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Abstract

The permutation flowshop problem is a classic machine scheduling problem where n
jobs must be processed on a set of m machines disposed in series and where each job must
visit all machines in the same order. Many production scheduling problems resemble flow-
shops and hence it has generated much interest and had a big impact in the field, resulting in
literally hundreds of heuristic and metaheuristic methods over the last 60 years. However,
most methods proposed for makesan minimisation are not properly compared with existing
procedures so currently it is not possible to know which are the most efficient methods for
the problem regarding the quality of the solutions obtained and the computational effort
required. In this paper, we identify and exhaustively compare the best existing heuristics
and metaheuristics so the state-of-the-art regarding approximate procedures for this rele-
vant problem is established.
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1 Introduction

The flowshop is a common manufacturing layout where n jobs have to be processed on m machines, with
each job following the same route at the machines. The so-called flowshop scheduling problem involves
the determination of the sequence of jobs at each machine. When the sequence of jobs is the same for all
machines, the problem is denoted as Permutation Flowshop Scheduling Problem (PFSP in the following).
The PFSP is one of the most studied problems in the Operations Research literature (e.g. see the reviews
by [21}[71}[74]).

In the related literature, the minimization of makespan, Ci,ax, (also denoted as maximum completion
time or maximum flowtime) has been commonly chosen by researchers as the objective to optimize in
the PESP (e.g. see [36], [20], [87], [51], [22]] or [81] for other objectives in the PFSP). According to
the notation of [63], this problem is denoted as F'm/|prmu|Cpax. Since [73]] showed the problem to be
NP-complete for more than two machines, most researchers have focused on implementing approximate
methods to find good solutions without excessive computation times.

There has been a vast number of papers published with algorithms and procedures. [[74]] carried out an
exhaustive review and computational evaluation of the heuristics and metaheuristics published until 2004
for the PFSP to minimize makespan. A total of 18 heuristics and 7 metaheuristics were implemented
and tested under the same conditions. Among them, two of these methods turned out to be the most
efficient ones: the NEH heuristic [55] was clearly the most efficient among the constructive heuristics for
the problem, and the Iterated Local Search [80] presented itself as the most efficient metaheuristic for the
problem.

Since the publication of the work by [74]], more than 100 new algorithms have been proposed in the
literature over the last 10 years. Some of these methods —such as the iterated greedy (IG) of [76]]— have
improved the best existing algorithms in [74]. However, the new state-of-the-art remains unclear due to
the lack of a homogeneous framework to conduct the comparison among algorithms. More specifically,

the following problems can be detected:

e Many algorithms are compared under different conditions:

— Tested under different computer conditions (different programming languages and/or differ-

ent computers, operating systems, etc.).
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— Comparison of algorithms with different CPU time usages.

— Use of different benchmarks (see Section [2)).
e Many algorithms are compared in a non-conclusive way:

— Lack of comparison against the state-of-the-art (e.g. without comparing with the iterated

greedy proposed by [76]]).

— Among the several runs performed in each instance to increase the power of the results, the

best runs are used instead of the average for some algorithms.
e New advances in the evaluation of the algorithms:

— A more extensive benchmark of instances has been recently proposed by [88]. This testbed
can be used to establish statistical differences among algorithms in a sound way, differently
from what can be done with older benchmarks (such as those by [83]], [3]l, [70], [90], [14],
[26]).

— A new indicator has been proposed by [19] to measure the CPU requirements of the al-
gorithms in relative terms. This indicator improves the deficiencies of the most common

indicator (i.e. average CPU time) for the evaluation of efficient heuristics.

o Finally, a special effort should be made when comparing efficient heuristics against the best meta-
heuristics under the same stopping criterion since the CPU time required by some heuristics is

relatively high in comparison with some metaheuristics.

As a conclusion, a new review and evaluation of the approximate methods for the F'm|prmu|Cuax
problem is pertinent and may serve firstly to establish a clear picture of the state-of-the-art within this
important problem, and secondly, to give indications of possible avenues for future research. This twofold
objective is the goal of our research.

The remainder of the paper is as follows: in Section [2] heuristics and metaheuristics published in the
literature from [74] are analysed and summarised. The most promising ones are chosen to be evaluated
and compared. A description of the evaluation and comparison is carried out in Section |3} Computational
results of the comparisons between heuristics and metaheuristics are described in Section[d} Finally, in

Section 5| conclusions are discussed and some indications and ideas for future research are shown.



2 Background

The problem under consideration is the permutation flowshop scheduling problem to minimise the max-
imum completion time or makespan. The problem consists of the determination of the sequence of n
jobs which achieves the minimal makespan when all jobs are processed (in the order indicated by the
sequence) on the m machines of a shop. The following additional hypotheses are usually assumed for the

PFSP:

e Processing times, denoted as p;; where ¢ = 1, ...,m and j = 1, ..., n, are known and deterministic.
e No preemption is allowed.

e Release times are set to 0.

e Sequence-dependent set-up times are considered insignificant.

e Sequence-independent setup times are considered as non-anticipatory, and therefore can be added

to the processing time of the jobs on the machines.
e Transportation times can be considered either insignificant or constant.
e Each job can be processed by at most one machine at the same time.
e Each machine can process only one job at the same time.
e Unlimited in-process inventory is considered.

o All machines are available on the whole scheduling horizon.

As mentioned in the previous section, the NP-hard nature of the problem has led the vast major-
ity of research towards the proposal of approximate solutions, usually classified either as heuristics or
metaheuristics. The division between heuristics and metaheuristics is ambiguous and different classifi-
cations have been proposed in the literature (see e.g. [[103], [95]). For an in-depth classification of the
Fm|prmu|Ciax problem, we refer to [21]. However, in this paper we use the same division as in [74],
where heuristics and metaheuristics are analysed separately. There, heuristics (constructive and improve-

ment ones) naturally stop when the procedure is finished whereas metaheuristics typically stop after a



given number of iterations or elapsed CPU time. This fact naturally leads to perform different compu-
tational experiments in Section 4, since the efficiency of the metaheuristics can be compared by running
them for the same CPU time whereas heuristics should be compared by means of a Pareto-efficient fron-
tier using the quality of the solution and the CPU time as indicators. In order to maintain the readability

of the paper, the same division is considered when analysing the state-of-the-art in this Section.

2.1 Heuristics

Traditionally divided into constructive and improvement types, heuristics have been extensively devel-
oped for F'm/|prmu|Cpax either to yield a good solution in less CPU time or to find a seed sequence
for metaheuristics. Since the computational evaluation of [[74f], several constructive heuristics have been
proposed in the literature, most of them variants of the NEH heuristic by [55]]. This heuristic consists of

two phases:
1. First, jobs are ordered according to an initial order (decreasing sum of processing times).

2. The first job is removed from the initial order and placed in a partial sequence, initially without
any job. Next, following this order, each job is removed and tried to be inserted in each possible
position of the partial sequence. The position that minimizes the makespan is chosen for the job.

The procedure is repeated n-1 times until all jobs are placed in the partial sequence.

The computational complexity of the NEH is O(n®m). However, the method proposed by [82]
(denoted as Taillard’s acceleration in the following) reduces its original complexity to O(n?m).
The different variants of the NEH heuristic can be unified using the following notation formed by

three fields: N EH (a|b|c) where the fields a, b and c are defined by:

e a: Initial order used by the NEH. In the computational evaluation, the following sorting criteria

have been considered:

— rand: Jobs are randomly ordered. This order is used by [72] in RAER and RAER-di heuris-

tics as comparison heuristics.

— SD: Non decreasing sum of processing times (original order of the NEH) of the jobs. This



order is used by the following heuristics: NEHR [72], NEHR-di [72], NEH [55]], NEH-
di [72]], NEH1 [30] and NEH1-di [72].

— AD: sum of the mean and deviation of the processing times (proposed by [15]]).
— NM: order proposed by [52]] and used in NEMR and NEMR-di heuristics by [72].

— KKI1: Sorting criterion proposed by [31]]. This initial order is applied in NEHKK1 [31]] and

NEHKK1-di [72] heuristics.

— KK?2: Sorting criterion proposed by [32] in NEHKK? heuristic.

e b: Once a job is selected for insertion in all positions of a partial sequence, the same makespan
can be obtained for several positions causing ties in each iteration. These ties have a great influ-
ence on the performance of the constructive heuristics (see [30]). In the original proposal, the first
slot (denoted as FS) for which the minimum makespan is achieved is kept as the best sequence.
This b field then defines the type of tie-breaking mechanism implemented in the NEH. The fol-
lowing mechanisms have been considered: TBKK1, proposed by [30]; TBKK?2, proposed by [31]];
TBKK3, proposed by [32]]; DCH, proposed by [15]]; RCT, proposed by [72]]; and the FF, proposed
by [18].

o c: This field is associated with the reversibility property of the problem (see [[72]]). It establishes
that the makespan of the permutation IT := (7q, ..., m,) in instance I (instance formed by n jobs
and m machines with processing times equal to p;;) is the same as the makespan of the reverse
permutation IT' := (Tp, - .., 1) in instance [ " (instance formed by n jobs and m machines with
processing times equal to p; j = Pm—j+1,i)- Therefore, the value d indicates that the NEH is applied
on the direct instance I whereas 7 is used when the algorithm is applied on the inverse instance
I Accordingly, di indicates that both the direct and the inverse are used, and the best sequence is

retained.

This notation has been employed to classify the different variants of the original NEH heuristic —
which can be denoted as NEH (SD|F S|d) in our notation— proposed in the literature. These are sum-
marized in Table

Among the heuristics proposed, some of them —i.e. NEH1, NEHKK1, NEHKK?2, NEHD and NEHFF

by [30], [31]], [32], [[15], and [[18]] respectively — maintain the original complexity of O(an). Other
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variants with a greater complexity have been proposed by [72], see Table [I] (the heuristics implemented
in this research are indicated in bold, see Section [3)).

Two different variants with a greater complexity have been proposed by [94] and are denoted as
CLworts and CLwrts. In CLwors, a new mechanism (denoted as backward shift mechanism) is added
to the traditional insertion phase of the NEH. This mechanism increases the sequences to be evaluated
in each iteration by means of a movement of the jobs of the partial sequence. When the tie-breaking
mechanism of [72] is added to the CLwors, the heuristic is denoted as CLwrts

Furthermore, 10 heuristics that also modify the insertion phase of the NEH algorithm have been
proposed by [[66]. These heuristics are denoted as: FRB1, FRB2, FRB3, FRB4,, FRB4,, FRB4¢, FRB4s,
FRB419, FRB412 and FRB5. Among then, the FRB1 heuristic is statistically outperformed by several
heuristics (e.g. FRB4, and FRB4,) with shorter average CPU times. Finally, [89] proposed a constructive
NEH-based heuristic, NEHI, which also considers different interpretations for the ties in the initial order

of the NEH.

2.2 Metaheuristics

As explained in Section [I] numerous metaheuristics have been published in the literature since 2004. A
summary of them is shown in Tables [2] and [3] where the metaheuristics implemented in this research are
indicated in bold (see Section [3)). The first, second, third and fourth columns indicate the year of pub-
lication, the bibliographical reference, the type of metaheuristic and the acronym (maintaining the same
acronym as in the original papers) respectively. The fifth column shows the papers proposing metaheuris-
tics that outperform the referenced one. In the sixth column, the benchmark(s) used for the computational
evaluation are shown (the following notation is used: T1, [83]]; T2, non-complete set of instances of [83]];
R, [[70], C, [3]; D, [14]]; W, [90]; H, [26]; O, Other set of instances). The seventh column shows the
ARPD values of the metaheuristics when tested on Taillard’s benchmark [83]]. Average Relative Per-

centage Deviation values of algorithm j are denoted as ARPD; and are calculated as follows:

> i RPD;

ARPD; = 7

ey

where [ is the number of instances for which the RPD (Relative Percentage Deviation) values are



Table 1: Summary of heuristics

Heuristic NEH Notation Paper
RAER NEH (rand|RCT)|d) 72]
RAER-di NEH (rand|RCT|di) [72]
KKER NEH(KK1|RCT)|d) [72]
KKER-di NEH(KK1|RCT)|di) [72]
NEHR NEH(SD|RCT|d) [72]
NEHR-di NEH(SD|RCT)|di) [72]
NEMR NEH(NM|RCT|d) [72]
NEMR-di NEH(NM|RCT|di) [72]
NEH NEH(SD|FS|d) [55]
NEH-di NEH(SD|FS|di) [72]
NEH]1 NEH(SD|TBKK1|d) [30]
NEH1-di NEH(SD|TBK K1|di) [72]
NEHKK]1 NEH(KK1|TBKK?2|d) 31
NEHKKI-di NEH(KK1|TBKK?2|di) [72)
NEHKK2 NEH(KK2|TBKK3|d) 132]
NEHD NEH(AD|DHC|d) [15]
NEHD-di NEH(AD|DHC)|di) [72]
NEHFF NEH(AD|FF|d) (18]
CLwrts NEH(SD|FS|d) with a backward shift mechanism in the insertion phase [94]
CLwors NEH(SD|RCT|d) with a backward shift mechanism in the insertion phase [94]
NEHI Best of several runs of NEH(—| — |-) (89]
FRB1 Similar to the N EH (SD|FS|d) including a local search method in the insertion phase | [66]
FRB2 Similar to the NEH (SD|FS|d) including a local search method in the insertion phase | [66]
FRB3 NEH(SD|FS|d) including a local search method in the insertion phase [66]
FRB4,, NEH(SD|FS|d) including a local search method in the insertion phase [66]
FRB5 NEH(SD|FS|d) including a local search method in the insertion phase [66]



obtained (i.e. the testbed size). RPD;; is the relative percentage deviation obtained by algorithm j when

applied to instance ¢ and is typically calculated as follows:

Cmax,i,j — Besti

100 2
Best; 2)

RPD;; =

where Chyax i j is the makespan of the algorithm j in instance ¢ and Best; is the upper bound (best
solution known) for that instance. When the raw makespan value for each instance is given in the paper,
the ARPD is computed again using (2) and the best known value for those instances (see on-line materi-
als) in order to have a common reference. Otherwise, the ARP D values of the paper are reported. Note
that these papers could have used different upper bounds (Best;) and the values are therefore only ap-
proximations. For papers using the same upper bounds as in [83]], a factor of 0.565 is added to correct the
ARPDs. This value is the difference in ARP D between the actual upper bounds and the upper bounds
of [83]].

The eight and ninth columns indicate the programming languages used for coding the algorithms
as well as the raw speed of the processors used for the evaluation. Finally, the average CPU time on
Taillard’s instances as a function of the size of the problem (i.e. n and m) is calculated, when possible,
in the last column in order to analyze the CPU requirements of the algorithms. This value is expressed
in terms of ¢; for metaheuristic j, a variable traditionally used in the literature to measure its stopping
criterion as n-m-t;/2 milliseconds (see e.g. [76]). When ¢; is not indicated and/or other stopping criteria

are used, ¢; is calculated as follows:

tj=3 ti
Vi

and
2-CPU;;
tij =
where C'PUj; is the CPU time in milliseconds required by algorithm j in instance 4. n; and m; and
the number of jobs and machines in instance 7. Therefore, ¢;; balances the CPU time with the size of the
problem, and ¢; —average of ¢;;— can be seen as an indicator of the average CPU time requirements of an

algorithm, since, given an instance, n; and m; are constants for different algorithms.

For clarity, when a paper proposes several metaheuristics, these methods are included in the table as
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long as they are used as reference metaheuristics in other papers. Otherwise, only the best one among
the reported results is selected. The language used to code the algorithms has been included in the
table since languages can result in much greater differences than those caused by the use of varying
computer characteristics. This is a well studied phenomenon, mainly in the computer science field. A
deep comparison of this effect can be found in [54].

In view of the tables, the need for a new review and computational evaluation —already discussed in
Section[I}- is confirmed, as there are very few papers whose methods are directly compared with the state-
of-the-art algorithms (i.e. the IG_RS; g by [76]]). Most of them are directly compared with metaheuristics
of the same type (i.e. papers proposing PSO metaheuristics are compared with other PSO metaheuristics).
Additionally, among all analyzed metaheuristics, only 9 papers (less than 10%) explicitly state that the
metaheuristics are compared using the same conditions. Finally, there is no homogeneity in the set of
instances used to compare the methods. Most metaheuristics (56) are tested in Taillard’s benchmark,
although only 20 of these use all 120 instances of the testbed. The rest of the testbeds used were mainly
Reeves’ (23 times) and Carlier’s (15 times). From this literature review, the current state-of-the-art is far

from easy to identify.
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3 Computational Evaluation

In this Section, the procedure followed to evaluate the algorithms is described. A total of 31 algorithms
have been recoded in C# (using Microsoft Visual Studio Professional 2013 and the .NET Framework
4.5.1). All experiments have been carried out on a computational cluster formed by 30 blade servers. Each
server contains two Intel XEON E5420 processors running at 2.5 GHz and 16 Gbytes of RAM memory.
However, the specific tests are performed on virtual machines running on this cluster. Each virtual ma-
chine runs Microsoft Windows 7 64 bit operating system and has one virtual processor and 2 GBytes of
RAM. Several benchmarks have been used (see e.g. [|3}/14,26l70,/83./90]) in the literature to perform com-
parisons between algorithms. Among them, the most extended one is the benchmark from [83]] which in-
cludes 120 instances with 12 different sizes of instance combining the values n € {20, 50, 100, 200, 500}
and m € {5,10,20}, with 10 instances for each size. More recently, [88]] proposed a more exhaustive
symmetric benchmark which contains 240 instances (denoted as VRF instances) for all the combinations
of parameters n € {100, 200, 300, 400, 500, 600, 700,800} and m € {20,40,60}. This benchmark was
shown to have more discriminant power than that of [83]]. In this paper, both benchmarks are used to
compare the algorithms.

When comparing heuristics, there is a trade-off between the quality of the solution and the computa-
tional effort required. Traditionally, the quality of the solution is measured by the ARP D —defined as in
Equation (I)—, and the computational effort by the Average CPU time (denoted as AC'PU) which can be

defined as follows:

Zw CPU %,J

7 3)

ACPU; =

where, as usual, I is the number of instances and C'PU; ; is the CPU time (in seconds) required by
algorithm j in instance .

Since each constructive heuristic has a different value of ACPU and ARP D, assessing the efficiency
of the heuristics is not trivial. In a similar problem, [|19] established that the use of the previous indicators
presents several problems since ARPD is a dimensionless indicator and AC'PU is heavily instance- and
instance-size-dependent (e.g. the last ten largest instances of the F'm|prmul| ) C; problem contribute

more than 88% to the average CPU time indicator). In order to avoid these problems, [19] defined
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ARPT; as the average relative percentage time consumed by algorithm 5 as follows:

ARPTj = =¥

)

where RPT; ; (relative percentage computation time obtained by algorithm ¢ for instance j) is calcu-

lated as
CPU; ; — ACT;
PT, ; = 1,] i
and ACT; can be computed as
CPU; ;
ACT,; = w 6)

where J is the number of considered heuristics.

Despite its dimensionless nature, ARPT' can be higher than or equal to -1 and therefore, it can
yield negative values. As a result, we suggest a small modification of ARPT ', denoted as ARPT in
the following in order to be able to show graphics in logarithmic scale (ARPT > 0). More specifically,

ARPT is defined as follows:

ARPT; = ARPT; + 1 @)

ARPT represents, on average for all instances, the number of times that the CPU time of each
heuristic is larger than the mean CPU time across all heuristics. Values close to O indicate very fast
heuristics (as compared with the rest of heuristics) while high values indicate slow heuristics.

In this paper, we use the ARP D indicator to measure the quality of the solutions and both ARPT and
ACPU indicators to measure the computational effort of the algorithms. Note that, despite the problems
when using the AC'PU indicator to compare algorithms, it is included in the evaluation in order for
one to be able to reproduce the original comparisons of the authors since all reviewed and implemented
heuristics consider the AC' PU indicator. By means of these two indicators, let us denote a method as
efficient in terms of ARPT (ACPU) when there is no other method with both less ARPD and less
ARPT (ACPU).

Regarding the algorithms implemented in the computational evaluation, numerous algorithms have
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been proposed in the literature since the last computational evaluation of [[74]. As a matter of fact, the
number of metaheuristics is staggering and new proposals do not cease to appear. Therefore, only a
selected number of them have been implemented with a cutoff date of December 2014.

Among the heuristics of Section [2.1] the FRB1 heuristic has been statistically improved by sev-
eral heuristics (e.g. FRB4g, FRB4g) in the same paper. Additionally, the tie-breaking mechanisms
of [15]], [30], [31] as well as the original one of [55]] are statistically outperformed by the tie-breaking
mechanism proposed by [18]] and therefore, heuristics NEHD, NEH1, NEHKK1 and NEH are removed
from the analysis. A total of 19 remaining heuristics, are reimplemented here under the same conditions.
They are: RAER, RAER-di, KKER, KKER-di, NEHR, NEHR-di, NEMR, NEMR-di, NEH-di, NEH1-
di, NEHKK1-di, NEHKK?2, NEHD-di, NEHFF, CLywts, FRB2, FRB3, FRB4y (k € {2,4,6,8,10,12})
and FRB5 (indicated in bold in Table E[) Note that, although the recent heuristic NEHI was initially
discarded due to the fact that it was available online after December 2014, it also seems to be clearly
inefficient according to the ARPD and average computational times (around 25 times greater than the
original NEH) shown in that paper (as compared to FRB4;5 or FRB4,, for example). Note that there
are two possible interpretations of RC'T, the idle-time- based tie-breaking mechanism proposed by [[72]].
The authors state that this mechanism can be implemented in O(n?m?). However, as explained in [18],
it can be implemented in O(n®m) if the idle time between jobs is calculated only for the ties. Thereby,
the complexity is O(E - n?m) due to the need to evaluate a complete sequence for each iteration F times.
Clearly, since the maximum number of tie-breaks is the number of jobs in the partial sequence, the com-
plexity of this interpretation is O(n®m). In this paper, this latter interpretation is employed as it yields
a lower computational effort for the benchmark of [83]], i.e. the constant affecting the complexity of the
original interpretation is higher than that of the second one for each instance of the testbed.

Regarding metaheuristics, the decision about which ones to select is not trivial due to the large amount
of existing methods. More precisely, only algorithms fulfilling the two following requirements are con-

sidered:
e ARPD < 0.4 (on T1 or T2, see Table2)) or

e ARPD < 0.6 and t parameter < 90 (on T1).

In other words, we are demanding that for a metaheuristic to be selected it either has to have a
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good solution quality (ARPD < 0.4), or a reasonable solution quality in short-medium computational
times (ARPD < 0.6 and t parameter < 90). 12 metaheuristics fulfil these requirements: EXTS by [79];
HGA_RMA by [[75]]; MSSA by [60]; IG_RSrs by [76]; IGris by [62]; DDER; s by [62]; 3XTS by [16];
EDAcs by [86]; PSO by [100]]; IG_RS;s(TBgg) by [18]]; IGris(TBgr) by [18]]. Among them, EXTS
and HGA_RMA, are discarded since they are outperformed in statistically and/or sound comparisons
by [16] and [76] respectively. Additionally, the H-CPSO algorithm by [29]] has been implemented due to
its promising results despite being outperformed by [62] under different stopping criteria and conditions.
Metaheuristic HCS by [38]] has also been included in the comparison since the ARPD is very close to
0.4 and has not been shown to be outperformed by any other metaheuristic. Finally, we include the TSAB
tabu search algorithm by [[59] in the comparisons, given its excellent performance and the fact that it was
not included in the last computational evaluation by [[74]]. The reason behind this omission is explained
in [[76] which is mainly the difficulty in reproducing the results of the TSAB algorithm. As a matter
of fact, we had to contact the authors of the method, which kindly provided the source code used for
checking our reimplementation. Hence, a total of 12 metaheuristics have been chosen (indicated in bold
in Tables [2]and [3)).

Note that all selected algorithms are implemented and tested under the same conditions which means:

e Using the same computer. This means same processor speed, bus speed, memory speed and size,

etc.
e Using the same programming language.
e Using the same operating system.
e Using the same libraries and common functions.

e Using the same stopping criteria for the metaheuristics.

When reimplementing the algorithms, doubts relating to the implementation were transmitted to the
corresponding authors of the papers. All questions were successfully answered by the authors with the
exception of [100], where no answer was received after several tries. Other specifics considered in order

to carry out a fair comparison of the algorithms are the following:
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e The order of the instances was randomly chosen in the experiments to avoid systematic errors in

the tests.
e The algorithms to be run in each instance are similarly randomized.

e For each instance, ten independent runs were performed for each heuristic to better fit the required

CPU time (the average CPU time is kept).

e For each instance, five independent runs were carried out for each metaheuristic keeping the aver-

age values.

Note that even recently published, this computational evaluation follows many of the practices high-
lighted in [[33[]. The results of these experiments —that have required a total CPU time effort of 393.03

days— are presented in the next section.

4 Computational Results

4.1 Constructive and Improvement Heuristics

The 19 heuristics implemented in this evaluation are first compared under the classic benchmark set of
Taillard with 120 instances. The detailed results in terms of ARPD, ACPU and ARPD, ordered by
problem size, are presented as on-line materials. The overall results are summarised in Table 4] The
second, third and fourth columns represent the ARPD, ACPU and ARPT values for each algorithm
in the set of instances of Taillard. ARPD values range from 3.89 (RAER heuristic) to 1.48 (FRB5
improvement heuristic) while ARPT values range from 0.02 to 7.23. Results are graphically shown
in Figures [1] and [2] where the y-axis represents the ARPD for each heuristic and x-axis, respectively,
represents AC PU and ARPT in logarithmic scale. Although results obtained for the different time in-
dicators are, in general, similar, there are also differences in the performance of the heuristics. Therefore,
considering AC PU as a measure of the computational effort as compared to ARPT, FRB4, is faster
than KKER-di, NEHR-di and RAER-di in addition to the CLwrts being slower than the FRB2 heuristic.
According to indicators ARPD and ARPT, the efficient heuristics are NEHKK?2, NEHFF, NEHR-di

(this last one would not be efficient considering ARPD and AC PU), FRB44, FRB4,, FRB4g4, FRB4,
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Figure 1: ARPD versus AC PU of heuristics in logarithmic scale on Taillard’s instances.

FRB4,>, FRB3 and FRBS5 (shown with a black circle in Figure [2)). To be able to compare heuristics with
different stopping criteria, they are grouped into clusters with similar ARPT values (see Figure[2). Then,
the heuristics of each cluster are compared with the best heuristic in terms of ARP D of that cluster, i.e.
NEHFF, FRB4,, FRB4,, FRB4s and FRB415, respectively, for clusters 1, 2, 3, 4 and 5. The hypotheses
to statistically check the efficiency of the heuristics are shown in Table [ ordered by these clusters of
heuristics. Since each heuristic is based on the original NEH algorithm and the same set of instances is
used, the hypotheses of independence (denoted by Hy ¢ ;) of the random variables (D) can be rejected
(see third and fourth columns in Table [5). The non-parametric Friedman two-way analysis of variance
for paired samples is used to check the statistical significance of the differences among the heuristics in
each cluster (being the null hypothesis —denoted Hy ; s— that there are no differences). Additionally, to
establish the significance of the differences between the best heuristic of the cluster and the rest, the non-
parametric Wilcoxon signed-rank test in a post-hoc analysis is employed (being Hy ; ., the corresponding
null hypothesis). Results are shown in Table [5} Assuming a level of confidence of 0.95, several Ho ¢ .,
null hypotheses of the NEHFF heuristic (Cluster 1) have not been rejected (see e.g. NEHFF vs NEHR
or NEHFF vs NEH-di). Additionally, there is not enough statistical evidence to state that FRB4¢ and
FRB4,5 outperform FRB4g and FRB2 respectively.

A similar Pareto set is found when the heuristics are compared under the new set of instances VRF
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ARPD

Table 4: Summary of heuristics

Algorithm Taillard VRF
ARPD ACPU ARPT | ARPD ACPU ARPT
NEHKK?2 3.09 0.02 0.12 3.21 0.47 0.02
NEHFF 2.90 0.02 0.13 2.95 0.46 0.02
NEH-di 3.03 0.04 0.20 3.18 0.91 0.04
NEHI1-di 3.11 0.04 0.20 3.15 0.91 0.04
NEHKK1-di | 3.15 0.04 0.20 3.19 0.93 0.04
RAER 3.89 0.06 0.20 3.46 0.88 0.04
NEHR 3.05 0.06 0.21 3.16 0.93 0.04
KKER 3.15 0.06 0.21 3.15 0.93 0.04
NEMR 3.16 0.10 0.31 3.22 1.64 0.07
RAER-di 3.53 0.13 0.40 3.33 1.71 0.07
NEHR-di 2.85 0.13 0.40 3.02 1.82 0.07
KKER-di 2.86 0.12 0.42 3.00 1.79 0.07
NEHD-di 2.84 0.16 0.48 2.86 2.06 0.08
FRB4, 2.33 0.11 0.48 2.57 2.81 0.13
NEMR-di 2.97 0.18 0.52 3.05 2.53 0.10
FRB4, 2.13 0.18 0.68 2.31 4.65 0.20
CLwrts 3.02 0.86 0.73 3.11 26.63 0.68
FRB4¢ 1.91 0.25 0.89 2.17 6.42 0.28
FRB4g 1.95 0.31 1.06 2.07 8.09 0.35
FRB44g 1.87 0.37 1.20 1.97 9.87 0.43
FRB45 1.79 0.42 1.34 1.94 11.42 0.49
FRB2 1.93 0.64 1.68 1.74 37.97 1.40
FRB3 1.61 5.08 3.61 1.32 198.31 434
FRB5 1.48 1459 7.23 1.04 753,56 14.36
( © RAER N\Cluster 1
37
RAER.I Cluster 2
32 NEHKI<.1-.dIi<KER .
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Figure 2: ARPD versus ARPT of heuristics in logarithmic scale on Taillard’s instances.
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Table 5: Hypotheses, analysis of dependence and Friedman two-way analysis on Taillard’s in-

stances
Clusters . Analysis of Dependence ~ Friedman | Wilcoxon
Comparison . . . .
Correlation Sig. Sig. Sig.
NEHFF vs NEHKK?2 0.891 0.000 0.015
NEHFF vs NEH-di 0.923 0.000 0.054
NEHFF vs NEHKK 1-di 0.895 0.000 0.001
NEHFF vs NEHR 0.893 0.000 0.055
Cluster 1 (green) NEHFF vs NEH1-di 0.910 0.000 0.000 0.021
NEHFF vs KKER 0.884 0.000 0.010
NEHFF vs NEMR 0.869 0.000 0.006
NEHFF vs RAER 0.830 0.000 0.000
FRB45 vs RAER-di 0.842 0.000 0.000
FRB45 vs NEHR-di 0.880 0.000 0.000
Cluster 2 (blue) FRB45 vs KKER-di 0.877 0.000 0.000 0.000
FRB45 vs NEHD-di 0.860 0.000 0.000
FRB45 vs NEMR-di 0.864 0.000 0.000
Cluster 3 (orange) FRB44 vs CLwrs 0.868 0.000 0.000 0.000
Cluster 4 (red) FRB4¢ vs FRB4g 0.937 0.000 0.604 —
Cluster 5 (yellow) FRB412 vs FRB2 0.927 0.000 0.107 —

of [88]]. Average results are shown in Table[d The last three columns represent the ARPD, ACPU and
ARPT of each heuristic in that set of instances. Clearly, heuristics of complexity O(n3m) (CLwrs,
FRB2, FRB3 and FRBS5) need proportionally more computational effort since this set of instances con-
siders higher values of n and m than in Taillard’s instances. This increase in the computational effort also
results in a decrease in the ARPD of the heuristics with the exception of C'Lyyrs. Results are graph-
ically shown in Figure [3] comparing ARPD versus ACPU, and in Figure @] comparing ARPD versus
ARPT. In terms of ARPD and ARPT, efficient heuristics are shown with a black circle in Figure F]
Note that regarding the NEH-based heuristics of [[72]] with direct and inverse approach, the best ARPD
is now found by the NEHD-di heuristic instead of the NEHR-di. In order to compare the heuristics, we
group them according to their ARPT (see Figured)) and perform the same Friedman two-way analysis of
variance to identify the differences among the heuristics in each cluster (being Hy ,, y the corresponding
null hypothesis), since hypotheses of independence (H ;) can be rejected again). In a post-hoc analysis,
a non-parametric Wilcoxon signed-rank test is applied to establish the statistical significance of the dif-
ferences between the best heuristic of each cluster (Ho , ., being the null hypothesis). Note that heuristics
FRB4, are not compared together as they are the same heuristic with a different input parameter. Results
are shown in Table @ Each p-value is 0.000 and all Hy,, ; and Ho ., hypotheses are rejected. Thus,
according to ARPD and ARPT, there is no statistical reason to affirm that the NEHFF, FRB4y, FRB2,

FRB3, FRBS heuristics are not efficient within each cluster.
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Table 6: Hypotheses, analysis of dependence and Friedman two-way analysis on VRF instances

Comparison Analysis of Dependence  Friedman | Wilcoxon
P Correlation Sig. Sig. Sig.
NEHFF vs NEHKK?2 0.950 0.000 0.000
NEHFF vs NEH-di 0.954 0.000 0.000
NEHFF vs NEHKK 1-di 0.952 0.000 0.000
Cluster 1 (green) NEHFF vs NEHR 0.946 0.000 0.000 0.000
NEHFF vs NEH1-di 0.939 0.000 0.000
NEHFF vs KKER 0.952 0.000 0.000
NEHFF vs RAER 0.945 0.000 0.000
FRB45 vs NEMR 0.943 0.000 0.000
FRB45 vs RAER-di 0.946 0.000 0.000
FRB45 vs NEHR-di 0.958 0.000 0.000
Cluster2 (blue) | £pp4, vs KKER-di 0.953 0.000 0.000 0.000
FRB42 vs NEHD-di 0.948 0.000 0.000
FRB49 vs NEMR-di 0.952 0.000 0.000
Cluster 3 (orange) FRB412 vs CLwrs 0.942 0.000 0.000 0.000
4
35 < RAER
) RAER-di
NEHKK2 NEHKKl-dl * NEMR
NEH-di #KKER
3 NEHR NEH1-di _ NEHR-di. NEMR-gi ° CL_wrs
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Figure 3: ARPD versus AC PU of heuristics in logarithmic scale on VRF instances.
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Figure 4: ARPD vs ARPT of heuristics in logarithmic scale on VRF instances.

4.2 Metaheuristics

In Section[3] 12 metaheuristics were defined as the most promising according to the results shown in their
papers. In this section, these metaheuristics are compared using the sets of instances of [[83]] and [_88].
Each metaheuristic is stopped using the same stopping criterion based on CPU time. More specifically,
three different stopping criteria are applied, ¢ - n - m /2 milliseconds with ¢t € {30, 60,90}, which depends
on the number of jobs and machines. Results are shown in Table[/| For both sets of instances, the best
metaheuristics are those based on the Iterated Greedy (IG_RSys) proposed by [76], see the results found
by IG_RSts, IGris, IG_RS; s(TBgr) and IGris(TBgr) for example. These results are also confirmed by
the DDERy s, a discrete differential evolution algorithm which uses similar phases.

Regarding Taillard’s instances, the ARP Ds of Iterated Greedy metaheuristics for ¢ = 90 is between
0.28 and 0.38 which clearly outperforms non IG-based metaheuristics (the ARP Ds of 3XTS, H-CPSO,
HCS and PSO are, respectively, 1.24, 0.70, 1.35 and 0.84 for ¢ = 90). The best ARP D value is obtained
by IG_RSys(TBgr) proposed by [18]], with 0.37, 0.32 and 0.37 for ¢ = 30, ¢ = 60 and ¢ = 90 on
Taillard’s instances respectively. Let us highlight the fast convergence behaviour of IG_RSys(TBgr)
where the ARPD obtained for ¢ = 30 is lower than or equal to every other metaheuristic for ¢ = 90.
Metaheuristics are compared with IG_RS; s(TBrf) using the non-parametric Wilcoxon signed-rank test

(see Table[8). Note that each p-value on the Taillard’s instances is less than or equal to 0.003 regardless
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Table 7: Summary of ARP Ds of the metaheuristics

.. Taillard VRF
Metaheuristic | Ref. 1, 5, 60 4290 [ 1230 1=60 =90
TSAB (597 1097 087 084 | 216 196 185
MSSA [60] | 1.00 091 084|217 196 184
IG_RS;g [76] | 047 040 037 | 096 077 067
IGrus [62] | 049 042 038|085 067 056
DDEg, s [62] | 052 047 043|092 077 069
3XTS (6] | 164 134 124|289 265 247
H-CPSO 291 | 084 075 070 | 1.65 141 128
EDA acs [36] | 0.60 051 047 | 143 125 1.16
HCS 38] | 155 142 135|254 235 227
PSO (100] | 1.09 095 084|251 2.14 193
IG_RS,s(TBy) | 18] | 037 032 028 | 0.60 046 037
IGrs(TBr) | [18] | 042 034 031 | 0.61 047 038

the value of ¢.

Regarding the VRF instances, the superiority of the IG-based algorithms is more clear, as VRF in-
stances include a wider range of values of n and m. Thereby, the differences between the ARP D values
of the metaheuristics greatly increase with respect to the IG_RS; s(TBgr) metaheuristic (see the difference
of ARPD between 3XTS and IG_RS; s(TBgr) is 0.96 on Taillard’s instances and 2.10 on VRF instances
for ¢ = 90 for example). Statistical significance has been found for all metaheuristics (maximum p- value
equal to 0.000) with the exception of IGrys(TBgr) (see Table . In view of the results, although there are
many papers proposing metaheuristics, only the Iterated Greedy variants proposed by [[18]] statistically
outperform IG_RSj g on both Taillard’s and VRF instances.

We have already commented that many metaheuristics have been published since the last computa-
tional evaluation and review of meheuristics proposed by [74] (see Tables [2]and [3)) and since the original
Iterated Greedy algorithm proposed by [76]]. On one hand, in view of Tables [2| and 3] only 12 meta-
heuristics have promising results in terms of quality of solutions and computational effort. On the other
hand, in view of the results in this Section, only the IGris(TBgr) and the IG_RSy s(TBgr) algorithms are
state-of-the-art methods. It follows that many metaheuristics were not state-of-the-art even at the time on
their publication, a fact that strongly highlights the need for a review and framework for computational

evaluation such as the one proposed in this paper.
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Table 8: Comparison of metaheuristics using Wilcoxon signed-rank tests

Taillard (Sig) | VREF (Sig.)
t=30 t=60 t=90 | t=30 t=60 =90
TSAB vs IG_RS; s(TBgr) | 0.000 0.000 0.000 | 0.000 0.000 0.000
MSSA vs IG_RS;s(TBg) | 0.000 0.000 0.000 | 0.000 0.000 0.000
IGgis vs IG_RS_s(TBg) 0.000 0.000 0.000 | 0.000 0.000 0.000
IG_RSs vs IG_RS;s(TBgr) | 0.000 0.000 0.000 | 0.000 0.000 0.000
DDEg;s vs IG_RS;s(TBgr) | 0.000 0.000 0.000 | 0.000 0.000 0.000
3XTS vs IG_RS; s(TBgr) 0.000 0.000 0.000 | 0.000 0.000 0.000
H-CPSO vs IG_RS;s(TBgr) | 0.000 0.000 0.000 | 0.000 0.000 0.000
EDAcs vs IG_RS s(TBgr) | 0.000 0.000 0.000 | 0.000 0.000 0.000
HCS vs IG_RS; s(TBg) 0.000 0.000 0.000 | 0.000 0.000 0.000
PSO vs IG_RS s(TBgr) 0.000 0.000 0.000 | 0.000 0.000 0.000
IGgis(TBgg) vs IG_RS s(TBgr) | 0.000 0.003 0.000 | 0.155 0.220 0.137

Comparison

4.3 Comparison of heuristics with metaheuristics

Traditionally, researchers have focused either on finding efficient heuristics, or on obtaining the best meta-
heuristic for the problem. The former are implemented to find a good fast solution and/or a good initial
seed sequence for the problem, while the latter are typically implemented to find better solutions using
longer CPU times. As a consequence, typically both heuristics and metaheuristics have been separately
evaluated and compared. In this Section, we analyse both heuristics and metaheuristics together, as there
are several heuristics requiring long CPU times and vice versa. Therefore, each heuristic is compared
with one of the best metaheuristics, i.e. the iterated greedy IG_RSy s(TBrp). In order to have a fair com-
parison, the metaheuristic is stopped at the CPU time used by each heuristic. These comparisons are
performed using the sets of instances of [83]] and [88]. A summary of the results is shown in Table [J] as
well as in Figures [5| and [ for these benchmarks, respectively, where the dotted lines represent logarith-
mic trend lines for the heuristics and the red squares represent all values obtained by IG_RSy s(TBgr).
Note that IG_RSys(TBgr) starts with the sequence obtained by NEHFF and therefore, NEHKK?2 and
NEHFF are not included in the comparison as they need shorter CPU times. For all other heuristics,
the metaheuristic outperforms them in terms of ARPD. All compared heuristics are outperformed by
IG_RS; s(TBgr), especially when compared on the VRF instances. The statistical significance of these

comparisons is established by means of the non-parametric Wilcoxon signed-rank test since the normality
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and homoscedasticity assumptions are not fulfilled. Note that statistical significances are found for each
comparison on the Taillard instances, even against the heuristics proposed by [66] which have ARPD
values similar to or even better than those obtained by IG_RS; s(TBgr) for several problem sizes. Simi-
larly, each corresponding null hypothesis is rejected on VRF instances, 0.001 being the highest p value.
This Section highlights the exceptional performance of IG-based algorithms for short periods of time
and also serves to classify IG_RS; s(TBgp) as a state-of-the-art method for constructive and improvement

heuristics.
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Figure 5: Heuristics versus IG_RS;s(TBgr) on the set of instances of [83]. X-axis (variable
ARPT) is shown in logarithmic scale.

5 Conclusions

Since the last reviews in 2005, a large number of heuristics and metaheuristics have been proposed for the
permutation flowshop scheduling problem to minimize makespan. Most of them are compared with other
non-efficient algorithms and/or under uncomparable conditions. Thus, it was not clear which algorithms
were state-of-the-art. In this paper, an exhaustive review and evaluation of algorithms for the permutation
flowshop is proposed, with special attention being paid to conducting a fair comparison of algorithms.
The most promising ones, i.e. a total of 31 algorithms (19 constructive heuristics and 12 metaheuristics),
have been implemented and compared under the same conditions. The comparisons have been done using
the benchmarks of [83]] and [88]]. On one hand, the metaheuristics are compared under three different
stopping criteria to analyse the evolution of the each algorithm with the computational effort. On the
other hand, the comparison of (constructive and improvement) heuristics has been performed using two
relative indicators to measure the quality of the solution and the computational effort in order to identify
the efficient ones. Statistical analyses of the quality of the solutions have been carried out to study the
efficiency of the heuristics as well as to compare the metaheuristics. Additionally, each heuristic has been

compared with the best metaheuristic under the stopping criterion of the heuristic to analyze tentative best
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Figure 6: Heuristics versus IG_RS;s(TBgr) on the set of instances of [88]. X-axis (variable
ARPT) is shown in logarithmic scale.

seed sequences for the metaheuristics. Therefore, we believe that this paper may represent a starting point
for future researchers who attempt to propose new algorithms for the permutation flowshop scheduling
problem with makespan objective.

Notice that all analysed algorithms have been completely recoded. The authors later contacted the
corresponding authors of many papers in order to avoid different interpretations in their description of the
algorithms. It is worth highlighting that sometimes the great differences in the quality of the solutions
are due to the different interpretations of the algorithms. Small variations in some algorithms have even
resulted in greater differences than, for example, completely changing the algorithm. To ensure the
repeatability and the reproducibility of the algorithms, we consider that at the least a clear pseudo code
should be included in the papers, if not the publication of the full source codes on-line, as recommended
by the Good Laboratory Practice for Optimization Research (GLP4OPT) practices, recently published
by [33].

Among all coded metaheuristics, algorithms based in the IG method of [76] have been clearly identi-
fied as the most efficient metaheuristics for the problem. This fact is further confirmed since other well-
performing metaheuristics also incorporate some part of the IG algorithm (see metaheuristics EDA_ACS
or DDE_RLS for example). In particular, the implementation proposed by [18] is the most efficient one.

Additionally, the difference in solution quality between IG-based algorithms and other methods is even
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greater in the new set of instances of [88]] which also consider a higher number of jobs and machines, a
fact which explains why some metaheuristics tested on just a subset of the instances of [83]] were found
to be efficient ones at their time.

Although the excellent performance of non-population based algorithms was shown by [59], [76],
[62] and [[18]], the literature using this type of metaheuristic is scarce and researchers have mainly been
focused on the implementation of algorithms using several populations in parallel. In fact, most common
metaheuristics chosen by the researches were Particle Swarm Optimization Algorithm (17 times), Ge-
netic Algorithm (15 times), Ant Colony Algorithm (6 times) and Differential Algorithm (6 times). The
remaining types have been implemented less than 4 times in the papers analysed.

Regarding heuristics, most have been identified and classified as variations of the NEH algorithm.
Among the 19 coded algorithms, only 5 heuristics (NEHFF, FRB4y, FRB2, FRB3 and FRBS5) could be
classified as efficient. Similar results have been found for both Taillard and VRF instances. Neverthe-
less, when they are compared with the best metaheuristic under the stopping criteria of the heuristic, all
efficient heuristics have been outperformed by the metaheuristic, with the exception of NEHFF since that
heuristic is the initial solution of the metaheuristic. Hence, this fact clearly indicates a way of proceed-
ing when future new heuristics are proposed in the literature. From now, constructive and improvement
heuristics should be directly compared either with the best metaheuristic under the same stopping crite-
rion or with NEHFF with at least the same computational effort, as it might turn out that a few iterations
of a good metaheuristic already give better results.

Note that the best metaheuristic and the best heuristics include Taillard’s acceleration as well as tie-
breaking mechanisms, which are two special characteristics of the F'm |prmu|Cyax problem. Obviously,
the former probably represent the main reason for the excellent behaviour of insertion phases in the
algorithms and could explain its extensive use in the heuristics and metaheuristics of the last decade, as
well as the excellent performance of the NEH and IG-based algorithms. The latter represents an advance
in the intensification of the algorithms applying special knowledge of the problem. In our opinion, these
facts highlight that future advances in this field will come from a better understanding of the problem and

its properties.
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