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RESUMEN

La demanda creciente de alimento debido al aumento de la poblacion requiere de una
ganaderia mas eficiente y sostenible. En la ganaderia lechera el 50-70% de los costos de
produccion se deben a la alimentacidon, por lo que es necesario optimizar los procesos y
seleccionar animales con alto nivel productivo y bajo consumo, es decir, con alta eficiencia
alimentaria (EA). No todas las granjas pueden estimar EA en su rebafio porque su medicion es
costosa; por ello, la genética juega un papel importante en la seleccion y prediccion de este
caracter. Este estudio intenta predecir la EA en vacas lactantes usando proxis de vacas adultas
y terneras en edades tempranas, ademas se realiza un analisis genético de la EA en ambos

grupos, vacas y terneras.

Se estimaron y analizaron cuatro rasgos relacionados con la EA. En vacas: ingesta de
materia seca (IMS), eficiencia de conversion de alimento (ECA), consumo residual (CR) y
beneficio econdmico bruto (BB). En terneras: IMS, ECA, CR y ganancia de peso diario (GPD).
Para los andlisis se utilizaron dos grupos, 1558 registros correspondientes a 104 vacas en
produccion, y 1141 registros correspondientes a 63 terneras de edades tempranas. Se realizd
un analisis de prediccion de los fenotipos de los caracteres relacionados con EA usando
regresion lineal (LM) y tres algoritmos de aprendizaje automatico: K-vecinos mas cercanos
(K-NN), redes neuronales (NNET), y arboles predictores (Bagging). La prediccion se evalud
usando validacion cruzada. Se estimaron los parametros genéticos de cada uno de los caracteres
usando inferencia bayesiana (heredabilidad y correlacion genética). Se realizé un estudio de
asociacion del genoma completo a través de una regresion lineal frecuentista (GWAS), LASSO
bayesiano, y bosques aleatorios. Finalmente se realizé una prediccion gendmica usando edades
tempranas como proxis y GBLUP como modelo predictor, la precision se evaludé con
correlacion genética y error cuadratico medio entre el valor de cria gendmico estimado (GEBV)

y el fenotipo corregido.

Se obtuvieron correlaciones fenotipicas altas entre IMS y CR tanto en vacas como en
terneras, mientras ECA y BB mostraron correlaciones altas entre si. En la prediccion fenotipica,
el método estadistico con mayor precision para IMS fue Bagging, para ECA fue LM y para BB
fue NNET, mientras que para CR las precisiones fueron muy bajas con todos los modelos. Las

estimas de heredabilidad fueron altas para todos los caracteres, sin embargo, las correlaciones

IX



genéticas entre los caracteres de vacas y terneras fueron bajas. En los andlisis de asociacion se
detectaron algunas regiones gendmicas asociadas simultdneamente a varios caracteres de EA,
sobre todo entre IMS y CR, y entre ECA y BB (GDP en terneras). En vacas se observo una
mayor coincidencia de regiones comunes entre ambos métodos paramétricos (GWAS y
LASSO). Finalmente, las predicciones genéticas tuvieron precisiones muy bajas. Estos
resultados sugieren que la EA a edades tempranas esta controlada por diferentes genes que en
la EA en vacas en lactacion. Debido a que el poder estadistico del tamafio de la muestra es muy

bajo (<10%), no se pueden asumir conclusiones claras en los andlisis gendmicos.
Palabras Clave:

Eficiencia Alimentaria, GWAS, predicciéon gendmica, ingesta de materia seca, seleccion

gendmica.



ABSTRACT

The growing demand for food due to the increase in population requires a more efficient
and sustainable cattle industry. In dairy cattle, 50-70% of production costs are due to feeding,
so it is necessary to optimize processes and select animals with high production and low intake,
that is, high feed efficiency (FE). FE is an expensive and difficult trait to measure; therefore,
genetics plays an important role in the selection and prediction of this trait. This study tries to
predict FE in lactating cows using proxies from adult cows and calves at early ages. Besides,

genetic analysis of FE was performed in both calves and cows.

Four traits associated with FE were estimated and analysed. In cows: dry matter intake
(DMI), feed conversion efficiency (FCE), residual feed intake (RFI) and return over feed cost
(ROFC). In calves: DMI, FCE, RFI and average daily gain (ADG). Two groups were used for
the analyses, 1558 records from 104 Holstein cows in production, and 1141 records from 63
Holstein calves of early ages. Prediction analysis of FE-phenotypes was performed using the
statistical linear regression model (LM) and three machine learning algorithms: k-nearest
neighbours (K-NN), neural networks (NNET), and predictive trees (Bagging). The prediction
was evaluated using cross-validation. The genetic parameters of FE traits were estimated using
Bayesian inference (heritability and genetic correlation). Genome-wide association studies
were performed using a frequentist linear regression (GWAS), Bayesian LASSO, and random
forest. Finally, genomic predictions in cows were development using early ages as proxies and
GBLUP as predictor model, the accuracies were evaluated with genetic correlation and mean
square error between the estimated genomic breeding value (GEBV) and the corrected

phenotype.

High phenotypic correlations were obtained between DMI and RFI in both cows and
calves, whereas FCE and ROFC showed to be highly correlated. In phenotypic prediction, the
statistical method with the highest accuracy for DMI was the Bagging method, for FCE the
LM method and for ROFC the NNET method, while RFI presented very low precision with all
models. Heritability estimates were high for all traits, however, genetic correlations of FE traits
between cows and calves were low. Some genomic regions associated simultaneously with
many FE traits were detected, especially between DMI and RFI and between FCE and ROFC

(ADG in calves). A greater coincidence of common regions detected between both parametric
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methods was observed. Finally, the genetic predictions had very low accuracy. These results
suggest that FE at earlies ages is controlled by different genes than FE in lactating cows. The
statistical power of the sample size is very low (<10%), then, clear conclusions cannot be
assumed in genomic analyses.

Keywords:

Feed Efficiency, GWAS, genomic prediction, dry matter intake, genomic selection.
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RESUM

La demanda creixent d'aliment degut a l'augment de la poblacié requereix d'una
ramaderia més eficient i sostenible. En la ramaderia lletera el 50-70% dels costos de produccio
es deuen a l'alimentacio, per la qual cosa és necessari optimitzar els processos i seleccionar
animals amb alt nivell productiu i baix consum, ¢€s a dir, amb alta eficiéncia alimentosa (EA).
No totes les granges poden estimar EA en el seu ramat perque el seu mesurament és costos;
per aixo, la genética juga un paper important en la seleccid i prediccio d'aquest caracter. Aquest
estudi intenta predir I'EA en vaques lactants usant proxis de vaques adultes i vedelles en edats

primerenques, a més es realitza una analisi genctica de I'EA en tots dos grups, vaques i vedelles.

Es van estimar i van analitzar quatre trets relacionats amb I'EA. En vaques: ingesta de
mateéria seca (IMS), eficiéncia de conversid d'aliment (ECA), consum residual (CR) i benefici
economic brut (BB). En vedelles: IMS, ECA, CR i guany de pes diari (GPD). Per a les analisis
es van utilitzar dos grups, 1558 registres corresponents a 104 vaques en produccid, i 1141
registres corresponents a 63 vedelles d'edats primerenques. Es va realitzar una analisi de
prediccio dels fenotips dels caracters relacionats amb EA usant regressio lineal (LM) i tres
algorismes d'aprenentatge automatic: K-veins més proxims (K-NN), xarxes neuronals (NNET)
i arbres predictors (Bagging). Es van estimar els parametres genetics de cadascun dels caracters
usant inferéncia bayesiana (heredabilidad i1 correlacié genética). La prediccio es va avaluar
usant validacié creuada. Es va realitzar un estudi d'associacio del genoma complet (GWAS) a
través d'una regressio lineal freqiientista, LASSO bayesia, i boscos aleatoris. Finalment es va
realitzar una prediccié genomica usant edats primerenques com proxis i GBLUP com a model
predictor, la precisi6 es va avaluar amb correlaci6 genetica i error quadratic mitja entre el valor

de cria gendmico estimat (GEBV) i el fenotip corregit.

Es van obtenir correlacions fenotipicas altes entre la IMS i CR tant en vaques com en
vedelles, mentre ECA i BB van mostrar correlacions altes entre si. En la prediccio fenotipica,
el métode estadistic amb menor error quadratic per a IMS va ser el metode de Bagging, per a
ECA el mé¢tode de LM i per a BB el métode de NNET; mentre que CR presente precisions molt
baixes. Les estimes de heredabilidad van ser altes per a tots els caracters; no obstant aixo les
correlacions genétiques entre els caracters de vaques i vedelles van ser baixes. Es van detectar

algunes regions genomiques associades simultaniament a diversos caracters d'EA, sobretot
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entre IMS 1 CR, i entre ECA 1 BB (GDP en vedelles). En vaques es va observar una major
coincidéncia de regions comunes detectats entre tots dos métodes parametrics. Finalment, les
prediccions genétiques van tenir precisions molt baixes. Aquests resultats suggereixen que I'EA
a edats primerenques esta controlada per diferents gens que en I'EA en vaques en lactacio. Pel
fet que el poder estadistic de la grandaria de la mostra €s molt baix (<10%), no es poden assumir

conclusions clares en les analisis genomiques.
Paraules Clau:

Eficiéncia Alimentaria, GWAS, prediccid6 genomica, ingesta de materia seca, seleccid
genomica.
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1. INTRODUCTION

1.1. Brief overview

Currently, dairy cattle faces new challenges to satisfy market demands such as
maintaining profitability and being environmentally friendly. Over time, the cost of raw
materials, especially soybeans and corn have increased, which causes that 50-70% of the cost
of production comes from feeding; this has generated through the genetic and nutrition area,
an interest on improving feed efficiency (FE) that would allow maintaining profits per unit of

production (Bozic et al., 2012; Bach, 2014).

Historically, FE has been estimated through several traits; most of them need to measure
dry matter intake (DMI) for their calculation. DMI is expensive to measure, and therefore it is
challenging to select for. Nevertheless, with the arrival of genomic selection and the variety of
statistical approaches, the prediction of difficult traits to measure has become affordable; this
creates opportunities to integrate these into selection indices. Many studies have been carried

out on cows and heifers; however, studies that incorporate FE in calves at early ages are scarce.

According to the high relevance of genetics in current dairy production, this project aims
to analyse FE in calves and adult cows. Different FE traits will be reviewed, and their prediction
will be studied using statistical models. Phenotypic predictions of FE-traits will be evaluated
using four predictive models. Variance components will be estimated under a Bayesian context
for FE related traits in calves and cows. Then, genome wide associations analyses for FE traits
will be implemented using three regression models in both calves and cows. Finally, FE traits

will be predicted using genome wide information and early life predictors.

1.2. Feed efficiency

Feed efficiency (FE) is the ability of an animal to convert the nutrients from food into
production units, in dairy cattle is a measure of the ability from the cow or calf-heifer to convert
nutrients from the food intake into milk or growth, respectively (Connor, 2015). FE is crucial
in the farm because it increases the economic income, and the main limitation is that these traits

are expensive to measure (Pryce et al., 2015). Several traits and equations have been established



to measure FE, and the convenience of each trait varies according to the type of animal,
production system and research objectives. The main traits are expressed as "ratio traits" or

"residual traits " (Pryce et al., 2014b). The most used ones will be described next.
1.3. Measuring feed efficiency

1.3.1. Dry matter intake

Dry matter intake (DMI) is not a direct trait to measure FE, but it is an indispensable
component to calculate FE. For this reason, DMI will be studied as a FE-traits. The National

Research Council (2001) proposed to calculate dry matter intake as follow.
DMI (Kg/d) = (0.372 * FCM4 + 0.0968 * BW075) x (1 — e(0.192-(WOL+3.67)))

where FCM4 is 4% fat corrected milk, BW is body weight, and WOL is week of lactation;

1 — (0:192+(WOL+3.67)) i5 an adjustment term for depressed DMI in early lactating. One of the

limitations when using this formula is that it tends to slightly overestimate the intake.

Another method is to weigh the dry matter that is supplied to the animal and the food is
restored every time it eats, in this way the actual intake of dry matter can be determined (Bach,
2005). There are several ways to measure the dry matter content of the ration. In the farm an
easy way to do it is by placing a sample (100 grams) in the microwave and heating it until it
loses all the water, weigh the matter without water and draw the percentage ratio of dry matter

(Bach, 2005).

1.3.2. Ratio traits

They can be described as the main relationship between two traits that reflects their
proportion, The most popular ones are: through "Feed conversion ratio (FCR)" or "Feed
conversion efficiency (FCE)" (Berry and Crowley, 2013). These traits have been extensively
used in livestock species on the farm. (Beever and Doyle, 2007; Cottle and Kahn, 2014).

1.3.2.1. Feed conversion ratio

The feed conversion ratio (FCR) is a measure to quantify how efficient an animal is in

transforming the feed it consumes into the units of production. It is calculated by dividing the



dry matter intake (DMI) for production unit either in growth or milk yield (Berry and Crowley,

2013). In growing calves, it can be calculated as:

Cor .~ DMI_ 8 DMIyg /g
~ ADG  weightenqkg) — Weightsearecg)
lenghty

where, DMI is the dry matter intake on the days of the experiment and ADG means the

average daily weight gain (Khansefid, 2016).

In lactating cows, FCR is generally estimated using the weight of protein and fat (WPF),
that is calculated thought the average dairy milk (ADM) adjusted by the composition of fat and
protein (Hall, 2011).

DMI lengh

FCR = = d=0
WPF

DMlyg/q

faty, + proty,
ADMyg/q * (T)

For interpretation we assume that animals with a low FCR have a higher efficiency and
animals with a high FCR have a lower efficiency, being FCR values of 13 poor and FCR values
of 8 very good (Hall, 2011).

1.3.2.2. Feed conversion efficiency

Feed conversion efficiency (FCE) is very similar to FCR. They differ in their
interpretation. The higher the FCE value, the more efficient the animal is, the calculation in

growing calves or heifers is equal to:

Weightend(kg) - Weightstart(kg)

ADG lenght
FCE = 200 lenghty
d=0 DMIkg/d

In lactating cows, the formula can be adjusted using corrected energy milk (ECM) that
refers to kg of milk of standardized composition for protein and fat concentrations and dividing
this for DMI (Tyrrell and Reid, 1965; Beever and Doyle, 2007):

383 * fat% + 242 * protein% + 783.2
ECM  ADMyg/q * ( 3140 ) :

lengh
bM d=o DMlig/a

FCE =




1.3.3. Residual traits

Residual traits measure the observed intake values minus the expected intake values
given productivity. They are usually calculated through a linear regression from the feed or
energy intake, where the error corresponds to the residual trait. The most common is the
residual feed intake (RFI) and residual energy intake (REI). The difference between them is
that RFI uses DMI, while REI uses metabolic energy intake (MEI) for their estimations. The
lower the value of the residual traits, the more efficient the animal is (Zamani et al., 2008;

Pryce et al., 2014b).

1.3.3.1. Residual feed intake

Residual feed intake (RFI) was initially proposed by Koch et al. (1963), and it can be
defined as the observed DMI minus the expected DMI. RFI is obtained from the residual of a

linear regression over DMI as follow:
In growing calves:
DMI = u + b, ADG + b,MWT + e
In lactating cows:
DMI = u + b;ADG + byMWT + b3BSC + b,FY + bsPY + bLY + e

where DMI is the average intake level of the animal during the experiment; u is the
intersection of the model or the general mean; ADG is the average daily gain; MWT is the mid
test body weight; FY,PY,LY refers to the fat, protein and lactose yielding respectively;
by, b,, b3, by, bs, bg are the regression coefficients; and the residual e is RFI; the measurements
are expressed in units of weight (Berry and Crowley, 2013; Macdonald et al., 2014; Khansefid,
2016). The formula can be adjusted to the study population.

1.3.3.2. Residual energy intake

The residual energy intake (REI) has the same mechanism as RFI but uses values in
metabolic energy, that is, all energy parameters must be considered as milk yield, pregnancy,
growth, mobilization of body tissues, walking, etc. (Pryce et al., 2014a). It can be interpreted

as follow:



NEI = b,NE,,, + b,NE, + bsNE, .., + b,BWCE + e

preg

where NEI is the net energy consumption; NE,, NE;, NE BWCE are estimates of

preg
energy requirements for maintenance, lactation, pregnancy and energy changes in body weight

respectively, and e is REIL The values are expressed in energy/day (Zamani et al., 2008).

1.3.4. Other traits for measure feed efficiency

Other traits to measure FE have been described or interpreted by some authors and these
are subject to the study population. Milk and bodyweight was an alternative in the past to select
for FE, but this is no longer a priority (Gonzalez-Recio et al., 2014). Seymour et al. (2020)
describe the return over feed cost (ROFC) as a FE-trait, which is obtained from the subtraction
from the price of milk (penalized by fat and protein) of the cost of cow feeding. In calves, a
simple method of measuring FE could be ADG. That means FE can be adjusted to the farmer's

needs and according to the database availability.

1.3.5. Advantages and limitations of each FE trait
Advantages for ratio traits

e Relatively straightforward to measure or calculate in stable systems with controlled feeding
(Beever and Doyle, 2007).

e A quick measuring tool, so FCR and FCE are useful for monitoring the feeding and milk
yielding (Hall, 2011; Shike, 2013).

e Easy interpretation.
Limitations for ratio traits

e FCR and FCE are correlated with weight gain, and this results in larger animals that eat

more (Shike, 2013).

e Ratio traits are correlated with production (Van Arendonk et al., 1991). Genetic
improvement already selects based on milk, fat and protein yield; this means, many of their

genetic value is already caught in current selection index.



In cows with the same ratio, it is not possible to distinguish their proportions from
DMI/milk production; e.g. cows with low DMI and low milk production could have the
same ratio as cows with high DMI and high production (Pryce et al., 2014b).

Ratio traits do not consider significant effects on production such as lactation, days in milk,
age, weight, energy expenditure or metabolic energy. They also do not take into account
environmental effects such as herd, season or feed quality; so, the efficiencies could be
falsely masked by other factors. (Veerkamp et al., 1995; Dechow et al., 2002; Hutjens,
2012). An alternative solution could be to correct the FCR or FCE value by these significant
effects.

Advantages for residual traits

RFI and REI take into account the environmental and significant effects for DMI and NEI,
respectively; therefore, they are traits that catch the variations of the significant effects in

their population (Rauw, 2009).

The correlation with production is very weak, whereas the correlation with DMI is strong.
This presents an opportunity to improve the FE (less consumption) without affecting yield

(Sainz and Paulino, 2004).

The correlation with weight is very low, making it possible to select animals with better

production without increasing the weight (Rauw, 2009).

RFI has no strong correlation with other production traits. This implies that it has an

appreciable margin for improvement (Sainz and Paulino, 2004).
Limitations for residual traits

Residual traits estimation requires linear models, which is more complex to calculate than

ratio traits.

The correlation between body condition score (BSC) and inter and intramuscular fat (InFat)
is weak, so changes and movements of fatty tissue could be underestimated (Pryce et al.,

2014b).

Accuracy and reliability of residual traits are relatively low. The reference population needs

to be increased, it should be as large as possible (Pryce et al., 2012, 2014b, 2015).



e A partial problem for RFI is that it has a negative value for efficient cows. This could make

their interpretation difficult.

o IfBSC is used in RFI estimation, it is a subjective score and could change according to by

the professional interpretation that evaluates it (Pryce et al., 2014b).

Table 1. Advantages and disadvantages for feed efficiency traits.

Advantages Disadvantages

Straightforward to measure in stable systems | High correlation with body weight, selecting for

(controlled feeding). ratio traits results in larger animals.

Easy calculation. Ratio traits are correlated with production.

Genetic programs already select by production.

Easier interpretation. Not possible to distinguish cows with high or low
.ﬁ yield.
g Useful to evaluate FE in the farm. Not consider significant effects on production
E such as age, lactation stage or days in milk.

Advantages Disadvantages

Residual traits consider associated effects on intake. More complex to calculate than ratio traits.

Selecting by residual traits without affecting yield is | EBV reliability compared to productive traits.

possible.

Improve the production without increasing the weight. | BCS is a subjective score.

Is possible to use residual traits in genetic selection. Interpretation not easy.

1.4. Genetics of feed efficiency

1.4.1. Heritability

Heritability for FE traits ranges between 0.06 and 0.56 depending on the study. Authors
like Robinson and Oddy. (2004) and Ngwerume and Mao. (1992) have reported low
heritabilities of 0.06 (FCR) and 0.016 (REI) in beef and dairy cattle, respectively; whereas
authors such as Arthur et al. (2001b) and Veerkamp et al. (1995) have reported higher
heritabilities of 0.46 (FCR) and 0.38 (RFI) in beef and dairy cattle, respectively. However,
most authors agree that FE is moderately heritable and that it can be included in genetic

selection indices.

Higher heritability estimates were reported in beef cattle compared to dairy cattle,

probably because most studies are carried out on young animals and FE traits have less



environmental effects. The most common traits are DMI, FCR and RFI. In dairy cattle, FE
target change according to age. In growing calves, the FE is measured with weight gain,
whereas in lactating animals FE is measured with milk production; the most commonly studied

traits are DMI, FCE and RFI.

DMI is the most important trait because other traits are calculated from it, and it has the
same interpretation in beef and dairy cattle. Table 2 shows some heritability estimates for FE

traits in the literature.

Table 2. Heritability with its standard error in parenthesis for feed efficiency traits in different

cattle types and ages by some authors.

Trait Reference Cattle type- age /2

DMI Robinson and Oddy. (2004) | Young beef cattle 0.27 (0.06)
DMI Hoque et al. (2007) Young beef cattle 0.20 (0.12)
DMI Torres-Véazquez et al. (2018) | Young beef cattle 0.55 (0.08)
FCR Robinson and Oddy. (2004) | Young beef cattle 0.06 (0.04)
FCR Arthur et al. (2001b) Young beef cattle 0.46 (0.04)
RFI Robinson and Oddy. (2004) | Young beef cattle 0.18 (0.06)
RFI Arthur et al. (2001a) Young beef cattle 0.39 (0.03)
RFI Arthur et al. (2001b) Young beef cattle 0.43 (0.04)
RFI Hoque et al. (2007) Young beef cattle 0.33 (0.14)
DMI Williams et al., (2011) Growing dairy calves 0.17 (0.10)
DMI Korver et al. (1991) Lactating dairy heifers 0.56 (0.11)
DMI Zamani et al. (2008) Lactating dairy cows 0.12 (0.02)
FCR Korver et al. (1991) Growing dairy heifers 0.18 (0.08)
FCE Van Arendonk et al. (1991) Lactating dairy heifers 0.37(0.14)
RFI Williams et al., (2011) Growing dairy calves 0.27 (0.12)
RFI Korver et al. (1991) Lactating dairy heifers 022 (0.11)
RFI Van Arendonk et al. (1991) Lactating dairy heifers 0.19 (0.12)
RFI Veerkamp et al. (1995) Lactating dairy cows 0.38 (0.15)
RFI Pryce et al. (2015) Lactating dairy cows (Australian) 0.20 (0.20)
RFI Pryce et al. (2015) Lactating dairy cows (UK and Dutch) | 0.35 (0.06)
REI Ngwerume and Mao. (1992) | Lactating dairy cows 0.016 (n/a)
REI Zamani et al. (2008) Lactating dairy cows 0.21 (0.02)

Where, DMI: dry matter intake; FCR: feed conversion ratio; FCE: feed conversion efficiency; RFI: residual feed
intake; REI: residual energy intake; and n/a: not available.



1.4.2. Genetic correlation with another traits

Some studies have been carried out to evaluate the relationship of feed efficiency with
other productive traits. Robinson and Oddy (2004), Hoque et al. (2007), and Gonzalez-Recio
etal. (2014) showed negative correlations between size and FE traits (RFI and FCR) in growing

animals, indicating that efficient cows tend to be larger than less efficient cows.

Koch et al. (1963) and Hoque et al. (2007) showed that the correlation of weight with
ratio traits (FCR-FCE) is strong; whereas Arthur et al. (2001a) and Robinson and Oddy (2004)
showed that residual traits (RFI) has a weak correlation with weight (Table 3). Hence, selecting
for lower FCR (efficient) would produce heavier cows that could eat more; while selecting by
low RFTI (efficient) would produce cows with lower DMI without an increase in weight. Some
studies reported that the correlation between DMI and ratio traits is moderate or low, and the

correlation between DMI and residual traits is moderate or high (Table 3).

Several studies showed that the correlation of productive traits such as milk, fat and
protein with residual traits are strong whereas the correlation between productive traits and
ratio traits is weaker; this could be due to FCR and FCE consider production per unit of intake
while RFI and REI measure the efficiency based on the animal's feed intake and these are
corrected by production factors. Gonzalez-Recio et al. (2014) showed a high correlation (0.71)
between RFI and BCS while Robinson and Oddy (2004) showed that RFI-InFat correlation
was moderate (0.22); this seems to indicate that BCS does not explain all the intramuscular fat
mobilization. Robinson and Oddy, (2004) and Lin et al. (2013) showed that the correlation
between RFI and feeding time (FT) was positive; this indicates that animals with lower RFI

take less time to eat; this is also verified by Green et al. (2013).

In Angus cattle, Hegarty et al. (2007) showed a positive correlation between methane
emission and RFI (0.12). This study showed that the reduction of the daily methane emission
would reduce when selecting by RFI. Delgado et al. (2019) presented a relationship between
RFT and the ruminal microbiota in Holstein cows. The predictive accuracy in cows could be

improved using the metagenome information.

In beef cattle, Archer et al. (2002) showed a high correlation for dry matter intake (DMI)
and RFI between weaned calves and adult cows (0.94 and 0.98 respectively), while the

correlation with FCR was 0.20. It showed that DMI and RFI are very similar between cows



and weaned calves, whereas FCR does not. Table 3 shows some estimates found in the

literature.

Table 3. Genetic correlation with its standard error in parenthesis (standard deviation in bold)
between productive traits and feed efficiency in different cattle types and ages by some authors.

Residual Ratio
Trait! Author Cattle type- Age RFI REI FCE FCR
STAT Gonzalez-Recio et al. (2014) Dairy heifers -0.50 (0.22)
MWT Robinson and Oddy (2004) Finished beef C. -0.20 (0.16) -0.62 (0.18)
~§ MWT Hoque et al. (2007) Young beef C. -0.61 (0.30) -0.62 (0.35)
ADG Arthur et al. (2001a) Young beef C. -0.04 (0.08) -0.62 (0.06)
ADG Hoque et al. (2007) Young beef C. -0.95 (0.08) -0.77 (0.11)
E" WG Koch et al. (1963) Young beef C. 0.79 (n/a)
§ WG Robinson and Oddy (2004) Finished beef C. 0.09 (0.20) -0.86 (0.10)
DMI Zamani et al. (2008) Dairy cows 0.61 (n/a)
DMI Gonzalez-Recio et al. (2014) Dairy heifers 0.03 (0.07)
DMI Lin et al. (2013) Dairy heifers 0.45 (0.13)
% DMI Koch et al. (1963) Young beef C. 0.04 (n/a)
E DMI Arthur et al. (2001a) Young beef C. 0.69 (0.03) 0.31 (0.07)
54
£ | DMI Robinson and Oddy, (2004) Finished beef C. 0.43 (0.15) -0.49 (0.22)
MY Van Arendonk et al. (1991) Dairy heifers 0.02 (n/a) -0.64 (n/a)
MY Zamani et al. (2008) Dairy cows -0.05 (n/a)
MY Gonzalez-Recio et al. (2014) Dairy heifers 0.07 (0.08)
FY Gonzalez-Recio et al. (2014) Dairy heifers 0.02 (0.07)
PY Gonzalez-Recio et al. (2014) Dairy heifers 0.03 (0.07)
%0 FPCM Van Arendonk et al. (1991) Dairy heifers 0.02 (n/a) -0.93 (n/a)
'ﬁ FPCM Zamani et al. (2008) Dairy cows 0.08 (n/a)
FT Robinson and Oddy (2004) Finished beef C. 0.35 (0.17) 0.78 (0.16)
E FT Lin et al. (2013) Dairy heifers 0.27 (0.15)
BCS Gonzalez-Recio et al. (2014) Dairy heifers 0.71 (0.32)
InFat Robinson and Oddy (2004) Finished beef C. 0.22 (0.17) 0.08 (0.28)
E Clvl Gonzalez-Recio et al. (2014) Dairy heifers -0.13 (0.15)
g CH4 Hegarty et al. (2007) Finished Beef C. 0.12 (n/a)

Where, MWT: metabolic weight STAT: stature; WG: weight gain; ADG: average daily gain; DMI: Dry matter
intake; MY: Milk yield; PY: protein yield; FPCM: fat protein corrected milk; ClvI: calving interval; BCS: Body
condition Score; InFat: intramuscular fat; RFI: residual feed intake; FT: feeding time; Finished beef C.: Finished beef

cattle; n/a: not available.

1.4.3. Genomic regions associated to feed efficiency

Several exploratory studies have been developed to investigate associated regions that

contribute to understanding the phenotypic expression of FE. Some of them are shown below.
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Khansefid et al. (2017) found 6,143 genes expressed in RFI-associated muscle, liver, and
blood tissue of Angus bulls and Holstein cows, and 2,343 genes associated with RFI-EGBV
(estimated genetic value). This study concludes that the expression of many genes with
various biological functions are associated with RFI.

Sherman et al. (2009) showed several quantitative trait loci (QTL) associated to FE in beef
cattle: 19 QTL for RFI. The most significant QTL was on BTA 3. Twelve QTL were found
for FCR; the most significant one was found on chromosome 24. Finally, four QTL were
found associated to DMI, of which the most significant one located on BTA 7. The closest
genes were not reported.

Yao et al. (2013) found 188 SNP surpassing the significance threshold for RFI using
random forest in Holstein cows. Thirty-eight of them were located on QTLs regions
associated to RFI in beef cattle by Sherman et al. (2009); these SNPs were on BTA 3, 4, 7,
11, 12, 18, 19, 23, 24 and 25, and their closest genes were LOC5309292, KLF1, REV1,
AFF3, TBCID8, COL4A12, GAS6, LOC510844, USP43, SLC47A1, LOC784682,
LOC100139490, PARN, GNAI2.

Rolf et al. (2012) found 53 SNPs explaining 54.12% of the additive genetic variation
(AGYV) in steer breeding value for feed intake along the BTAs 11, 14, 15, 17, 19 and 21.
They also found 66 SNPs explaining 62.69% of the AGV for RFl in BTAs 3,5,6,12, 15,
17 and 21. The closest genes are involved in metabolic pathways, feeding and digestion
functions.

Bolormaa et al. (2011) found 75 SNPs significantly associated with RFI located in 24
different BT As in cross beef cattle; The most significant SNPs were located on BTA 3, 5,
7,and 8.

Salleh et al. (2017) found 70 and 19 significant differentially expressed genes (SDR) from
liver tissue associated to RFI in Holstein and Jersey, respectively. These genes act in the
regulation of immunity mechanisms, steroid hormone synthesis, retinol metabolism,

arachidonic acid, lipids, sugars and protein metabolism, among others.

Hou et al. (2012) identified 240 and 274 copy number variation (CNV) in cows with low
and high RFI respectively. The specific genes from low RFI (efficient cows) were mainly
related to the immune response, and the specific genes from high RFI (inefficient cows)

were mainly involved in the cell cycle and the development of organs and bones.
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1.4.4. Countries selecting by feed efficiency

The inclusion of FE in the breading goals has been limited due to difficulties on for data
collection (especially DMI). With the advent genomic selection, Australia, USA, New Zealand

and the Netherlands have already implemented direct selection on FE.

In 2002, the Australian beef cattle industry incorporated the net feed intake (NFI) in the
BREEDPLAN EBVs (https://breedplan.une.edu.au/about/history/). In April 2015, dairy cattle
in Australia incorporated RFI in the Australian Profit Ranking (APR), the project is detailed in
Pryce et al. (2015) incorporates a new breeding value based on RFI. In 2016, Netherlands also
incorporated a breeding value in bulls for feed intake into their selection indices (Veerkamp et

al., 2014; Jong et al., 2016).

Many countries are interested in improving feed efficiency in cows. In the study by de
Haas et al. (2015), feed intake data from countries (Australia, Canada, Denmark, Germany,
Ireland, the Netherlands, the United Kingdom, New Zealand, and lowa and Wisconsin in the
United States) were collected to improve the accuracy of genomic estimated breeding value for

dry matter intake using a common reference population.

1.4.5. Selecting by feed efficiency

FE is a heritable trait and hence genetic selection is possible. However classical selection
is economically unfeasible. Due to large cost of phenotyping the alternative was by indirect
selection through highly correlated traits, that are cheaper and easier to measure such as body
weight or milk yield. Examples of new phenotypes are hormones, metabolites or MIR specters.
Genomic selection, with a proper reference population is an efficient strategy to select for FE

(Pryce et al., 2015).

1.5. Brief overview of genomic selection

Genomic selection has revolutionized the genetic improvement programs in dairy cattle.
It is the process that allows estimating the breeding value using a dense panel of single
nucleotide polymorphisms (SNP-chip) and use it for breeding value purposes. Genomic
selection has been extensively used for traits prediction and association studies. A summary of

its characteristics and development follows:
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1.5.1. History

In cattle, before the GS, the best linear unbiased predictor (BLUP) model was the top
reference for genetic selection that uses the inverse of the pedigree relationship matrix to
estimate the animal breeding value (Henderson, 1975, 1976). In the late 1970s, the genetic
markers were discovered, and later Soller and Beckmann (1983) described a possible use of
these markers for breeding purposes. It consisted of more precise relationships between
animals using markers intimately linked to a quantitative trait locus (QTL). The high costs of

genotyping limited this technology in its period (Lourenco et al., 2017).

Marker-assisted selection (MAS) has been also popular, which consists of generating a
profile with some markers associated to genes of traits of interest. The problem was that most
of the productive traits are controlled by infinite genes (Fisher, 1919), so this technique was

losing interest (Lourenco et al., 2017).

With the first draft of the human genome sequence in 2001, single nucleotide
polymorphisms (SNPs) began to be an opportunity for genomic sciences. Meuwissen et al.
(2001) proposed some methods for GS, which would take eight years to be applied. In 2009,
the first bovine genome was sequenced (The Bovine Genome Sequencing and Analysis
Consortium. 2009), which allowed to identify SNPs and generate commercial dense markers
chips. In the same year, the first genomic evaluation was made by AGIL-USDA in Holstein
and Jersey; the first genomic dairy bull named Freddie (Badger-Bluff Fanny Freddie) was
evaluated, being the best genomic bull in the world which was verified three years later from
his daughters. Since then, genomic selection models have been improved; the first model used
was called multistep, which used multiple analyses to combine genealogical with genomic
information. Few years later, single-step genomic BLUP (ssGBLUP) was developed. It
combines pedigree, genotype and phenotype in one single evaluation. Genotyping in cattle
rapidly increased to millions, improving the reliability of GEV from a genomic BLUP (GEBV)
(Lourenco, 2017).

1.5.2. Advantages over marker assisted selection

The goal in MAS is to select genes associated with a trait or disease and use them in the
breeding programs. The causal gene or genes are detected, then, genetic selection is performed.
MAS works very well in traits that are controlled by a small number of genes (Mendel, 1996),

such as the myostatin gene with effect on the bovine musculature (Grobet et al., 1997) or
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calpain and calpastatin genes with effect on beef tenderness (Page et al., 2002). However, in
complex traits (such as milk yield trait), many genes can control the trait expression (Fisher,
1919). Boyle et al. (2017) postulated an omnigenic hypothesis; this proposes that the genes
associated with a complex trait could be interconnected with many genes that do not appear to
be related, and that part of the heritability could be explained by the effect of these genes. So,
this revelated the limitation of MAS.

Genomic selection uses panels of thousands of SNPs distributed throughout the genome.
These SNPs are expected to be in linkage disequilibrium with at least one QTL. Hence, they
can be used to predict the genomic estimated breeding value (GEBV) through the SNP effect
on the trait (e.g. SNP-BLUP) or the genomic relationship matrix (e.g. GBLUP), the last is the
most widely used in cattle. Effectiveness of genomic selection is given by the of phenotypic
variance that can be explained by the SNPs (Blasco and Toro, 2014; Lourenco, 2017). Thus,

the main differences between both MAS and genomic selection are:

e MAS uses few markers; whereas genomic selection uses a panel of dense marker with
many SNPs in LD.
e MAS searches for specific genes associated with a trait; whereas genomic selection

uses the effect of all SNPs together.

Genomic selection has been more successful, and its advantages are evident:

e Most productive traits are governed by many genes.
e Genomic selection is more accurate than MAS and have proved to increase genetic
progress.

e Genomic selection is cheaper than MAS, and there are many SNPs chips on the market.

1.5.3. GWAS vs GWP

Whole-genome association study (WGAS) and genome-wide prediction (GWP) have
different objectives; GWAS searches SNPs associated to quantitative traits of interest; whereas
GWP tries to predict the genetic value through the variance explained by SNPs (Blasco and
Toro, 2014; Lourenco, 2017). However, both methods can be used to infer associations

between genomic regions and the trait of interest.

Traditional GWAS use a dense marker-panel and makes linear regressions SNP by SNP.

The results are usually evaluated under the P-value criterion; the most significant SNPs (lowest
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P-value) are assumed (incorrectly) to be associated with the trait under study. The
representation is given by a Manhattan plot; which is a SNPs Scatter plot that shows the
chromosomes on the x-axis and their P-value on the y-axis represented in —log, scale. GWAS
has been widely questioned due to the presence of false associations and bias for variance
overestimation. These problems can be reduced with large numbers of genotyped animals

(Pearson and Manolio, 2008; Blasco and Toro, 2014).

In the case of WGP multiple regression models are used to analyse the effect of all SNPs

together. Some methods have been developed, for instance:

e Ridge regression BLUP (RR-BLUP) or SNP-BLUP that assumes a normal distribution
for SNP effects and its variance is constant (Meuwissen et al., 2001).

e Bayesian methods, such as Bayes A, Bayes B, Bayes C and Bayes Lasso, where
different variances are assumed for the SNPs (Gonzilez-Recio and Forni, 2011;
Jiménez-Montero et al., 2013).

e GBLUP and single-step GBLUP use the BLUP methodology incorporating genomic
data through the kinship matrix to estimate the genetic merit of the animals. GBLUP
uses information from SNPs through the genomic relationship matrix (G) and
ssGBLUP combines genomic information and pedigree to increase the accuracy in
populations with deficient genomic data. In dairy cattle, the GBLUP is the most used
to estimate the GEBV.

e Machine learning algorithms are relatively new and present an interesting predictive
ability. Among the most studied are random forest, boosting algorithm, and Bayesian

neural network (Gonzalez-Recio and Forni, 2011; Gonzalez-Recio et al., 2014).

Again, the lack of major genes in productive traits is a great challenge for association
studies. However, under careful interpretation and in large populations, genomic associations

can be a useful tool to analyse the genome in livestock.

1.5.4. Implementation

Genomic selection involves a set of steps, and they are all indispensable. The first step is
to establish selection objectives; these must be clear and achievable. Second, selection of traits
to be introduced in the selection indices; they must be measurable. Third, reference population

establishment and genomic breeding value estimation. Four, data collection and DNA
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sampling. Fifth, predicting the genomic breeding value in candidates and finally,

dissemination. Reference population, prediction, and dissemination are described below.

1.5.4.1. Reference population

The reference population is a set of animals that are phenotyped and genotyped with a
dense panel of markers; these associations are used to obtain the GEBV in this population or
predict the GEBYV in other genetically close animals, these associations are given either directly
with the SNPs, or through the genomic relationships matrix. The accuracy of genomic
predictions depends on by the reference population size, the genetic relationship between the

reference and prediction populations, and the trait heritability (Goddard and Hayes, 2007).

1.5.4.2. Prediction

The genomic value from animals can be estimated and predicted through several
alternatives, but the most used in dairy cattle is the GBLUP that uses the traditional BLUP with
the genomic relationship matrix instead of the genealogy to estimate the genetic merit of
individuals. GBLUP allows to increase the accuracy between 20-50% concerning the BLUP.
It can be solved by classical statistic or within a Bayesian approach (Clark and Van Der Werf,
2013); in the last case, effects are assumed to have random distributions, and computationally
it uses the Gibbs sampling algorithm from Markov chain Monte Carlo (MCMC) family to
obtain a sequence of samplings approximated to a specified multivariate probability

distribution (Blasco, 2017).

1.5.4.3. Dissemination

Farms must use GEBV of their animals, and animals with better GEBV must be selected
and prioritized on the farm. The most effective method is through disseminating the semen of

the bulls by artificial insemination. Embryo transfer is also a tool with high impact.

Genomic selection has a significant impact on dairy cattle. The generation interval has
been reduced in half and selection response has increased in low heritable traits and selection

for expensive traits to measure is possible.
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1.6. Research approach

Considering the reviewed background and the scarce studies in calves at early ages, the
following hypothesis has been proposed: It is possible to predict the FE of the adult cow by
measuring FE when it is a calf. The genes that control the FE in calves are the same or close to
the genes in cows. For this reason, this thesis analyses the FE in calves and compares it with
the FE in adult cows using genomic-wide associations and genomic prediction assays. Besides,
phenotypic prediction studies of FE are carried out to find ways for reducing costs in estimating
this trait. This study uses parametric and non-parametric regression models, with classical and

Bayesian statistic to analyse different strategies.
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2. OBJECTIVES

2.1. Main objective

Predict feed efficiency in Holstein cows from proxies in early and late life-stage.

2.2. Specific objectives

Predict FE-traits from proxies in cows.
Predict FE traits from early life proxies.

Analyse genomic regions involved in FE of calves and cows.
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3. MATERIALS AND METHODS

3.1. Data

Phenotypic data:

Data in this study were collected from two locations and two sets of animals: calves and
adult cows. Calves were fed ad libitum during two periods. In the first period, intake from 26
calves and their weights were recorded during 60 days. In the second period, 37 calves were
monitorized under the same conditions, during 45 days. A total of 3225 individual phenotypic

records were obtained, with animal identification, dry matter intake and daily weight.

Seventy adult Holstein cows were monitorized during 15 days in BLANCA from the
Pyrenees farm located in Lleida, Spain. Phenotypic data included the cow ID, sire, birth date,
calving date, dry matter intake, lactation number, days in milk, milk production, protein and
fat percentage, body weight and age. A total of 1063 measures were obtained. Later, 480
measures of dry matter intake from 32 cows were added for the genome association studies

and genomic prediction for this trait.
Genotypic data:

Thirty out of the 63 calves were genotyped with the Affymetrix Axiom Bovine
Genotyping Array 60K (60914 SNPs) and then, imputed to [llumina HD Bovine SNP chip with
BEAGLE software (Browning and Browning, 2008) using sequences from the 1000 bulls
genome reference population (www.1000bullgenomes.com). All cows were genotyped with
the Illumina EURO12K SNP chip and imputed to Illumina Bovine 50k SNP chip (54,609
SNPs) with BEAGLE software (Browning and Browning, 2008) using the Eurogenomics
reference population (www.eurogenomics.com) provided by CONAFE. Finally, the SNPs in

common in both platforms (35300 SNPs) were selected using R environment.

3.2. Traits

3.2.1. Calves

Four traits related to feed efficiency (FE) were studied:
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1) The average daily gain (kg/day) during the sampling period (ADG).
2) The mean dry matter intake (kg/day) during the sampling period (DMl ;).

3) Feed conversion efficiency (FCE 45 ), estimated with the following formula.

ADG

FCE qif = —DMlcalf

Higher values indicate more efficient animals and lower values less efficient animals.

4) Residual feed intake (RFl.q;f), this was defined as the difference between actual and

estimated feed intake, it was calculated using a linear model on DMl ;¢ as follows:
DMI,qif = u+ by PERIOD + b,ADG + RFlqf

where, DMl was the mean daily dry matter intake during the period, p was the
intercept; b, and b, were partial regression coefficients; PERIOD was a categorical trait of the
period sampling, it has two levels; RFl 4, was the residual term, it considers the lower values

for the more efficient animals and the highest values for the less efficient animals (Pryce et
al., 2014b, 2015). The linear model was implemented with the glm function of the R Stats
package by R Core Team and contributors worldwide (2018).

3.2.2. Cows
In cows, four traits associated with FE were studied:

1) The average daily DMI (kg/d) during the sampling period (DMI,,,).

2) Feed conversion efficiency (FCE,,,, ) estimated as:

ECM

FCE.ow = DML
cow

where, ECM was energy corrected milk, that refers to kg of milk of standardized

composition with respect to protein and fat concentrations (Beever and Doyle, 2007),

(383%% FAT+242%% PROT+783.2)
3140

calculated as: ECM = MILK

. Higher values belong to more

efficient animals whereas lower values indicate less efficient animals.
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3) Residual feed intake in cows (RFI,,,, ) was calculated using a linear model on DMI_,,,,,. The

variables were selected according the criteria of t -value and the regression coefficient, as:

DMl,,,, = 4 + by LACT,,; + b, DIM_4; + b3 MILK + b, %FAT + bs %PROT + by, BW%7>
+ b, (BW%7%)2 + bg AGE + by AGE? + RFI,,,,

where, DMI_,,, was the mean daily dry matter intake collected from the study; u was
the intercept; by, b, ,bs,b,,bs,bs,b;,bg and by were partial regression coefficients;
LACT,,; was a categorical trait corresponding to the lactation, with two levels: first lactation
and second or subsequent lactations. DIM.,; was a categorical trait corresponding to the
lactation period, with two levels (< 90 days in milk and > 90 days in milk). MILK was the
average milk production (kg/d) during the trial period; %FAT and %PROT were mean fat an
protein percentage; BW means body weight in the sampling period; AGE and AGE? were linear
and quadratic traits for the mean age (in days) during the sampling period; RFI_,,, was the
residual term. Lower values indicate larger feed efficiency (Pryce et al., 2014b, 2015). The
linear model was implemented with the glm function of the R Stats package by R Core Team
and contributors worldwide (2018), and the AIC function of the MASS package by Ripley et

al. (2019) was used to select the variables.

4) Return over feed cost (ROFC), which represents the gross income from the milk price by

subtracting the feeding cost, it was calculated as follow:

ROFC = MILK,,;coe — FEED o5e

where, MILKp”-Ce€ was the price of milk adjusted by fat and protein penalties following
(Charfeddine and Pérez-Cabal, 2019): MILKprice€ = MILKjg * [0.31€ + ((% Fat — 3.7) *

0.030€) + ((% Prot — 3.1) * 0.040€)]. The FEED s, was the feeding cost which was
referenced by CONAFE (2020). The formula was: FEED 5. = DMI,,, * 0.18¢. Higher

values indicate more efficient animals.

Density plots for productive and FE traits are shown in Annex 1 and Annex 2.
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3.2.3. Phenotypic correlation

Phenotypic correlations were correlated in an exploratory analysis as follow:

Covyiy,

Tyiy2 =

O'yl O-y2

where, Covyqy, was the covariance between traits y; and y,; oy, and oy, were the

variances of the traits. For these correlations, the variables were corrected by systematic effects.

3.3. Phenotypic prediction

Phenotypic prediction of FE-related traits was performed using a set of covariates in
cows. The traits were: DMI, FCE, RFI and ROFC. The covariates were selected according to
their association with FE; for this, a linear regression on DMI (it was used as reference trait)
was performed with all available phenotypic covariates. The covariates with the lowest t-value
and the highest regression coefficient were selected. The package used were the glm function
of the R Stats package by R Core Team and contributors worldwide (2018) and the AIC
function of the MASS package of Ripley et al. (2019). The set of covariates included: LACT,;,
DIM_,;, MILK, %FAT, %PROT, BW®75 (BW°7%)2, AGE, AGE2.

3.3.1. Prediction models.

Four different statistical regression models were used in the prediction analysis, the
classic parametric model and three non-parametric models of machine learning (detailed
below). The traits used into the set of phenotypic variables were rescaled between 0 and 1 using
the rescale function from the scales package by Wickham and Seidel (2019), the reason was
the non-parametric models predict better when the variables were standardized, this has been
corroborated with previous training predictions, in the parametric model the results of

prediction were the same with variables rescaled and not rescaled.

Lety = {y;} be a vector of a FE phenotypes for n cows; X is a p x n vectors of phenotypic
traits: LACT,q;, DIM_4¢, MILK, % FAT, % PROT, BW%7> (BW%7%)2, AGE, AGE? in cows.

The regression models are shown below:
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1) Linear regression (LM): the classical model used a multiple linear regression as follow:

P
Yi :H+prxpi+ei
p=1

where u was the intercept; b, was the regression coefficient of the features X,,; ; was

the error.

2) k-Nearest Neighbors (K-NN): this nonparametric regression is based on distances from &
closest variables, this model was inspired and detailed by Fix and Hodges (1989). The

general formula is:
k
1
9 =2 D fo)
i=1

where y; was predicted FE for an animal j; f(y;) was a function that select y; values

from the training set based on Euclidean distance with formula: d(Xi,X-) =

\/Zz’;:l(Xpi — ij)z; where d(Xi, X ) was the Euclidean distance between X; and X;, and k was

the number of nearest Euclidean distances (nearest neighbors). In order to define k, previous
training iterations were computed with different values for k; the one with least mean squared
error (MSE) between real and predicted value was selected. In this study, the selected values

for k were 4, 6, 8, and 4 for DMI, FCE, RFI, and ROFC respectively.

3) Neural Networks (NNET): this algorithm is a set of functions known as neural networks,

widely detailed by Jorge Matich (2001), the formula was given by:

oo =a() mow)

where f(x) was a neuron function; w;g;(x) was the weight and function from another
neuron and @ was an activation function for f(x). The machine learning works under the
backpropagation algorithm developed by Riedmiller and Braun (1993). This model was built
from one input, six hidden and one output neural layers and converge with 150 iterations on

average. The structure of the neural layers in this model can be seen in Annex 3.
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4) Bagging: This model generates T pseudo-training sets by bootstrapping from the original

training sample, which reduces the variance and helps to avoid the overfitting, this is

described by Breiman (1996). The algorithm builds 7 decision trees and average them as:

T

y=u+ ) ch(riX)

t=1

where ¥ was the predicted phenotype; ¢, was a factor that averages the regression trees;

T was the number of trees in the forest, where each tree was built through bootstrap

aggregation; h,(r; X) was a Bagging predictor tree, in which X contain the covariates. The loss

function of the model was evaluated by MSE.

Table 4. Statistical models for phenotypic prediction of FE

Regression Model

Formula

Software

Fitting Linear Model

k-Nearest Neighbor

Neural Networks

Bagging

R Stats by R Core Team and
contributors worldwide (2018). R
Package, version 3.5.2.

Package ‘FNN’ by Beygelzimer
et al. (2019). R package, version
1.1.3.

Fit Neural Networks by Fritsch et
al. (2019). R package, version
7.3-13.

Ipred by Peters et al. (2019).
R package, version 0.9-9.

3.3.2. Cross-validation

Cross-validation is a method used to evaluate the predictive ability of statistical methods

or models. It consists of dividing the database into some partitions or generating random

samplings; the model is trained with n-1 partitions (training set) and predicts on the data fold

that stayed out of the training set (validation set). Then, predicted values (from the validation

set) are compared with the observed value using a given metric, such as Pearson correlation or

26



mean square error (MSE). The same process is repeated with all the partitions (or the random
samples) (Elkan, 2011). This process is performed with each model, and the correlation and
MSE are evaluated. The type of CV depends on the partitions. This study used random CV
(RCV). One hundred iterations per analysis were performed; where 75% of the database were
randomly divided for the training set and 25% for the validation set. The MSE and correlation
from real-predicted values were taken for the evaluation. The best models have lower values

for MSE and higher correlations values.

With these metrics, ANOVA and t-tests (Annex 4) were also performed to determine if
there were statistically significant differences between prediction models . It was evaluated for
each FE-traits. The package used was the Stats package by R Core Team and contributors
worldwide (2018).

3.4. Variance component estimation

Variance components estimation (VCE) and consequently, correlations and heritabilities

were estimated through a bivariate model in a Bayesian context:
y=Xb+Zg+e

where, y was a 2 x n vector from FE or productive traits; b corresponds to a vector from
systematic effects ( LACT,,; and DIM_.,, in cows, PERIOD in calves); g was a 2 x n vector from
genetic effects and e was a 2 x n vector of residual effects; X and Z were incidence matrices

for the respective effects. Uniform prior distribution (—999, 999), were assumed for b. Then,

2
g was assumed to be distributed as g~N(0, G ® V), where V, = Uagl Gggz , and residuals
812 82
S
as e~N(0,I ® V,); where V, = | °* :212 . G was the genomic relationship matrix and I
€12 €2

was the identity matrix. The G matrix was estimated with the following formula:

G = 1 i G _ 1 i (xsnpi - zpsnp) (xsnpj - Zpsnp)
N e N Zpsnp(l - psnp)

snp=1 snp=1

where, x;; and x;; were the genotype of a SNP (0, 1 or 2) of an individual i or j, N means

the number of SNPs and p,,, means the allelic frequency in the population (VanRaden, 2008;
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Yang et al., 2010). The Gmatrix.f90 code in the Fortran language developed by Legarra et al.

(2011) was used to calculate the G matrix.

This study estimated genetic correlations between FE related traits in calves and cows.
Cow phenotypes in calves were assumed as missing. Similarly, calf phenotypes in cows were

assumed as missing.

An adapted version of the TM by Legarra et al. (2011) was used. The sampling method
was Gibbs and Markov Chain Monte Carlo (MCMC) widely described by Sorensen and
Gianola (2007). A total of 100 000 iterations were run and the Bur-in selected was 30 000, it
was decided through the Gelman diagnosis over MCMC convergence with Coda package by
Plummer et al. (2019) (Annex 5 and Annex 7).

3.4.1. Heritability

Heritability was estimated using the following formula:

2
h? =%

T 42 2
og + 0¢

where, o2 was the additive variance and o2 was the residual variance.

Heritability from the different analyses were averaged as:

where, m was the number of bivariate analyses for the y trait.

3.4.2. Genetic correlations

Posterior distribution for the genetic correlations were estimated. The correlations had

the following formula:

Covgy g

r =
glg2
0g10g2

where, Cov,q - Was the genetic covariance for trait 1 and 2 respectively. The correlations

glg
and their graphical presentations were developed using the Corrplot, R Stats and GGally
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packages by Taiyun Wei et al. (2017), R Core Team and contributors worldwide (2018) and
Schloerke and Crowley (2020) respectively.

3.5. Genome wide association study

Genomic regions associated with FE traits were investigated using whole genome
information. Four steps were implemented: 1) Calculate the statistical power of the sample
size, 2) principal component analysis of G matrix, 3) whole-genome association studies under

three statistical models and 4) results interpretation.

3.5.1. Statistical power of the sample size

Finding a significant effect for an SNP among 35300 is like finding a needle in a
haystack, and therefore genome-wide association studies require significantly large sample size
to avoid spurious results. The classic significance method is determined by an alpha threshold
given by ap-value (p = Pr (T = t,us|Hy)). However, the p-value in genomics has been widely
criticised. One of the main problems is that p-values have a poor relationship with the strength
of the evidence for a real effect in different sample sizes. Bayesian inference using the Bayes
factor (strength of evidence in the data), which uses prior distribution as a representation of our
prior knowledge may alleviate this problem. In this study, the power of the sample size was
estimated using a Bayes factor large enough to obtain reliable significant effects (Gondro et

al., 2013).

For this, some factors that affect the statistical power of the sample size were considered,
these include the QTL frequencies (p and ¢g), the heritability of the QTL (hQZ), the linkage
disequilibrium coefficient (D) and a required Bayes factor (B) as Gondro et al. (2013):

_PrylHy) _ Pr(Holy) _ . Pr(Ho)
Pr(ylHo)  Pr(Hily)  ~ Pr(Hy)

B represents the factor by which the prior odds increase to give later probabilities after

observing the data. So, the calculation of the B in this study was determined as:

2 ]"/2

B = [4n?p3(1 — p)3]~1/2 [1 + =3 F

where n was the total sample size and F was the classic value of F-value.
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The calculation to estimate a given value of F' (F.) was:

n—

3
—— ([4n°p* (1 = p)® BE]V" — 1)

F, =

Then, the statistical power of the sample size was implemented as:
Pw=1- F(F;-;vl,vZ,é‘)

where v; =2 was the degrees of freedom being tested and v, was the degrees of freedom

of the error and § was the non-centrality parameter.

The statistical power of the size of a reliable sample is 0.80 with a Bayes factor = 20. We

calculated the following statistics:

o Statistical power that explains a 5% and 1% of the variation assuming an equivalence
with a Bayes factor = 20.

e The sample size required for a power of 0.8 and a Bayes factor = 20.

We assumed a favourable linkage disequilibrium between the QTL and the marker of
0.25, and values for both alleles p and g of 0.5. The estimation was done with the R LdDesing
package developed by Ball (2012).

3.5.2. Accounting for the polygenic effect in the GWAS

A principal component analysis (PCA) to reduce the dimensionality of the G matrix was
performed. It was calculated through the eigen decomposition of the correlation matrix of the

G matrix.
PC] = 0(le1 +.. +(anvn

Where coefficients a;; were the elements of the eigen vector of the jth eigenvalue; V; to
V,, were the variables of G matrix (Macciotta et al., 2010). The result was a set of PCs that
explains the variance with fewer features. The PCs that explain more than 60% of the variance

were selected. The R Stats and factoextra packages were used (R Core Team and contributors

worldwide, 2018; Kassambara and Mundt, 2019).
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3.5.3. Models

Genome-wide association studies (GWAS) with FE in cows and calves were computed
under three statistical models: frequentist linear regression, Bayesian linear regression with
LASSO method, and Random Forest regression. The objective of using three association

models was to evaluate the recurrence of relevant SNPs between models and between FE traits.

3.5.3.1. Frequentist GWAS

The classical GWAS model implements a simple linear regression SNP by SNP as

follow:
y= Xb + SNPiai + PCCGO% +e

where b was the vector from systematic effects; SNP; was a vector with the SNPs
genotypes ( AA, Aa or aa represented as 0, 1 or 2 respectively); a; was the allelic substitution
effect from SNP, (Aguilar et al., 2019); PCCqgqo, was the PCs that explain more than 60% . The

evaluation was performed through P-value test.

The significance level chosen was 0.001, this mean P < a = 0.001 was considered

significant. The linear regressions were estimated using the R Stats package.

3.5.3.2. Bayes LASSO association

This model is a combination of Bayesian regression with classic LASSO (Least Absolute
Selection and Shrinkage Operator) regression developed by Tibshirani (1996). This approach
shrinkages the marker effects to increase the effectiveness in specifics regions (De Los Campos

et al., 2009). Bayes LASSO can be represented as:
y=ul+XF+ZB+e

where y was a vector of phenotypes; u was the population mean; XF was the systematic
effects matrix composed by LACT,,;, DIM 4, PCCgqq, in cows and PERIOD, PCCg, in calves; ﬁ
was the LASSO estimation and Z was the SNP incidence matrix (0, 1 or 2); e was the vector
from residual effects with normal distribution and unknown variance (e~(0,02)) (Park and

Casella, 2008; Gonzalez-Recio and Forni, 2011).

31



Within a Bayesian context, a posteriori distribution by LASSO is possible when the prior
has an independent and identical double exponential distribution, also known as the Laplace

distribution (De Los Campos et al., 2009). The prior was proposed as follow:

-AIBjl/ [oé

P
o~ A
p(Blo2) = g—zw_f

where 02 was the residual variance, with a Scaled-inverse Chi-square density: p(a2) =

x?(02|S., df,) and A was a parameter that controls the level of shrinkage of the distribution

(Park and Casella, 2008; Gonzalez-Recio and Forni, 2011; Pérez and De Los Campos,
2014). In both groups, the prior density for Z was assigned with: df = 3; S =0.25; and 1
prior parameters: shape=0.52, rate=1e-5, value = it was adjusted by posteriori A results (Annex
9 and Annex 10), type="random'. The computation was implemented under a Gibbs sampling
with Markov chain Monte Carlo algorithm (MCMC) with 100 000 iterations, discarding the
first 30 000 and drawing a value every 10 iterations. The BGLR package by Perez and De Los
Campos (2018) was used. Additionally, the additive genetic variance was also estimated with

the formula o-?5yp, = SNPeffectz(qu) (Carvalho et al., 2020).

3.5.3.3. Random forest

Random Forest (RF) algorithm was proposed by Breiman (2001). RF is an ensemble
learning method that creates a multitude of decision trees (forest) and outputs the mean
prediction of the individual trees. This model generates T pseudo-training sets by bootstrapping
from the original training sample, which reduces the variance and helps to avoid the overfitting.
This algorithm differs from Bagging because during training the RF algorithm randomly selects
a subset of available variables (SNPs) for selection in each split in the tree (Hempstalk et al.,
2015). This method was selected because the genome wide analysis implies analysing many
SNP variables and it has shown robust results in association studies (Gonzalez-Recio and Forni,
2011; Yao et al., 2013; Gonzélez-Recio et al., 2014; Hempstalk et al., 2015). The formula used

was:

T

y=u+ Z cehe (r; Wiy)

t=1
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where y was a vector of phenotypes; 1 was the population mean; h;(r; W,,) was each
random tree; W was to matrix effects composed by
LACT,q¢, DIM 4, PCCgoo, and SNPs genotype, and c¢; was a shrinkage factor that averaged the

trees.

The parameters for this model were: 7= 10000 trees; a maximum branches per tree =
5000; m = ,/ny,. The Loss function was evaluated by the MSE. This analysis was performed
with RanFoG Software by Gonzalez-Recio (2010). SNPs with highest importance within a

quantile >0.999 were selected and classified.
Variable importance

The significance of the markers over the FE traits were measured by the importance of
each SNP. The importance was a representation of the SNP influence on the prediction

accuracy for the FE trait. It may be summarized as:

1) In each random sampling to construct a tree, a smaller percentage of data called out of
bag (OOB) remains. After each tree was formed, the prediction accuracy of the FE trait
was calculated with the tree and OOB data.

2) The values of the m*® SNP in the OOB were permuted and the prediction accuracy was
calculated again.

3) The difference between these prediction accuracies (with original OOB and permuted
OOB) were calculated.

4) This process was repeated with all the SNPs and then, the difference between the

prediction accuracies was averaged over all the trees of the RF.

Finally, a value for each SNP was obtained which represent the SNP importance.

3.5.3.4. Results Interpretation
The following points were analysed for better interpretations of the results.

e For GWAS, significant SNPs with P < a = 0.001 were considered. For Bayes
LASSO, SNPs with the highest effect in a quantile> 0.999 were considered. For random
forest, SNPs with the highest importance in a quantile> 0.999 were considered.

e Number of SNPs in common between traits were calculated using the VennDiagram

package by Maintainer and Boutros (2018) in R environment. Where, WGAS consider
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a P < a = 0.001, while Bayes LASSO and random forest consider a quantile > 0.999
as parameters to select SNPs.

The most significant SNPs where detected with their closest genes and their biological
functions using the Ensembl organization (www.ensembl.org) and the uniport
organization (www.uniprot.org). For this, GWAS select the SNPs with the lowest p-
value, while Bayes LASSO and random forest consider a quantile > 0.9999 to select
the SNPs with the highest effect and importance, respectively.

In Bayes LASSO the additive genetic variance also was estimated, and it was

represented in a Manhattan plot.

3.5.3.5. Analysis between models

Finally, a coincidence analysis of the relevant SNPs was performed to detect common

regions between models. For this:

Significant SNPs from GWAS, Bayes LASSO and random forest (P < ¢ = 0.001 and
quantile > 0.999, respectively) were matched and then identified.

The repeated SNPs in the three models were identified, then, the nearest genes and their
biological function were searched using the Ensembl organization (www.ensembl.org)
and the uniport organization (www.uniprot.org).

Besides, common SNPs between calves and cows within the significant SNPs were

tried to identify.

Graphics and SNPs identification were development with R Base, VennDiagram, and

ggplot2 packages by R Core Team and contributors worldwide (2019), Maintainer and Boutros
(2018), and Wickham et al. (2020) respectively.

3.6. Genome wide prediction

Genomic prediction of breeding value of FE-traits (DMI, FCE and RFI) in cows was

implemented using genomic and phenotypic data from calves at early life-stage. For this,

genetic markers and phenotypic data collected from calves (DMI, FCE, RFI) were used as the

reference population (training set). GBLUP model was used for all traits as follow:

y=1,u+Xb+7Zg+e
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where y was a vector of phenotypes (cow’s phenotype were assumed as missing values);
1,, was a vector of ones (1 x n); 4 was the population mean; b was a vector from systematic
effects (PERIOD); g was a vector of genomic breeding values; X and Z were respective
incidence matrices (All cows were grouped at level 1 of PERIOD) and e was the residual
vector. The effect distributions were previously described in VCE analyses (point 3.4). Then,

the genomic breeding value was predicted as:

2

271

g,

8= [Z'z +GTIE (2 1,)]
)

where g was the vector of GEBV Z” was the transpose Z and [ was the estimated mean.
The software used was an adapted version of the TM by Legarra et al. (2011) in a Bayesian

context.

3.6.1. Accuracy of prediction

The objective of this analysis was to determine how close the predicted breeding value
using in early life was to the true breeding value in cows. The true breeding value was
unknown; however, the phenotypes were available, so the accuracy was evaluated using the
phenotype corrected by systematic effects, the phenotypes were the same that were used by
developing the BLUP; i.e. phenotypes were rescaled between 0,02 and 1. The accuracy of

predictions was evaluated through two methods as follow:

1) The correlation between the GEBV and the corrected phenotype as:
Covg

_ gy

Pey =

0g0y

where g was the predicted breeding value (GEBV) and y was the phenotype corrected

by LACT,,, and DIM_,.

2) The mean squared error (MSE) between the GEBV and the corrected phenotype as:

=18 — Yi)2
n

MSE =

where n was the number of cows used in the model.

Figure 1 show an illustration of genomic prediction and accuracy evaluation. Accuracies

were developed in R environment.
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Figure 1. Summary of the prediction process and its accuracy evaluation
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4. RESULTS AND DISCUSSION

4.1. Exploratory data analysis

In calves, FE-traits showed asymmetric bimodal distributions for DMI, FCE and ADG
(Annex 1), this was clearly influenced by the sampling period as in period 1 the sampling was
for 60 days, while in period two the sampling was for 45 days. This significantly affects the
distribution the phenotypes. RFI had a unimodal distribution because it was the residual of a

linear regression on DMI corrected by PERIOD.

In cows, FE-traits distributions were slightly asymmetric for DMI, FCE and ROFC
(Annex 1). This was caused by the environmental factors. The most relevant ones were
lactation and days in milk. In the case of RFI it was the residual term, so it presented symmetric

distribution.

Herd summary: Most of the cows were young and were between the first and third
lactation, therefore, the number of cows was represented in two groups, Primiparous and
multiparous. Most cows were in the second third of the lactation, so DIM cat was categorized
into two groups, until day 90 and from day 91 onwards, this was divided according to milk
production. Yield traits, weight and age were within the breed parameters
(www.mapa.gob.es/es/ganaderia;, www.conafe.com/estadisticas.aspx). Table 5 and Table 6
descriptive statistics of the data, while Annex 1 and Annex 2 show density curves for the

variables on study.

Table 5. Summary from FE-traits

DMI FCE RFI ADG/ROFC

Calves Min 0.888 0.031 -0.485 0.067
Median 1.204 0.400 0.017 0.453

Mean 1.710 0.299 0.000 0.383

Max 2.789 0.588 0.286 0.691

Cows Min 16.78 1.193 -5.013 4.992
Median 24.11 1.596 0.047 8.512

Mean 24.29 1.617 0.000 8.782

Max 28.58 2.356 3.898 14.198

DMI= dry matter intake; FCE = feed conversion efficiency; RFI = residual feed intake; ADG = average daily

gain; ROFC = return over feed cost. Higher values from RFI are for less efficient animals and lower values for
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the more efficient animals; higher values from FCE, ADG and ROFC are from more efficient animals and lower

values for less efficient animals.

Table 6. Summary of productive traits in cows

DIM MILK % FAT % PROT ECM BW AGE

Min 55.00 28.08 3.008 2.841 27.05 449.4 684.0
Median 81.00 40.74 3.689 3.435 38.46 613.2 1151.0
Mean 84.86 40.89 3.709 3411 39.31 604.9 1205.5
Max 130.00 55.50 4.639 3.862 56.09 739.2 2949.0

DIM=days in milk; MILK=milk production expressed in kg/day; %FAT= fat production expressed in percentage;
%PROT= protein production expressed in percentage; ECM= energy corrected milk; BW=body weight expressed
in kg; AGE= age cow expressed in days.

4.1.1. Phenotypic correlation

CALVES o <OV ‘
& & & &L Y&
.
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Figure 2. Phenotypic correlations for traits under study, the traits were corrected by systematic
effects.

In calves, there was a strong correlation between DMI-FCE and ADG, all three traits
were strongly correlated (between 0.93 and 0.97), while RFI had a low correlation with DMI

(0.27) and was not correlated with any other trait.

In cows, DMI had a strong correlation with RFI (0.86), indicating that cows that eat less
were more efficient. DMI was moderately correlated with milk production (0.36), ECM (0.35)
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and body weight (0.28), these correlations suggest that cows with higher feed intake produce
more and had more weight but showed lower efficiency from RFI point of view. RFI was not
correlated with productive traits; this was because it has been adjusted in the model. FCE was
strongly correlated with ROFC (0.88), which both tend to classify the same animals as efficient;
furthermore, FCE and ROFC were strongly correlated with MILK and ECM. Phenotypic

correlations are shown in Figure 2.

4.2. Phenotypic prediction

As detailed in materials and methods, a phenotypic prediction of FE traits was performed
with four statistical models, classical linear regression and three machine learning algorithms.
Then, they were evaluated with random cross validation (RCV). The objective of phenotypic
predictions was to find alternatives to expensive DMI measurements to estimate FE. Therefore,
DMI was excluded from the training variables in all predictions. The results of the cross-
validation were the correlation (r) and the mean square error (MSE) between real and predicted

values of FE-traits.

4.2.1. FE-traits comparative

The accuracy from DMI prediction was moderate; it had » values between 0.47 and 0.58
and MSE values between 3.53 (kg/d)? and 4.95 (kg/d)?. Bagging was the model with higher
accuracy followed by LM; these results were higher than those of Roseler D. K. et al. (1997),
who carried out studies in 241 Holstein cows from different EEUU regions, in which the lowest
MSE was equivalent to 4.7 (kg /d)?. This could be due to the selected variables for the training
set, the trait variance in the sample population or maybe, to the predictor model. According to
the linear regression, the variables with the greatest importance (regression coefficient) to
predict DMI were body weight and age, indicating that weight and age directly influence in
DMI.

FCE had good accuracies, with 7 values between 0.71 and 0.85 and its MSE values were
between 0.018 and 0.027; the models with the highest predictions for FCE were LM and
NNET. According to the linear regression, the predictor variables with the greatest importance

were Milk body weight.

RFI had lower predictive accuracy, with negatives r values between -0.31 and 0.01, and

its MSE values were between 3.20 Kg?/d and 4.74 Kg?/d. No model was phenotypically
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correlated with this trait (Figure 3), probably because RFI was already indirectly adjusted for
these traits. The predictor variables with the highest regression coefficient for RFI was age.

However, they had low prediction accuracy of RFI.

ROFC had high accuracies; it had r values between 0.88 and 0.99, and its MSE values
were between 0.13 euros?/d and 1.2 euros?/d; the best predictors were LM and NNET; both
had an excellent prediction capacity. Except for DMI, no references for phenotypic predictions
have been found. The predictor variables with the greatest importance were MILK and body

weight, which also suggests that ROFC was largely determined by the production and weight.

4.2.2. Models comparative

The model's accuracy differs between FE traits; this is shown in Figure 3. LM had shown
great predictive ability in general; its highest precision was for FCE and ROFC. K-NN showed

consistent accuracies.

NNET showed high predictive ability for ROFC. This is shown in Figure 4. NNET was
the only deep learning method in this study, and its algorithm may be limited by the amount of
data for back-propagation training. Bagging showed large abilities, its highest predictions were
for DMLI. It performs random sampling, generates different trees and adjust the result by MSE;
this avoids overfitting and produces reliable results. In general, Bagging and LM showed larger
accuracy than the other models; in this study NNET is an algorithm that could be recommended
to train with more databases and more variables to exploit all its advantages. KNN presented
consistent accuracies in this study, although its algorithm has been successfully tested on traits

with nonlinear behaviours and categorical variables.

Table 7. Pearson correlation of RCV in phenotypic prediction of FE

DMI FCE RFI ROFC
Model r sd r sd r sd T sd
COWS LM 0.547 0.174 0.852 0.052 -0.309 0.187 0987  0.005
K-NN 0.480 0.240 0.715 0.129 -0.309 0.248 0.834  0.042
NNET 0.480 0.204 0.831 0.065 0.010 0216 0988  0.004

Bagging 0.582 0.162 0.807 0.046 -0.047 0.255 0.943 0.022

Where r was the RCV results and corresponds to the mean from 100 Pearson correlations and its standard
deviation. Higher values are desired, the model with the highest correlation is marked in boldface. LM= linear
model; K-NN= k-nearest neighbor; NNET= neural network.
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Figure 3. Correlation between the observed and predicted value from RCV, and its confidence
interval. Each point represents a correlation and each colour represent a FE trait. Higher values

are desirables.

Table 8. MSE and its sd of RCV in phenotypic prediction of FE

DMI RFI ROFC
Model MSE sd MSE sd MSE sd MSE sd
COWS LM 3.863 1.222 0.018 0.008 3.701 1.250  0.126  0.040
K-NN 4.121 1.444 0.031 0.012 3.478 1.186  1.199  0.426
NNET 4.948 1.750 0.021 0.009 4.742 1.374  0.131 0.049
Bagging 3.527 1.097 0.023 0.009 3.196 0.967 0.589  0.265

MSE = mean squared error, this was the RCV results and correspond to the mean from 100 mean squared errors
and its standard deviation. Lower values are desired; the model with the highest correlation is marked in boldface.
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Figure 4. Density plots of MSE from RCV. The four models in each FE trait are shown and

are divided by colour.

4.2.2.1. ;Is there a statistical difference between the models?

With the results of the accuracy predictions (), ANOVA tests were performed to verify

if there is a statistically significant difference between prediction models. The results register

a significant difference between predictive models, this was repeated for all FE traits, where

the Pr (>F) for DMI, FCE, RFI and ROFC were 7.107e-07, 7.049¢-32, 1.351e-31 and 3.06e-

116 respectively. The t test analysis were also performed to determine the difference between

prediction models (two-by-two comparisons), these results reinforce the ANOVA analysis and

its results are shown in Annex 4.
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4.3. Variance components analysis

4.3.1. Heritabilities

In calves, the heritabilities of FE traits were high with values of 0.50 (0.27), 0.52 (0.24),
0.50 (0.22) and 0.50 (0.26) for DMI (sd), FCE (sd), RFI (sd) and ADG (sd) respectively.

In cows, the heritabilities for FE traits were also high. Interestingly, DMI had the lower
estimate (h? = 0.38, sd = 0.25), these results are comparable to those in Spurlock et al. (2012)
and Li et al. (2016) who presented heritabilities between 0.20 and 0.40. FCE showed high
heritability (h?= 0.49; sd = 0.25) and these results were higher than those of Van Arendonk et
al., (1991) and Vallimont et al. (2011), who reported heritabilities of 0.37 and 0.14 respectively.
RFI presents a high heritability (h?= 0.44, sd = 0.25), these results were higher than those
presented in Table 2. ROFC was less studied trait than the previous ones, and it also presented
high heritability (h?= 0.50, sd = 0.24). The heritabilities of the productive traits were also
estimated. Milk (sd), ECM (sd), and FAT (sd) had high heritability estimated with values of
0.47(0.21),0.46 (0.21), and 0.58 (0.23), respectively; whereas protein and BW presented lower
heritabilities (0.26 (0.18) and 0.34 (0.20), respectively). Heritabilities can be seen in Figure 5

and its sd in Figure 6.

4.3.2. Genetic correlations

In calves, DMI showed high correlation with RFI (r = 0.99; sd = 0.01); as well as FCE
and ADG presented a strong correlation (0.93; sd = 0.12). correlation between DMI with FCE
was low (0.22; sd = 0.60) whereas DMI was moderately correlated with ADG (0.55; sd = 0.49).
The correlation between RFI and FCE was weak (0.11, sd = 0.60); RFI and ADG showed
moderate correlation (0.42, sd = 0.54). Correlations must be carefully interpreted because they
had large sd and the sample size was low. The interpretations of traits must also be cautiously
considered, RFI prioritizes feed saving while FCE prioritizes daily weight gain. No studies

references have been found in calves of these ages.

In cows, DMI showed strong correlation with RFI (r=0.85, sd = 0.25), this indicates that
cows with lower feed intake tend to save more food This value agrees with those of Arthur et
al. (2001a) and was higher than those of Lin et al. (2013) (Table 3). Furthermore, DMI and
RFI showed positive correlations with fat, which suggest that cows with lower intake and lower

RFI (higher saved food) produce a lower percentage of fat and protein; these results differ from

44



those by Gonzalez-Recio et al. (2014) that presented correlation values of DMI (sd) and RFI
(sd) with fat of -0.11 (0.08) and 0.03 (0.07) respectively, but using DMI recorded in heifers.

RFI was negatively correlated with milk (r =-0.41; sd =0.51) and ECM (r = -0.29; sd =
0.56), however the sd were very large, so the interpretation must be cautious. Cows with lower
RFI produce more milk, and the fat and protein percentages tend to decrease (this was why the
correlation of RFI with fat and protein were positive); this was in agreement with the studies
by Cue et al. (1987) that showed a negative correlation of milk production with fat and protein

per cent.

FCE presented a strong correlation with ROFC (r = 0.87; sd = 0.18) and both FCE and
ROFC were strongly correlated with milk and ECM (Figure 5). Furthermore, FCE and ROFC
were negatively correlated with fat percentage (due to the cows with high FCE and ROFC
produce more milk and milk was negatively correlated with fat). ROFC showed weak

correlation with body weight (r = 0.06; sd = 0.63).

The genetic correlations between cows and calves were close to zero. DMI of calves with
DMI of cows had r = 0.14 with a large sd (0.70); FCE of calves with FCE of cows had r = -
0.03 (sd = 0.72). Calf RFI showed r = 0.04 (sd = 0.69) with cow RFI; and the correlation
between ADG and ROFC was r = -0.04 (sd = 0.72). The correlations between efficiency traits
were weak or not correlated, in addition to presenting considerable standard deviations. This
indicates that the FE-traits in calves were independent of the FE-traits in cows, and large sd
indicates that larger sample size was needed to replicate the results. The genetic correlations

can be seen in Figure 5 and their sd in Figure 6.
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4.3.2.1. Genetic correlations between FE traits in calves and cows
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Figure 5. Heritabilities and genetic correlations for FE and productive traits in cows and calves.
The green diagonal shows the heritability for each trait.
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4.4. Genome wide association study

4.4.1. Statistical power of the sample size

The data set used in this master thesis was too small to implement GWAS. Taking this
into account, the objective of this section was to estimate the statistical power of the sample
size to measure the reliability of the genome-wide association results (showed later). For this,

the following parameters were considered as priors:

e The QTL allele frequencies were 0.5 for both p and q.
e Optimistically, we assume a linkage disequilibrium (D) of 0.25.

Then, three points were calculated: The Bayes factor (B) for the sample size (n) in this
study, the power of the sample size (Pw) if B = 20 (that explain 5% and 1% of the variance),
and »n required if Pw = 0.80 and B = 20. The results are explained below and detailed in Table
9.

a) Bayes factor (B) equivalent to the sample size in this study (n).
e Incalves n =30. In cows n = 70 (for FCE, RFI and ROFC) and n = 103 (for DMI). In
both cases (calves and cows) B was less than 1 (Table 9), which suggests that the

strength of the evidence was very small.

b) Pw that explains 5% and 1% of the variation (th) assuming B = 20.
e For th =0.05: Pw=0.05, 0.09 and 0.14 for n = 30, 70 and 103 respectively.

e For th =0.01: Pw=0.02, 0.01 and 0.01 for n = 30, 70 and 103, respectively
¢) nrequired for a Pw= 0.8 and a B = 20.

e when th =0.05, n required was 415.
e When hQ2 = 0.01 n required was 2566. Figure 7 shows an illustration of the relation

between B and » for hQ2 = (.05 and 0.01.
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Table 9. Results of the analyses for the statistical power of the sample size.

Gr n p q D  hy* Trait B Pwp,, mng,

Calves 30 0.5 0.5 025 0.05 DMLFCERFLADG (.22 0.052 415
Calves 30 0.5 0.5 025 0.01 DMLFCERFI,ADG 0.18 0.016 2566

Cows 70 0.5 05 025 0.05 FCE, RFL,ROFC 0.15 0.091 415
Cows 70 05 05 025 0.01 FCE RFIL,ROFC 0.08  0.012 2566
Cows 103 0.5 0.5 025 0.05 DM 0.18  0.143 415
Cows 103 0.5 05 025 0.01 DM 0.06  0.012 2566

Where GR was the group of study; » was the sample size in this study; p and ¢ were the QTL allele frequencies;
D was the linkage disequilibrium; th was the QTL heritability or the explained variation; TRAIT refers to the
FE trait studied; Bp,, was the Bayes factor for a statistical power of 0.8; Pwp,  was the statistical power of the
sample size assuming a Bayes factor = 20; ng, was the sample size required for Pw=0.8 and B=20. Note: DMI
has n=103 because 33 cow’s data were added for DMI genome-wide association.
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Figure 7. Power of the sample size explaining the 5% (left-plot) and 1% (right-plot) of the
variation. Where D = linkage disequilibrium, this is shown by colour. This was calculated with
an allelic frequency of 0.5 and the result is the equivalent to Bayes factor = 20.

These results suggest that the sample sizes were insufficient enough to give us reliable
power. We have been optimistic with priors to estimate the strength of the evidence in the
genome-wide association studies. However, the population size in this study did not represent
areliable power of the sample size. Therefore, genome association results should be interpreted

with caution.
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4.4.2. Models

4.4.2.1. Frequentist GWAS
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Figure 8. FE Manhattan plots from frequentist GWAS. Above the blue line, are the SNPs with
P-value < 0.001

GWAS results were discussed through the SNP significance as follow:
Significant SNPs (P < a = 0.001) for FE traits in GWAS

An alpha (a) 0.001 was established, being p < 0.001 a significant value for the SNP
effect. Here, 28, 35, 25 and 22 significant SNPs were found for DMI, FCE, RFI, ADG,
respectively in calves. Whereas 12, 34, 44 and 24 significant SNPs were found for DMI, FCE,
RFI and ROFC, respectively in cows. For DMI in calves, 28 SNPs were identified on 13
different chromosomes; whereas in cows 12 SNPs identified were distributed on 6 different
chromosomes. For FCE in calves, 35 SNPs were identified along 13 different chromosomes,
whereas 34 SNPs were identified in cows, distributed on 12 different chromosomes. For RFI
in calves, 25 the SNPs identified were distributed on 10 different chromosomes whereas in

cows 44 SNPs were found on 17 different chromosomes. For ADG in calves, 22 SNPs were
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found on 10 different chromosomes. For ROFC in cows, 24 significant SNPs were found on
12 different chromosomes. Unfortunately, no common SNP were found for any FE traits

between cows and calves.

Table 10. Significant SNPs for P-values in GWAS

Calves Cows
P-value DMI FCE RFI ADG DMI FCE RFI ROFC

0.001 28 35 25 22 12 34 44 24
Higher values are desired, the trait with the highest significant SNPs is marked in boldface

Number of SNPs in common between traits (P < a = 0.001) in GWAS

In calves, DMI and RFI had more common SNPs between them. These sixteen SNPs
(chromosome, and nearest gene in parenthesis) were Hapmap43629-BTA-60810 (1), BTB-
01146938 (1), ARS-BFGL-NGS-116361 (1), ARS-BFGL-NGS-93995 (9), ARS-BFGL-NGS-
15511 (9), ARS-BFGL-NGS-17690 (9), Hapmap23835-BTA-161158 (9), ARS-BFGL-NGS-
113524 (9), ARS-BFGL-NGS-110434 (12), ARS-BFGL-NGS-60282 (12), Hapmap60144-
rs29013559 (13), UA-IFASA-5750 (14), Hapmap23726-BTC-051363 (14), ARS-BFGL-NGS-
44829 (20), BTA-86837-no-rs (20), ARS-BFGL-NGS-64656 (29). Also, FCE had more
common SNPs with and ADG, these fourteen SNPs were ARS-BFGL-NGS-112477 (10),
Hapmap48260-BTA-24589 (11), Hapmap47248-BTA-32461 (13), BTA-32556-no-rs (13),
ARS-BFGL-NGS-71025 (13), BTA-115847-no-rs (13), Hapmap49962-BTA-32832 (13), ARS-
BFGL-NGS-2022 (13), Hapmap49963-BTA-33040 (13), ARS-BFGL-NGS-21830 (13),
Hapmap44175-BTA-98206  (15), Hapmap52953-rs29025745 (22), Hapmap35936-
SCAFFOLD65654 2749 (22), UA-IFASA-3305 (27). DMI and ADM had only one SNP in
common, this was Hapmap54267-rs29023167 (16). No more SNPs were found in common for

other traits.

In cows, DMI and RFI had two common SNPs, these were Hapmap48321-BTA-40830
(17) and Hapmap49910-BTA-20754 (17); of them, none were found in common with the
equivalent comparison in calves. FCE had seven SNPs in common, these were Hapmap41492-
BTA-26349 (3), ARS-BFGL-NGS-118243 (3), Hapmap50605-BTA-16738 (6), ARS-BFGL-
NGS-12483 (15), ARS-BFGL-NGS-61425 (15), ARS-BFGL-NGS-41288 (15), ARS-BFGL-
NGS-14291 (17); of them, none were found in common with the equivalent comparison in

calves. No more SNPs were found in common for other traits.
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In both cows and calves, DMI and RFI had more common SNPs, and FCE shared more
SNPs with ADG (ROFC in cows). No SNPs have been repeated in the four FE-trait (DMI,
FCE, RFI, ADQG) in both calves and cows (Figure 9).

RFI ADG RFI ROFC

DMI FCE DMI 42 17 FCE

11 21 10 27

Figure 9. Venn Diagrams from common SNPs for FE in GWAS model. significant SNPs with
alpha < 0.001 are shown. In the left, SNPs for calves, in the right, SNPs for cows.

The most significant SNPs and their closest genes and biological functions.

The most significative SNPs (the lowest p-value) were selected. Then, the closets genes
and their associated biological function were found. The results are discussed below, and the
SNPs, genes and biological function are shown in Table 11 and Table 12 for calves and cows

respectively.
Most significant SNPs in calves in GWAS

The markers associated to FE in calves were found on chromosomes 9, 13, 14 and 22.
All significant SNPs (3 SNPs) for FCE were also significant for ADG, and two of three SNPs
significant for DMI were significant for RFI, this corroborates the high genetic correlations
between these traits (Figure 5). Genes linked to DMI and RFI were involved in immune
response, nervous development and protein synthesis; whereas the FCE and ADG genes were
involved with enzymatic activity (aminopeptidase), molecular processes (transcription and

transduction) and metal ion binding.

Cole et al. (2011) showed an association of milk and fat production with the GNAS gene;
in this study the same gene was associated with FCE and ADG; this makes sense because FCE

was strongly correlated to milk production and ADG (Figure 5). Besides, the genetic
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correlation of FCE,4p,es and ADG 41pes With FAT,,,, was positive (Figure 5). El-Halawany
et al. (2017) and Perez et al. (2018) have associated milk production and fertility with the
CSMD3 gene. In this study, the same genes were associated with DMI and RFI, this is
interesting because these production traits should be related to FCE, although it was also due
to DMI and FCE were correlated in calves. Mallikarjunappa et al. (2018) and de las Heras-
Saldana et al. (2019) show EIF3H associated with immunity and RFI respectively. In this
study, the same gene was associated with DMI and RFI, this suggests again that immunity

plays a vital role in feed intake and metabolism.

Table 11. SNPs with lowest P-value and their nearest genes for FE traits in calves in GWAS.

REFERENCE
Associated
Ch Marker Trait QTL Function Author trait Specie
9 ARS-BFGL-  DMI SAMD3* Immune
NGS-113524 RFI response
13 ARS-BFGL-  FCE NPEPL1*  Aminopeptida
NGS-21830  ApG se activity
I;%J_}HA&IP‘“’% FCE GNAS* Molecular Cole et al. Milk, fat Holstein
33040 ADG transducer (2011)
NELFCD*  Transcription
regulation
14  Hapmap2372  DMI CSMD3* Regulation of El-Halawany et Milk Buffalo
6-BTC- RFI dendrite al. (2017)
051363
development
Perez et al. Scrotal Nellore
(2018) circumference
and pregnancy
UA-TFASA-  DMI EIF3H** Protein Mallikarjunapp  Antibody to Holstein
3730 RFI biosynthesis aectal. (2018) Johne's disease
De Las Heras-  RFI Angus
Saldana et al.
(2019)
22 Hapmap5295 FCE FGDS5* Metal ion
3 ADG binding

1529025745
Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was within

200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; when it
does not present * it means that the SNP was within the gene.

Most significant SNPs in cows in GWAS

In cows, the most significant SNPs were found on chromosomes 13, 17, 2, 8 and 9, and
the related genes can be seen in Table 12. Hapmap48321-BTA-40830 and Hapmap49910-
BTA-20754 SNPs match between DMI and RFI, whereas FCE and ROFC do not share genes

within the most significant genes. The genes associated with RFI were involved in various
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biological functions, including Insulin regulation, apoptosis processes, glycoprotein synthesis,
cell development, spermatogenesis, organ development and immunity. The genes associated
with FCE and ROFC were involved in the transcription process and cellular attachment,

assembly and transport process.

PRUNE? and IL2 were associated with RFI; this association has also been reported by
Lima et al. (2016) and Hou et al. (2012). EPB41L1 and SPRY1 genes that in this study were
associated with RFI, in the investigations of Mudadu et al. (2016) and Zhou et al. (2019) have
been associated with backfat thickness and gestation length; This could be due to feeding and
saving intake could be affected by factors related to fat metabolism and energy expenditure by
pregnancy. Three studies have referenced the NCOA6 gene and two the TP53INP2 gene, they
related these to scrotal circumference in males, body fat, and milk fatty acids in females (Table
12); in this study, both genes have been related to FCE; this suggests that feed efficiency in

cows could be influenced by genes involved in the production, lipid metabolism and fertility.

Among the QTLs reviewed in Table 11 and Table 12 no common genes (between most

significant) were found between cows and calves.
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Table 12. SNPs with lowest P-value and their nearest genes for FE traits in cows in GWAS.

REFERENCE
Associated
Ch  Marker Trait QTL Function Author trait Specie
2 BTB- RFI GRB14* Insulin receptor
00093493 regulation
8 ARS-BFGL-  RF] PRUNE2* Apoptotic process Limaetal. RFI Nellore
NGS-17993 (2016)
GCNT1* Glycoprotein
biosynthetic
BTB- RFI FOXB2* Anatomical
00631715 structure
9 BTB- ROFC  TRAPPC3L  Golgi vesicle-
00389188 * mediated transport
CALHM6* cation channel
activity
CALHMS5* cation channel
activity
13 ARS-BFGL-  RF] CNBD2* spermatogenesis
NGS-63663
EPB41L1* actomyosin and Mudadu et  back fat Nellore
actin organization al. (2016)  thickness
Hapmap540  FCE PIGU* Attachment of GPI
3842'9 026486 anchor to protein
NCOAG6* Transcription Irano etal.  Scrotal Nellore
coactivator activity ~ (2016) circumference
Junior et Back fat Nellore
al. (2016)  thickness
Olsen etal. milk fatty Dairy
(2017) acids cattle
Knutsen et milk fatty Dairy
al. (2018) acids cattle
TP53INP2*  Autophagosome l.Iranoet 1. scrotal Nellore
assembly al. (2016) circumference
17  Hapmap483  DMI SPRY 1** animal organ Zhouetal. 1. gestation Xinjiang
i é;ggA' RFI development (2019) length Brown
cattle
Hapmap499  DMI IL21* adaptive immune 1. Hou et 1. RFI 1.Holste
;8'7121“' RFI response al. (2012) in cattle
Gurgul et  Inmune response  Polish
al. (2019) cattle

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was within
200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; when it
does not present * it means that the SNP was within the gene.

4.4.2.2. Bayes LASSO association

For the Bayes LASSO analysis, the comparison was made through the SNP effect and

the discussion of the results are shown below.

55



CALVES

9e-09
6e-09

3e-09 1 =
[a)
0e+00 ¥
rNMTLENOOSCTNRTREETAITONCRERIIK
S5e-
7.5e-10 4e-09
5 50e10
2e-09
9 25e10 2o L
= O
2 0.0e+00 0Oe+00 -
wv
g
&
U ge-09 1.5e-08
o
‘% 6e-09 1.0e-08
4e-09 —
5 09
28-00 5.0e-09 &
0e+00 0.0e+00
4e-09
) (@)
3e-09 i
2e-09 8
.9 -
1e-09 8
0e+00
<

< LOQ CrNMYLENTIO—NMEWVONOD
TNMeWwONOD = L e NN NNNNN NN

Chromosome

Figure 10. FE Manhattan plots from Bayesian-LASSO association. Above the blue line, are
the SNPs with quantile > 0.999.

Significant SNPs (quantile> 0.999) for FE traits in Bayes LASSO

The analyses of this section were performed based on the SNP effect. The additive
genetic variance of the SNPs was estimated being always <1% (Figure 12). Thus, these results
were not used in the comparative analyses. Approximately, 35 SNPs with larger effect
(quantile> 0.999) from each trait were selected, these are shown in Figure 10. For DMI, the
SNPs identified in calves were distributed on 13 different chromosomes; whereas in cows the
SNPs were distributed on 17 different chromosomes. Unlike GWAS and random forest, in
Bayes LASSO 1 SNP in common between calves and cows was found, this SNP was
Hapmap48117-BTA-90454 and it was found on chromosome 12. For FCE, the SNPs identified
in calves were distributed on 20 different chromosomes, whereas in cows they were distributed
on 17 different chromosomes and do not share SNPs between cows and calves. For RFI in
calves, the SNPs identified were distributed on 21 different chromosomes whereas in cows
they were found on 15 different chromosomes, one of them also was found in common between
cows and calves, this SNP was BTA-43831-no-rs and it was found on chromosome 18 (none

SNP in common was found between cows and calves in GWAS and RF). For ADG in calves,
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the SNPs were found on 22 different chromosomes. Finally, for cow ROFC, significant SNPs
were found on 18 different chromosomes. For the interpretation of these results, one aspect to
consider is that lambda convergence was not too good in both calves and cows (Annex 9 and

Annex 10).
Number of SNPs in common between traits (quantile > 0.999) in Bayes LASSO

In calves, Only DMI and RFI shared two SNPs in common, these SNPs were ARS-BFGL-
NGS-41287 (1) and BTA-86837-no-rs (20). No more SNPs were found in common for other

traits.

In cows, DMI had three SNPs in common with FCE, these were ARS-BFGL-NGS-41523
(2), ARS-BFGL-NGS-103734 (17), and ARS-BFGL-NGS-111019 (28). DMI and RFI had six
common SNPs, these were BTB-00901654 (8), ARS-BFGL-NGS-85644 (8), BTB-01286081
(16), BTB-00393938 (16), Hapmap26379-BTA-130999 (17), ARS-BFGL-NGS-75936 (18).
DMI had two SNPs in common with ROFC, these were ARS-BFGL-NGS-54368 (16) and ARS-
BFGL-NGS-111019 (28). FCE had two SNPs in common with RFI, there were ARS-BFGL-
NGS-95329 (2) and BTB-01195369 (3). FCE had six SNPs in common with ROFC, these were
BTB-01450068 (4), BTB-00493207 (12), ARS-BFGL-NGS-61425 (15), ARS-BFGL-NGS-
82204 (19), ARS-BFGL-NGS-118018 (19), ARS-BFGL-NGS-111019 (28). RFI had one SNP
in common with ROFC, this was Hapmap34677-BES4_Contig489 1116 (8). DMI, FCE y
ROFC had one SNP in common, this was ARS-BFGL-NGS-111019 (28). No more SNPs were
found in common for other traits and no SNPs were found in common with the equivalent

comparisons in calves.

In both cows and calves, DMI and RFI had more common SNPs, while FCE shared more
SNPs with ROFC only in cows, this differs from the analyses found in GWAS. No SNPs have
been repeated in the four FE-trait (DMI, FCE, RFI, ADG) in both calves and cows (Figure 11).
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RFI ADG RFI ROFC

DMI FCE DMI 51 69 FCE

34 36 86 57

Figure 11. Venn Diagrams of common SNPs for FE in Bayes LASSO association. SNPs with
highest effect in the quantile > 0.999 are shown, In the left, SNPs for calves, in the right, SNPs
for cows.

Most significant SNPs in calves (quantile > 0.9999) in Bayes LASSO

In calves, within the SNPs with the most significant effect (> 0.9999) there were no
SNPs in common between FE traits, this differs with the traditional GWAS analysis. The
biological functions in which the genes were involved were diverse. RFI and DMI showed
association with the immune response, behaviour and bone development; whereas the genes
most associated with FCE and ADG were involved in cell replication, transport and calcium

regulation. Each gene and their most associated functions are detailed in Table 13.

Only one gene associated with RFI was referenced in another study, this gene was
INSIG2 associated with MILK in Deng et al. (2016). The PCDH7 gene was associated with
DMI, De Lima et al. (2017) found a relationship between this gene and RFI (this gene had
significant activity in the liver). Five other genes that were associated with DMI in this analysis,
in other studies these were associated with body size, body fat, abomasum displacement, meat
quality and bone development. Association of FCE with the ARHGAP20 and DOCK1 genes
was found, the studies of Zhang et al. (2017) and Neupane et al. (2017) associated these genes
with body size and fertility in heifers respectively. The ATP2B2 gene that in this study was
associated with ADG, Gongalves et al. (2018) associates it with beef tenderness in Nellore
cattle. In general, several significant genes that were appreciated in this analysis, in other
studies have been associated with production and fertility. The genes found in this study were
not matched with genes in GWAS analyses; this shows the role and importance of several genes

within different physiological routes influencing the FE of animals.
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Table 13. SNPs with the highest effect (quantile > 0.9999) and their nearest genes for FE traits

in calves in Bayes LASSO.
REFERENCE
Associated Associated
Ch Marker Trait QTL Function Author trait Specie
2 ARS-BFGL-  RF] INSIG2** Cholesterol Deng et al. MILK Chinese
NGS-20993 metabolic process (2016) buffaloes
ARS-BFGL-  RF] EN1* Behaviour and
NGS-88046 brain development
MARCO* Scavenger receptor
activity
3 Hapmap5006  RF] BENDS5** Transcription,
8-BTA-69023 DNA-templated
6 BTA-76341-  DMI  PCDH7* Cell adhesion An et al. Body size Simmental
no-rs (2020) cattle
De Lima et RFI Nellore
al. (2017) cattle
7 Hapmap5356  DMI ~ CETN3** Calcium ion 1. Hardieet =~ Metabolic Holstein
>-1s29013278 binding al. (2017) body weight  cattle
8 Hapmap4942 ~ ADG  ROR2 ATP binding
4-BTA-
105436
9 Hapmap4678 ~ DMI ~ HTRI1B** Bone remodeling Duncombe Carcass fat Beef cattle
0-BTA-18414 (2016)
12 BTB- DMI  SLITRKS*  Adult behavior 1. Biffaniet = abomasum Holstein
02009715 al. (2014) displacement cattle
13 ARS-BFGL-  FCE = SLC24A3 Calcium ion
NGS-23363 transport
15 Hapmap4119  FCE ~ ARHGAP2  Signal transduction ~ Zhangetal.  Body size Chinese
2-BTA-16797 0* (2017) Holstein
18 ARS-BFGL-  DMI ~ WWOX* Cellular response to  Lee et al. meat colour  Korean
NGS-33562 transforming (2018) bone cattle
growth factor beta Ramayo- metabolism  French
stimulus Caldas et al., cattle
(2016)
22 ARS-BFGL- ~ DMI  SLC6AI11 Neurotransmitter
NGS-110768 uptake
ARS-BFGL-  ADG  ATP2B2 Cellular calcium Gongalves et Beef Nellore
NGS-62254 ion homeostasis al. (2018) Tenderness  cattle
SEC13* COPII-coated
vesicle budding
24 BovineHD40 ~ ADG  PIK3C3** Autophagosome
00000094 assembly
26 ARS-BFGL-  FCE =~ C26HI10orf  Regulation of Neupane et heifer Beef cattle
NGS-74523 90 centriole replication  al. (2017) fertility
DOCKI1* Cell migration
Hapmap5851 ~ ADG ~ VAXI* Brain development  Cai et al. Milk and fat  Holstein
3-1s29024371 (2020) yield cattle
KCNK18* Ion transport
27 ARS-BFGL-  RF] PPPIR3B*  Carbohydrate
NGS-114154 metabolism
ARS-BFGL-  RF] MCPHI1**  Cerebral cortex
NGS-45124

development

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was within
200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; when it

does not present * it means that the SNP was within the gene.

59



Most significant SNPs in cows (quantile > 0.9999) in Bayes LASSO

In cows, the most significant SNPs were found on various chromosomes (between 2 and
28). The functions of the nearest genes were involved with various molecular and biological
routes and processes, and there was no clear pattern that relates these with a specific FE trait.
However, these genes can be classified as follow: DMI associated genes were involved in
system nervous, transcription, fertility and cellular maintenance process; FCE associated genes
were involved in regulatory functions, oxidoreduction and immunity; RFI associated genes
were involved in ionic transport and various cellular functions, and ROFC-associated genes
were involved in the development of the central nervous system, protein localization and

activation. Between the most significant SNPs, no marker shared between FE traits were found.

From the SNPs whit the highest effect, seven referenced genes have been found in other
studies. However, none have been directly associated with FE traits. The NCKAPS5, TBCK and
NPNT genes, which in this study were found to be significant for RFI, the first has been
referenced by Wu et al. (2016) in association with feet and legs disorders in multi-breed cattle,
and the other two have been referenced by Carvalho et al. (2020) in association with muscle
tissues and cartilage development in Nellore cattle. The USP24, NCOA®6, TP53INP2 and PSAP
genes in this study were associated with FCE; Cai et al. (2020), Olsen et al. (2017), Irano et al.
(2016) and Guo et al. (2016) associated these genes with milk yield (dairy cattle), milk fatty
acids (dairy cattle), scrotal circumference (Nellore cattle) and meat quality (Simmental cattle),
respectively. The CDH2 gene was significant for ROFC and Zhou et al. (2019) relates it to
milk production in dual-purpose cattle. Traditional GWAS with Bayes LASSO models match
one SNP, this was Hapmap54034-rs29026486 and it was significant for FCE in cows.
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Table 14. SNPs with the highest effect (quantile > 0.9999) and their nearest genes for FE traits

in cows in Bayes LASSO.
REFERENCE
Associated Associated
Ch Marker Trait QTL Function Author trait Specie
2 ARS-BFGL-  RF] NCKAP  microtubule Wu et al. feet and legs Multi-
NGS-115279 S¥* formation (2016) disorders breed
cattle
ARS-BFGL-  RFI DPP10**  ion channel binding
NGS-95329
3 BTB- FCE USP24**  protein 1. Caietal. Milk yield Holstein
01193369 deubiquitination (2020) cattle
Hapmap53424  FCE CYB561  oxidoreductase
-1s29019267 DI1* activity
6 ARS-BFGL-  RF] TBCK* intracellular protein ~ Carvalho muscle tissues  Nellore
NGS-118535 NPNT* transport et al. and cartilage Cattle
calcium ion binding  (2020) development
9 ARS-BFGL-  DMI MCHR2  neuropeptide
NGS-29072 * signaling
BTB- DMI FHLS5* transcription by
00393938 RNA polymerase 11
BTB- RFI GPR63* G protein-coupled
01286081 receptor signaling
13 ~ Hapmap34034 FCE NCOA6*  Transcription Irano etal.  scrotal Nellore
1529026486 coactivator activity ~ (2016) circumference  cattle
Junior et back fat Nellore
al. (2016) thickness cattle
Olsenetal. Milk fatty Dairy
(2017) acids cattle
Knutsen et  milk fatty Dairy
al. (2018) acids cattle
TP53INP  Autophagosome Irano etal.  scrotal Nellore
2% assembly (2016) circumference  cattle
15  ARS-BFGL-  FCE SERGEF regulation of
NGS-61425 protein secretion
16  ARS-BFGL-  DMI NPHP4*  flagellated sperm
NGS-15747 % mOtlllty
19  ARS-BFGL- ~ ROFC  ALDH3  central nervous
NGS-109844 AD* system
development
ARS-BFGL- ~ ROFC  AKAPI0 protein localization
NGS-82204 %
ULK2* activation of protein
kinase activity
24  BovineHD240 ROFC  CDH2** Calcium-dependent 1.Zhouet Fatyield Xinjiang
0007677 cell adhesion al. (2019) Brown
protein cattle
25  ARS-BFGL-  DMI KCTDI13  cell migration
NGS-7049 *
28  ARS-BFGL-  FCE PSAP* antigen processing ~ Guoetal.  carcass Chinese
NGS-111019 and presentation (2016) composition Simmenta
and meat l-cross
quality cattle

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was within
200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP; when it
does not present * it means that the SNP was within the gene.
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Proportion of genetic additive variance in Bayes LASSO

The proportion of the genetic variance explained by the SNPs was estimated. Their

results presented very low values:

e The highest value for DMI was 1.69e-09 in calves and 4.98e-09 in cows.
e The highest value for FCE was 4.19¢-10 in calves and 2.71e-09 in cows.
e The highest value for RFI was 3.89¢-09 in calves and 7.41e-09 in cows.

e The highest value for ADG in calves was 7.86e-10 and the highest value for ROFC in
cows was 2.13e-09.

The genetic variance explained can be seen in Figure 12.
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Figure 12. FE Manhattan plots of proportion of genetic additive variance from Bayesian-
LASSO.
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4.4.2.3. Random forest

For the random forest analysis, the comparison was made through the SNP importance

and the results are shown and discussed below.
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Figure 13. FE Manhattan plots from random forest association. Above the blue line are the
SNPs with quantile > 0.999.

Significant SNPs (quantile> 0.999) for FE traits in random forest

Approximately the 35 more important SNPs from each trait were selected (Figure 13).
For DMI, the SNPs identified in calves were dispersed on 13 different chromosomes; in cows,
the SNPs were also distributed on 13 chromosomes but different from those on calves. For
FCE, the SNPs identified in calves were founded on 19 different chromosomes, whereas in
cows they were distributed on 15 different chromosomes. For RFI in calves, the SNPs
identified were distributed on 16 different chromosomes; whereas in cows they were found on
16 different chromosomes. For ADG in calves, the SNPs were found on 18 different
chromosomes. Finally, for ROFC in cows, the most important SNPs were found on 16 different

chromosomes.
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Number of SNPs in common between traits (quantile > 0.999) in random forest

In calves, DMI and RFI had twenty-two SNPs in common, these were ARS-BFGL-NGS-
98459 (1), BTA-114651-no-rs (1), BTB-00032205 (1), Hapmap41227-BTA-32644 (1),
Hapmap39468-BTA-120746 (1), BTB-00031796 (1), ARS-BFGL-NGS-26880 (1),
Hapmap34848-BES1 Contig523 1341 (2), BTB-01330347 (4), ARS-BFGL-NGS-94147 (7),
ARS-BFGL-NGS-57673 (8), ARS-BFGL-NGS-105601 (8), Hapmap45972-BTA-102617 (8),
BTB-01364009 (8), BTA-119672-no-rs (11), Hapmap41707-BTA-99303 (13), ARS-BFGL-
NGS-100055 (14), ARS-BFGL-NGS-36291 (19), ARS-BFGL-NGS-20300 (20), ARS-BFGL-
NGS-17910 (20), Hapmap60719-rs29027054 (20), and Hapmap24609-BTC-015462 (25).
DMI and ADG had one SNP in common, this was BTB-01630036 (11). FCE and ADG had
sixteen SNPs in common, these were ARS-BFGL-BAC-31482 (1), ARS-BFGL-NGS-118362
(2), Hapmap25108-BTA-18447 (4), ARS-BFGL-NGS-70470 (6), ARS-BFGL-BAC-12872
(10), ARS-BFGL-NGS-103742 (10), ARS-BFGL-NGS-31962 (10), ARS-BFGL-NGS-79766
(10), Hapmap44164-BTA-92933 (11), ARS-BFGL-BAC-15043 (12), Hapmap52923-
rs29015102 (13), ARS-BFGL-NGS-113153 (17), ARS-BFGL-NGS-4366 (17), ARS-BFGL-
NGS-110727 (28), Hapmap60788-rs29017234 (X), Hapmap59288-1rs29021774 (X). No more

SNPs were found in common for other traits.

In cows, FCE and RFI had two SNPs in common, these were BTB-00283498 (6) and
BTB-00770436 (20). FCE and ROFC had twelve SNPs in common, these were BTB-01558306
(7), ARS-BFGL-NGS-108870 (7), Hapmap47162-BTA-103817 (7), ARS-BFGL-NGS-201
(7), BTB-01182727 (9), ARS-BFGL-NGS-113647 (13), ARS-BFGL-NGS-118018 (19), ARS-
BFGL-NGS-109844 (19), BTB-00770436 (20), UA-IFASA-6258 (21), Hapmap47360-BTA-
63966 (28), Hapmap60265-rs29024291 (32). FCE, RFI and ROFC had one SNP in common,
this was BTB-00770436 (20). No more SNPs were found in common for other traits and no

SNPs were found in common with the equivalent comparisons in calves.

In calves DMI and RFI had more common SNPs, and FCE had more SNPs in common
with ADG, whereas in cows only FCE with ROFC share more common SNPs. (Figure 14).
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Figure 14. Venn Diagrams for common SNPs for FE in random forest association. SNPs with
highest effect in the quantile > 0.999 are shown, In the left, SNPs for calves, in the right, SNPs
for cows.

Most significant SNPs in calves (quantile > 0.9999) in random forest

The closest genes to the most important SNPs for FE traits were selected and they were
detailed in Table 15, these were distributed between chromosomes 1 and 20. DMI and RFI
share three genes in common: SYK, HGE1 and DEPDCIB; of which, the first has been
referenced by Buitenhuis et al. (2014) and associates it with milk fat. FCE and ADG share two
genes in common: MDGA?2 and MBNL?2, and curiously, Yao et al. (2013) associate the first
one with RFI in Holstein cattle, this shows the similarity between efficiency traits in calves
even between FCE and RFI. The CAVIN4 gene had a significant effect on DMI, Uemoto et al.
(2020) also associate this gene with DMI and CH4 per DMI units (CH4 / DMI) in Japanese
Black steers. The LRRTM4 and GNAS genes were associated to ADG and these genes were
associated with milk and fat production by Li et al. (2014) and Cole et al. (2011), respectively.
Cai et al. (2020) also associate the LRRTM4 gene with milk yield and mastitis resistance. The

GNAS gene was also significant in the analysis of traditional GWAS in calves.

In general, the genes associated with DMI and RFI were involved in fat cell
differentiation, immune response, organ development, and cell maintenance functions. Genes
related to FCE and ADG were involved in nervous system development, ion binding and
transduction functions. So, as in previous analyses, FCE and ADG were referenced with
association studies on productive traits, and one observation was that some RFI and DMI

markers were also associated with productive traits.

65



Table 15. The most important SNPs and their nearest genes (quantile > 0.9999) for FE traits
in calves in random forest association.

REFERENCE
Associated Associated
Ch Marker Trait QTL function Author trait Specie
| BTB-00030894 FCE  GAP43 Nervous system
development
BTB-00031796  DMI  OSBPL11  Fatcell
RFI differentiation
8 ARS-BFGL- RFI SYK Immune Buitenhuis et Milk fat Danish
NGS-105601 response al. (2014) Holstein
Hapmap45972-  DMI ~ SYK** Immune Buitenhuis et Milk fat Danish
BTA-102617 response al. (2014) Holstein
DIRAS2*  Signal
transduction
BTB-01364009 DMI  CAVIN4*  Muscle organ Uemoto etal. CH4/DMI Japanese
development (2020) and DMI steers
10 ARS-BFGL- FCE MDGA2 NA Yao et al. RFI Holstein
NGS-103742 ADG (2013) cattle
11 Hapmap44164-  ADG LRRTM4* Neurexins and Lietal. Yearling Korean
BTA-92933 neuroligins (2017) weight cattle
Relation with Cai et al. Milk yield Holstein
(2020) and mastitis cattle
resistance
Lietal. Saturated Chinese
(2014) fatty acid Holstein
12 ARS-BFGL- FCE  MBNL2*  Metal ion
BAC-15043 ADG binding
13 Hapmap49963-  ADG ~ GNAS* Molecular Cole et al. Milk and fat ~ Holstein
BTA-33040 transducer (2011) cattle
17 ARS-BFGL- FCE NOC4L Protein
NGS-113153 glycosylation
20 ARS-BFGL- RFI NDUFAF2  Cellular
NGS-17910 * respiration
Hapmap60719-  DMI ~ DEPDCI1B  Cell migration
1529027054 RFI *

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was
within 200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP;
when it does not present * it means that the SNP was within the gene.

Most significant SNPs in cows (quantile > 0.9999) in random forest

In cows, the closest genes to the most important markers on FE traits were identified and
they were detailed in Table 16. DMI and RFI did not match SNPs in this category and their
associated genes were involved in behaviour, ion binding, transcription, and immune response
functions. Particularly the ILI0RA and IL21 genes, which have been referenced by Gurgul et
al. (2019) and Salleh et al. (2018) who related these genes with RFI and the immune system.
FCE shares three genes in common with ROFC, these were TSPAN17, EIF4E1B and
TSPANI17, and they were associated with protein maturation, transduction and cell

maintenance. Two common SNPs were found between traditional GWAS and random forest
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association in cows; these markers were BTB-00631715 and Hapmap49910-BTA-20754, and

their nearby genes were FOXB2 and IL21, respectively. In Table 16, some genes associated

with DMI were compared to studies that associate them to fatty acids in milk, weaning weight,

weight carcasses and feed intake.

Table 16. The most important SNPs and their nearest genes (quantile > 0.9999) for FE traits
in cows in random forest association.

REFERENCE
Associated
Ch Marker Trait QTL function Author  Associated trait  Specie
1 BTB- DMI EHHADH*  Fatty acid beta-  Shi et al. milk fatty acids Chinese
00037209 oxidation (2019) Holstein
Cl1H3orf70*  Circadian
behaviour
5 ARS-BFGL-  RF] ATXN7L3B  Regulation of Lietal. weaning weight ~ Korean
NGS-3503 woH gene expression  (2017) cattle
CAPS2#* Calcium ion
binding
7 ARS-BFGL-  FCE TSPANI17*  Protein
NGS-108870 ROFC maturation
ARS-BFGL-  ROFC  STK32A Intracellular
NGS-201 transduction
BTB- FCE EIF4AE1B RNA 7-
01558306 ROFC methylguanosin
e cap binding
8 BTB- RFI FOXB2* Anatomical
00631715 structure
11 BTB- DMI CNOTI11* Deadenylation
01763350 of mMRNA
13 ARS-BFGL-  FCE NFATC2* DNA binding
NGS-113647
BTB- DMI ZNF217* Regulation of Mullen et increased cow Holstein
01329439 transcription al. (2011)  carcass weight cattle
TSHZ2* Transcription by Ganetal. triiodothyronine  Holstein
RNA (2019) concentrations cattle
polymerase II Lindholm  Feed Intake beef
-Perry et steers
al. (2016)
15 BTB- RFI IL10RA* Immune Salleh et RFI Jersey
00590603 response al. (2018) cattle
Gurgulet  Immune Polish
al. (2019)  response cattle
Zhou et Immune Holstein
al. (2018)  response cattle
TMPRSS4*  Scavenger
receptor activity
17 Hapmap4991  RFI IL21%** Immune l1.Houet RFI Holstein
0-BTA-20754 response al. (2012) cattle
Gurgulet  Immune Polish
al. (2019)  response cattle

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was
within 200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP;
when it does not present * it means that the SNP was within the gene.
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4.4.2.4. Analysis between models

Comparative analysis between models was performed. With the significant SNPs at P <
a = 0.001 in GWAS and quantile effect and importance > 0.999 in Bayes LASSO and RF,

respectively.
Coincident SNPs between GWAS and Bayes LASSO
In calves:

e for DMI, three common SNPs were found, these SNPs (and their BTA) were
Hapmap43629-BTA-60810 (1), Hapmap51428-BTA-26864 (1) and BTA-86837-no-rs
(20).

e For RFI, two common SNPs were found: Hapmap41613-BTA-67108 (19) and BTA-
86837-no-rs (20), the last one was also coincident with DMI.

e There were no common SNPs between FCE and ADG.
In cows:

e For DMI, five common SNPs (BTA) were found, these were ARS-BFGL-NGS-29072
(9), BTB-01286081 (9), BTB-00393938 (9), Hapmap48321-BTA-40830 (17) and ARS-
BFGL-NGS-18633 (28); of which, the second and third one were at a distance of
approximately 62 kb.

e For FCE, ten SNPs (BTA) were found, these were BTB-01195369 (3), BTB-00493207
(12), ARS-BFGL-BAC-13721 (12), Hapmap54034-rs29026486 (13), BTA-28181-no-rs
(13), ARS-BFGL-NGS-61425 (15), ARS-BFGL-NGS-110736 (15), ARS-BFGL-BAC-
33541 (15), Hapmap48340-BTA-43615 (18) and ARS- BFGL-NGS-111019 (28); of
which, the seventh and eighth one were located at a distance of approximately 70 kb.

e Eight SNPs (BTA) were found for RFI, these were BTB-00035766 (1), BTB-01141030
(2), UA-IFASA-4367 (8), ARS-BFGL-NGS-85644 (8), BTB-00631737 (8), BTB-
00631715 (8), Hapmap34677-BES4_Contig489 1116 (8) and Hapmap26379-BTA-
130999 (16); of which, the fifth and sixth one were located at a distance of
approximately 24 kb.

e Seven SNPs (BTA) were found for ROFC, these were Hapmap45649-BTA-29691 (2),
ARS-BFGL-NGS-118243 (3), Hapmap35523-SCAFFOLDS5083 24631 (13), ARS-
BFGL-NGS-61425 (15), ARS-BFGL-NGS-82204 (19), ARS-BFGL-NGS-118018 (19)
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and ARS-BFGL-NGS-109844 (19); of which, the distance between the last three was
less than 200 kb; besides, the marker ARS-BFGL-NGS-61425 was also coincident for
FCE.

The common markers between these two models in cows was larger than in calves,

probably because the association in calves had a smaller sample size (n = 30).
Common SNPs between GWAS and random forest
In calves:

e for DMI, one common SNPs (BTA) was found, this was BTB-00031796 (1).

e For FCE no common SNPs were found.

e For RFI, one common SNP was found, this was ARS-BFGL-NGS-116361 (1).

e For ADG, two common SNPs were found, these were Hapmap49963-BTA-33040 (13)
and ARS-BFGL-NGS-21830 (13), and they were located at approximately 200 kb apart.

In cows:

e For DMI, one common SNP (BTA) was found, this was ARS-BFGL-NGS-89583 (11).

e There were no common SNPs for FCE.

e For RFI, nine common SNPs (BTA) were found, these were ARS-BFGL-NGS-17993
(8), BTB-00631737 (8), BTB-00631715 (8), Hapmap34677-BES4_Contig489 1116
(8), ARS-BFGL-NGS -117511 (9), ARS-BFGL-NGS-22941 (10), ARS-BFGL-NGS-
63663 (13), Hapmap49910-BTA-20754 (17) and Hapmap39026-BTA-42843 (18), of
which the second and third were located at approximately 24 kb apart.

e For ROFC, two common SNPs (BTA) were found, these were ARS-BFGL-NGS-
118018 (19) and ARS-BFGL-NGS-109844 (19), the two were located at approximately
206 kb apart.

In this section, it can also be observed that there were more common SNPs between

models for cows than for calves.
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Common SNP between Bayes LASSO and random forest
In calves:

e Only one SNP in common was found for DMI, this SNPs (BTA) was BTB-00029666
(1.

e For the other FE traits, there was no coincidence of SNPs.
In cows:

e None common SNP (BTA) was found for DMI.

e For FCE, three common SNPs were found, these were Hapmap53424-rs29019267 (3),
ARS-BFGL-NGS-82204 (19) and ARS-BFGL-NGS-118018 (19); the last two were at
approximately 58 kb.

e For RFI, four common SNPs (BTA) were found, these were BTB-00631737 (8), BTB-
00631715 (8), Hapmap34677-BES4 _Contig489 1116 (8) and ARS-BFGL-NGS-3005
(10); of which, the first and second one were located at approximately 24 kb between
them.

e For ROFC, two common SNPs were found, these were ARS-BFGL-NGS-118018 (19)
and ARS-BFGL-NGS-109844 (19), these were located at approximately 106 kb between
them; besides, ARS-BFGL-NGS-118018 was also significant for FCE.

As in the two previous comparisons, cows presented more coincidence of SNPs between

models than calves. These results were summarized in Figure 15.

70



CALVES cows

GWAS Bayes RF GWAS Bayes RF
N I N N RN A N C N e & e e e &
FTEL IR e TN ¢S
LIV/A 23 ) il 30 o 1 0[ 1 o0 0] o o 0o of 0 o 0o 0 0o 0 0 o0
() Y Ty [T “
3 FCE 0 24 of o o o o o o 2| o o 0 o 0o 0 0O 0 0O 0O 0 O §
3 RFI of 2 of 20 1 o o 1f o| o o o o o o 0o 0o 0o o 0o 0w
ADG o o o o o o of 2] o o o o 0o 0 0 o 0o 0 0 o0
bmi o 2 o 14 o o o o o o of 1 0 o of o 0o o o
[ e —
y Ki FCE o of of of o oo o o o0 o 0 o0 1 o0 0 0 0 O q‘i
8‘ a RFI of o o0 oo o o o o o o 1 of 0 o o o0&
ADG o o o o o o o of o o o o
DMI 0 0 0o 0o o o0 o0 o0 0 0o 0 O
w FCE o 1 0 0o o o o of o o o0 of,
x I : 3
RFI 0o 0 o 0o o o of o o o0 o0
ADG o 1 0 0o 0o o o o o o o o
bMI si 0 2 of 1 0o 1 o0
§ FCE 14 10} 1 5 o of 0 o0 §
[C) RFI 6 11 8 1 0 of 9 00O
ROFC 0 4 of 70 0 3 of 2
bmI 3 6 i o0 o
28 rax B . 3 1 8
o 3B 3
S @  RA | 60] 2
ROFC
DMI 0o o0
w FCE w
3 &
RFI
ROFC

GWAS Bayes RF GWAS Bayes

Figure 15. SNPs in common between models and between groups. SNPs with alpha <0.001
and quantile > 0.999 are shown in blue. In the upper-right and lower-left corner, the SNPs in
common between cows and calves are shown.

In a general, the common SNPs between models was scarce in calves, while in cows the
GWAS and Bayes LASSO models share more SNPs in common. Furthermore, the SNPs shared
between cows and calves was practically null and only in the Bayes LASSO, two shared SNPs

(BTA) were found, these were:

o Hapmap48117-BTA-90454, this was located on chromosome 12, the closest gene
was ENSBTAG00000053445 (approximately 200kb away) and its associated

biological process was the negative regulation of phosphatase activity.

e BTA-43831-no-rs, this was found on chromosome 18, it was found within the

LOC785907 gene and its associated molecular function is symporter activity.
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SNPs in common in the three statistical models

SNPs were selected at alpha <0.001, effect at quantile > 0.999 and importance at quantile

>0.999 for GWAS, BL and RF, respectively. Two points were reported as relevant.

e Only three common SNPs for RFI and two for ROFC were recurrent in cows in the

three statistical models (detailed in Table 17) These genes have not been found in other

association studies related to food production or efficiency.

e When SNPs were compared between cows and calves, none were common between FE

traits.
CALVES cows
DMI FCE RFI ADG DMI FCE RFI ROFC
0 0 0 0 0 0 0 0
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Figure 16. Common SNPs in the three models, with alpha <0.001 and quantile 0.999. The
upper right quadrant shows the common SNPs between cows and calves.

Table 17. SNPs in common in the three statistical models.

Ch Marker Trait QTL Associated function
8 Hapmap34677- RFI FAM205C** Protein coding
BES4 Contig489 1116
ENSBTAGO0000 Peptidyl-prolyl cis-trans isomerase
0050015* activity
BTB-00631715 RFI FOXB2* Anatomical structure
BTB-00631737 RFI FOXB2* Anatomical structure
19  ARS-BFGL-NGS-118018 ROFC  ALKBHS cell differentiation
mRNA processing
spermatogenesis
ARS-BFGL-NGS-109844 ROFC TOMIL2 intracellular protein transport

negative regulation of mitotic nuclear
division

Ch = chromosome; QTL displays the gene or two genes closest to the marker; * indicates that the gene was
within 200kb before or after from the SNP; ** indicates that the gene was more than 200kb away from the SNP;
when it does not present * it means that the SNP was within the gene.
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4.5. Genome wide prediction

As mentioned above (item 3.6); predictions in cows were implemented using genomic
information from calves and their phenotypes. To evaluate the accuracy of the results, two
evaluations were developed, 1) the correlation between the cows GEBV and their phenotypes
(corrected by systematic effects) and 2) the mean squared error (MSE) between the cows

GEBYV and their corrected phenotype.

It should be remembered that the phenotypes used in the GBLUP were rescaled between 0.02
and 1 (the same ones used in these evaluations). The results are detailed below in Table 18 and

Figure 17 and Figure 18.

4.5.1. Accuracy of prediction

Table 18. Correlation and MSE from genomic prediction of feed efficiency in cows

r MSE
DmI -0.00484 0.3262046
FCE -0.0705 0.2428647
RFI 0.0421 0.3567229

r = correlation between the GEBV and phenotype (corrected by systematic effects) in cows; MSE = mean squared
error between the GEBV and scaled phenotype (corrected by systematic effects) in cows.

Correlations between GEBV and phenotype:

Genomic predictions showed unfavourable accuracy for cows; the correlation between
cows GEBYV and their corrected phenotype were -0.005, -0.071, and -0.042 for DMI, FCE, and
RFI, respectively. Figure 17 show that, cow GEBV (estimated with the genotype and
phenotype from calves) were no related with their phenotype. These results suggest that FE

traits in calves were different from their homologous in adult cows.
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Figure 17. Scatter plots for GEBV (with calves genomic data as proxies) with scaled and
corrected phenotype. In grey colour the relation between the calves GEBV with their phenotype
is observed, these values make a visual reference for better visualization of the results in cows.

These studies were not conducted in early calves, and do not coincide with other
prediction with heifers; Davis et al., (2014) showed that it was possible to discriminate by RFI
in lactating cows from the estimated GEBV in growing heifers. Macdonald et al. (2014b)
conclude that calves diverging for RFI during growth (6-9 months of age) were also divergent
for RFI during lactation and although the difference in lactation was small, this was statistically
significant. The calves in this study were in early life-stages, so that ruminal development was

limited, and this could explain the genetic difference of FE traits between cows and calves.
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Correlations between GEBV and phenotype:

Without knowing the true genetic value, the MSE was estimated using the predicted
genetic value (GEBV) and their corrected phenotype. The results showed unfavourable
accuracies. Figure 18 shows the phenotype, the GEBV and the MSE. When comparing these
three boxplots, the GEBV had values close to zero and their variance was reduced.
Furthermore, the MSE was very high which suggests that the genes controlling the expression

of FE in calves cannot explain the genetic expression of FE in cows.
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0.25
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Figure 18. Boxplot of Phenotype (scaled and corrected by systematic effects), GEBV
(predicted with proxies from calves), and MSE (between phenotype and GEBV) of FE in cows.
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S. CONCLUSIONS

Phenotypic correlations of FE traits

In general, feed efficiency related traits showed strong phenotypic correlations between
them, although not close to 1, suggesting that each trait measures different FE aspects.
Stronger correlation was found in calves than in cows, suggesting that FE in calves is

biologically less complex.

Phenotypic prediction of FE traits from proxies in cows

Predicting FE in cows is cumbersome, but a moderate predictive accuracy is possible
applying the right models. The best predictor models were Bagging (» = 0.58; MSE =
3.52) for DMI, a linear model for FCE (» = 0.85; MSE = 0.018), and NNET for ROFC
(r=10.99; MSE = 0.13).

Variance component estimations for FE traits.

Heritabilities were high and their standard deviation were moderate for all traits,
although slightly larger estimates were found in calves, suggesting that FE in calves is
less influenced by the environment.

Genetic correlations between FE traits in calves were higher than in cows, although

they were estimated with large uncertainty.

Genomic analysis involved in calf and cow FE.

The GWAS showed few common SNPs associated with several traits in calves or cows.
The genes close to the most significant SNPs involved many biological functions,
although, the genes associated with FE showed relationship with immunity response,
ion transport, cell development and enzyme functions.

Only one SNP for DMI and one SNP for RFI were shared between cows and calves.
These were Hapmap48117-BTA-90454 and BTA-43831-no-rs, their nearest genes were
ENSBTAGO00000053445 and LOC785907, and their associated functions were the
negative regulation of phosphatase activity and symporter activity, respectively
Results in this thesis suggest that FE traits in cows and calves are regulated by different

genes.
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Genomic prediction of FE traits from early life proxies.

e Accuracies of genomic predictions for FE traits were low, the correlations between
GEBYV and corrected phenotype were -0.005, -0.071 and -0.042 for DMI, FCE and RFI,
respectively. Therefore, it was not possible to predict FE traits from early life proxies.

This emphasizes that FE is controlled by different genes in cows and calves.

General conclusion.

e Based on the results obtained in this study, it seems that the statistical genetic
architecture that controls FE in calves and cows is different, making it difficult to use
information from calves to predict FE in adult cows. Although the sample size of this
study is small and the strength of the evidence is low, it is suggested to verify these

results in a larger data set.
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Annex 1. FE-traits distribution.
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Annex 2. Productive traits distribution in cows.
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Annex 3. Neural networks model for FE in cows.
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Annex 4. t test for determinate the difference between predictor models from phenotypic
prediction. P adjust method: holm. Phenotypic predictions of FE traits were development using
four predictive models. The accuracy of predictions was evaluated through cross validation
using the Pearson correlation between real and predicted value. These annexes show the test

development to measure the statistical difference between models in the FE traits.

1. p-value for statistical difference between predictive models for DMI

Bagging K-NN LM
K-NN 0.00149 -- --
LM 0.762 0.07223 --
NNET 1.037e-05 0.762 0.002144

2. p-value for statistical difference between predictive models for FCE

Bagging K-NN LM
K-NN 1.18e-13 -- =
LM 0.0005042 1.827e-27 -~
NNET 0.08167 1.537e-20 0.08167
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3. p-value for statistical difference between predictive models in RFI

Bagging K-NN LM
K-NN 4.692e-15 -- --
LM 4.692e-15 0.9954 -
NNET 0.1398 2.941e-21 2.941e-21

4. p-value for statistical difference between predictive models in ROFC

Bagging K-NN LM
K-NN 7.041e-39 -- --
LM 1.488e-23 1.835e-89 --
NNET 1.995e-24 1.244e-90 0.8003

Annex 5. Gelman-Rubin diagnostic for MCMC convergence: Gelman-Rubin diagnostic for
convergence was used through the coda package by R. It tests a difference between the variance
within some chains and the variance between chains by a value called Potential scale reduction
factors. Lower values are desirables. Random traits were selected for the Gelman diagnostic.
There was no difference in the diagnosis of convergence between 100 k iterations and 1 M

iterations. Convergence chain was also appreciated below.
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Annex 6. Heatmap from the genomic relationship matrix (100x100), the colour represents the
relation between animals. In red is the ID from the animals. Cows are more related to each

other and calves are more related to each other.
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Annex 7. Gibb Samplings interactions and convergence. Random traits were taken to evaluate

the convergence in the estimation of heritability and genetic correlations, there was

convergence, however the sd was very large.
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Annex 8. Priors for lambda in Bayes LASSO associations. Lambda values were selected

considering posterior 62 and A distributions, and the correlation between GEBV and phenotype

(Phe).
CALVES COWS
Lambda DMI FCE RFI ADG DMI FCE RFI ROFC
Type Random Random Random  Random | Random Random Random  Random
Shape 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Rate le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5
Value 40 40 40 40 20 40 20 40
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Annex 9. Posteriori distributions for error variance (62 ) and lambda (1), marker effects and
correlation between predictions values (GEBV) in y axis, and phenotype (Phe) in x axis from

Bayes LASSO in calves.
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Annex 10. Posteriori distributions for error variance (2 ) and lambda (1), marker effects and

correlation between predictions values (GEBV) in y axis, and phenotype (Phe) in x axis from

Bayes LASSO in cows.

Marker effect

GEBYV vs Phe

[P

w0 e s

GEBYV vs Phe

P.scws

T

.

GEBYV vs Phe

S o
o AT

Cormrnd St abune (s

103

et
“oae o

GEBYV vs Phe

a4

2404



