25 0.50 0.75 1.00
Phenotype

G
EB

V

CALVES COWS

DMI

−0.06

−0.03

0.00

0.03

0.00 0.25 0.50 0.75 1.00
Phenotype

G
EB

V

CALVES COWS

FCE

−0.2

−0.1

0.0

0.1

0.00 0.25 0.50 0.75 1.00
Phenotype

G
EB

V

CALVES COWS

RFI

COWS CALVES 



 75 

Correlations between GEBV and phenotype: 

Without knowing the true genetic value, the MSE was estimated using the predicted 

genetic value (GEBV) and their corrected phenotype. The results showed unfavourable 

accuracies. Figure 18 shows the phenotype, the GEBV and the MSE. When comparing these 

three boxplots, the GEBV had values close to zero and their variance was reduced. 

Furthermore, the MSE was very high which suggests that the genes controlling the expression 

of FE in calves cannot explain the genetic expression of FE in cows. 

 

 

Figure 18. Boxplot of Phenotype (scaled and corrected by systematic effects), GEBV 
(predicted with proxies from calves), and MSE (between phenotype and GEBV) of FE in cows. 
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5. CONCLUSIONS 

Phenotypic correlations of FE traits 

• In general, feed efficiency related traits showed strong phenotypic correlations between 

them, although not close to 1, suggesting that each trait measures different FE aspects. 

Stronger correlation was found in calves than in cows, suggesting that FE in calves is 

biologically less complex.  

Phenotypic prediction of FE traits from proxies in cows 

• Predicting FE in cows is cumbersome, but a moderate predictive accuracy is possible 

applying the right models. The best predictor models were Bagging (r = 0.58; MSE = 

3.52) for DMI, a linear model for FCE (r = 0.85; MSE = 0.018), and NNET for ROFC 

(r = 0.99; MSE = 0.13). 

Variance component estimations for FE traits. 

• Heritabilities were high and their standard deviation were moderate for all traits, 

although slightly larger estimates were found in calves, suggesting that FE in calves is 

less influenced by the environment. 

• Genetic correlations between FE traits in calves were higher than in cows, although 

they were estimated with large uncertainty. 

Genomic analysis involved in calf and cow FE. 

• The GWAS showed few common SNPs associated with several traits in calves or cows. 

The genes close to the most significant SNPs involved many biological functions, 

although, the genes associated with FE showed relationship with immunity response, 

ion transport, cell development and enzyme functions.  

• Only one SNP for DMI and one SNP for RFI were shared between cows and calves. 

These were Hapmap48117-BTA-90454 and BTA-43831-no-rs, their nearest genes were 

ENSBTAG00000053445 and LOC785907, and their associated functions were the 

negative regulation of phosphatase activity and symporter activity, respectively 

• Results in this thesis suggest that FE traits in cows and calves are regulated by different 

genes. 
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Genomic prediction of FE traits from early life proxies. 

• Accuracies of genomic predictions for FE traits were low, the correlations between 

GEBV and corrected phenotype were -0.005, -0.071 and -0.042 for DMI, FCE and RFI, 

respectively. Therefore, it was not possible to predict FE traits from early life proxies. 

This emphasizes that FE is controlled by different genes in cows and calves. 

General conclusion.  

• Based on the results obtained in this study, it seems that the statistical genetic 

architecture that controls FE in calves and cows is different, making it difficult to use 

information from calves to predict FE in adult cows. Although the sample size of this 

study is small and the strength of the evidence is low, it is suggested to verify these 

results in a larger data set. 
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7. ANNEXES 

Annex 1. FE-traits distribution.  

 

Annex 2. Productive traits distribution in cows. 
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Annex 3. Neural networks model for FE in cows. 

 

Annex 4. t test for determinate the difference between predictor models from phenotypic 

prediction. P adjust method: holm. Phenotypic predictions of FE traits were development using 

four predictive models. The accuracy of predictions was evaluated through cross validation 

using the Pearson correlation between real and predicted value. These annexes show the test 

development to measure the statistical difference between models in the FE traits. 

1. p-value for statistical difference between predictive models for DMI 

     Bagging   K-NN   LM 

  K-NN   0.00149   --   -- 

  LM   0.762   0.07223   -- 

  NNET   1.037e-05   0.762   0.002144 

 
2. p-value for statistical difference between predictive models for FCE 

      Bagging   K-NN   LM 

  K-NN   1.18e-13   --   -- 

  LM   0.0005042   1.827e-27   -- 

  NNET   0.08167   1.537e-20   0.08167 
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3. p-value for statistical difference between predictive models in RFI 

     Bagging   K-NN   LM 

  K-NN   4.692e-15   --   -- 

  LM   4.692e-15   0.9954   -- 

  NNET   0.1398   2.941e-21   2.941e-21 

 

4. p-value for statistical difference between predictive models in ROFC 

 Bagging K-NN LM 

K-NN 7.041e-39 -- -- 

LM 1.488e-23 1.835e-89 -- 

NNET 1.995e-24 1.244e-90 0.8003 

 

Annex 5. Gelman-Rubin diagnostic for MCMC convergence: Gelman-Rubin diagnostic for 

convergence was used through the coda package by R. It tests a difference between the variance 

within some chains and the variance between chains by a value called Potential scale reduction 

factors. Lower values are desirables. Random traits were selected for the Gelman diagnostic. 

There was no difference in the diagnosis of convergence between 100 k iterations and 1 M 

iterations. Convergence chain was also appreciated below. 

 

 

 

Interactions: 100K 

Traits: (FCE-RFI) 

Model: VCA (ℎ!!"#, ℎ!$!%) 

Group: cows 

 

Potential scale reduction factors: 

Point est.: 1.04 

Upper C: I.: 1.05 

Interactions: 100K 

Traits: (FCE-RFI) 

Model: VCA (ℎ!!"#, ℎ!$!%) 

Group: calves 

 

Potential scale reduction factors: 

Point est.: 1.05  

Upper C: I.: 1.15 

Interactions: 1M 

Traits: (FCE-RFI) 

Model: VCA (ℎ!!"#, ℎ!$!%) 

Group: calves 

 

Potential scale reduction factors: 

Point est.: 1.04  

Upper C: I.: 1.13 

Interactions: 1M 

Traits: (FCE-RFI) 

Model: VCA (ℎ!!"#, ℎ!$!%) 

Group: cows 

 

Potential scale reduction factors: 

Point est.: 1.05  

Upper C: I.: 1.16 
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Annex 6. Heatmap from the genomic relationship matrix (100x100), the colour represents the 

relation between animals. In red is the ID from the animals. Cows are more related to each 

other and calves are more related to each other. 
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Annex 7. Gibb Samplings interactions and convergence. Random traits were taken to evaluate 

the convergence in the estimation of heritability and genetic correlations, there was 

convergence, however the sd was very large. 

 

 

Annex 8. Priors for lambda in Bayes LASSO associations. Lambda values were selected 

considering posterior 𝜎U( and 𝜆 distributions, and the correlation between GEBV and phenotype 

(Phe). 

 CALVES COWS 
Lambda DMI FCE RFI ADG DMI FCE RFI ROFC 

Type Random Random Random Random Random Random Random Random 
Shape 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 
Rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 
Value 40 40 40 40 20 40 20 40 
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Annex 9. Posteriori distributions for error variance (𝜎U( ) and lambda (𝜆), marker effects and 

correlation between predictions values (GEBV) in y axis, and phenotype (Phe) in x axis from 

Bayes LASSO in calves.  
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Annex 10. Posteriori distributions for error variance (𝜎U( ) and lambda (𝜆), marker effects and 

correlation between predictions values (GEBV) in y axis, and phenotype (Phe) in x axis from 

Bayes LASSO in cows. 
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