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Abstract

Bag-of-Tasks (BoT) workflows are widespread in many big data analysis fields.
However, there are very few cloud resource provisioning and scheduling algo-
rithms tailored for BoT workflows. Furthermore, existing algorithms fail to
consider the stochastic task execution times of BoT workflows which leads to
deadline violations and increased resource renting costs. In this paper, we pro-
pose a dynamic cloud resource provisioning and scheduling algorithm which
aims to fulfill the workflow deadline by using the sum of task execution time
expectation and standard deviation to estimate real task execution times. A
bag-based delay scheduling strategy and a single-type based virtual machine in-
terval renting method are presented to decrease the resource renting cost. The
proposed algorithm is evaluated using a cloud simulator ElasticSim which is ex-
tended from CloudSim. The results show that the dynamic algorithm decreases
the resource renting cost when guaranteeing the workflow deadline compared to
the existing algorithm.

Keywords: cloud computing, scheduling, workflow, bag of tasks, stochastic

1. Introduction

A Bag-of-Tasks (BoT) consists of many independent tasks which can be
processed in parallel [1]. BoTs are widely spread in many fields such as image
processing, parameter sweeping and data mining. Applications of these fields
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Figure 1: An example of Bag-of-Task based workflow applications for image defogging

usually consist of several (sequential, parallel or hybrid of sequential and paral-
lel) steps rather than a single step and each step processes a BoT [2]. Data files
are transferred among these BoTs which forms a BoT workflow that implements
complex business logic [3]. Figure 1 shows an example of BoT workflows for an
image defogging application for two image files [4]. The application consists of
eight steps: image files reading, image partition of each image file, atmospheric
absorption rate computing for data trunks, atmospheric scattering rate com-
puting for data chunks, defogging model construction, image defogging for data
chunks, image reconstruction and image files outputting. Each step usually pro-
cesses many independent data chunks which form a BoT and the workflow is
composed of eight BoTs. When the number of processed image files becomes
larger, the number of tasks at each BoT becomes larger too.

Running BoT workflows requires a large number of computing resources,
such as grid clusters, supercomputers and private clusters. Nowadays cloud
computing has become an available platform for many applications which pro-
vides resources on demand to improve application performance and to reduce the
costs by renting only the needed resources. When BoT workflow applications are
migrated to public clouds, resource provisioning and scheduling algorithms are
needed. They decide the time, the type of resources and the number of resources
to rent in order to reduce as much as possible the renting cost. In this paper,
we aim to minimize the cloud resource renting cost of a BoT workflow with
deadline constraints, in which task execution times are stochastic. The problem
of optimal scheduling tasks with precedence relationships, in general cases, is
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NP-hard [5]. For example, the problem to minimize the cost of workflows under
deadline constraints considered by Möhring et al. [6], and Demeulemeester et
al. [7] can be modeled as the Discrete Time-Cost Tradeoff Problem (DTCTP),
which has been proved to be NP-hard [8]. In this paper, the problem to mini-
mize the cost of BoT workflows under deadline constraints with stochastic task
execution times and interval-based cloud resource pricing models is much more
complex than DTCTP. However, most of existing elasticity mechanisms provid-
ed by commercial public clouds are designed for web-server based applications
and few of them focus on computation-intensive workflow applications [9].

Different from a single BoT or multiple independent BoTs, there are complex
dependencies among different BoTs of the same BoT workflow. In the academic
work, most existing scheduling algorithms of BoT applications are designed for
a single BoT or multiple independent BoTs [10, 11, 12]. These methods are
not suitable for BoT workflows with many connected and constrained BoTs, for
example the workflow shown in Figure 1.

Most existing workflow scheduling algorithms are designed according to de-
terministic task execution times by assuming that task execution times can be
predicted accurately [3, 13, 14, 15, 16, 17, 18]. However, practical task execution
times are stochastic and have different probability distributions because of Vir-
tual Machine (VM) performance uncertainty and complicated task properties
[19]. When algorithms based on deterministic task execution times are put into
practice, algorithm performances degenerate because of task execution time un-
certainty [20], e.g., deadlines are violated or additional resource rental costs are
incurred. Two strategies are usually adopted to deal with task execution time
uncertainty [21]: (i) Static algorithms tolerate to some extent task execution
time uncertainty [22, 23, 24] and (ii) Dynamic algorithms which schedule tasks
according to real time execution states as much as possible [20]. In these meth-
ods, task execution times with different probability distributions are usually
fixed to known values. The maximum task execution times are usually adopt-
ed, which however overestimates the practical task execution times and leads
to resource over provisioning and additional costs. The sum of task execution
time expected value and standard deviation is used by Tang et al. [24] for task
scheduling with stochastic task execution times on private clusters, obtaining a
good performance.

Most existing static workflow scheduling methods considering task execu-
tion time uncertainty are designed to minimize workflow makespans on clusters
with fixed capacities, which are not suitable for the considered cloud resource
rental cost minimization problem. In this paper, cloud resources are rented and
released dynamically by intervals during the workflow runtime (called resource
runtime auto-scaling). Scheduled tasks are more likely to exceed the planned
resource interval horizons, which incurs an additional resource renting cost. In
other words, resource runtime auto-scaling makes the workflow scheduling with
task execution time uncertainty more complex. Therefore, developing static al-
gorithms which are robust for task execution time uncertainty for BoT workflows
is much more complicated.

Dynamic algorithms are widely used to handle task execution time uncer-
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tainty. However, the performance of dynamic algorithms is usually worse than
that of static algorithms because of myopic optimization and a lack of complete
information [20]. Therefore, it is crucial to determine when to make resource
renting decisions for a dynamic algorithm. For the dynamic algorithms de-
veloped by Malawskiet et al. [20], VM renting decisions are made whenever
the utilization is above or below given thresholds and it has been proved that
making dynamic algorithms aware of workflow structures is beneficial for im-
proving performance. However, the algorithms proposed by Malawskiet et al.
[20] are tailored for maximizing the number of completed workflows rather than
minimizing the rental cost of a single BoT workflow.

In this paper, a delay-based dynamic (online) algorithm is proposed to deal
with stochastic task execution times. The main contributions are the following:

(1) A bag-based delay triggering strategy for VM renting process is proposed
to fully use the bag structure to improve the performance of the dynamic
algorithm. Tasks are delayed and not scheduled until tasks of the whole
BoT are ready, i.e., virtual machine renting decisions are only made when
tasks of a whole BoT are ready in order to decrease the resource rental cost
of the whole BoT.

(2) An expectation-and-variance based VM selection method is proposed to
handle the task execution time uncertainty. The sum of task execution time
expected value and standard deviation is adopted to estimate the practical
task execution times on VMs properly, which is benefical for improving the
utilization of rented VM intervals.

(3) A single-type based greedy method for VM renting of each ready BoT is
developed to improve the effectiveness and efficiency simultaneously. Re-
source provisioning for each BoT under deadline constraints at each step of
the dynamic algorithm is NP-hard. Since tasks of the same BoT have the
same function, they have the same virtual machine performance require-
ments, the type and the amount of required VMs are determined based on
the assumption that only a single type of VMs are provisioned.

The rest of this paper is organized as follows. Section 2 gives an overview of
the related work. Section 3 presents the descriptions of the cloud environment
and BoT workflow applications. Section 4 describes the details of our proposed
dynamic algorithm for dealing with stochastic task execution times. Perfor-
mance evaluation is discussed in Section 5. Finally, conclusions and future work
are outlined in Section 6.

2. Related work

Resource scheduling is one of the most important issues when applications
are migrated to clouds [9, 25]. Many factors (such as horizontal and vertical s-
calability of capacity, various resource pricing models, uncertainty of task execu-
tion times and resource performances) make the cloud resource provisioning and
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scheduling complex. There are many scheduling algorithms for cloud comput-
ing with different objectives, such as cloud resource renting cost [14, 16, 18, 26],
task finish time [15, 27], energy consumption [28, 29], the number of finished
workflow instances [30]. Different algorithms are designed for different types
of applications which consist of different types of tasks: such as web request-
s, bag of tasks, Map-Reduce tasks, workflows and BoT workflows. Workflow
applications are widespread in many fields and attract much more attention.
Therefore, they are considered in this paper.

There are some scheduling methods which assume that the rented resources
are kept unchanged during the whole workflow runtime. Although provision-
ing with unchanged resources decreases complexity, renting resource intervals
dynamically during the workflow runtime is beneficial for decreasing resource
rental cost [31]. Therefore, workflow scheduling methods are classified into two
types according to the resource renting flexibility: (i) One is to rent appropriate
capacity of resources which are kept unchanged during the workflow runtime.
For example, Byun et al. [26] proposed the Balanced Time Scheduling (BTS)
algorithm to determine the rented type and number of virtual machines during
the whole workflow runtime. Based on fixed capacity of resources, Chen et al.
[15] proposed a clustering method to minimize the workflow execution time and
Verma et al. [32] developed a heuristic to minimize the execution time and cost
simultaneously. (ii) The other one is to rent resources by intervals dynamically
during the workflow runtime. For example, algorithms which minimize the re-
source rental cost by dynamically renting resource intervals were developed by
Byun et al. [14], Abrishami et al. [16], Durillo et al. [17], Li et al. [13] and Su
et al. [33], etc.

Most existing workflow scheduling algorithms only give a static resource
renting and task assignment plan based on deterministic task execution times
in advance. Estimating task execution times is the basis of workflow scheduling
and there are some task execution time prediction methods [34, 35, 36, 37].
However, deviations between predicted task execution times and actual task
execution times are unavoidable [19]. When these static algorithms are put into
practice, the practical execution states are different from the original schedule
because of task execution time uncertainty and task failures, among other issues
[38]. As introduced by Malawski et al. [20], the stochastic task execution
times have a great impact on the workflow resource provisioning when static
algorithms are put into practice.

Many algorithms have considered stochastic task execution times for work-
flow scheduling, but they are for workflows with fixed capacities of resources
(such as private data centers and data centers composed of fixed number of
virtual machines rented from public clouds). A method which guarantees the
mathematical expectation of the workflow makespan was proposed by Skutella
et al. [22]. Kamthe et al. [23] developed a stochastic scheduling method to min-
imize the workflow makespan expectation. Zheng et al. [21] developed a Monte
Carlo method to select schedules that tolerate stochastic task execution times to
minimize the workflow makespan. The mathematical expectation and standard
deviation of task execution times was adopted by Tang et al. [24] to minimize
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the workflow makespan. These algorithms minimize the workflow makespan on
data centers with fixed capacities, which are not suitable for cost minimization.
In this paper, we furthermore consider dynamically rented resource intervals.

Few of the workflow scheduling methods have considered the resource run-
time auto-scaling and task execution time uncertainty simultaneously. Ro-
driguez et al. [39] proposed a Particle Swarm Optimization (PSO) method to
rent resource intervals dynamically for workflows with stochastic task execution
times, in which the maximum task execution time was adopted to deal with the
stochastic task execution time. The PSO was not tailored for wotkflows with
BoT structures. Malawski et al. [20] aimed to maximize the number of finished
workflows considering both resource runtime auto-scaling and stochastic task
execution times which is different from the rental cost minimization of a single
BoT workflow considered in this paper.

Most existing scheduling algorithms are designed for independent BoTs or
single-task based workflows and few of them consider BoT workflows. For exam-
ple, cloud resources are dynamically rented for independent BoTs to minimize
resource rental cost or makespan [10, 11, 12]. A MapReduce-workflow scheduling
algorithm was developed by Tang et al. [40] which was designed for applica-
tions on heterogeneous computing platforms with fixed capacities rather than
workflows on cloud computing with runtime auto-scaling resources. Wang et
al. [3] and Cai et al. [18] proposed several algorithms for deadline or budget
constrained BoT workflow scheduling problems. However, Wang et al. [3] con-
sidered a special type of BoT workflows, which are composed of sequential BoTs.
The algorithms proposed by Cai et al. [18] are job (BoT)-level based, which
assume that tasks of the same job (BoT) must be processed at the same time.
In this paper, tasks of the same job (BoT) are processed asynchronously to im-
prove the utilization of rented resource intervals although the job (BoT)-based
structure information is still used to optimize the problem.

In a word, most existing workflow scheduling algorithms are either designed
for independent BoTs, are based on deterministic task execution times or are
tailored for resources with fixed capacities. In this paper, we propose a method
that surmounts all these weakness and considers rich BoT structures, stochastic
task execution times and dynamic rented resources.

3. Problem description

In the following sections, we describe the considered problem in detail.

3.1. Cloud resources

Different types of virtual machines are provided by public clouds. Interval-
based pricing models are offered and the whole interval (month, hour or minute)
is paid even if only a part of the interval is used. Let Pm be the price of VM m
(per interval unit) and Lm be the length of the pricing interval of VM m. The
VM setup time can not be ignorable since a VM is not immediately available
after the request is sent. T lm represents the VM setup time (loading) of VM m.
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3.2. Bag-of-Task based workflow applications

A BoT workflow can be represented by a Directed Acyclic Graph (DAG)
with bag structures G = {B, V, E}. B = {B0, B1, . . . , BQ} is the set of bags
of tasks, in which Bi is the ith bag of tasks. V = {v1, . . . , vN} is the set of
tasks of all BoTs and B is a partition of V . E = {(i, j)|i < j} is the precedence
constraints of tasks where (i, j) indicates that vj cannot start until vi completes.
Pi represents the immediate predecessor set of vi. For the example in Figure
1, V = {v1, . . . , v23}, B = {B0, B1, . . . , B6}, B0 = {v1}, B1 = {v2, v3}, B2 =
{v4, v5, . . . , v11}, B3 = {v12, v13, . . . , v19}, B4 = {v20}, B5 = {v21, v22, . . . , v28},
B6 = {v29, v30} and B7 = {v31}.

As mentioned above, task execution times are stochastic because of VM per-
formance uncertainty and task properties complexity [19, 24]. The probability
distribution types of task execution times might be uniform or normal, among
others. Probability distribution of task execution times can be estimated by sev-
eral types of methods [34, 35], which is outside the scope of this paper. Besides
the execution time of each task, data transfer times among tasks are dependent
on the volume of data and the system network bandwidth W . We assume that a
hybrid storage architecture is applied which consists of a global and a local stor-
age system. The global storage system is a distributed file system on dedicated
infrastructures, e.g., Amazon S3. The local storage system is the file system of
each rented VM, which can only be accessed by the VM itself. Produced data
files are written into both of the global storage system and the local file system
simultaneously. When a VM is released, files stored in its local file system are
deleted. If a task is assigned to a VM which contains some required data files in
the local storage system, data transfer times of these files are zero. Otherwise,
the required data files are needed to be loaded from the global storage system.
Professional softwares is required to be installed before tasks can be processed,
which consume significant software setup times.

3.3. Resource provisioning and workflow scheduling

As shown in Figure 2, a workflow management system usually consists of:
(1) A Workflow Engine which is in charge of monitoring the real time states and
events of workflow execution. It is invoked whenever a task is finished, a rented
VM is available or a rented interval is finished. (2) A Workflow Scheduler which
decides when, which type of and how many VMs should be rented according to
the applied scheduling algorithm. It also decides when to release VM instances
and how to assign tasks to VMs. (3) A Virtual Data Center which is composed
of different types of VMs rented dynamically by intervals from public clouds.
Assumptions for the considered cloud workflow system are as follows:

(1) There is no limitation on the number of rented VM instances since the
number of required VMs for each workflow instance is usually smaller than
the limit numbers of commercial public clouds.

(2) A VM can only process one task at a time while other assigned tasks are
blocked and waiting in a queue. The reason is that applications can be cod-
ed by taking advantage of multi-threading, i.e., the VM processor cores are
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assumed to be fully used at the same time. Processing multiple tasks simul-
taneously requires additional context switching which might not accelerate
the processing speed.

(3) A task cannot be preempted after it is assigned to a VM for processing.

There are deadlines for many BoT workflow applications. The objective of
this paper is to minimize the resource rental cost while fulfilling the deadline
constraint D. Let fi,m be the execution time probability distribution of task vi
on VM m. Ii,k and Ii represent the k-th input data file and the set of input
files of task vi respectively. Zi,k is the size of file Ii,k. If Ii,k is at the local file
system of VM m at time t, xi,k,m,t = 1. Otherwise, xi,k,m,t = 0. $i and T s$i

represent the needed professional software type and its setup time for task vi.
If $i has been already installed on VM m and it is present at time t, yi,m,t = 1.
Otherwise, yi,m,t = 0. T bm and T fm represent the start renting time (available
time at which the created VM is just returned from the provider) and release
time of VM m respectively. ζ is the sorted set of all rented VMs which are
sorted in the non decreasing order of start renting times. mi denotes the VM of
ζ to which vi is assigned. T bi,mi

, T ei,mi
and T fi,mi

are the start processing time,
execution time and finish time of vi on mi respectively. γ(m,a) denotes the index
of the a-th assigned task on VM m. The mathematical model is as follows:

min
∑
m∈ζ

T fm − T bm
Lm

× Pm (1)

st.

T fi,mi
= T bi,mi

+ T ei,mi
+

∑
Ii,k∈Ii(1− xi,k,mi,T b

i,mi

)Zi,k

W
+(1− yi,mi,T b

i,mi

)T s$i
, vi ∈ V (2)

T ei,mi
= Sampling(fi,mi), vi ∈ V (3)

T bi,mi
≥ max
vj∈Pi

{T fj,mj
}, vi ∈ V (4)

T bγ(m,a+1),m
≥ T fγ(m,a),m

,m ∈ ζ, a ∈ {1, . . . , Am − 1} (5)

T fγ(m,Am),m
≥ T fm,m ∈ ζ (6)

T bγ(m,1),m
≥ T bm,m ∈ ζ (7)

T fm = T bm + n× Lm, n ∈ N+,m ∈ ζ (8)

T fN,mN
≤ D (9)

The objective function (1) minimizes the resource rental cost of all VMs.
The processing time of a task consists of a task execution time, data transfer
times and a software setup time according to Constraint (2). Constraint (3)
illustrates that practical task execution times are samples of task execution
time probability distributions and Constraint (4) guarantees that tasks start
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after their predecessor tasks are finished. According to Constraints (5), (6)
and (7), tasks on each VM are processed one by one and task execution times
are within the horizon of rented intervals. Constraint (8) illustrates that VMs
are rented dynamically by intervals. The workflow deadline D is fulfilled by
Constraints (9).

4. Proposed delay-based dynamic scheduling algorithm

Developing dynamic algorithms is an effective method to deal with task
execution time uncertainty. The reason is that dynamic algorithms can make
decisions according to the real time conditions. However, dynamic algorithms
can not get good performance because of myopic optimization and a lack of
complete information. It has been shown that the performance of dynamic
algorithms can be improved by using global information [20]. In this paper,
a bag-based deadline division and a bag-based delay scheduling methods are
proposed to use global information as much as possible in order to improve
the effectiveness while maintaining the efficiency. The proposed Delay-based
Dynamic Scheduling (DDS) algorithm is composed of three main steps: (1) Bag-
based deadline division, which divides the workflow deadline into BoT deadlines.
(2) Bag-based delay scheduling, which decides which tasks should be scheduled
immediately and which tasks should be delayed and (3) A single-type based
resource renting, which rents appropriate type and number of VMs considering
the whole BoT.

4.1. Bag-based deadline division

Task deadlines determine the degree of task execution parallelism which
has a great impact on the utilization of rented VM intervals. Dividing workflow
deadlines into task deadlines before workflow execution considering global work-
flow information is beneficial to improve algorithm performance. Many existing
deadline division methods do not consider the bag structure of BoT-workflows
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[13, 16] which is however helpful to divide the workflow deadline properly. In
Cai et al. [41], a Bag-based Deadline Division method (BDD) is proposed which
considers the number of tasks and execution times of bags. BDD defines the
Estimated Wasted Cost (EWC) of each bag to be the wasted cost of rented
intervals on a give execution duration. Larger EWC means higher possibility of
additional cost. For each bag, giving longer processing durations usually leads
to smaller EWC. There are different functions of the EWC to the processing
duration for distinct bags. The problem of Distributing the workflow deadline
to competitive bags to minimize the total EWC can be modeled as a Discrete
Time-Cost Tradeoff Problem (DTCTP) which is NP-hard [41]. The return-rate
of each bag is defined as the ratio of decreased EWC to the consumed dura-
tion. A Largest Return-Rate First heuristic method (LRRF) is used in the BDD
method to distribute the workflow deadline to bags. Details of the BDD are
provided in Cai et al. [41] which are omitted here. Let Dvi be the deadline of
task vi. For a BoT workflow, the BDD is called only one time at the beginning
of the proposed dynamic algorithm. Let M be the number of VM types provid-
ed by cloud providers and N be the number of workflow tasks. The complexity
of BDD is O(MN3) [41].

4.2. Bag-based delay scheduling

The proposed dynamic algorithm is invoked to schedule new tasks whenever
a scheduled task has been finished. Ready tasks are updated by adding tasks
whose predecessors have finished. If tasks are scheduled as soon as ready, the
result is a myopic resource renting plan. Such approach is overly greedy. How-
ever, if more global information is used, fewer VMs and more appropriate VM
types will be used A BoT workflow consists of multiple BoTs and tasks of the
same BoT have the same function and VM performance requirements. Renting
VMs for a large number of tasks of the same bag together has a possibility to
decrease the total resource rental cost. Figures 3 and 4 show an example of how
the resource renting cost can be decreased by considering the BoT as a whole.
v1, v2, . . . , v6 belong to the same BoT and become ready at three different times
(two for each release time). m4.xlarge and c4.2xlarge are two types of VMs
with the same pricing interval length of 60 minutes. The prices per interval of
m4.xlarge and c4.2xlarge are 0.239 $ and 0.419 $ respectively. In Figure 3,
resource intervals are rented at each release time, which greedily minimizes the
added cost considering only the current ready tasks. For the six tasks, three in-
tervals are rented in the end and the total cost is 0.717 $. In Figure 4, tasks are
put into a wait queue at the first two release times. Resource renting plans are
made when all tasks of the BoT are ready at the third release time. Finally, only
one interval is needed and the cost is 0.419 $ which is much cheaper than 0.717
$ However, waiting more tasks to finish and make VM plan according to a batch
of tasks (delay scheduling) will delay task executions. When the task deadline is
very tight, delay scheduling will lead to short task execution times which limits
the scheduler to choose fast and expensive VM types. Delay scheduling will, on
the contrary, increase VM rental cost. Therefore, delaying tasks to take advan-
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tage of global information and left task execution times should be balanced.

In this paper, a bag-based delay trigger strategy for the VM renting process
is proposed. Workflow scheduling with the bag-based delay trigger strategy is
referred to as bag-based delay scheduling. Because there are idle times on pre-
vious rented intervals, ready tasks are scheduled so long as there are enough idle
times on rented intervals first. When tasks are scheduled to idle times of rented
intervals, it is crucial to decide which VM to select. The estimation of task
execution times is the basis for VM selection. The expected value and standard
deviation of task execution times have been evaluated and a good performance
was observed in many stochastic scheduling problems [24, 42]. Therefore, the
sum of task execution time expectation and standard deviation is used to es-
timate actual task execution times in this paper. Then, left ready tasks will
be checked whether they should be delayed or scheduled to new VM intervals.
Under this delay trigger strategy, a task vi will be delayed (not scheduled), if
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the ratio rate of ready tasks to the total number of tasks of bag Bk(vi ∈ Bk)
is smaller than a delay threshold α. Otherwise, a resource renting plan is made
based on a batch of tasks of the bag together. A larger α means that the sched-
uler will wait more tasks to be ready and make resource renting plan based on
a larger number of tasks. When rate = 1, a task can be scheduled only when
all tasks of its bag are ready.

Algorithm 1: Bag-based Delay Scheduling (BDS)

Input: ready task set Γ, delay threshold α, created VM set ζc, set ζr of VMs being
created

1 begin
2 Initialize Γd ← ∅, Γs ← ∅;
3 foreach vi ∈ Γ do
4 ms ← null, F e ← +∞;
5 foreach ma ∈ ζc do
6 Calculate Ci,ma and Fi,ma according to Equations (12) and (13) ;
7 if Ci,ma = 0 and Fi,ma < F e then
8 ms ← ma, F e ← Fi,ma ;

9 foreach mc ∈ ζr do
10 Calculate Ci,mc and Fi,c according to Equations (12) and (13);
11 if Ci,mc = 0 and Fi,mc < F e then
12 ms ← mc, F e ← Fi,mc ;

13 if ms 6= null then
14 Send task vi to ms for processing;
15 Γ← Γ− {vi};
16 Tams ← Tams +Qi,ms

i
;

17 else
18 Nr ←Calculate the number of ready tasks of bag Bk(vi ∈ Bk);
19 rate← (Nr/|Bk|)× 100;
20 Nl ←Calculate the number of unready tasks of bag Bk(vi ∈ Bk);
21 if rate > α|Nl = 0 then
22 Γs ← Γs ∪ {vi};
23 else
24 Γd ← Γd ∪ {vi};

25 return Γd and Γs;

Details of the bag-based delay scheduling method are described in Algorithm
1. ζc and ζr represent the set of created VMs (which are available at present) and
VMs being created (of which renting requests have been sent to VM providers
but that are not still available at the present) respectively. At first, ready tasks
(whose predecessors have been finished) are sorted by estimated shortest task
execution times in a descending order. Then, tasks are tested one by one to idle
times of rented intervals on VMs in ζc and ζr. For each VM m in ζc and ζr, T bm
and T am represent the start renting time and total execution time of assigned
tasks. The estimated start time of the current task vi on m is

Si,m = T bm + T am (10)
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The estimated total processing time of vi on m is

Qi,m = E[pi,m] +
√
V (fi,m) + (1− yi,m,Si,m

)T s$i

+(
∑
Ii,k∈Ii(1− xi,k,m,Si,m

)Zi,k)/W (11)

in which E[fi,m] and V (fi,m) are the expected value and variance of fi,m, re-
spectively. The estimated finish time of vi on m is calculated by

Fi,m = Si,m +Qi,m (12)

The increased resource renting cost of assigning vi on m is calculated by

Ci,m =
(⌈ (T am +Qi,m)

Lm

⌉
−
⌈T am
Lm

⌉)
Pm (13)

If there are VMs with Ci,m = 0, the VM ms with the earliest estimated finish
time is chosen. Then, vi is scheduled to ms directly and the total execution
time of assigned tasks on ms is updated by T ams ← T ams +Qi,m. Otherwise, it is
checked that whether vi should be delayed. Nr is the number of ready tasks of
bag Bk and Nl is the number of unready tasks of bag Bk(vi ∈ Bk). The ready
rate is calculated by rate← Nr/|Bk|. If rate > α or Nl = 0, vi is added to the
set Γs which consists of tasks ready to be scheduled to newly rented intervals.
Otherwise, vi is added to the task set Γd which is composed of delayed tasks.

In BDS, the time complexity of sorting tasks is O(N2). There are N itera-
tions at step 4 at most since the number of tasks in the Γ is less than N . Each
task of Γ is tested on rented VMs of which the number is N at most (the VM
number is not larger than the task number). Therefore, the time complexity of
BDS is O(N2).

4.3. A single-type based resource interval renting method

In BDS of the dynamic algorithm, some tasks are scheduled to idle times
of rented intervals and some tasks are delayed. In this stage, tasks of set Γs

are scheduled to new intervals of existing and (or) new VMs. Tasks can be
scheduled to elastic number of VM instances for parallel, sequence or hybrid
of parallel-and-sequence execution. In other words, tasks of the same bag are
considered together to make VM renting plan but can have different start times.
Γs usually consists of tasks belong to different bags. Bags are scheduled one by

one and the bag with larger total execution time is scheduled earlier. New VM
interval renting decisions (The number of parallel VMs, the type of VMs and
the number of rented intervals on each VM instance) will be made based on a
batch of tasks of the same bag together. Optimal scheduling of tasks to elastic
numbers of resources to minimize the cost is still NP-hard [10]. Let NBk

be the
number of ready tasks of bag Bk and M be the number of VM types provided
by the public cloud. There are (M + 1)NBk number of VM renting alternatives.

A single-VM-type based resource renting strategy is proposed which assumes
that only a single type of VMs can be rented because tasks of the same bag have
the same function and the same VM performance requirements. Therefore, only
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solutions with the same VM type are evaluated, which decreases the search
space greatly (there are M×NBk

VM renting possibilities at most for the single
type strategy). The resource renting and scheduling plan of each VM type is
obtained by a list based task scheduling method which further decreases the
number of searched solutions to M . In the list based scheduling method, tasks
are scheduled one by one and each task is scheduled to an existing or a new VM
with the cheapest increased cost while fulfilling the task deadline. If there are
no VMs fulfilling the task deadline, the VM with the earliest estimated finish
time is chosen.

Details of the Single-type Interval Renting method (SIR) are shown in Al-
gorithm 2. Let Tc be the current system time. T tm is the total execution time of
temporarily assigned tasks on each VM m when evaluating each VM type and
is initialized to zero. ζpδ is the set of planned VMs which have been planned to
be rented for VM type δ, but the renting requests have not been sent yet. For
a given VM type δ ∈ Ω (Ω is the set of VM types), tasks are scheduled to an
existing or to a new VM one by one. For a task vi, the estimated finish time
and the increased cost on each VM m of ζcδ , ζrδ and ζpδ are calculated by

Fi,m = T bm + T a
′

m +Qi,m (14)

and

Ci,m = (
⌈ (T a

′

m +Qi,m)

Lm

⌉
−
⌈T a′m
Lm

⌉
)× Pm (15)

in which T a
′

m = T am + T tm. ζcδ and ζrδ contain VMs of ζc and ζr with type δ
respectively. The increased cost and the estimated finish time on a new VM
m

′
are also calculated with T b

m′ = Tc and T a
m′ = 0. If there are VMs fulfilling

the task deadline, the VM with the cheapest increased cost is chosen. When
there are multiple VMs with the same cheapest increased cost, the VM with the
earliest start renting time is chosen. This strategy is designed to minimize the
number of rented VMs. If there is no VM fulfilling the task deadline, the VM
with the earliest finish time (labeled by Fe) is chosen. When there are multiple
VMs with the same earliest finish time, the VM with the cheapest increased
cost (labeled by C

′
) is selected over the others. If the chosen VM ms

i is the

new VM m
′
, m

′
is added to ζpδ . The assignment of vi to ms

i is recorded in the
schedule Sδ. T

t
ms

i
is then updated by T tms

i
← T tms

i
+ Qi,ms

i
. After all tasks are

scheduled, the total increased cost CBk,δ and the maximum deadline violation
VBk,δ of VM type δ is calculated by Equation (16) and (17), respectively.

CBk,δ =
∑
vi∈Bk

Ci,ms
i

(16)

VBk,δ = max
vi∈Bk

{Fi,ms
i
−Dvi} (17)

The total increased cost and the maximum deadline violation on the next VM
type are calculated again as mentioned above. After Bk is checked on all VM
types, the VM type δ

′
with the smallest maximum deadline violation (labeled
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Algorithm 2: Single-type Interval Renting (SIR)

Input: current time Tc, task set Γs, created VM set ζc, set ζr of VMs being created
1 begin
2 foreach Bk ∈ Γs do

3 δ
′ ← null, ζp

δ
′ ← ∅, S

δ
′ ← null, V s ← +∞, Cs ← +∞;

4 foreach m ∈ ζr do
5 if T bm < Tc then
6 T bm ← Tc;

7 foreach δ ∈ Ω do
8 foreach m ∈ ζcδ ∪ ζ

r
δ do

9 T tm ← 0;

10 ζpδ ← ∅;
11 foreach vi ∈ Bk do
12 foreach m ∈ ζcδ ∪ ζ

r
δ ∪ ζ

p
δ do

13 Calculate Fi,m and Ci,m according to Equations (14) and (15);

14 Add a new VM m
′
, calculate F

i,m
′ and C

i,m
′ according to

Equations (14) and (15) ( T b
m

′ ← Tc + T lm, Ta
m

′ ← 0 );

15 C
′ ← +∞, msi ← null;

16 foreach m ∈ ζcδ ∪ ζ
r
δ do

17 if Fi,m ≤ Dvi and Ci,m < C
′
then

18 msi ← m, C
′ ← Ci,m;

19 foreach m ∈ ζpδ do

20 if Fi,m ≤ Dvi and Ci,m < C
′
then

21 msi ← m, C
′ ← Ci,m;

22 if F
i,m

′ ≤ Dvi and C
i,m

′ < C
′
then

23 msi ← m
′
, C

′ ← C
i,m

′ ;

24 if msi = null then

25 Fe ← +∞, C
′ ← +∞;

26 foreach m ∈ ζcδ ∪ ζ
r
δ ∪ ζ

p
δ ∪ {m

′} do
27 if Fi,m < Fe or (Fi,m = Fe and Ci,m < C

′
) then

28 msi ← m, C
′ ← Ci,m, Fe ← Fi,m;

29 if msi = m
′
then

30 ζpδ ← ζpδ ∪ {m
′};

31 Record the assignment of vi to msi in Sδ, T
t
ms

i
← T tms

i
+Qi,ms

i
;

32 Calculate CBk,δ and VBk,δ according to Equations (16) and (17);
33 if VBk,δ < V s or (VBk,δ = V s and CBk,δ < Cs) then

34 δ
′ ← δ, ζp

δ
′ ← ζpδ , S

δ
′ ← Sδ, V

s ← VBk,δ, C
s ← CBk,δ;

35 Rent new VMs and schedule tasks of Bk according to ζp
δ
′ and S

δ
′ ;

36 Update T bm ← Tc for each m of ζp
δ
′ , ζr ← ζr ∪ ζp

δ
′ ;

37 Update Tam for all VM of ζc and ζr according to S
δ
′ ;

38 return
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by V s) is chosen. When there are multiple VM types with the same maximum
deadline violation, the VM type with the smallest total increased cost (labeled
by Cs) is chosen. New VMs are rented according to planned VM set ζp

δ′
. For

each m ∈ ζp
δ′

, T bm ← Tc. ζr is updated by ζr ← ζr ∪ ζp
δ′

. Tasks of Bk are
scheduled according to Sδ′ . Tasks assigned to created VMs are sent to the VMs
directly for processing. There is a processing list on each VM which consists of
tasks to be processed. Tasks assigned to VMs that are being creating can not
be sent to them immediately. They are stored in a waiting list of each VM and
will be sent to the VMs after these VMs are available from the cloud providers.
T am of each VM is updated by adding the sum of execution time expectation
and standard deviation of all assigned tasks. The remaining BoTs of Γs are
scheduled at the same way one by one.

Two other auxiliary functions are needed by the proposed Delay-based Dy-
namic scheduling algorithm (DDS): OnVMavailable and OnIntervalFinish. When
a VM m being created is returned from the VM provider and becomes avail-
able, OnVMavailable updates T bm ← Tc, removes m from ζr and adds m to ζc.
Tasks in the waiting list of m are sent to m for processing. OnIntervalFinish is
in charge of deciding when and which intervals to be released. When a rented
interval is ready to be finished, the VM is released if there is no task on the
VM. Otherwise, the next interval of the VM is rented continuously.

For SIR, the number of bags at step 2 is N at most, the number of VM types
at step 4 is M and the number of tasks of each bag is N at most. For each
task, it is tested on existing VMs (N at most). Therefore, the time complexity
of SIR is O(MN3).

4.4. Description of proposed Delay-based Dynamic Scheduling (DDS)

The proposed Delay-based Dynamic Scheduling method (DDS) is shown in
Algorithm 3. Whenever a task is finished and returned from the assigned VM,
the proposed DDS is called by the Workflow Scheduler. DDS updates the ready
task set at first. Then, DDS guarantees that the workflow deadline has been
divided. If task deadlines have not been generated, BDD is called. Next, BDS
is called to schedule tasks to available times of rented intervals immediately, to
decide which tasks should be scheduled to new intervals and which tasks should
be delayed. Finally, SIR is called to rent new intervals considering the BoT
structure. Based on the time complexity analysis of each component, the time
complexity of DDS is O(MN3).

5. Performance Evaluation

DDS is evaluated on a simulator which we call ElasticSim, which in turn
is extended from the popular CloudSim [43] by adding support for resource
runtime auto-scaling and stochastic task execution time modeling. The intro-
duction and source code of the ElasticSim is presented at the website [44].
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Algorithm 3: Delay-based Dynamic Scheduling
Input: current time Tc, created VM set ζc, set ζr of VMs being created

1 begin
2 Update ready task set Γs;
3 if task deadlines have not been generated then
4 Call BDD() to divide the workflow deadline;

5 (Γd, Γs)← Call BDS(Γs, ζc, ζr);
6 Call SIR(Tc,Γs,ζc, ζr);
7 return

5.1. Workflow instances and VM types

Workflow instances produced by the Workflow Generator [45] of Bharathi et
al. [46] are adopted which include Montage, CyberShake, Epigenomics (Genom-
ic), LIGO and Sipht workflow instances. The number of tasks of each workflow
instance belongs to the set {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
2000, 3000, 4000, 5000, 6000}. For each size of different workflow types, 20
instances are generated. Therefore, there are 5 × 15 × 20 = 1500 workflow
instances. Each workflow instance is saved in an XML file, which provides net-
work structures, task names and execution times. As shown in Table 1, the
ElasticSim models some types of Amazon EC2 VMs.

In practice, task execution time probability distributions on different types
of VMs can be estimated by several methods [34, 35], which are out of the scope
of this paper. In the experiments, task execution time distributions on VMs
are generated as follows: Because each VM may consists of multiple identical
parallel processors, it is assumed that applications are coded taking advantage
of multiple threads and task can be divided into equal number of partitions for
parallel execution. For each task vi, the expectation of the number of instruc-
tions is defined as the product of its execution time in the xml file and 20000,
labeled by N i

vi . Let scpum be the CPU speed of the processor of VM m and nm
be the number of processors of VM m. The expected value of the task execu-
tion time is E[fi,m] = N i

vi/(s
cpu
m ×nm) by considering the parallel processors as

related identical parallel machines [47, 48]. For the Amazon EC2 VMs, only the
total CPU speed of all processors in Million Instructions Per second (MIPS) are
shown in Table 1. Then, we adopted E[fi,m] as the expected value of the task
execution time probability distribution fi,m. For a given the distribution type ϑ
and a given θmax, the parameters and density function of the distribution fi,m
can be determined based on the expected value E[fi,m]. In the simulation, the
standard deviation of the task execution time is calculated based on fi,m and
the practical task execution time of vi on m is generated from fi,m randomly.

5.2. Compared algorithms

Although there are many workflow scheduling algorithms, only a few schedul-
ing algorithms designed for workflows with dynamically rented VM intervals and
stochastic task execution times [39]. However, these stochastic methods were not
tailored for BoT structures or considered different objectives. In other words,
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Table 1: Configurations and Prices (per hour) for Amazon EC2 VMs
VM Type Configuration (Memory Size, CPU Speed) Price Per Interval

Normal types

m4.L 8000 MB MEM, 3250 MIPS $0.12

m4.xL 16000 MB MEM, 6500 MIPS $0.239

m4.2xL 32000 MB MEM, 13000 MIPS $0.479

High-CPU types

c4.xL 10000 MB MEM, 10000 MIPS $0.299

c4.2xL 15000 MB MEM, 15500 MIPS $0.419

c4.2xLe 15000 MB MEM, 22500 MIPS $0.489

c4.4xL 30000 MB MEM, 32000 MIPS $0.838

there is no scheduling algorithm for the considered BoT workflow with dynam-
ically rented VM intervals and stochastic task execution times. Therefore, we
can only compare the proposals with existing algorithms based on deterministic
execution times for general or BOT workflows.

Durillo et. al [17] proposed an effective cloud aware Multi-Objective Hetero-
geneous Earliest Finish Time (MOHEFT) algorithm as an extension to the well-
known Heterogeneous Earliest Finish Time (HEFT) algorithm [49] for general
workflows. Different from HEFT, the cloud aware MOHEFT (called MOHEFT
in brief) rents VM intervals dynamically during the workflow execution horizon.
Because MOHEFT schedules tasks based on deterministic execution times, the
practical performance when it is adopted to the ElasticSim (for workflows with
stochastic task execution times) is different from the static performance. The
performance of the proposed DDS heuristics are compared with the practical
performance of MOHEFT on the ElasticSim first. The Unit-aware Rules based
Heuristic (URH) [41] extended from the Multiple Rules based Heuristic (MRH)
[13] is one of the few BoT workflow scheduling algorithms. The URH gets the
best performance for BoT workflow scheduling with deterministic task execution
times [41]. Therefore, the proposals have been compared with URH too.

When the MOHEFT and URH is put into practice with stochastic task exe-
cution times, the practical execution result is different from the static schedule.
Therefore, the MOHEFT and URH can not be used in the ElasticSim directly
which supports stochastic task execution time modeling and it has been mod-
ified as follows: The assignment of tasks to VMs and the sequence of tasks on
each VM of static schedule are kept unchanged. However, the start times of
tasks can not be directly used because of stochastic task execution times.

DDS uses the sum of task execution time expectation and standard deviation
to estimate the stochastic task execution time. The maximum value of a task
execution time can also be used. The DDS based on maximum task execution
times is called DDS MAX. α has a great impact on the performance of DDS. In
the experiments, α takes values from {0, 5, 30, 100}, which leads to DDSRR0,
DDSRR5, DDSRR30 and DDSRR100 respectively. α of DDS MAX equals 100.

5.3. Experimental setting

Several factors have great influence on the practical performances of BoT
workflow scheduling algorithms, such as the length of cloud resource pricing
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interval, the type of distribution for the stochastic task execution time, the
maximum task execution time prediction deviation and the deadline tightness,
among other potential factors. Details of these factors are as follows:

(1) L is the length of Cloud resource pricing interval which has been tested with
the values {60, 300, 900, 1500, 2100, 2700, 3300, 3600} seconds.

(2) ϑ is the task execution time probability distribution type, which is consid-
ered as uniform or normal.

(3) θmax is the maximum percentage of deviation between the predicted task
execution time and the practical task execution time tested at values {0,
10, 20, 30, 40, 50} (%).

(4) λ is the deadline factor which has been tested with values {1.5, 3, 6, 12,
24}. The deadline is λ times the shortest workflow makespan Ds, which
is obtained by assuming that all tasks are processed on the fastest VMs
with maximum degree of parallelism and VMs are ready whenever they are
required.

VM setup times are set to be 50 seconds which is approximate to the practical
setup times of many popular commercial providers.

We design two groups of experiments. In the first one, DDS algorithms
are compared with URH, in which different tightness of deadlines are tested by
setting different values to λ. Because MOHEFT is a multi-objective algorith-
m, DDS and URH algorithms can not be compared with MOHEFT directly.
Therefore, in the second group, makespans of MOHEFT solutions are set as the
deadlines of URH and DDS algorithm for fairly comparison.

5.4. Comparison with URH

For a workflow instance, URH first gets a stactic schedule (Curh,s,furh,s)
under a given deadline d. When the URH is put into practice (simulated
on ElasticSim), the practical performance is (Curh,p,furh,p). For the given
deadline d, DDS gets a schedule with performance (Cdds,fdds). The Percent-
age of Increased resource rental Cost (PIC) of DDS is defined as PICdds =
(Cdds − Curh,s) × 100%/Curh,s; The PIC of URH itself is PICurh = (Curh,p −
Curh,s) × 100%/Curh,s; The Percentage of Deadline Violation (PDV) of DDS
is defined as PDVdds = (fdds − d) × 100%/d. The PDV of URH is PDVurh =
(furh,p − d)× 100%/d.

The experimental results are analyzed by the multifactor analysis of variance
(ANOVA) method [50]. The three main hypotheses (normality, homoskedastic-
ity and independence of the residuals) are checked and accepted. In total, the
deadlines of workflows are violated by the average percentage of 1% to 27%
when URH is put into practice with stochastic task execution times. The av-
erage PICs of URH range from about 0% to 25%, which illustrates that the
practical resource renting cost of URH is increased because of stochastic task
execution times. The dynamic algorithm DDS get negative PDVs and lower
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(or equal) PICs than those of URH for most cases. This means that DDS can
guarantee workflow deadlines and at the same time it gets lower resource renting
costs than URH for most instances. Similarly, experimental results show that
the runtime of DDS is usually within 10 milliseconds and is not longer than 100
milliseconds at most. Therefore, DDS is fast enough for the considered cloud
BoT workflow applications.

The deadline factor, the pricing interval length, the maximum prediction
deviation, the task execution time probability distribution type, delay threshold
α and the estimation method of stochastic task execution times have a great
impact on the performance of scheduling algorithms. Therefore, in the following
we test all these aspects in detail.

5.4.1. Comparison under different deadline tightness

Figure 5 shows the means plot for PIC and PDV with 95.0% Tukey Honest
Significant Difference (HSD) confidence intervals of URH and DDS algorithms
with different deadline factors on different types of workflows. For Cybershake,
Genomic and SIPHT workflows, experimental results show that DDS can guar-
antee the workflow deadline and obtain lower resource renting costs than URH.
The reason is that bag-based delay strategy is helpful in decreasing the rental
cost by considering a large number of tasks of a BoT together. The type and
the number of VMs are determined by SIR dynamically according to BoT char-
acteristics and task deadlines which can guarantee deadlines and decrease cost
simutaneously. At the same time, SIR tries to minimize the total renting cost
by selecting the VM with the cheapest estimated increased cost for each task
greedily.

For Ligo and Montage workflows, deadlines are violated for most cases when
URH is put into practice. On the contrary, DDS can guarantee deadlines with
equal or a little higher resource renting cost. However, PICs of DDS for Ligo
and Montage workflows with extremely tight deadlines are extremely larger than
those of URH. The reason is as follows. The fastest workflow makespan Ds is
calculated without considering VM setup times. Execution times of most Ligo
and Montage tasks are within 100 seconds. When λ is small, the workflow
deadline λ×Ds is very tight, which leads to extremely tight task deadlines for
some tasks. New VMs are requested until tasks are ready which means that
preparing VMs will consume much of the time of the task deadline. When the
task deadline is extremely tight, a very short time or even no time of the task
deadline is left for task processing. Therefore, a large number of the fastest VM
type (usually the most expensive) is rented by DDS to finish the task as early
as possible which increases the resource renting cost greatly. On the contrary,
URH only schedules tasks according to the static schedule without considering
deadline violations incurred by stochastic task execution times. Figure 6 shows
an example of URH (left one) and DDS (right one) schedule results on ElasticSim
with the same tight deadlines (1367 seconds) and the same task execution time
sampling results. Each tab of ElasticSim shows VM provisioning and scheduling
results of an algorithm. Each row of the tab displays states of a VM. The pale
blue background rectangle of each row represents the rented time intervals of
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the VM. The time points of left and right sides of the rectangle are the start
renting time and releasing time of the VM respectively. The text on the left of
each background rectangle is the unique identification of the VM. Each vertical
line on the background rectangle denotes the finish time of a rented interval.
Foreground colour rectangles on background rectangles are assigned tasks. The
time points of left and right sides of a colour rectangle are the start time and
finish time of the corresponding task respectively. According to Figure 6, URH
rented 13 c4.2xLe VMs which got a finish time of 1407.6 seconds and a renting
cost of 7.13 $. DDS rented 11 c4.4xL VMs which can grantee the workflow
deadline with a finish time of 923 seconds but with a higher renting cost of
10.475 $. In other words, DDS rented more expensive VM types to fulfill task
deadlines while consumed additional cost.

5.4.2. Comparison under different pricing interval lengths

Figure 7 shows the means plots for PIC and PDV with 95.0% Tukey Honest
Significant Difference (HSD) confidence intervals with different length of pricing
intervals. Experimental results show that DDS algorithms still obtains equal or
lower PICs than URH for most cases and can guarantee the deadlines. At the
same time, the average PIC increases as the length of pricing interval increases
from a general view. For example, PICs of cases with L=60 seconds are smaller
than those of cases with longer pricing intervals. This is because a shorter pricing
interval length is beneficial for avoiding the waste of rented VM intervals. The
PDVs of most workflow types are stable for different lengths of pricing intervals.
In summary, the length of pricing intervals has a little impact on the workflow
finish time.

5.4.3. Comparison under different maximum prediction deviations

Figure 8, ??, ??, ?? and ?? show the means plots for PIC and PDV with
95.0% Tukey Honest Significant Difference (HSD) confidence intervals with dif-
ferent maximum prediction deviation of task execution times. In total, the PICs
of DDS algorithms are lower than those of URH on Cybershake, Genomic and
Sipht workflows. However, the PICs of DDS algorithms are larger than those of
URH on Ligo and Montage workflows. The reason is again the presence of tight
deadlines. The PDVs of all types of workflows are negative, which illustrates
that workflow deadlines are satisfied by DDS for all degrees of prediction devi-
ation. At the same time, the PDVs of most types of workflows are more stable
than those of URH while the PDVs of URH increases as the maximum predic-
tion deviation increases. This means that DDS algorithms are more robust for
stochastic task execution times than URH. Not only the workflow deadlines are
satisfied by DDS algorithms, but also the resource renting costs are decreased
for most instances with diverse degree of maximum prediction deviations when
compared to URH.

5.4.4. Comparison under different distribution types

Because results of uniform distribution have similar trend with the normal
distribution on the above factors, some results of uniform distribution have
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been omitted which can be found in the attachment [51]. We just compare
the two distribution types in total. Figure 9 shows the means plot for PIC and
PDV with 95.0% Tukey Honest Significant Difference (HSD) confidence intervals
of DDS with different task execution distribution types. Experimental results
show that the uniform distribution type of task execution times has larger PICs
than the normal distribution type in general, which means that the uniform
distribution type has a larger impact on the resource renting cost. The reason
is that variance of the uniform distribution type is larger than the gaussian
distribution type, the DDS tends to rent more number of VM intervals and the
assigned tasks are more likely to exceed planned VM intervals. The uniform
distribution gets smaller PDVs than the normal distribution. The reason is
that the standard deviation of the uniform distribution is larger than that of
normal distribution. Because DDS algorithms make resource renting plan based
on the sum of mean and standard deviation of stochastic task execution times,
the estimated task execution time of uniform distribution is longer than that
of normal distribution. Longer estimated task execution times will make DDS
algorithms rent more number of parallel VMs or faster VMs.

5.4.5. Comparison under different delay threshold α

According to Figure 5, 7 and 8(Result Set 1), DDSRR30 gets lower PICs than
DDSRR0, DDSRR5 and DDSRR100. It means that DDSRR30 with α = 30 gets
a better tradeoff between the using of global information by scheduling a batch
of tasks together and the length of left task execution times.

5.4.6. Comparison with DDS MAX

In this paper, SIR tries to fulfill task deadlines by using the sum of task
execution time expectation and standard deviation as an approximation of the
practical task execution time. We also evaluated the performance of DDS when
the maximum value of the stochastic task execution time is used. According to
the Result Set 1, DDS MAX gets higher PICs and lower PDVs than DDSRR100.
It means that DDS MAX can decrease makespans further but with higher VM
renting cost. The reason is that the maximum value of the task execution time
over-estimates the actual task execution time which makes the SIR rent more
number of VM intervals or fast VMs. The result is consistent with the conclusion
of Tang et al. [24].

5.5. Comparison with MOHEFT

For each tested workflow instance, MOHEFT obtain a set of schedule which
were tradeoffs between makespan and the resource renting cost. For each work-
flow instance, MOHEFT obtains a set of Pareto schedule τ = {pmok }, k =
1, 2, 3...,K, in which pk = (T mo,sk , Cmo,sk ) is a schedule with execution time
T mo,sk and renting cost Cmo,sk (in this paper, K = 20). A larger value of
the parameter K (size of the remaining solution after cutting each iteration)
for MOHEFT generates better effectiveness and a longer computation time.
When the K of MOHEFT is infinite, MOHEFT leads to an exhaustive search
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which is extremely time consuming. When the URH and MOHEFT is used
in the ElasticSim, the practical resource renting cost and finish time of URH
and MOHEFT are different from those of original static schedule. When a
static schedule pmok of MOHEFT is put into practice with stochastic task ex-

ecution times, the practical performance is labeled by (T mo,dk ,Cmo,dk ). For fair
comparison, the execution time T mo,sk of each MOHEFT solution pk ∈ τ is
adopted as the deadline of URH and DDS algorithms. For each given dead-
line T mo,sk in τ , the URH first got a static schedule purhk with performance

(T mo,sk ,Curh,sk ). When purhk is put into practice, the practical performance is

(T urh,dk ,Curh,dk ). For each given deadline T mo,sk , the DDS gets the practical

performance (T dds,dk ,Cdds,dk ) directly. In total, K schedules are generated by
URH or DDS for each workflow instance. The performance of DDS is com-
pared with the practical performances of MOHEFT and URH. Let PIC and
PDV of URH be PICmok = (Cmo,dk − Curh,sk ) × 100%/Curh,sk and PDV mok =

(T mo,dk −T mo,sk )×100%/T mo,sk . PICddsk = (Cdds,dk −Curh,sk )×100%/Curh,sk and

PDV ddsk = (T dds,dk − T mo,sk ) × 100%/T mo,sk represent PIC and PDV of a DDS
algorithm respectively.

According to experimental results, the computation time of MOHEFT rises
to about 650 seconds for workflows with 1000 tasks as K increased to 20. The
total execution time of DDS algorithms on the instances with 1000 tasks is
only about 2.5 seconds which is the sum of the DDS computation time and
the simulation time. 650s is significantly longer than K times of 2.5s. We aim
to prove that DDS algorithms still generat lower resource renting costs than
MOHEFT for the same deadline.

Figure 10 (Result Set 2) show the means plots for PIC and PDV with 95.0%
Tukey Honest Significant Difference (HSD) confidence intervals of URH, DDS
and MOHEFT with different Deadlinefactors (the horizontal axis represents
5 times of Deadlinefactors). Experimental results show that DDSRR30 gets
lower PICs than MOHEFT for LIGO, Montage and SIPHT workflows. For the
Cybershake and Genomic workflows, on the contrary, DDSRR30 only gets lower
PICs when Deadlinefactors is smaller than 10 and 50 respectively. According
to the density functions shown in Figure 11, most Deadlinefactors generated
from solutions of MOHEFT are smaller than 10 and 50 respectively for the two
types of workflows. In other words, DDSRR30 gets better performance than
MOHEFT for most cases. PICs (and PDVs) of URH and DDSRR30 in Result
Set 2 have the same trend with those of URH and DDSRR30 in Result Set 1. At
the same time, DDSRR30 can guarantee deadlines, while deadlines are violated
by MOHEFT for most cases.

6. Conclusions and future research

In this paper, a dynamic cloud resource provisioning and scheduling schedul-
ing algorithm DDS is proposed to minimize the resource renting cost while meet-
ing workflow deadlines. New VMs are rented by the DDS dynamically according
to the practical execution state and the estimated task execution times to fulfill
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the workflow deadline. The bag-based deadline division and bag-based delay
scheduling strategies consider each BoT as a whole to decrease the total renting
cost. The single-type based VM interval renting strategy aims to minimize the
resource renting cost while improving the algorithm efficiency. Experimental
results show that the DDS can guarantee the workflow deadline for all instances
and obtains lower resource renting costs than URH on most instances. How-
ever, the resource renting cost are not decreased as much compared with the
static algorithm URH. In particularly, DDS gets worse performance than URH
on some types of workflows with extremely tight deadlines. This is because the
expectation-and-variance based task execution time estimation methods overes-
timate the practical task execution times to some degree. Therefore, developing
more appropriate task execution time estimation methods and deadline divi-
sion strategies considering VM setup times for workflows with extremely tight
deadlines is a promising future line of research.
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Figure 5: The means plot for PIC and PDV with 95.0% Tukey Honest Significant Difference
(HSD) confidence intervals of URH and DDS algorithms with different deadline factors
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Figure 6: Schedule results of URH and DDS with tight deadlines

30



-10

-5

0

5

60 900 1500
Length of pricing intervals

In
cr

ea
se

d 
C

os
t (

%
)

300 2100 2700 3300 3600

Cybershake_Guassian

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

-20

-15

-10

-5

0

D
ea

dl
in

e 
V

io
la

ti
on

 (
%

)

60 900 1500
Length of pricing intervals

300 2100 2700 3300 3600

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

Cybershake_Guassian

0

1

2

Genomic_Guassian

In
cr

ea
se

d 
C

os
t (

%
)

60 900 1500
Length of pricing intervals

300 2100 2700 3300 3600

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

-20

-10

0

D
ea

dl
in

e 
V

io
la

ti
on

 (
%

)

Genomic_Guassian

60 900 1500
Length of pricing intervals

300 2100 2700 3300 3600

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

0

25

50

75

100

In
cr

ea
se

d 
C

os
t (

%
)

60 900 1500
Length of pricing intervals

300 2100 2700 3300 3600

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

LIGO_Guassian

-10

0

10

LIGO_Guassian

D
ea

dl
in

e 
V

io
la

ti
on

 (
%

)

60 900 1500
Length of pricing intervals

300 2100 2700 3300 3600

DDSRR100
DDSMAX
DDSRR0

DDSRR30
DDSRR5
URH

Algorithm Names

0

20

40

60

In
cr

ea
se

d 
C

os
t (

%
)

60 900 1500
Length of pricing intervals

300 2100 2700 3300 3600

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

Montage_Guassian

-40

-30

-20

-10

D
ea

dl
in

e 
V

io
la

ti
on

 (
%

)

60 900 1500
Length of pricing intervals

300 2100 2700 3300 3600

DDSRR100
DDSMAX
DDSRR0

DDSRR30
DDSRR5
URH

Algorithm Names

Montage_Guassian

0

5

10

15

60 900 1500
Length of pricing intervals

300 2100 2700 3300 3600

In
cr

ea
se

d 
C

os
t (

%
)

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names
SIPHT_Guassian

-16

-12

-8

-4

D
ea

dl
in

e 
V

io
la

ti
on

 (
%

)

60 900 1500
Length of pricing intervals

300 2100 2700 3300 3600

SIPHT_Guassian

DDSRR100
DDSMAX

DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

Figure 7: The means plot for PIC and PDV with 95.0% Tukey Honest Significant Difference
(HSD) confidence intervals of URH and DDS with different length of pricing intervals

31



-4

0

4

0 20 40 80
Maximum prediction deviation (%)

In
cr

ea
se

d 
C

os
t (

%
)

Cybershake_Guassian

60

DDSRR100
DDSMAX
DDSRR0

DDSRR30
DDSRR5
URH

Algorithm Names

-20

-10

0

D
ea

dl
in

e 
V

io
la

ti
on

 (
%

)

0 20 40 80
Maximum prediction deviation (%)

60

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

Cybershake_Guassian

0

0.5

1

1.5

2.0

2.5

In
cr

ea
se

d 
C

os
t (

%
)

0 20 40 80
Maximum prediction deviation (%)

60

Genomic_Guassian

DDSRR100
DDSMAX
DDSRR0

DDSRR30
DDSRR5
URH

Algorithm Names

-30

-20

-10

0

D
ea

dl
in

e 
V

io
la

ti
on

 (
%

)

0 20 40 80
Maximum prediction deviation (%)

60

Genomic_Guassian

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

0

20

40

60

LIGO_Guassian

In
cr

ea
se

d 
C

os
t (

%
)

0 20 40 80
Maximum prediction deviation (%)

60

DDSRR100
DDSMAX
DDSRR0

DDSRR30
DDSRR5
URH

Algorithm Names

-20

-10

0

10

20

D
ea

dl
in

e 
V

io
la

ti
on

 (
%

)

0 20 40 80
Maximum prediction deviation (%)

60

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

LIGO_Guassian

0

20

40

60

In
cr

ea
se

d 
C

os
t (

%
)

0 20 40 80
Maximum prediction deviation (%)

60

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

Montage_Guassian

-30

-20

-10

D
ea

dl
in

e 
V

io
la

ti
on

 (
%

)

0 20 40 80
Maximum prediction deviation (%)

60

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

Montage_Guassian

0

5

10

15

In
cr

ea
se

d 
C

os
t (

%
)

0 20 40 80
Maximum prediction deviation (%)

60

SIPHT_Guassian

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

-20

-15

-10

-5

D
ea

dl
in

e 
V

io
la

ti
on

 (
%

)

0 20 40 80
Maximum prediction deviation (%)

60

SIPHT_Guassian

DDSRR100
DDSMAX
DDSRR0
DDSRR30
DDSRR5
URH

Algorithm Names

Figure 8: The means plot for PIC and PDV with 95.0% Tukey Honest Significant Difference
(HSD) confidence intervals of URH and DDS with different maximum prediction deviation of
task execution times
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Figure 10: The means plot for PIC and PDV with 95.0% Tukey Honest Significant Difference
(HSD) confidence intervals of URH, DDS and MOHEFT on Cybershke workflows
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Figure 11: Density of Deadlinefactor of MOHEFT results
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