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Abstract

Internet of Things (IoT), a ubiquitous network of interconnected objects, har-

vests information from the environments, interacts with the physical world,

and uses the existing Internet infrastructure to provide services for informa-

tion transfer and emerging applications. However, the scalability and Internet

access fundamentally challenge the realization of a wide range of IoT applica-

tions. Based on recent developments of 5G system architecture, namely Sof-

tAir, this paper introduces a new software-defined platform that enables dy-

namic and flexible infrastructure for 5G IoT communication. A corresponding

sum-rate analysis is also carried out via an optimization approach for efficient

data transmissions. First, the SoftAir decouples control plane and data plane

for a software-defined wireless architecture and enables effective coordination

among remote radio heads (RRHs), equipped with millimeter-wave (mmWave)

frontend, for IoT access. Next, by introducing an innovative design of software-

defined gateways (SD-GWs) as local IoT controllers in SoftAir, the wide diver-

sity of IoT applications and the heterogeneity of IoT devices are easily accommo-

dated. These SD-GWs aggregate the traffic from heterogeneous IoT devices and
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perform protocol conversions between IoT networks and radio access networks.

Moreover, a cross-domain optimization framework is proposed in this extended

SoftAir architecture concerning both upstream and downstream communication,

where the respective sum-rates are maximized and system-level constraints are

guaranteed, including (i) quality-of-service requirements of IoT transmissions,

(ii) total power limit of mmWave RRHs, and (iii) fronthaul network capacities.

Simulation results validate the efficacy of our solutions, where the extended Sof-

tAir solution surpasses existing IoT schemes in spectral efficiency and achieves

optimal data rates for next-generation IoT communication.

Keywords: Internet of things (IoT), software-defined networking (SDN), 5G

cellular systems, software-defined gateway, millimeter-wave transmissions,

cross-domain optimization.

1. Introduction

Internet of Things (IoT) is one of the most transformative and disruptive

technologies for the fifth-generation (5G) wireless systems. It has the poten-

tial to change the world radically due to its capacity to provide connectivity

to anyone/anything at any time and any location. It is anticipated that there5

will be 20 billion IoT connected devices by 2023 and the global monthly mobile

data traffic will achieve 110 exabytes (1018 bytes) [1]. However, facing this vast

number of IoT devices is a challenging task, in particular, the ubiquitous infor-

mation transmissions through the backbone networks, such as cellular systems.

Moreover, the heterogeneity of IoT devices and the hardware-based, inflexible10

cellular infrastructure impose even more significant challenges to enable efficient

IoT communication.

Current IoT solutions rely on low-power wide area (LPWA) networks, which

complement traditional cellular and short-range wireless technologies in address-

ing IoT applications. Several technologies, such as LoRa, NB-IoT, SIGFOX,15

have been developed and designed solely for applications with very limited de-

mands on throughput, reliability, or quality-of-service (QoS) [2]. However, with-

2



out a central regulation among these LPWA technologies, existing IoT solutions

cannot support highly diverse QoS requirements from an increasing number of

IoT applications. Furthermore, due to currently fixed and hardware-based in-20

frastructure, no existing work has considered the joint architectural design of

IoT networks and radio access networks (RANs), and the provision of reliable

and efficient upstream/downstream IoT transmissions.

To adequately address the above challenges in 5G IoT, we introduce a new

architecture based on the so-called SoftAir [3] to support flexible IoT infras-25

tructure. Also, we propose a sum-rate optimization framework upon SoftAir

to yield optimal spectral efficiency in IoT communication. Specifically, inspired

by wireless software-defined networking [4, 5], we first propose the SoftAir-

based architecture, which decouples control and data planes for an open, pro-

grammable, and virtualizable wireless forwarding infrastructure. It allows real30

time network information accessibility and global optimized control. The data

plane consists of software-defined RANs (SD-RANs) and software-defined core

networks; the control plane has network management tools and user applica-

tions. In SD-RANs, SoftAir centralizes the communication functionality in the

baseband server (BBS) pool and enables efficient coordination among hardware-35

based remote radio heads (RRHs), equipped with millimeter-wave (mmWave)

frontend and multiple antennas. Moreover, the cooperativeness of SoftAir fa-

cilitates the implementation and aggregation of virtual base stations (VBSs)

at the BBS pool to enhance the performance of the system by joint orchestra-

tion/optimization [6].40

In addition, we propose software-defined gateways (SD-GWs) as local IoT

controllers in SoftAir. They can be deployed for satisfying the massive con-

nectivity and diverse traffic generated by a vast number of IoT devices. SD-

GWs, serving as the bridge between IoT networks and SD-RANs, provide inten-

sive data aggregation from heterogeneous IoT devices, manage and orchestrate45

IoT communication, and perform protocol conversions between IoT networks

and SD-RANs. This innovative design of SD-GWs enables smooth and ubiq-

uitous information transmissions, traversing between IoT and backbone net-
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works. Moreover, upon the SoftAir architecture, we propose a sum-rate op-

timization framework that maximizes upstream/downstream data rates of IoT50

communication thus offering low latency and efficient spectrum usage. Based on

the physical-layer modeling of mmWave multi-input and multi-output (MIMO)

transmissions, the objective is to maximize total data rates from/to SD-GWs

through optimal associations of SD-GWs and mmWave RRHs and the respec-

tive pre-coding schemes, while guaranteeing (i) QoS requirements from diverse55

IoT applications, (ii) total power limit of mmWave RRHs, and (iii) fronthaul

capacity constraints between the BBS pool and mmWave RRHs.

Our main contributions are summarized as follows:

• A 5G SoftAir-based architecture is introduced to provide efficient, ubiqui-

tous IoT transmissions by supporting a unified software-defined platform60

for both IoT networks and cellular systems.

• An innovative design of SD-GWs as local IoT controllers is proposed to

orchestrate IoT devices and perform protocol conversions between IoT

networks and SD-RANs.

• Upon the SoftAir architecture, a sum-rate optimization framework is pro-65

posed that achieves efficient spectrum usage and optimal data rates for

both upstream and downstream IoT communication.

Simulation results show that our solutions outperform existing IoT infras-

tructure (with hardware-based architectures and fixed IoT-RAN associations),

and achieves optimal rates of 100 Mb/s and 430 Mb/s for upstream and down-70

stream transmissions, respectively. Regarding densely-deployed IoT, we also

examine both the impact of increasing the number of mmWave RRHs with a

fixed number of antennas and the impact of increasing the number of antennas

with a fixed number of mmWave RRHs on the achievable sum-rates. The rest of

the paper is organized as follows. Section 2 presents the related work. Section 375

introduces the unified software-defined platform for 5G IoT communication and

the system model used in this study. Section 4 proposes the sum-rate analysis
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for 5G IoT transmissions via an optimization approach. Section 5 gives the

numerical results, and Section 6 concludes the paper.

2. Related Work80

While individually, significant research has been carried out in the domains

of SDN [7, 8, 9] and IoT [10, 11], a combination of the two remains an open

research area and attracts great community attention over the past few years.

In [12], SDN is used to enable IoT networks where a central controller translates

specific service requirements into network requirements. Both network calculus85

and a genetic algorithm are respectively adopted to model the multi-network

environment and to schedule/route flows, optimizing the end-to-end flow per-

formance. However, the work lacks detailed consideration of network resource

sharing in regard to massive IoT devices. In [13], the authors highlight the

need to address the heterogeneity of the different IoT devices and applications.90

They conclude that, although with the introduction of IPv6 the vast increase

in the number of connected devices is adequately addressed in part, the het-

erogeneity among their different requirements and capabilities remains an open

research question. To overcome this, a rather high-level architecture of an IoT

controller is proposed; at the generic level, it seems an adequate framework to95

handle heterogeneous IoT flows. However, the work lacks a specific design of

the inner workings of the controller and evaluation of the proposed high-level

architecture.

Notations: Throughout this paper, boldface lower and upper case symbols represent

vectors and matrices, respectively; Ix denotes the x × x identity matrix; Cx,y denotes the

set of x × y complex matrices. The trace, transpose, and Hermitian transpose operators

are denoted by tr(·), (·)T, and (·)H, respectively. We use CN (X,Y) to denote the circular

symmetric complex Gaussian distribution with mean matrix X and covariance matrix Y;

the distribution function of a uniform random variable is denoted by U(·), the distribution

function of a normal random variable with mean x and variance σ2 is denoted by N (x, σ),

and ∼ stands for ”distributed as”. ‖x‖ denotes the Euclidean norm of a complex vector x; |z|

denotes the magnitude of a complex number z.
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In [14], the authors propose a novel SDN-orchestrated network virtualization.

There, network slicing is suggested for home network management. Multiple ser-100

vice providers can operate over the same physical infrastructure, each getting an

isolated slice of the network, directed by its software controller. What remains

somewhat unclear is which algorithms/policies the controller should use, so that

the resources are shared amongst the various use-cases. The authors propose

the use of a slicing layer that lies between the resource request from the different105

applications and the network infrastructure substrate. Rather than providing

an exact implementation for this layer, the authors only outlined the slicing

mechanism. Moving towards the same direction, the authors in [15] argue that

the bottleneck in developing vertical, dedicated, application-specific IoT plat-

forms, is the lack of re-usability and interoperability. Instead of each application110

coming along with its set of sensing hardware, gateways, and cloud computing

platform, they propose a horizontal SDN-based IoT platform. The architecture

is divided into four layers: a device layer (sensing devices and the actuators); a

communication layer (SDN-enabled switches and gateways); a computing layer

(SDN controller(s) and the accounting/billing functions), and a service layer115

(used by the IoT application developers to give high-level instructions to the

controller, which in turn will translate them to specific network commands).

However, [15] does not provide for integration of the sensing devices with the

proposed platform (i.e., the SDN controller does not interact with the sensing

domain), so their behavior is not defined by the SDN controller.120

Having IoT applications in mind, in [16] a general SDN-IoT framework based

on the classic SDN architecture is defined. It consists of a service layer, a network

layer, and a sensing layer, composed of IoT end-devices. In the upper layer,

servers provide the developers with the necessary APIs for IoT applications; in

the middle layer, the distributed network operative system (OS) is contained,125

commanding several physically distributed SDN controllers; and in the lower

layer, the SDN-enabled network switches with an IoT gateway (to connect them

to the middle layer) are contained. Virtualization techniques are used to design

the network OS with the aim of achieving an IoT-optimized network. This
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Figure 1: Unified software-defined platform for 5G IoT communication.

network OS must be used in such a way that the diversity of use-cases and IoT130

devices is acknowledged. However, integration of the proposed SDN and NFV

for an IoT-optimized network has not been implemented, and specific details

about how virtualization is going to be used in the middle layer are missing.

3. Uniform software-defined platform for 5G IoT communication

Extended from our preliminary study in [3], Fig. 1 shows the proposed 5G135

SoftAir architecture that supports a flexible IoT infrastructure and seamless

device connectivity. Specifically, it consists of three domains: sensing, network,

and application. Besides, a security and privacy sublayer is considered that is

transversal to all the domains and protects the availability, integrity, and privacy

for all connected resources and information when things will be deployed on the140

large scale.

The sensing domain enables IoT devices to interact and communicate with

each other, through the data collection technologies such as wireless sensor net-

works, RFID, ZigBee or near-field communication. The network domain builds
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Figure 2: A SoftAir architecture for IoT communication within 5G systems.

on SoftAir; it consists of three parts as depicted in Fig. 2: (i) the central-145

ized BBS pool, which connects to the core network via backhaul links; it has

software-defined BSs (SD-BSs) from real-time virtualization technology that al-

low for software-implemented baseband units (e.g., digital processing tasks), (ii)

mmWave RRHs plus antennas, which are remotely controlled by SD-BSs and

serve SD-GWs’ transmissions, and (iii) low-latency high-bandwidth fronthaul150

links (fiber or microwave) using the common public radio interface (CPRI) for

an accurate, high-resolution synchronization among mmWave RRHs. The ob-

jective of this network domain is to transfer the data collected from the sensing

domain to the remote destination. Finally, the application domain is responsi-

ble for data processing and the provision of a wide variety of applications and155

services.

Regarding the security and privacy sublayer, transversal to all the domains,

it is set to protect the communications throughout the entire system and to

ensure all trusted devices/data will be operated/processed. Concretely, an

identity-based networking service is proposed that use flow rules to control160
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the traffic arrivals through security devices. The IEEE 802.1X protocol can

be implemented for switch-port based network access control, jointly with the

lightweight directory access protocol (LDAP) for authentication along with an

access control server that implements radius, AAA authentication, and network

access control lists (flow rules to control traffic in and out). Furthermore, this165

sublayer also implements secure shell (SSH), HTTPS, and IPSEC tunneling for

remote access and monitoring.

Additionally, the controller architecture deploys several virtualized compo-

nents such as task-resource matching, service specification, and flow scheduling

to address the heterogeneous and dynamic needs of IoT applications and ser-170

vices. The task-resource matching component maps the task request of IoT ap-

plications or services onto the existing resources in IoT heterogeneous networks.

The service solution specification component maps the features of devices and

services involved in the communication to precise requirements for devices, net-

works, and application constraints. The flow scheduling component schedules175

the flows that satisfy the specified requirements. Note that the heterogeneity

of the networks and various QoS requirements of flows becomes the scheduling

and coordination of the resources in IoT networks complex. Preprocessing and

analysis will be performed at the edge of the networks if necessary through fog

computing. Finally, we use a logically centralized management and coordination180

component for addressing the synchronization and inter-controller communica-

tions. By doing so, our proposed architecture will orchestrate the end-to-end

communication and the necessary resources for satisfying the IoT connectivity

with strict QoS requirements and energy constraints.

It is worth noting that an essential architectural component is the SD-GW,185

that lies between the sensing and network domain. Besides alleviating high traf-

fic loads from tremendously heterogeneous IoT devices, these SD-GWs aggre-

gate the data from randomly deployed IoT devices and provide Internet access

to IoT networks through SD-RANs. SD-GWs also manage IoT connectivity and

orchestrate IoT devices by regulating parameters in network protocols. There-190

fore, they can receive IoT data traffic from the IoT sensing devices and forward
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the traffic to the SoftAir SD-RAN. Depending on the communication direc-

tion, each SD-GW will either perform protocol conversions in such a way it

can forward the data to the SoftAir system with the maximum achievable rate

or forward the data to the IoT devices meeting the application QoS require-195

ments. In [17], we considered the joint architectural design of IoT networks and

software-defined radio access networks (SD-RANs) to the provision of reliable

and efficient upstream/downstream IoT transmissions.

3.1. System Model

The system model of SoftAir consists of a set I = {1, . . . , I} of SD-GWs200

that are served by a set J = {1, . . . , J} of associated RRHs. All RRHs are

connected to the BBS pool B via fronthaul links, where the jth fronthaul link

between the j ∈ J RRH and the B BBS pool has a predetermined capacity

C
(fh)
j . The BBS pool performs most baseband processing tasks while transmis-

sion functions are realized by the RRHs using the processed baseband signals205

received from the BBS through the fronthaul transport network. The associa-

tions between the SD-GWs and RRHs can be determined based on the distance

or channel gain from each RRH to each SD-GW. These RRHs are equipped

with an array of M antennas and communicate with the single-antenna SD-

GWs through mmWave links. Note that by using low-latency high-bandwidth210

fronthaul links, the software-defined architecture implements an accurate, high-

resolution synchronization and enables flexible coordination among RRHs. One

RRH can serve a group of SD-GWs: when the jth RRH is assigned to serve the

ith SD-GW, this RRH receives the SD-GW’s processed baseband signal from

the BBS pool and then modifies the pre-coding vectors accordingly.215

4. Sum-Rate Analysis for 5G IoT Communication via an Optimiza-

tion Approach

In the following, we first model the peculiarities of mmWave transmissions

in the SoftAir architecture; then, we propose a protocol for mmWave RRH
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discovery and association; finally, we develop a sum-rate optimization framework220

that jointly optimizes RRHs’ beamforming weights and associations between

RRHs and SD-GWs for maximum upstream/downstream spectral efficiency,

while guaranteeing QoS and system-level constraints.

4.1. Millimeter-Wave Communication

We introduce the link budget for the ith mmWave communication link be-225

tween the ith SD-GW and jth RRH. Particularly, we detail the path-loss li,

channel vector hi, and beamforming gain G
(BF)
i to derive the achievable up-

stream rate R
(ul)
i and downstream rate R

(dl)
i , respectively.

4.1.1. Path-Loss

Considering the special characteristics of mmWave propagation (such as

short-range communication, inevitable blockage effects, and sparse-scattering

radio patterns), the path-loss for a mmWave communication link li can be mod-

eled with three link-states: outage (liO), LoS (liL) or NLoS (liN ) [18]. These

three states are formulated as follows

liO = 0; liL = (αLdi)
−βL ; liN = (αNdi)

−βN , (1)

where αL (αN ) can be interpreted as the path-loss of the LoS (NLoS) link at

1 [m] distance, and βL (βN ) denotes the path-loss exponent of the LoS (NLoS)

link; from experimental results [18], βN value (can be up to 4) is normally higher

than βL value (i.e., 2). Then, each link-state is formulated by the probabilities

PO, PL, and PN , respectively, as

PO = max(0, 1− γOe−δOdi);

PL = (1− PO)γLe
−δLdi ;

PN = (1− PO)(1− γLe−δLdi),

(2)

where di denotes the transmitter-receiver distance; the parameters γL (γO) and230

δL (δO) depend on both the propagation scenario and the considered carrier

frequency [19].
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Table 1: Three-state Link Path Loss Model Computation Parameters and the Occurrence

Probabilities of LOS, NLOS, and Outage States at 73 [GHz] from Experimental Data in [18, 19]

Path loss model (three-state link)

Eqs. (1)-(3)

αL = 10
69.8
20 , βL = 2

αN = 10
82.7
26.9 , βN = 2.69

Path loss model (three-state link) and

log-normal shadowing Eqs. (1)-(3)

αL = 10
69.8+ζL

20 , βL = 2

ζL [dB] ∼ N (0, 5.82)

αN = 10
82.7+ζN

26.9 , βN = 2.69

ζN [dB] ∼ N (0, 7.72)

LOS-NLOS-outage probability

parameters Eq. (2)

γL = 1, δL = 1/67.1

γO = exp(5.2), δO = 1/30

Thus, the corresponding path-loss component of the channel is modeled as

li =I[U < PL(di)]liL+

I[PL(di) ≤ U < (PL(di) + PN (di))]liN+

I[(PL(di) + PN (di)) ≤ U ≤ 1]liO,

(3)

where I[x] is the indicator function, it returns 1 when x is true, and 0 otherwise;

U ∼ U [0, 1] is a uniform random variable. For computing the path-loss model,

we use the parameter values at 73 GHz as shown in Table 1.235

4.1.2. Channel Vector

Besides the peculiarities of mmWave transmissions [18, 20], the blockage in-

formation is not entirely feasible; therefore, we exploit the stochastic geometry

analysis for modeling the mmWave channel vector [20]. Specifically, we model

the channel vector as hi =
√
liβi ξi ∈ CM,1, where li is the large-scale path-240

loss in power of the mmWave communication link i (which might also include

log-normal shadowing), βi ∈ CM,M is the co-variance matrix for antenna cor-

relations in small-scale fading, and ξi ∈ CM,1 is a Gaussian vector with the

zero-mean circularly symmetric Gaussian noise distribution CN (0, IM ) for the

fast-fading.245
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4.1.3. Beamforming

To ensure an acceptable range of the communication in the multi-antenna

mmWave transmissions, we introduce the precode vectors, i.e., beamforming

weights at the RRHs, where the weight vector wi ∈ CM,1 is the linear downlink

beamforming vector at the jth RRH corresponding to the ith SD-GW. The250

beamforming gain is given as G
(BF)
i = wH

i βiwi, with βi being the covariance

matrix of the channel response vector hi. In the case where the fading is fully

correlated between the antennas, the matched filtering pre-coding method is

exploited as βi = hH
i hi and wi = hi/‖hi‖; therefore, G

(BF)
i = ‖hi‖2.

4.2. Protocol for MmWave RRH Discovery255

We consider a time-division duplex (TDD) mode to exploit channel reci-

procity in uplink and downlink transmissions; it offers availability of timely and

accurate feedback of channel state information (CSI). Also, in SoftAir the VBSs

in the central BBU pool can easily share CSI associated with different users in

the system.260

Specifically, the time-frequency wireless resources are divided into frames,

where a frame consists of Tf seconds and W Hz and leaves room of S = Tf W

transmission symbols, as shown in Fig. 3. In each frame, D ≥ 1 out of the

S symbols are dedicated for allocating the RRH’s reference signal (RS); the

remaining S −D symbols are used for payload data where 1− κ and κ denote265

the fixed fractions for uplink and downlink transmissions, respectively.

Each RRH broadcasts its RS at the beginning of every frame. The RS is

of duration Trs � Tf . In each frame i, a mmWave RRH transmits the RS

using beamformer wi. Each RRH needs I consecutive frames to complete one

cycle of spatial scanning using I beamformers [21]. At the receiving end, each270

SD-GW collect signal from z frames and performs non-coherent detection to

detect the presence of RSs and their timings. The parameter z can be set to

z = K I, where K ≥ 1 is an integer. By doing so, we ensure that, in presence

of spatial scanning, each SD-GW has been covered by at least one beam and

can accumulate sufficient energy for detection purposes.275
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Figure 3: Frame structure with beamforming transmission of RS in TDD mode.

4.2.1. Association Scheme

Let J = {1, . . . , J} and I = {1, . . . , I} denote the set of RRHs and SD-

GWs in the SoftAir system, respectively. Suppose that each SD-GW is served

by a specific group (cluster) of associated RRHs, and a RRH can serve multiple

SD-GWs at the same time. To express the association status between RRHs280

and SD-GWs, we introduce the following binary variables as the indicators.

Concretely, RRHs can be active to serve SD-GWs or shutdown to save the

energy consumption, let {qj , j ∈ J } denotes the activity of RRHs as

qj =

 1, the jth RRH is in active mode;

0, otherwise;
(4)

let {gij , i ∈ I, j ∈ J } denotes the association between RRHs and SD-GW

as285

gij =

 1, the ith SD-GW is served by the jth RRH;

0, otherwise;
(5)

furthermore, to characterize the group (cluster) of serving RRHs, let {Nij , i ∈

I, j ∈ J } be the clustering indicator as

Nij = I[j ∈ Ni], (6)

14



where Ni denotes the set of near RRHs for the ith SD-GW which can be deter-

mined based on the distance or channel gain from RRHs to each SD-GW.

4.3. Achievable Sum-Rate Analysis290

In the following, we first investigate channel estimation; then, we study the

ergodic achievable spectral efficiency and capacity in both, the upstream and

downstream IoT communication.

4.3.1. Minimum mean-square error (MMSE) Channel Estimation

During a training phase in TDD networks, the SD-GWs served by a cluster

Ni of RRHs transmit mutually orthogonal pilot sequences which allow the BBS

pool to compute the estimate Ĥi of the local channel Hi. While the same set of

orthogonal pilot sequences might be reused among RRH clusters, the channel

estimate is corrupted by pilot contamination from adjacent clusters [22]. After

correlating the received training signals Y̆i with the pilot sequences wi, the

BBS pool acquires the noisy observation as

Y̆∗i = Y̆iw
H
i , [y̆∗1 · · · y̆∗I ] ∈ CM |Ni|,I , (7)

and accordingly estimates the channel vector hi. Specifically, we adopt the

MMSE estimator [23] which gives the estimate ĥi of hi as

ĥi = AiQiy̆
∗
i

= AiQi

(
hi +

∑
k∈N

hk +
1
√
ρtr

n̆i

)
∼ CN (0,Φi) ,

(8)

where295

Ai , E[hi h
H
i ] ∈ CM |Ni|,M |Ni|;

Qi =
(

1
ρtr

IM |Ni| +
∑
k∈J Ak

)−1
;

√
ρtr denotes the effective training signal-to-noise (SNR) ratio, ρtr > 0;

n̆i ∼ CN
(
0, IM |Ni|

)
;

N denotes the set of other clusters that use the same pilot as the one

adopted in cluster Ni for the SD-GW i;

Φi = AiQiAk, k ∈ J .
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Applying the orthogonality of the MMSE estimate, the channel vector can

be further decomposed as hi = ĥi + h̃i, where h̃i ∼ CN (0,Ai −Φi) is the

uncorrelated (and also statistically independent) estimation error [24, 22].

4.3.2. Upstream Transmissions (IoT Networks to SD-RANs)300

Following the above multi-antenna mmWave transmission characterization

over a link i, the received base-band signal vector y ∈ CM,1 at the BBS at

a given instant reads y(ul) =
√
P (ul)Hx(ul) + η(ul), where each element of the

received signal vector corresponds to a BBS antenna, H = [h1 · · ·hI ] ∈ CM,I ,

hi ∈ CM,1 denotes the mmWave channel corresponding to the ith SD-GW,305

x(ul) = [x1 · · ·xI ]T denotes the I×1 vector containing the transmitted signals

from all the SD-GWs, P (ul) is the average transmit power of each SD-GW, and

η(ul) ∼ CN (0, σ) is the zero-mean circularly symmetric Gaussian noise with

noise power σ2.

The BBS processes the received signal vector and obtains the estimated

channel matrix by multiplying the Hermitian-transpose of the MMSE detection

matrix with the signal at the receiver as ỹ(ul) = Ĥ
H
y(ul) = Ĥ

H
Hx(ul) +Ĥ

H
η(ul).

The ith element of ỹ(ul) can be written as ỹ
(ul)
i =

√
P

(ul)
i ĥ

H

i Hx(ul) + ĥ
H

i η
(ul),

where hi is the ith column of H. By the elements multiplication, we further get

ỹ
(ul)
j =

√
P

(ul)
i ĥ

H

i hixi +
∑I
k=1,k 6=i

√
P

(ul)
k ĥ

H

i hixk + ĥ
H

i η
(ul), where xi denotes the

ith element of x(ul). Then, the signal-to-interference-plus-noise ratio (SINR)

achieved by the ith SD-GW, γ
(ul)
i , is

γ
(ul)
i = P

(ul)
i |ĥ

H

i hi|2/(
∑I
k=1,k 6=i P

(ul)
k |ĥ

H

i hk|2 + ‖ĥi‖2σ2). (9)

Assuming an ergodic channel [25], the achievable uplink rate of the ith SD-

GW is given by

R
(ul)
i = B log2(1 + γ

(ul)
i ), (10)

where B denotes the wireless transmission bandwidth. We define the uplink

sum rate [bits/s/Hz] per cell considering the associations between RRHs and

SD-GWs as follows

C(ul) =
∑
j∈J

∑
i∈I

gijNijR
(ul)
i . (11)
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4.3.3. Downstream Transmissions (SD-RANs to IoT Networks)310

The received base band signal y(dl) ∈ C at the ith SD-GW is given as

y(dl) =
√
P

(dl)
j hH

i s + η(dl), where s ∈ CM,1 is the signal vector intended for

the ith SD-GW with P
(dl)
j average power; η(dl) ∼ CN (0, σ2) is the receiver

noise. We assume channel reciprocity, i.e., the downlink channel hH
i is the

Hermitian transpose of the uplink channel hi. The transmit vector s is given315

as s =
√
υ
∑I
i=1 wixi =

√
υW x(dl), where W = [w1 · · ·wI ] ∈ CM,I is a pre-

coding matrix (i.e. the network beamforming design) and x(dl) = [x1 · · ·xI ]T ∈

CI,1 contains the data symbols for the ith SD-GW. The parameter υ normal-

izes the average transmit power per RRH to E[
P

(dl)
j

I sH s] = P
(dl)
j , i.e., υ =(

E
[
1
I tr(W WH)

])−1
. We consider a linear precoder of practical interest, namely320

eigenbeamforming, which can be defined as wi = ĥi for i ∈ I.

The associated SINR achieved by the ith SD-GW, γ
(dl)
i , is

γ
(dl)
i = υ

∣∣∣E [hH
i ĥi

]∣∣∣2 /(∑I
k=1,k 6=i υ E

[
|hH
i ĥk|2

]
+ σ2

)
. (12)

Since the SD-GWs do not have any channel estimate, we provide an ergodic

achievable rate based on the techniques developed in [25, Theorem 1]. Hence,

by assuming that the average effective channels
√
υ
∣∣∣E [hH

i ĥi

]∣∣∣2 can be perfectly

learned by the SD-GW, the ergodic achievable spectral efficiency at SD-GW i

of RRH cluster Ni is given as

R
(dl)
i = Bi(1− κ) log2(1 + γ

(dl)
i ), (13)

where Bi is the bandwidth allocated to the ith SD-GW, κ accounts for the

spectral efficiency loss due to signaling at RRH.

The downlink sum rate [bits/s/Hz] per cell considering the associations be-

tween RRHs and SD-GWs is

C(dl) =
∑
j∈J

∑
i∈I

gijNijR
(dl)
i . (14)

4.4. SD-GWs’ QoS Requirements and Optimization Framework

Besides supporting almost pervasive device connectivity, IoT applications325

demand services with different rate requirements; therefore, we formulate those
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requirements in terms of SINR coverage and achieved sum-rate per cell at the

SD-RAN. We optimize associations between RRHs and SD-GWs so that the

SD-GW sum-rate is maximized, and the QoS requirements of SD-GWs and

system-level constraints are satisfied simultaneously.330

Given ϑ as the minimum tolerable SINR over a link i, the SINR constraints

of SD-GWs can be formulated as

γi ≥ ϑ,∀i ∈ I, (15)

where γi is computed by either (9) or (12) in case of uplink or downlink trans-

mission, respectively. From the association scheme, we can obtain the equality

qj = 1 −
∏I
i=1 (1− gijNij),∀j ∈ J and the following sets of association con-

straints between RRHs and SD-GW:

qj ≥ gijNij ,∀i ∈ I, j ∈ J ; (16)∑J
j=1 gijNij ≥ 1,∀i ∈ I, (17)

where (16) implies that a RRH is in active mode if it is associated with at least

one SD-GW whereas (17) ensures that each SD-GW is served by at least one

RRH. On the other hand, given the pre-coding vector at the jth RRH for the

ith SD-GW, the transmitter power used by this RRH to serve the ith SD-GW

is wH
i wi [26]. Let P

(r-max)
j denote the maximum power of the jth RRH, we

impose the constraints on RRHs’ downlink beamforming weights as follows∑I
i=1 wH

i wi ≤ qjP (r-max)
j ,∀j ∈ J ; (18)

wH
i wi ≤ gijNijP (r-max)

j ,∀i ∈ I, j ∈ J , (19)

where (18) limits the total transmit power of each RRH and (19) ensures that

the transmit power from the jth RRH to the ith SD-GW is set to zero if there

is no association between them. Furthermore, by only allowing the links in Ni
(see Section 4.2.1) we set the beamforming weights of mmWave communication

links as

wH
i wi = 0 if Nij = 0,∀i ∈ I, j ∈ J , (20)
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so that we reduce all possible links between the J RRHs and the I SD-GWs

to |Ni| links (typically |Ni| � JI), which in turns dramatically shrinks the

size of the possible solution sets of precoding vectors for lower computation

complexity[27, 26]. Additionally, the per-fronthaul capacity constraints (ne-

glecting the fronthaul capacity consumption for transferring compressed beam-

forming vector) are formulated as follows

C ≤ C(fh), (21)

where C is computed by (11) in uplink transmission or by (14) in downlink335

transmission. This indicates that the total data rate transmitted at the each

RRH should be less or equal to the rate forwarded by the fronthaul link.

We aim at maximizing the total achievable uplink/downlink data rates at

SD-GWs; the overall optimization framework for the SD-RAN becomes

Find qj ∈ {0, 1}, gij ∈ {0, 1}, P (ul)
i , P

(dl)
j ,wi,

∀i ∈ I, j ∈ J

maximize C =
∑I
i=1Ri,

subject to (15), (16), (17), (18), (19), (20), (21),

(22)

whereRi is calculated based on the communication direction: upstream [see (10)],

downstream [see (13)]. The decision variables take values from a discrete set that

leads the optimization framework to an integer programming problem. The size340

of this problem allows the controller to yield a solution in few seconds through

exhaustive searching methods. The acquired solutions are then processed by

both the BBS pool and the SD-GW for optimal upstream/downstream trans-

missions.

5. Numerical Results345

In this section, we present the simulation results of our proposed designs

in Section 4.4. In all experiments, each evaluation point represents the av-

erage value of 104 samples considering the dynamic update of associations in
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Figure 4: Example of the network topology and association establishment: 12 RRHs that

serve 30 SD-GWs deployed in such an area.

the deployed infrastructure. We examine both the spectral efficiency and the

achievable rate per SD-GW in SoftAir. Towards this, we have a set J of J = 12350

RRHs, each one equipped with M = 4 antennas; the coverage area of every

RRH has a radius of 200 [m]. They serve several SD-GW densities ranging from

30 to 100 SD-GWs randomly distributed in the coverage area of RRHs. Fig. 4

illustrates an example of the network topology and the associations established

between RRHs and SD-GWs based on the protocol proposed in Section 4.2.355

The wireless bandwidth is set as B = 500 [MHz], and the carrier frequency

is set as 73 [GHz]. The channel vectors are generated according to the mmWave

communication modeling in Section 4.1, where the three-state path-loss model

with log-normal shadowing is considered. The transmit power constraint for

each RRH is P
(r-max)
j = 45 [dBm]. The maximum transmission power of each360

SD-GW is set as 23 [dBm] and the thermal noise power is assumed to be

−101 [dBm/Hz]. Moreover, we assume that all RRHs possess the same fronthaul

capacity, i.e., C
(fh)
j = 6 [bits/s/Hz], ∀j ∈ J . As 64 QAM is set as the highest
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constellation supported in the system, the maximum spectrum efficiency per

data stream is 6 [bits/s/Hz].365

We first analyze the spectral efficiency and compare the performance of

our proposed designs with that of the following benchmark associations [19] for

existing IoT communication: (i) highest received power association, (ii) smallest

path-loss association. In the former, each SD-GW will be served by the RRH

providing the highest received power to it based on uplink or downlink RSs which370

undergo both path-loss and shadowing. In the latter, an SD-GW will be served

by the RRH with the smallest path-loss to it. This association comes to the

fact that user equipments might be unable to consider random fluctuations by

shadowing because the pronounced blockage impact on received signals produces

less slowly-varying shadowing in mmWave transmissions.375

Fig. 5 shows that the spectral efficiency of our SoftAir design is on aver-

age 24% higher in uplink transmission as depicted in Fig. 5a and 11% higher in

downlink transmission where it peaks at 12.6 b/s/Hz with 40 SD-GWs deployed,

then slightly declines as the number of SD-GWs increases as depicted in Fig. 5b.

Regarding achievable sum-rate per SD-GW, Fig. 6 depicts the uplink and down-380

link rate as a function of the deployed SD-GWs. The data rate achieved by our

solution is up to 50% higher than that of conventional solutions. Note that as

the number of served SD-GWs increases, both uplink and downlink rate per

SD-GW decrease due to more significant interference.

We further consider densely deployed IoT scenarios and explore the impact of385

increasing either the number of RRHs or the number of antennas at each RRH on

the achievable sum-rates. On the one hand, Fig. 7 illustrates that increasing the

number of RRHs significantly improves the achievable uplink rate at SD-GWs

whereas the achievable downlink rate experiences small changes. On the other

hand, Fig. 8 indicates the increasing number of antennas at RRHs dramatically390

improves the achievable downlink rate at SD-GWs whereas the achievable uplink

rate remained almost steady. In particular, the network hereby has 12 associated

RRHs with 4 antennas; each RRH serves 80 randomly deployed SD-GWs in the

coverage area of the RRHs. These results show that there is a trade-off between
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(a)

(b)

Figure 5: Spectral Efficiency [b/s/Hz]; 12 RRHs deployed to serve different densities of SD-

GWs; carrier frequency: 73 GHz. (a) Upstream IoT transmissions. (b) Downstream IoT

transmissions.

increasing the number of RRHs and increasing the number of antennas at RRHs395

that affects the achievable rate depending on the direction of the transmission.

To sum up, our SoftAir solution provides ultrahigh data rates (i.e., 430 Mb/s

rate in downlink and 100 Mb/s rate in uplink through mmWave transmissions)

for each SD-GW in densely deployed scenarios, and a decision for increasing the

number of RRHs or the number of antennas at RRHs can be made according400

to the IoT applications.
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(a)

(b)

Figure 6: Achievable rate for the SoftAir design and two existing IoT solutions with conven-

tional mmWave schemes. (a) Upstream IoT transmissions. (b) Downstream IoT transmis-

sions.

6. Conclusion

In this paper, we introduced a 5G SoftAir architecture and provided opti-

mal sum-rates for both upstream and downstream IoT communication. First, by

jointly exploiting mmWave frontend, MIMO, and virtualization, the SoftAir sys-405

tem is adopted which gives software-defined infrastructure and enables effective

coordination among mmWave RRHs. Then, SD-GWs are designed in SoftAir

as local controllers that manage and orchestrate IoT transmissions between IoT
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Figure 7: Impact of increasing the number of RRHs on the achievable uplink/downlink rates;

the SD-GWs randomly deployed ranges from 10 to 100, and the number of RRHs ranges from

10 to 50.

Figure 8: Impact of increasing the number of RRHs or/and antennas at RRHs on the achiev-

able uplink/downlink rates; 80 SD-GWs randomly deployed that are served by a set of RRHs.

networks and SD-RANs. Moreover, a sum-rate optimization framework is pro-

posed in the extended SoftAir, where total data rates of upstream/downstream410

IoT communication is maximized through optimal associations between mmWave

RRHs and SD-GWs. Simulation results validate the superiority of our solutions

than conventional IoT schemes, where the extended SoftAir solution achieves

optimal spectral efficiency for 5G IoT communication.
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