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Abstract This paper presents the integration of a robotic system in a human-
centered environment, as it can be found in the shoe manufacturing industry.
Fashion footwear is nowadays mainly handcrafted due to the big amount of
small production tasks. Therefore, the introduction of intelligent robotic sys-
tems in this industry may contribute to automate and improve the manual
production steps, such us polishing, cleaning, packaging and visual inspection.
Due to the high complexity of the manual tasks in shoe production, coop-
erative robotic systems (which can work in collaboration with humans) are
required. Thus, the focus of the robot lays on grasping, collision detection and
avoidance, as well as on considering the human intervention to supervise the
work being performed. For this research, the robot has been equipped with a
Kinect camera and a wrist force/torque sensor so that it is able to detect hu-
man interaction and the dynamic environment in order to modify the robot’s
behavior. To illustrate the applicability of the proposed approach, this work
presents the experimental results obtained for two actual platforms, which
are located at different research laboratories, that share similarities in their
morphology, sensor equipment and actuation system.
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1 Introduction

The use of robotic arms in industry, even at hyper-flexible productions lines,
is being favored due to new devices, sensors and algorithms. However, in the
footwear industry, robots are still restricted to very few tasks. In fact, not
many examples of robotic applications can be found in shoe manufacturing
industry [1] [2] [3] [4]. One of the reasons is the still not overcome difficulties
in handling flexible materials. However, some projects have been developed to
increase the productivity of specific steps in shoe manufacturing process using
robotics. Next, these projects are reviewed.

The EuroShoe project develops an innovative robotic cell [5] that is able
to perform finishing operations in shoe manufacturing, such as cleaning or
polishing. It uses a robotic manipulator equipped with a force controlled head
that works with a CAD-based software, which enables the robot to optimally
adjust trajectories to the contours of the shoe. Furthermore, an innovative
three-fingered gripper [6] has been developed within this project in order to
adapt to the materials commonly used in shoe manufacturing.

The INTELISHOE project [7] had the general goal of reducing the time-
to-market in SMEs of traditionally handcrafted goods such as footwear by
taking into account all available technologies. A distributed design concept
and prototypes have been implemented in this project.

The SSHOES project [8] addresses the implementation of new adaptive
production processes for footwear and insoles, which also includes the devel-
opment of robotic demonstrators and 3D design tools. Whereas, researchers
from Minho University present in [9] a software application for optimizing shoe
sole halogenation and lead roughing processes, two steps commonly involved
in the footwear manufacturing.

The CEC-MADE-SHOE project [10] has recently developed advanced tools
for the customization process (magic mirror). The FIT4U project [11] aims at
responding to the growing demand for consumer oriented product customiza-
tion by conceiving an Engineering Framework, meant as the set of tools and
manufacturing technologies required to obtain a consumer centered product
in sport footwear.

Within the European project RoboFoot [12], manipulation strategies for
non-rigid objects, programming tools, and sensor-based control approaches
have been developed in order to overcome the complexity of automating the
shoe production processes. Regarding 3D modelling, the work described in [13]
uses object-oriented CAD systems for designing heels and insoles.

Table 1 shows a summary of projects funded by the E.U., specifying start-
ing and ending dates, project IDs, funding program, total cost of the project
and number of participants.

Among the research projects discussed above only a few of them are using
a robot system as main device. For those cases, motion planning has to be
performed to find a path from the current robot configuration to the desired
one, eventually taking into account constraints like joint limits or collision
avoidance with the obstacles in the environment. Regarding motion planning
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Table 1 Summary of projects funded by the E.U.

. Budget Num. of
Project Name Dates (Start-End) ID and Program (EUR) Partners
G1RD-CT-2000-00343
EuroShoe 2001/03/01 - 2004/06/30 FP5-GROWTH 17.384.308 | 33
IST-1999-20949
INTELISHOE 2000/12/01 - 2002/05/31 | e oy 1.036.080 | 15
SSHOES 2009/07/01 - 2012/06/30 | 229261 4.874.025 | 11
) FP7-NMP o
CEC-MADE-SHOE | 2004/10/01 - 2008,/09/30 507378 20.417.201 | 16
B - ) FP6-NMP ’ :
229336
FIT4U 2009/07/01 - 2012/06/30 FPT-NMP 5.709.500 13
ROBOFOOT 2010/09/01 - 2013/02/28 260159 3.685.073 10
) FP7-1CT ’ '

in static or slowly changing environments, many solutions can be found, e.g.,
sampling based planners [14][15] or gradient optimization methods [16]. How-
ever, the application of robots in human-centered environments requires the
robot system to react to dynamic changes, which means that the generated
trajectories have to be adapted online in response to sensory feedback. Ba-
sically, there are two possibilities to achieve it, either by locally modifying
the off-line generated trajectory using a reactive controller or by generating
online a new complete solution. The advantage of the former is the computa-
tional speed, since replanning is avoided, and its main disadvantage is that the
continuous modification of the path may lead the robot into a local minima.
An example for the reactive path modification technique is the Elastic Strips
Framework [17], which uses virtual force fields originated by the obstacles in
the environment to incrementally modify a given trajectory in the task space.
Similarly, the Reflexxes Motion Library [18] provides tools and methods for
smoothly modifying a trajectory in the joint space and reacting on sensory
events. Whereas, path replanning techniques try to update online a solution
for a given path planning problem. An example of this approach is the Any-
time Path Planning framework [19], which constantly monitors the available
sensor input and updates the plan in case that a change is detected. Further-
more, the Lightning Planning Framework [20] is able to learn from previously
generated plans and adapt them to the new situation.

Additional considerations must be taken into account in unstructured co-
operative environments in order to avoid collision between the robot and the
human operator. In this case, the robot has to react to unforeseen events, which
must be detected by the available sensors. In addition to the vision-based de-
tection, force (and/or torque) sensors are usually incorporated to provide an
extra safety measure.

Force (and/or torque) sensors are usually either integrated in the end-
effector of the robot or at joint level. The latter case provides more sophis-
ticated collision detection and compliance control at each joint. Regarding
compliant robot behavior, active and passive approaches can be distinguished.
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Active compliance can be achieved for intrinsically rigid actuators using a
proper control concept in addition to force/torque sensing. Whereas, passive
compliance is achieved with intrinsically compliant actuators and thus does not
require force/torque sensing. Two examples of torque controlled robots that
utilize these two approaches are the DLR lightweight arm LWR [21], which
uses a sophisticated active compliance control, and the Barrett Whole Arm
Manipulator (WAM) [22], which uses backdrivable cable drives and does not
require any compliance control. Thus, the latter is not affected by the delays
of the control loop but suffers low repeatability since the position control is
less accurate with compliant actuators.

These force and backdrivablility considerations are a required to comple-
ment the vision system which globally monitors the robot’s workspace, detects
the obstacles and guides the end-effector to a goal position using, for instance,
visual servoing techniques. For instance, a visual servoing method is presented
in [23] for a robot working cooperatively with human operators. The avoidance
of obstacles during object manipulation has been treated in many works, for
example using a camera and SURF features [24]. In particular, in this work
a depth camera (Microsof Kinect camera [25]) is used to generate a point
cloud of the robot’s environment. This information is used online to generate
a motion plan and to avoid obstacles while interacting with the working scene.

In summary, this work presents the effort of several research projects car-
ried out by the authors to achieve a higher level of automation in shoe pack-
aging tasks. For this purpose, different setups (robots, robotic hands, software
libraries, etc.) have been implemented and tested to evaluate the capabilities
of robotic manipulation in the shoe industry.

The structure of the paper is as follows. Next section introduces the indus-
trial application to be solved using a robotic system, while Section 3 presents
the architecture (conceptual, hardware and software) proposed in this work to
cope with it. Next, Section 4 develops the robot control system to properly
perform the industrial task at hand. Then, the proposed approach is applied
in Section 5 to two actual robotic platforms to show its feasibility and effec-
tiveness. Subsequently, Section 6 summarizes the key findings of this research
and the remaining challenges. Finally, some concluding remarks are given.

2 Description of the Application
2.1 Shoe Manufacturing

Compared to other industries (e.g., the automobile industry), the shoe industry
has two main features that make it especially hard to automate. Firstly, a
relatively big amount of tiny pieces are managed, which are difficult to handle
for a robot. Secondly, there is a large number of products variants (e.g., 200 -
6 - 2 = 1200, see description below), which will probably not be produced
again due to fashion changes, with very short production runs (e.g., eight, see
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description below). Hence, robotic platforms would have to be continuously
re-programmed.

For this reason, fashion footwear production is currently mainly hand-
crafted. Some manufacturing processes are assisted by specialized machinery
(last manufacturing, cementing, cutting, roughing, direct injection, etc.) and
there exist highly automated lines in mass production of technical shoes (e.g.
safety footwear). But most production is still handmade, being especially true
in the case of high added value shoes production, where Europe and the USA
maintain their leadership.

The main features of shoe manufacturing are:

— Large number of products variants:

* Models (typically around 200 per manufacturer): every year a minimum
of two different collections (summer and winter) of shoes are manufac-
tured and presented to customers, and will probably not be produced
again due to fashion changes.

* Sizes (typically at least six) and sides (two): It is necessary to adapt
each model to several sizes and two sides (left and right).

— Short production runs: eight pairs of shoes is the average order size in
small and medium-sized enterprises.

— Complex manufacturing process. For each model, it is necessary to manu-
facture the last, to cut the leather, to fabric the parts and to produce the
list of components: sole, heel, sock, strap, inner parts, etc.

— Complex assembly process. The assembly process is very laborious (around
80 different operations) and especially complex in fitting operations due to
the non-uniformity and different elasticity of leather as well as the non-solid
nature of the components that difficult their manipulation. Fig. 1 shows
some of the painstaking and laborious tasks commonly performed in the
shoe industry: leather cutting and splitting, sewing upper parts, leather
pre-shaping, stitching the leather pieces to create the upper, nailing the
insole on the last, mounting the upper over the last and outsole injection,
the application of adhesive to join the outsole, etc.

— Manual quality verification (small spots, scratches, colour differences on
the leather, correct alignment of pieces over the last, etc.)

— Packaging. This step is maybe the easiest and fastest one in the production
line, but it is performed more than ten million times by a small-medium
size shoe company.

Some of the activities performed to manufacture a shoe are extremely com-
plex, and dexterous hands are required to get the desired quality level. But
others could be automated and/or robotized. This is the case of upper rough-
ing [26], final polishing [5], packaging and outsole mounting/gluing. This pro-
cess of automation of the shoe industry could increase the competitiveness in
this growing market, avoiding the migration of companies from Europe and
USA to China, India or Vietnam, or even allowing them to come back again.

Fig. 2 graphically represents the sub-tasks involved on the packaging pro-
cess. This production phase is one of the operations with higher workforce
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Fig. 1 Steps performed to produce one shoe. Courtesy of Simplicity Works Europe.
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Fig. 2 Description of the packaging process

impact and its main sub-tasks are cleaning, quality control and putting the
shoe inside the shoe box. For the shoe packaging sub-task, workers verify that
both pairs match, they write the pair number on the box, the pair of shoes is
put into the box (sometimes having to introduce some piece of paper and/or a
plastic bag to separate and protect them) and the box is finally closed with the
lid. This sub-task takes from 20 to 25 seconds to a human worker. Regarding
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Fig. 3 Overview of the robot shoe packaging

the other sub-tasks, cleaning could be performed by a robot [27] meanwhile
quality control is traditionally made by a human operator.

2.2 Robot System for Shoe Packaging

In this work, the shoe packaging process is addressed due to its special features.
Automated shoe packaging has to deal with complex activities like robotic
grasping, trajectory planning (including collision avoidance) and force control.
Therefore, this work carries out a viability analysis of robot shoe packaging
checking that the most critical tasks can be successfully tackled. Fig. 3 shows
an overview of the activity to be developed, where two conveyor belts carry
the shoe box and the pair of shoes to the robot workspace. When the pair
of shoes is detected using computer vision, the robot takes them one by one
placing them into the shoe box. Then, the robot closes the box and it is send
to the next step.

In the shoe industry, the grasping position and orientation is essential
to perform a stable grasping due to the rigid configuration of the outsole
and deformability of the upper. Extreme soft parts of the shoe have to be
avoided and, hence, grasp planning and tests have to be performed. Once
the object is grabbed, the robot arm has to transport it from the conveyor
belt to the shoe box, but some obstacles can be in the robot path. Therefore,
obstacle avoidance is required in the control system to guarantee no collision. A
trajectory planning strategy has to be designed to achieve this goal integrating
force control as well. Force control considerations are introduced in this work
to allow the interaction of a human worker inside the robot workspace for
supervision and quality control tasks. The human worker could go inside the
robot workspace or could modify the robot movement by handling the final
effector.
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3 Architecture
3.1 Conceptual architecture

Although every robot system has a specific architecture, most of them have
been developed basically from two paradigms: reactive [28] and delibera-
tive [29] (or hierarchical) paradigm. A combination of both approaches, known
as hybrid [30] paradigm, is nowadays the most accepted one. A description of
these three paradigms is given below.

A paradigm of a robot system is a mental model of how the robot operates.
It can be described by the relationship between the three elementary functions:
Sense, Plan and Act [30]; and establishes how sensory data is processed through
the system to make decisions.

The reactive paradigm is inspired by animals’ basic behaviors [28] and
uses a Sense-Act organization: the robot has multiple instances of Sense-Act
couplings, namely behaviors, which take the sensing data and independently
compute the best action to carry out. Thus, the robot performs a combination
of behaviors. Note that, there is no high-level intelligence for this case.

The deliberative paradigm uses a Sense-Plan-Act organization [29]: at each
step the robot senses the environment to construct a world model, then plans
(deliberates) the best action to carry out and, finally, it is executed.

The hybrid paradigm uses a Sense|Plan-Act organization [30]: firstly the
robot plans how to best decompose the task into subtasks, then computes the
suitable behaviors to accomplish each subtask and, finally, executes them as in
the reactive paradigm. For this case, the sensing organization is a combination
of reactive and deliberative cases: sensor data is used by each behavior that
needs it, but it is also available to the planner to construct a world model.

This work proposes to use the hybrid architecture shown in Fig. 4 to solve
the shoe packaging described in Section 2.2 with a robot system, where it can
be seen the deliberative and the reactive parts of the architecture. Note that,
three types of robot sensors are considered: camera, joint position sensors and
force sensor.

In the deliberative part of the architecture, the data acquired by the cam-
era is the input to the image processing algorithm (see Section 4.3) in order
to detect the objects in the environment and to construct a world model.
Subsequently, this information is used by the shoe grasping (see Sections 4.4
and 5.3) and the trajectory planning (see Sections 4.1 and 5.1) algorithms in
order to generate a reference for the low-level robot control.

In the reactive part of the architecture, the data acquired by the force
sensor is used to determine whether there is contact with the environment or
not. In case that contact is detected (e.g., collision has occur between the robot
and an object in the environment or the human operator is making some force
in the robot end-effector) the robot task is immediately stopped and the robot
control automatically switches to a force controlled mode, so that the operator
is able to move the robot in the Cartesian space by pulling the end-effector.
On the one hand, this reactive behavior prevents damage to the robot and
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Fig. 4 Architecture used for this work

the objects in the environment and allows the human operator to relieve the
system from a collision. On the other hand, this behavior allows the human
operator to supervise the robot task. For instance, the operator can stop the
robot motion while a shoe is being carried by the robot in order to visually
inspect it and, if it is approved, the operator allows the robot to continue the
task: introducing the shoe into the box, etc.

Finally, the low-level robot control computes the control signal for the
actuators using the current robot configuration given by the joint position
sensors and considering the deliberative or the reactive reference. In particular,
if contact has been detected, the reference of the reactive part prevails over
that of the deliberative part, as usual in hybrid robot architectures.

3.2 Hardware

This section aims at describing the hardware components used in the robotic
platform, as well as giving a brief statement about its purpose for the overall
system. Fig. 5 shows the main system components and the communication
interfaces used between them.

Arm. The robot of both platforms used in Section 5 to test the proposed
algorithms are based on Schunk modules. Both robotic arms are composed
of seven joint modules of four different sizes (PRL120, PRL100, PRL0O80 and
PRLO060), with peak out torques ranging from 10 Nm to 372 Nm. Arms have
a CAN bus line which links the modules with the control computer. In order
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Fig. 5 Hardware architecture

to connect the arm (and hand) to the computer, a CAN-USB adapter is used.
PCAN-USB (from Peak System manufacturer) enables simple connection and
drivers are available for Linux Kernel 2.4 and higher.

Robot Hands. Three different grasping devices have been tested in this work
for comparison and robustness purposes: the iCub hand from Italian Insti-
tute of Technology (IIT), the ITH2 Azzurra Hand from Prensilia and a Schunk
industrial gripper (servo electric 2-finger-parallel gripper type PG 70). It is in-
teresting to remark that, initial tests for grasping algorithms were performed
with industrial parallel grippers but, finally, the iCub (at DFKI Lab) and the
TH2 Azzurra (at UMH Lab) hands were chosen to gain more dexterity.

3D Sensor. The Kinect camera is widely used in robotics due to its high
performance and very low cost, e.g., about 150 USD. Furthermore, there are
specific drivers like OpenNT and libraries like PCL (Point Cloud Library) pre-
pared to work under ROS (Robot Operating System) [31] using 3D information
extracted by a Kinect camera. The camera comprises a RGB camera, which
stores three channel data in a 1280x960 resolution (color image capture), an
infrared (IR) emitter and an IR depth sensor. The emitter emits infrared light
beams and the depth sensor reads the IR beams reflected back to the sensor.
The reflected beams are converted into depth information measuring the dis-
tance between an object and the sensor. This 3D sensor was selected, instead of
a ToF camera, because the technology used by Kinect usually performs accu-
rattely for indoor applications, only sharp angles or small structures could be
difficult to characterize. Moreover, the minimum measuring distance for this
3D sensor is around one metre. Therefore, acquiring full frame depth measure-
ments or considering an outdoor environment seem to be domain of ToF based
depth measuring [32].

Control PC. ROS [31] allows distributed operation over multi-core, multi-
processor, GPUs, and clusters. The different tasks (vision, trajectory control
and planning, etc.) could be executed over different computers in order to
distribute the load of the system. In this case, only one computer has been
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used with the following specifications: Intel Core i7 2600k, 4 cores, 3,40Ghz,
6Mb cache, Turbo Boost 2.0, RAM 8Gb, NVIDIA GeForce210 4Gb, HDD
ST1000DL002-9TT153 ATA of 1Th.

3.3 Software

The ROS platform [31] over Ubuntu has been chosen for this work. This plat-
form was initially developed by Willow Garage Company in 2007 and has be-
come a standard tool among robotics researchers and industry. It is similar in
some aspects to other robot frameworks such as Player [33], YARP [34], ORO-
COS [35], CARMEN [36], ORCA [37], MOOS [38] and Microsoft Robotics Stu-
dio [39]. The ROS platform has been selected due to the availability of drivers
for hardware devices and of libraries to help software developers to create
robot applications using typical algorithms for trajectory planning, computer
vision, robotic grasping, etc. Moreover, ROS provides the services of an operat-
ing system: hardware abstraction, low-level device control, etc. It is interesting
to remark that ROS is the current trend in the most popular robots all over
the world: the PR2 [40] of Willow Garage; the Care-O-bot [41] of Fraunhofer
IPA; the partly AILA [42] at DFKI Robotic Innovation Center; among others.

In order to communicate with the CAN modules (arm Schunk modules and
the robot hands) via the PCAN-USB interface, the ROS package libpcan [43],
which wraps the PCAN drivers for Linux [44] and ROS [31], has been selected.

The ROS package schunk_powercube_chain [45] provides a configurable
driver for a chain of Schunk powercube modules. A node [46] takes in
joint velocities messages [47] being suscribed to the topic command_vel
(brics_actuator/ JointVelocities) [48] and sends them to the hardware. The
powercube chain can be initialized, stopped or recovered via ROS services [49].
Hardware configuration is done in the package schunk_hardware_config using
a YAML file [50]. Some of the parameters configured in the YAML file are
the name of the CAN module (e.g., PCAN), CAN device (e.g., /dev/pcan32),
CAN baudrate (e.g., 1000), maximum accelerations (e.g., [0.8, 0.8, ..., 0.8]),
etc.

The robot description is set up using URDF (Unified Robot Description
Format) [51] which is an XML format for representing a robot model.

4 Robot control
4.1 Collision Aware Motion Planning in ROS using a 3D sensor

The aim of collision aware motion planning is to go from a start pose (position
and orientation) to a goal pose with no collisions and satisfying all robot
constraints. In this regard, sensing is essential to avoid collision when operating
in unstructured environments. In particular, it is possible to consider a point
cloud which is a set of 3D points that represent the surface of the objects in
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Fig. 6 Point clouds into collision map

the robot environment. The point cloud can be obtained using several types of
sensors (e.g., stereo cameras, lasers, Kinect camera, etc.) and can be processed
(filtering, segmentation, surface reconstruction, model fitting, etc.) using the
Point Cloud Library (PCL) [52]. To perform the planning tasks it is important
to filter the 3D points to remove the sensor noise and the robot body (including
attached objects).

Environment representation can be divided in two parts: semantic per-
ception and 3D grid representation. Semantic perception represents known
objects, i.e., objects recognized using 3D object recognition algorithms, e.g.,
using the pcl_recognition module based on correspondence grouping described
in the PCL documentation [52]. This kind of environment representation helps
for collision checking and task planning (e.g., pick-up tasks) because it is pos-
sible to consider the whole geometry of the object even though it has occluded
parts in the point cloud obtained by the sensor. A 3D grid representation is
necessary to complete the environment with those parts out of the semantic
representation and that must be considered by the planner.

ROS arm_navigation stack [53] contains tools for easily generating new
robotic manipulation applications using a set of stacks, e.g., the colli-
ston_environment stack contains tools to create representations of the envi-
ronment for collision checking. It contains the packages to convert the 3D
data obtained from the sensor in the form of point clouds into a collision map
using the Octomap library [54] that implements a octree based representation
of the environment: probabilistic, flexible and compact 3D mapping, which is
optimized for online operation.

The constraint-aware Inverse Kinematics solver (package from
arm_navigation stack [53]) provides a generic implementation of constraint-
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aware kinematics for any serial manipulator. It combines ROS collision
checking tools with Orocos KDL [55] forward and inverse kinematics solvers.

OMPL (Open Motion Planning Library) [56] consists of several sampling-
based motion planning algorithms. It is basically a repository of planners which
allows to choose the most suitable planner for the task and to choose its param-
eters. Some of the planners available are PRM, RRT, ESTS, SBL, KPIECE,
BKPIECE, LBKPIECE, LazyRRT and RRTConnect. The mathematical de-
scription and software documentation of all these planners can be found in [56].
ROS interface OMPL through the ompl_ros_interface package (arm_navigation
stack) provides a YAML-based configuration to setup planners. The input to
the planner is a ROS motion planning request which specifies the goal as a
region in space. It can be a joint space goal (i.e., a nominal joint angle with
a tolerance) and a pose goal (i.e., a nominal position and orientation with a
tolerance).

Finally, the sampling-based planners can generate jerky trajectories and,
hence, smoothing is necessary before sending the planned trajectory to the
controller. Cubic spline and maximum velocities/acceleration constraints are
used in order to smooth the paths.

4.2 Collision Detection and Force Control

When a robotic device is operating in a human dynamic-changing environment,
collisions between the robot and the obstacles cannot always be avoided, e.g.,
the obstacle might be moving too quick for the robot to react or it might be
occluded from the camera field of view. Thus, in order to protect the human
operator and the robot system, a proper collision detection method is essential
for safe operation. For the Schunk system described in section 3.2, this can
be achieved using the force/torque sensor mounted at the robot’s end-effector.
For this purpose, the force sensor has to be calibrated properly to consider the
weight of the different hand or gripper tools, the sensor offsets, as well as the
shoe that is being manipulated. The used hand or gripper can be considered
as a point mass attached to the end-effector frame. Under this assumption,
the force estimation is done as follows:

F = (f—fo) — RE.(F) - fr (1)

where f is the vector of measured forces, fo the vector of experimentally deter-
mined zero offsets of the sensor, fr the force vector originating from the tool
weight in force sensor coordinates and RE.. (f) is a matrix describing the rota-
tion between the force sensor frame and the currently measured force vector.
Thus, the measurement obtained from the force sensor will be approximately
zero if no external forces are applied. Note that the above approach considers
forces but not torques.

Therefore, if the robot detects a collision (or the human operator interrupts
the actual task), it stops its current task and changes to a force controlled
mode, so that the operator is able to move the robot in the Cartesian space by
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pulling at the end-effector. Apart from preventing damage to the robot, the
operator could for example relieve the system from the collision situation or
inspect the carried item. For this purpose, the measured forces are translated
into robot motions as follows:

et = ') (1, [ PR ] 2)

where RE(q) is the rotation matrix that aligns the estimated force vector
f with the robot base frame, K, the proportional gain, qrer the reference
velocities sent to the robot controller and Jt(q) the pseudo-inverse of the
current robot Jacobian J. However, since the elements of the pseudo-inverse
matrix tend to infinity for singular robot configurations, an adaptive damped
least squares solution is considered to limit the joint velocities when the robot
is close to a singular configuration. In particular, the Orocos Kinematics and
Dynamics Library (KDL [55]) provides the Weighted Damped Least-Squares
(WDLS) inverse kinematics solver with an adaptive damping term k(q) as
follows:

It(a) = 37 (397 + k(w)1) - (3)

where the damping term is computed with respect to the current manipulability
M(q) of the robot:

Ha) = ko (1 - ) )
with
M) = /13t (@) 5)

where kg is the maximum desired damping and M the maximum manipulabil-
ity, which is experimentally determined. Thus, the damping factor k& converges
to zero when being far from singular configurations and tends to kg when the
robot is close to a singularity. Therefore, the system is guided safely through
a singularity while following the desired reference with reduced accuracy.

4.3 Object detection and modelling

The object modeling/detection algorithm of the ROS stack of the RoboEarth
project [57] has been used. It allows to build up a model of an object (not too
big and non-transparent) using the Kinect sensor. Based on this model, the
object can be found afterwards in a cluttered scene and the camera relative
pose can be determined. In the modeling phase, the object is placed onto
two sheets of paper, where Augmented Reality Markers are printed on. The
Markers are tracked to reconstruct the camera pose relative the markers. When
the camera is moved around the object (or the object is moved in front of the
camera), the camera pose is calculated continuously and the SURF features
are extracted using OpenCV implementation. After that, the 3D position is
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Fig. 7 Object detection applied to a shoe

determined using the depth information from the Kinect sensor. The local
point cloud of the object and the SURF features are stored for several frames.
These are the reference poses that are used for the object detection. Thus, the
SURF features are extracted from the camera image and matched sequentially
against the stored feature descriptor for each reference pose of the learned
objects. This process can be rather time consuming depending on the number
of objects and the number of reference poses. SURF features show a good
scaling and rotational invariance in 2D, but not so good for 3D detection.
Therefore, many reference poses per object are required for robust 3D object
detection. Fig. 7 shows a picture of the shoe detection/matching algorithm.

4.4 Grasp planning with constrained contact regions

This subsection outlines an algorithm to plan grasps using the object represen-
tation. The algorithm is based on the grasp hypothesis generation implemented
in the Simox toolbox [58]. The algorithm presented there was extended to cope
for restricted touch regions on objects. The input for the algorithm are a kine-
matic model of the robotic hand, a 3D mesh of the object to grasp and a
grasp definition. The grasp definition contains a pre-shape of the hand and
an approach vector. On the object, a random approaching point x is sampled
on which the vector n, normal to the surface is approximated. Then, the pre-
shape is aligned to this normal vector using the pre-shape approach vector.
The position in the space is selected in a way that with the hand opened (in
pre-shape) there is no initial collision with the object. To do so, the collision
checking is performed starting with a position close to the hand and moving
the hand along the approach vector in negative direction. When there is no
initial collision for a position, the hand is closed with a constant speed until
all fingers are in contact. If there are more than two contacts, it is checked if
all contacts are within the valid grasp regions. If so, grasp quality is calculated
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Fig. 8 Grasp planning with restricted touch regions

based on the number of contact points and it is checked if the force closure
property of the grasp is fulfilled.

Fig. 8 shows a picture of the grasp planning with red regions. The red areas
on the object indicate regions in which the robot is not allowed to touch the
object (process manually performed). The green friction cones indicate contact
points that are valid, while the red cones indicate invalid contacts. In the case
of the displayed grasp, the grasp planning algorithm would reject it.

5 Experimental Results

An essential prerequisite for applying robotics technologies in footwear pack-
aging and/or the automatic manipulation of relevant objects such as shoes or
shoe boxes is the ability of the robotic system to automatically detect these
objects in the environment. By acquiring 3D sensor data and color information
of an object from different viewpoints, object models can be created in order
to detect them in the robotic scene.

Literature distinguishes between local and global object representations.
On the one hand, local methods [59] extract the so-called feature points from
the object views and perform a classification on the regions around these
points. On the other hand, global object representations are based on statis-
tical classification techniques where complete object views are used to train
an object classifier [60]. Global approaches are powerful in deciding whether
or not a detected object that is not included in the training set (e.g., a dif-
ferent perspective is used), belongs to a known object. Whereas, local feature
point matchers have advantages in detecting partially visible objects, e.g., in
cluttered scenes. However, both methods give limited information about the
object accurate position and orientation, which is required for its manipula-
tion in the 3D space. Hence, geometric model-driven approaches are used to
fit a 3D shape model into the scene and to track it [61]. These methods reli-
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ably compute the pose information under the assumption that there is a priori
knowledge of the location where the model fitting is started.

This section presents two experiments on two different platforms to show
the effectiveness of the trajectory planning algorithm to avoid the obstacles
and the motion algorithm using force control.

5.1 Trajectory planning avoiding obstacles

In order to test the implementation presented in subsection 4.1, several exper-
iments have been performed. The computed motion planning should avoid the
collisions between the robot (or the object that is carrying) and the objects of
the environment. The objects have been detected using a Kinect camera and
a point cloud has been generated to get an image similar to the one presented
in Fig. 6. Fig. 9 shows a sequence in which the robot is carrying an aluminum
stick from one side to the other of a rigid structure, which is marked with black
and yellow bands. The motion planning takes into account the initial and fi-
nal object’s pose, the shape of the transported object and the environment in
order to properly avoid collisions.

5.2 Motion generation using force control

Fig. 10 shows an experiment, which has been conducted to show the function-
ality of collision detection and force control, see section 4.2. The manipulator
shall move the grasped shoe from one shoe box to another, both of which
are located on different tables. In case an unexpected collision is detected by
the force sensor, the robot automatically switches to a force controlled mode,
where it can be moved freely by the human operator. If no more external
forces are applied, it continuous following its previous trajectory. The modifi-
cation of a pre-planned trajectory using a reactive force controller without an
additional task supervision component might lead the robot to significantly
deviate from the desired trajectory to accomplish the given task. To make the
execution more robust, the task could be considered as failed at some point
and a re-planning component, which eventually makes use of a vision sensor,
provides a new trajectory.

5.3 Shoe grasping

Once the object has been successfully detected, a suitable grasping position is
computed and the object is grasped. According to Taylor [62] there are three
main techniques for gripping non-rigid objects:

— Mechanical surface, in which the material is clamped or pinched between
gripper fingers to give high frictional holding.
— Intrusive, in which pins are fed into the surface or body of the material.
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Fig. 9 Automatic trajectory re-planning to avoid obsta-
cle collision (A video of this experiment can be played at
https://media.upv.es/player/?7id=043d12e0-8135-11e6-8£97-b7415bf6c110)

— Surface attraction, which includes the use of adhesives or vacuum.

Initial tests were performed with industrial parallel grippers at both re-
search laboratories, see Fig. 9 and Fig. 10. However, if certain shoe areas have
to be avoided (e.g., not touched, see Fig. 8), the use of a multifinger hand
provides a higher search space on which to find a suitable hand configuration
that robustly grasps the shoe and, at the same time, avoids touching certain
shoe areas.

The grasping algorithm designed in this work is independent of the used
hardware platform, i.e., the gripper hand of the robot. In this regard, tests
have been performed for the grasping algorithm considering a peer review
procedure, i.e., checking that the grasping algorithm was properly executed
by an iCub robotic hand (by Istituto Italiano di Tecnologia) [63] and an TH2
Azzurra robotic hand (by Prensilia) [64]. For cases in which other algorithms
were checked (e.g., the trajectory planning), a Schunk pneumatic gripper was
used.

Fig. 11 shows the process of locating the shoe, performing motion plan-
ning, reaching, and, finally, grasping. Using the previously defined detection


https://media.upv.es/player/?id=043d12e0-8135-11e6-8f97-b7415bf6c110

Robotic manipulation for the shoe packaging process 19

Fig. 10 Experiment on force detection and force control (A video of this experiment can be
played at https://media.upv.es/player/7id=2a8aa2b0-8134-11e6-8£97-b7415b£6c110)

methods, the Kinect camera is used to detect the shoe and identify its relative
pose to the table. The table is considered an obstacle for the planning algo-
rithm. Given a certain desired grasp area for the shoe, the motion planner is
requested to find an optimal trajectory which brings the right arm from its
current position to a fixed distance relative to the shoe and with the approach-
ing orientation vector according to the detected pose of the shoe. The final
shoe grasping from here will be performed "blindly’ and the robot will move
along the approaching vector towards the shoe and close its fingers. Tactile in-
formation on the tips and palms of the hand will provide the necessary contact
information to complete the grasp motion. In this case, compared to parallel
grippers, the use of a multifinger hand provides a higher level of robustness
on the closing grasp, as the fingers will enclose the shoe within its fingers and
the grasp point location.

6 Key Findings and Remaining Challenges

The key findings achieved in this work are:

— Analysis of the shoe industry as a whole, identifying which activities can
be automated and which ones remain still unsolved.

— Automation of the shoe packaging process, testing issues like: robust object
detection in complex environments (see Fig. 6), shoe grasping considering a


https://media.upv.es/player/?id=2a8aa2b0-8134-11e6-8f97-b7415bf6c110

20 Luis Gracia® et al.

Fig. 11 Complete shoe grasping process including shoe detection, motion planning, reach-
ing and grasping

blind peer review (using two different dexterous hands and getting equiva-
lent results), trajectory planning with collision avoidance, force control for
operator interaction, etc.

— Making progress towards the automation of the shoe industry.

— Identification of remaining challenges in shoe automation.

The remaining challenges of this work are:

— Automation of shoe cleaning.

— Automation of shoe polishing.

— Automation of sewing.

— Automation of leather pre-shaping.

— Manipulation of tiny pieces.

— Automation of shoelaces tie.

— Speed-up of robotic movements to increase in productivity.

In order to illustrate how these remaining challenges could be tackled,
the first two items are analyzed. Cleaning or polishing is required depending
on the shoe model. On the one hand, cleaning is mainly needed in sport and
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Fig. 12 Operator teaching the robot to clean the shoe.

Fig. 13 Robot performing a cleaning task before introducing the shoe inside the box.

casual shoes and the cleaning areas are usually the same due to the production
process. On the other hand, polishing is usually required in classic shoes,
where the design has some shaded lines of style that have to be generated by
polishing. For instance, the automation of the shoe cleaning or shoe polishing
could be accomplished with the following two steps: firstly, the human operator
manually moves the robot to perform the task and the robot records the
corresponding movements and forces, see Fig. 12; secondly, the robot repeats
the task autonomously, as shown in Fig. 13.

7 Conclusion

This paper has shown a detailed description of the industrial shoe packaging
process using a robotic system. For this purpose, the technical difficulties of
introducing a robotic system in such scenario have been analyzed. Further-
more, the required hardware, software, and special tools have been described
and their advantages and disadvantages have been discussed in order to make
a proper selection of the components. For instance, some tools like the ROS
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arm_navigation stack have been especially helpful to solve the manipulation
path planning in the complex environment given by the shoe packaging pro-
cess. A set of experimental setups have been devised to show the effectiveness
of the proposed approach as well as the advantages and disadvantages of the
used components and their underlying technology.
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