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Abstract We explore three different alternatives for

obtaining intrinsic and extrinsic parameters in conventional

diagnostic X-ray frameworks: the direct linear transform

(DLT), the Zhang method, and the Tsai approach. We

analyze and describe the computational, operational, and

mathematical background differences for these algorithms

when they are applied to ordinary radiograph acquisition.

For our study, we developed an initial 3D calibration frame

with tin cross-shaped fiducials at specific locations. The

three studied methods enable the derivation of projection

matrices from 3D to 2D point correlations. We propose a

set of metrics to compare the efficiency of each technique.

One of these metrics consists of the calculation of the

detector pixel density, which can be also included as part of

the quality control sequence in general X-ray settings. The

results show a clear superiority of the DLT approach, both

in accuracy and operational suitability. We paid special

attention to the Zhang calibration method. Although this

technique has been extensively implemented in the field of

computer vision, it has rarely been tested in depth in

common radiograph production scenarios. Zhang’s

approach can operate on much simpler and more affordable

2D calibration frames, which were also tested in our

research. We experimentally confirm that even three or

four plane-image correspondences achieve accurate focal

lengths.

Keywords Conventional X-ray camera calibration !
Detector resolution ! Intrinsic and extrinsic parameters !

Zhang’s method ! Direct linear transform ! Tsai’s approach

1 Introduction

Camera calibration is an important preprocessing step in

computer vision applications and is significant for daily

diagnostic X-ray imaging scenarios.

X-ray devices—when perceived as cameras—are com-

posed of a Röntgen radiation source and an independent

sensitive surface. Figure 1 (left) and (right) show a com-

parison of the methods of image reconstruction using a

conventional pinhole camera device and X-ray equipment,

respectively. One of the key differences between the two

devices is that in the case of the X-ray equipment, a pro-

jected point Qi is located between the anode C, which plays

the role of the optical center, and the detector. The anode

usually consists of a small area (actual focal spot) that

increases as the X-ray tube ages. However, in this work, we

assume, for the sake of simplicity, an almost null sized

effective focal spot.

The pinhole camera representation has been applied to

X-rays in many previous works [1–4]. Despite the

increasing and reliable literature contributions on the

subject, very few authors explicitly combine ordinary

radiograph generation and modern computer vision cam-

era calibration techniques. An adaptation of Tsai’s

approach [5] was examined in the study of Miller et al.

[3] to obtain measurements from planar and non-planar

targets. Moura et al. [6] employed the direct linear

transform (DLT) calibration process by enhancing X-ray

systems with laser rangefinders. DLT is also examined by

Schumann et al. [7], who used a 3D phantom and applied
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it to orthopedics. Some research approaches do not use a

specific calibration method but specially devised tech-

niques involving nonlinear optimizations. For instance,

Selby et al. [8] apply these procedures to cylinder-shaped

frames. In addition, phantom grids are investigated by

Moura et al. [9] along with the minimization of the retro-

projection error.

In this paper, we discuss different methods and algo-

rithms for the geometrical calibration of X-ray systems. We

pay special attention to Zhang’s method which, to our

knowledge, has seldom been applied to X-ray imaging. We

start this paper by summarizing how the pinhole camera

representation can be applied to X-rays. Next, we analyze

and compare each calibration method in different scenar-

ios. For this purpose, we developed an improved calibra-

tion frame or device under test (DUT) and a second flat

panel. The goal of these structures is to help us establish

correspondences between 3D world/scene points and 2D

radiographic image projections from different X-ray beam

sources or frame locations (also known as poses). From

these view-to-radiograph correlations, specific X-ray opti-

cal parameters can be derived. We subsequently establish

several test metrics to objectively compare all techniques.

Finally, we present our results and discuss the particulari-

ties of each methodology when applied in the scope of

typical X-ray diagnostic protocols for patient diagnosis and

object inspection.

2 Background on the geometry of X-ray imaging

systems

The concept of representing X-ray imaging systems as

pinhole devices requires some geometrical and operational

considerations that make them distinctly different from

conventional systems.

2.1 X-ray systems as pinhole cameras

As mentioned above, X-ray systems can be operatively

simplified and geometrically modeled as pinhole cameras.

An introduction to the subject, as applied in the field of

medical imaging, can be found in Medioni et al. [10] and

Bushong [11]. In a radiological device, as shown in Fig. 1

(right), the position of the pinhole is represented by the

anode, which, in turn, represents the optical center C. In the

case of planar X-ray imaging, C is usually a fixed and small

area located in a rotating tungsten disk. Spherical aberra-

tions, radial distortions, and skew can be ignored without

loss of generality. Every Qi point is then projected to a 2D

shadow in a specific coordinate qi in the sensor. In X-ray

imaging, C is the origin of the photon beam, whereas in a

conventional camera (Fig. 1 (left)), the source of the pho-

ton beam is the photographed object, which radiates the

reflected light. This diffused light enters the camera

through the pinhole and reaches the detector.

The sensor part of an X-ray setup is usually a photo-

graphic film or an array of dots (imaging plate or IP) that is

sensitive to this type of radiation. Depending on how the

information is read, we mainly have digital (DX) or com-

puted (CR) radiography modalities. Both divide the

detector surface into sensing pixels with resolution k that

may vary between manufacturers and clinical protocols.

The parameter k is usually independent of the orientation

(kx = ky) and is typically referred to as the linear resolution

ko, which is provided by the manufacturer.

2.2 World, anode, and detector reference frames

In the specific case of X-ray pinhole cameras, it is appro-

priate to work with different reference frames, all of which

are presented in Fig. 2. The first and most intuitive one is

the world coordinate system, W ¼ X̂W ; ŶW ; ẐW
! "

, which is

Fig. 1 X-ray camera (right) vs.

pinhole camera (left). In both

devices, Qi is a 3D point whose

projection in the image is qi

F. Albiol et al.



usually placed at a known 3D point in the radiographed

scene, typically, over a frame or DUT. The second one is

the coordinate frame attached to the detector plate itself,

D ¼ X̂D; ŶD; ẐD
! "

, whose origin is normally coincident

with the upper leftmost pixel. The need to define the

D system originates from the physical fact of working with

a radiation-responsive layer that is not tied to C and from

the possibility of moving the anode and/or detector with

complete freedom around the object in the world coordi-

nate system. Finally, the coordinate system C ¼

X̂C; ŶC; ẐC
! "

has its origin in C itself.

Any point X in the 3D space can be associated with any

of the aforementioned reference frames. For instance, if XC

represents the coordinates of X relatively to C and XD is its

representation relatively to D, then, from Fig. 2, it can be

verified that:

XD ¼
1 0 0

0 #1 0

0 0 #1

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

p rotation about X̂C

!XC þ p ð1Þ

where p = (cx, cy, f) is known as the principal point and

represents the coordinates of C in D. The line that passes

through C and is perpendicular to the detector plane is the

principal axis and intersects the image plane at the point

(cx, cy, 0). The distance between C and the detector plane is

the focal length f. The anode C can also be expressed in W

coordinates by means of vector t, which starts at the origin

of W and ends at C.

Finally, if t and p are known, we can derive vector r:

r ¼ p# t ð2Þ

which connects the W and D reference frames.

2.3 Camera calibration and projection matrices

As discussed above, a prerequisite for any application in

the field of computer vision is the calibration of the camera.

This step is necessary to determine the pose between the

imaging system and real-world objects. This calibration

involves the calculation of five intrinsic (internal) and six

extrinsic (external) parameters, which can be grouped into

a 3 9 4 matrix, the camera projection/calibration matrix P.

Mathematically, P maps 3D points—expressed in W

coordinates—to 2D points using the expression:

q̂i ¼ P ! Q̂i, where each q̂i is an image point and Q̂i is a

W-referenced point, both expressed in homogeneous

coordinates.

As mentioned above, P can be decomposed into two

blocks of intrinsic (K) and extrinsic parameters. The K

transformation matrix projects 3D points expressed in

terms of the D reference frame to their corresponding

image location on the same reference frame:

K ¼
ax s x0
0 ay y0
0 0 1

0

@

1

A ¼
kx 0 0

0 ky 0

0 0 1

0

@

1

A!

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

k

f r cx
0 f cy
0 0 1

0

@

1

A

ð3Þ

where k is a resolution matrix (described above) expressing

the number of pixels per unit length for both x and y axes,

and ax = fkx and ay = fky represent the focal lengths in

pixel units. Similarly, x0 and y0 are the counterparts of cx
and cy in image units. The parameter s is the skewness of

the camera and defines the angle between the x and y axes.

However, as stated above, we assume that pixels are

square, which allows us to simplify Eq. (3) as:

K ¼
a 0 x0
0 a y0
0 0 1

0

@

1

A ð4Þ

where we have set both focal lengths to be equal to a (this

can generally be assumed in the field of X-ray imaging).

However, this hypothesis should be used with caution in

the case of CR plates, in which the IP scanning process has

its own optical oddities and limitations, as explained by

Rowlands [12] and Dobbins et al. [13].

The extrinsic parameters describe a rigid transformation

that maps points in space between the W and C frames.

This matrix can also be decomposed into a rotation matrix

R (accounting for angles hx, hy, hz) and the translation

vector t described earlier:

½Rjt(
zffl}|ffl{

extrinsicmatrix

¼ I tð Þ
|fflfflffl{zfflfflffl}

3D translation

!
R 0

0 1

$ %

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

3D rotation

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

extrinsicmatrix

: ð5Þ

A given P can be decomposed into its intrinsic/extrinsic

parts using an RQ decomposition, as suggested by Hartley

[14], because R is orthogonal and K has an upper triangular

shape:

Fig. 2 World (W), detector (D), and anode (C) reference frames. A

Qi object is shown in W frame, together with its corresponding

projection qi in the D system and relative to the C reference frame

Evaluation of modern camera calibration techniques…



P ¼ K
z}|{

intrinsicmatrix

! ½Rjt(
zffl}|ffl{

extrinsic matrix

ð6Þ

2.4 Pose-dependent intrinsic matrices in X-ray

systems

It is worth noting that in the specific scenario of X-ray

imaging, a controversy may arise when characterizing K as

intrinsic. In conventional pinhole cameras, the intrinsics do

not change if the device is repositioned in the scene.

However, in X-ray frameworks, these parameters may vary

significantly between consecutive snapshots if either the

sensor or the anode is shifted and/or rotated relatively to

each other, as illustrated in Fig. 3. This variability origi-

nates from the fact that the detector surface and the anode

are detached—and structurally independent—from each

other. The term pseudointrinsic might be appropriate in this

case.

This fact is in contrast with what occurs in conventional

camera systems, where the sensor (usually a CCD/CMOS

array) is architecturally fixed to the optical center. X-ray

imaging involves a very interesting scenario in which the

intrinsic and extrinsic parts of P are tied. Therefore, for two

anode/detector locations C and C0, it is reasonable to

consider that K = K0. This is the reason why the D refer-

ence frame is required when describing the geometry

applied in X-ray settings (as already discussed in Sect. 2.2).

3 Outline of current calibration algorithms

Here, we outline the three methodologies that are mostly

used for the estimation of P. These same approaches will

be applied to X-ray imaging systems and compared in the

following sections. Several authors have proposed solu-

tions to the problem of camera calibration. Among the

most popular are Tsai’s algorithm, DLT, and Zhang’s

method, which we summarize here. Further details about

the application of these methods to conventional cameras

can be found in Romondino et al. [18] and Zollner et al.

[19].

3.1 Tsai’s method

Tsai’s camera calibration method, presented by Roger Tsai

[15], is one of the most famous—and probably one of the

very first—modern algorithms for camera calibration. An

updated description of Tsai’s algorithm is provided in the

works of Gupta et al. [20] and Mckerrow et al. [21].

The algorithm recovers the camera parameters using the

relationship between points in a three-dimensional cali-

bration mold and their projections in the image plane. A

key aspect of this algorithm is that x0 and y0 (pixel coor-

dinates of the principal point cx, cy) must be used as input

parameters. In the case of conventional cameras, the pixel

coordinates of the principal point are usually known, fixed,

and provided by the detector manufacturer. Unfortunately,

this approach is not applicable in X-ray systems, where the

sensor and the emitter are detached from each other, as

discussed above.

Tsai’s method consists of two stages. The first one

determines the extrinsic parameters and the focal length.

This is achieved by solving a system of linear equations

whose input parameters are the 3D/2D coordinates of

specific points in a calibration frame, both in the image and

the real world. The second phase involves a non-linear

minimization process in which the radial distortion factor is

determined and all other parameters are further refined.

3.2 DLT

DLT is a simple algorithm used to obtain the projection

matrix, given a sufficient set of point correspondences. It

was originally devised by Aziz and Karara [22] and is

updated in the reference book by Hartley et al. [16].

DLT estimates P using a projective transformation,

presented in Sect. 2.3, and a set of point correspondences.

However, because the points are expressed in homoge-

neous coordinates two points are equal if their coordinates

are proportional. For this reason, each point pair q̂i; Q̂i

introduces a restriction, which is better described using the

vector cross product: q̂i ) PQ̂i ¼ 0. This restriction gen-

erates two independent equations. Because the number of

independent unknowns is 11 (P is determined up to a scale

factor in homogeneous coordinates), a simple linear solu-

tion for P can be derived with six correspondences.

Considering that point coordinates are always measured

with some error, the linear equation system used to obtain

P is normally solved using the SVD method. Unfortunately,

Fig. 3 Variation of intrinsic parameters (Kx to Kx
0) during the

relocation of the anode from an original pose to a different one (the

same variation would occur if the detector plate was shifted and the

X-ray beam source remained anchored at a fixed location)

F. Albiol et al.



the results of SVD depend on the origin and scale of the

coordinate system in the image, which makes the algorithm

unstable. To address this issue, Hartley et al. suggest a prior

normalization of each q̂i.

3.3 Zhang’s method

This method, originally devised by Zhang [17], requires Np

projections of one or more planar calibration targets Np,

each with its own fiducial set Qi!!!Nf, which consists of Nf

fiducial markers. Conventionally, in computer vision,

Np = 1; i.e., only one calibration frame is photographed/

beamed Np times at different poses (Np = 1 9 Np). How-

ever, we can also use several Np frames, each portrayed

once (Np = Np 9 1). For each projection j, a 2D homo-

graph can be estimated from the acquired image. To

compute these homographs, more than four non-collinear

points are needed. Then, the Zhang method can be used to

calculate a series of projective transformations {P1, P2, …,

Pj, …, PNp} to points qi…Nf 9 Np in the Np bitmaps up to a

scale factor. It is important to note here that each projection

j used in the scope of Zhang’s method returns its own

independent [R|t]j set. However, all such sets share the

same K. This means that we can only reproject points

related to each projection j and cannot locate a shared and

unique world reference frame W unless one of the plane

frames is radiographed at a well-known and traceable

location in the 3D scene. The minimization phase helps in

refining all previously derived parameters, whose value is

proportional to Np: three intrinsic (cx, cy, f) in addition to a

total of Np 9 (hx, hy, hz, tx, ty, tz) extrinsics.

3.4 Non-linear refinement

All the presented algorithms can be improved if the

retrieved results are refined using a non-linear cost function

g(…). The most common such cost function is the geo-

metric distance (or transfer error), which measures the

Euclidean distance between the projection of an Npoints set

of 3D world spots Qi and their observed correspondences

qi in the image:

gðq1...Npoints
;Q1...Npoints

Þ ¼
X

Npoints

i

qi; PQik k2 ð7Þ

In the case of the Zhang method discussed above, each

plane has its own projection Pj. Each Qj,i (ith fiducial) must

be projected onto the detector as qj,i using Pj. Each Qj,i

(fiducial i on beamed frame j) must be then projected using

the corresponding Pj. In this scenario, the cost function

depends on a total of M = Np 9 Npoints parameters.

Equation (7) should be then rewritten as suggested in the

study performed by Medioni et al. [10]:

gðq1!!!M;Q1!!!MÞ ¼
X

Np

j¼1

X

Npoints

i¼1

qj;i # PjQj;i

&

&

&

&

2
ð8Þ

where qj,i is the observed projection of a coplanar point i to

the imaged plane j. However, if the plane projections

correspond to one single physical flat frame (Np = 1) with

a common set of fiducial Q1, …, i, …, Npoints snapshots (as

we discussed in Sect. 5.1), Eq. (8) can be simplified as:

gðq1...M;Q1...Npoints
Þ ¼

X

Np

j¼1

X

Npoints

i¼1

qj;i # PjQi

&

&

&

&

2
ð9Þ

4 Methods and materials

We present here the experimental setup used to evaluate

each of the camera calibration methods summarized above.

Figure 4 shows the DUT used in our research with the

X-ray equipment (vertical IP configuration).

4.1 X-ray imaging setup and calibration frame

To appropriately describe an X-ray diagnostic system, it is

necessary to initially establish a reference frame located at

the detector. The selected reference frame for the current

setup is displayed in Figs. 3 and 6.

Additionally, an initial polytetrafluoroethylene 3D cali-

bration frame or DUT, outlined in Fig. 5 (also pictured in

Fig. 4), was built. The DUT had a simple rectangular shape

in order to be manageable. In our setup, this DUT remained

fixed and could be imaged from many locations and X-ray

tube orientations.

Additionally, a set of Nf = 13 cross-shaped tin markers

opaque to Röntgen rays were distributed on two levels of

the DUT. The bottom level accommodated nine markers

Fig. 4 Experimental setup with calibration frame and typical X-ray

imaging system used in primary diagnostic procedures. Tin cross-

shaped fiducials are placed beneath the square stickers for protection

Evaluation of modern camera calibration techniques…



and the top one only four. The DUT was also responsible

for establishing the W reference frame.

Besides the Nf cross-shaped markers, our DUT also

housed nine lead spherules (4 mm diameter) inside its

Teflon cavity. These pellets are used when verifying the

efficiency of each method and they are ignored during the

calibration.

The DUT was radiographed from many angles and beam

positions (57 snapshots), imitating an AP vertical exami-

nation. In our setup, the IP surface was approximately the

same size as the calibration frame to capture all possible

fiducial marker projections. The pixel centers of all cross-

shaped traces were manually identified with the Horos

DICOM Viewer (http://horosproject.org).

4.2 Comparison metrics

To objectively compare the three methodologies outlined

in Sect. 3, several metrics were defined. Reprojection

RMSE and intrinsic parameters consistency were applied

on a per-projection basis. The other two metrics (detector

resolution and distance to epipolars) involve the use of

pairs of stereo radiographs as input [23].

4.2.1 Reprojection root-mean-square difference

This quantity describes how well each algorithm performs

when projecting the 3D Nf points that were used in the

calibration again:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNf

i¼1 qi # PQik k2

Nf

s

ð10Þ

4.2.2 IP resolution estimation

The linear resolution of the IP is provided by the manu-

facturer (ko = 104 px/m). It can be used as a screening

parameter. We can derive kj from each X-ray snapshot pair

j with the expression:

kj ¼
p2 # p1ð Þ

t2 # t1ð Þ

&

&

&

&

&

&

&

&

ð11Þ

where p2, p1 and t2, t1 represent the anode coordinates in

the D and W reference frames, for the X-ray source loca-

tions 1 and 2, respectively. Both p and t vector pairs are

obtained through the RQ decomposition of each P1 and P2
that represent the camera calibration at the two stereo-an-

ode poses:

P######!
RQ

decomposition

a s x0
0 a y0
0 0 1

2

4

3

5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

p¼ðx0;y0;aÞ

!½Rjt( ð12Þ

The geometric explanation of Eq. (11) is shown in

Fig. 6, where p2 - p1 and t2 - t1 represent the same

spatial gap between two X-ray tube locations. The differ-

ence between p2 - p1 and t2 - t1 is that p1,2 is expressed

in pixel units and t1,2 in meters. This allows us to experi-

mentally determine the resolution (kj) in pixels per meter of

our X-ray detector (for a given stereo snapshot j), which

should be a priori similar to the factory specifications

kj & ko.

Over Ncomb = 1540 pair combinations from 56 radio-

graphs were created to estimate kj, as shown in the example

of Fig. 6 (bottom). Then, for each calibration algorithm, we

obtained the overall mean value:

Fig. 5 Schematic of the DUT,

image receptor, and X-ray tube

in the world (W) and detector

(D) coordinate systems

F. Albiol et al.
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kmethod ¼
PNcomb

j¼1 kj

,

Ncomb
ð13Þ

where ‘‘method’’ denotes the Tsai, DLT, or Zhang

methods.

4.2.3 2D distance between epipolar lines and spherules

A key step in stereo imaging entails finding point cor-

respondences in two images. Using epipolar geometry,

the search for a corresponding point can be reduced from

examining an entire image to simply searching along a

specific line in the image, called the epipolar line. In

other words, a point in one image corresponds to a line

in its stereo partner. The left camera sees a point

because it is directly in line with that camera’s center of

projection. However, the right camera perceives this ray

as an infinite straight segment in its image plane. The

same situation also occurs in X-rays, where the beam

source is shifted between two positions with a rigid

transformation.

To produce these epipolars, we first compute the fun-

damental matrix F. This can be obtained using several

means, including the interplay of the two camera projection

matrices P1 and P2, as described by Armangué et al. [24]

and Luong et al. [25].

As mentioned in Sect. 4.1, a set of Ns = 9 additional

lead markers were placed in the DUT plastic receptacle at

specific 3D locations by means of a foam scaffold. Using

the same snapshot pair analogy that we applied for the

detector resolution step, we can compute the epipolar lines

and their perpendicular distances Dmethod
s;j to the projections

qs of each spherule (sphere) Qs for each snapshot pair j and

for each calibration method. Epipolar geometry theory

Fig. 6 Derivation of detector linear resolution. The anode is shifted

between two locations C1 and C2 (determined by p1,t1 and p2, t2 in the

D and W frames, respectively) and a radiograph of the DUT is

generated. The distances p2 - p1 and t2 - t1 represent the same

spatial gap between the two X-ray tube locations and their ratio is the

detector linear resolution kj. The bottom row shows an example of a

snapshot pair used to derive kj with the corresponding photographic

images of DUT

Evaluation of modern camera calibration techniques…



supports the fact that the epipolar line l2s on the second

image that is linked to the projection of point Qs on the first

image q1s can be calculated with:

l2s ¼ FP1P2 ! q
1
s ð14Þ

This concept is schematically summarized in Fig. 7.

The mean value of all Dmethod
s;j values is provided as the

result of the Tsai (DTsai
s;j ) and DLT (DDLT

s;j ) calibration

techniques:

D
method
s;j ¼

PNcomb

j¼1

PNs

s¼1 Ds;j

Ns ) Ncomb

ð15Þ

When deriving D
Zhang
s;j and considering Eq. (12), P1 and

P2 should represent the corresponding projection matrices

on the same Zhang plane (#1, …, #13 in Fig. 8) containing

the given projected spherule from each stereo location.

In this case, a subset of 43 X-ray images and

Ncomb = 903 snapshot pair combinations were used.

Fig. 7 Epipolar geometry in stereo X-ray imaging and, at the bottom, an example of two stereo snapshot pairs and the epipolar line from each

lead spherule, as seen from a paired anode location

F. Albiol et al.



Figure 7 (bottom) shows some examples of these stereo

pairs and epipolars.

4.2.4 Consistent intrinsic parameters

The final test involves investigating whether the intrinsic

parameters calculated at the RQ decomposition stage are

physically consistent, i.e., if they represent cohesive

physical dimensions and distances between the X-ray

emitter and the detector. More specifically, we focus on the

focal length f of each X-ray system pose. We then examine

whether we can derive a coherent spatial distance between

the anode and the IP. For this purpose, the focal distance

obtained with the DLT approach is considered as a near-

true distance and the Tsai and Zhang methodologies are

compared against DLT (DfDLT). Because DLT almost

always delivers consistent intrinsic sections, it seems rea-

sonable to compare the other two methodologies against it.

This metric is not intended to serve as a comparison

point for the three calibration methods but as a final health

check of the consistency of each calculated P. A projection

matrix can perform very well in all three aforementioned

metrics. However, this does not necessarily mean that the

intrinsics (i.e., f) are well derived or that they produce well-

formed and physically relevant KTsai and KZhang matrices.

4.3 Practical considerations

The most straightforward method is DLT, whose applica-

tion starts with a set of correspondences between world

points Nf and image points; a linear solution can be then

computed. Tsai is rather similar but requires an initial

guess of x0 and y0 (usually the image center), which must

later be fine tuned with a least-squares calculation stage.

The Zhang method differs significantly from the other

two, as it operates over 2D frames and their planar pro-

jections. In a manner similar to the DLT and Tsai methods,

in the Zhang approach, we initially assumed that the

accuracy of the camera calibration process is proportional

to the number of 3D-2D point correspondences, which

implies more planar projections (as discussed in Sect. 3.3).

In this context, we initially considered a total of Np = 13

virtual planes using all possible fiducial marker combina-

tions in the DUT. These ideal planes are shown in Fig. 8a

and a sample subset of their X-ray projections is displayed

in Fig. 8b. Each of these planes contains four fiducial

points. Planes #11 and #12 can be expanded with the

additional antisymmetric copper landmark (whose X-ray

projection is labeled as point 13 in Fig. 8b, c).

The lead spherules described in Sect. 4.1 were posi-

tioned as coplanarly as possible to some of the built Zhang

planes #1–#10 shown in Fig. 8a; however, some pellets

were omitted from the calculations if their geometrical

distance from a given plane exceeded 5 mm. In the case of

the Zhang method, every plane is related to its own pro-

jection matrix P1…13 and, thus, only the 3D traits that lie on

that plane can be projected. This feature has been consid-

ered when applying the comparison metric described in

Sect. 4.2.3.

After some preliminary tests, we observed that the use

of all 13 planes for the calibration produced unstable re-

sults in many cases. A more careful investigation showed

that fluctuating outcomes were obtained when some of the

virtual planes were almost perpendicular to the image

surface and/or anode. When our DUT was radiographed,

these steep/oblique planes projected an almost negligible

area. Figure 8c shows some examples of this type of

problematic traces.

For this reason, we devised a pre-step to the Zhang

algorithm that easily discards planes that generate unsta-

ble results based on their projected area, expressed in

number of pixels. Section 5 explores this topic.

Furthermore, to apply the test metric described in Sect.

4.2.2, we must select the projection matrix P11, which is

linked to plane #11 (Fig. 8a), in each stereo snapshot. This

plane contains the fiducial cross marker (upper left corner)

that defines a shared W reference frame. When the matrix

P11 that is linked to this plane is RQ-decomposed, it reveals

the translation vector t that allows us to derive the detector

resolution kj for a specific radiograph stereo pair j using

Eq. (11).

As discussed in Sect. 3, all calibration methods allow

further optimization through non-linear minimization. We

have chosen the geometric distance as the non-linear cost

function. All necessary calculations, such as the afore-

mentioned minimizations, SVD, and optimizations, were

performed with the GNU Octave software package (https://

www.gnu.org/software/octave).

5 Results and discussion

Table 1 compares all calibration algorithms using the

metrics introduced in Sect. 4.2. We provide the results

before and after the refinement process (the latter denoted

with the suffix ‘‘/R’’). As discussed in Sect. 4.2, r is the

reprojection error—calculated using Eq. (10)—of the

fiducial markers considered for the calibration. The metric

D is the mean distance from each spherule image location

to the epipolar of that same spherule—obtained with

(13)—viewed from another paired anode. D is calculated

using Eq. (15). It should be noted that in the case of the

Zhang algorithm, each spherule is projected using the

specific Pj that is related to the plane that fully contains it.

The mean resolution k of the detector is estimated in

pixels/meters and using Eq. (11). k is then compared with

Evaluation of modern camera calibration techniques…
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the factory specifications ko for each calibration method.

We note here that in the Zhang method, we used the pro-

jection matrix P11 for plane #11 and its translation vector

t to compute k. We also focus on the quality of the focal

length f provided by the Tsai and Zhang methods by

comparing it with that derived with DLT (DfDLT).

In general, all methods produce good results and show

applicability to X-ray calibration. r is very low, k is almost

identical to ko, and D is approximately zero.

DLT achieves the best results, even without a mini-

mization phase. This indicates that this time-consuming

stage can be omitted. In contrast, the Zhang and Tsai

methods require a non-linear minimization step to deliver

accurate results. Although Tsai’s approach is quite precise

and outputs even better results when refined through a

minimization process, it must be initialized with the prin-

cipal point coordinates, which are a priori unknown in

X-ray environments. If the X-ray emitter is positioned

approximately perpendicularly to the examined object, as

in setup a) in Fig. 10, x0 and y0 can be assigned as the

coordinates of the image center and still obtain satisfactory

results. However, at poses approaching the limits of the

X-ray system, this central landmark can have a coordinate

that is distant from the center, as shown in the example of

Fig. 3.

As detailed in Sect. 4.3, in the case of Zhang’s method,

some degenerate planes needed to be rejected using the

simple technique of requiring a minimum projected area

belonging to each virtual plane. In this method, the most

accurate results are achieved when a minimal area of 103

px is set as a threshold for each plane. However, these

results are not as accurate as those obtained with DLT/Tsai.

This may be explained by the fact that planes must be

populated with a denser fiducial grid, as observed in Sán-

chez et al. [26].

Figure 9 provides an optimized visualization of the

influence of the minimum required projected area in

Zhang’s algorithm. The figure shows the mean differ-

ence (DfDLT) between the focal lengths fZhang derived

with Zhang’s method and those obtained using DLT

(fDLT).

From these plots, we can infer that the best perfor-

mance seems to be achieved with the combination of four

large projected planes: the three widest parallel ones (#11,

#12, and #13 in Fig. 8a) and an additional fourth plane. In

other words, the Zhang method can be improved by

adding more planes, but the selection of planes according

to their projected area is also of great importance. Too

many perpendicular planes can interfere with the cali-

bration process. This outcome agrees with the experi-

mental results obtained by Zhang et al. [17]. Additionally,

we observed that Zhang’s algorithm delivered better

results when the DUT was radiographed from wider

angles (configuration b in Fig. 10) that originated from

larger projected zones.

Zhang’s method was evaluated in its original form for

computer vision using a single 2D calibration frame

(Np = 1 9 Np) projected on alternating poses (discussed in

Sect. 3.3). This parallel study is detailed below.

5.1 Alternative Zhang calibration experiment

with a 2D calibration frame

As a supplementary experiment, we radiographed a sepa-

rate 2D square DUT (equipped with 16 radiation-opaque

fiducials and four additional ones to break the symmetry) at

27 arbitrary orientations and distances (Figs. 11, 12). We

designed a special holding structure consisting of an

adjustable support system with a panoramic head that

allowed us to freely move and re-orientate this structure

before radiography.

The focal length fZhang was estimated by means of this

device and the X-ray imaging system remained stationary

throughout the measurements. We calculated the mean

bFig. 8 a The 13 virtual internal planar structures inside the 3D DUT

used for the Zhang calibration method. b X-ray projections of virtual

Zhang planes built with fiducials present in the DUT. c X-ray

projections of some problematic Zhang virtual planes (inside the

dotted line) that affect the results

Table 1 Test metrics and

results of the three calibration

methods

Tsai DLT Zhang Tsai/R DLT/R Zhang/R

r px 36 7 270 7 7 19

std(r) 15 5 136 5 5 11

D Px 15 3 69 3 3 12

std(D) 19 6 49 7 6 8

k px/m 10,071 9993 10,114 9991 9991 10,040

std(k) 287 192 237 181 190 278

DfDLT m 0.10 0.12 0.00 0.01

std(DfDLT) 0.06 0.02 0.00 0.06

The suffix ‘‘/R’’ denotes non-linear least-squares refinement
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focal length (Fig. 12c) for all plane combinations (e.g.,

2300 combinations for three planes, 12,650 for four planes,

and 53,130 for five planes).

These results clearly demonstrate how Zhang’s method,

combined with a simple 2D frame, can provide a good

alternative for the calibration of any X-ray device. As

expected, calculations involving a greater number of pro-

jected planes produced a more accurate (or a convergence

towards a stable) focal length. Nevertheless, some combi-

nations of even three or four planes generated a very pre-

cise solution. As an example, Fig. 12a shows a

combination of only three planes, from which we can

already derive the same fZhang that is achieved with the

remaining 22 projections.

In our study, the accuracy of the determination of the

mean fZhang was tested by including and omitting some

oblique Zhang planes. It is important to identify the

conflicting Zhang planes (Fig. 12b) with a very small

projected area as well as non-conflicting planes

(Fig. 12a). Removing the conflicting planes from the

Fig. 9 Mean difference between the focal lengths calculated with the

DLT and Zhang methods according to the minimum number of pixels

required in each virtual Zhang plane inside the DUT

Fig. 10 Most effective

geometrical configuration of the

X-ray system for Zhang’s

approach (b) and optimal frontal

placement for Tsai’s algorithm

(a)

Fig. 11 Visual representation

of the experimental setup

examined with the Zhang

method. A single calibration flat

panel is adjusted over a strand

of flexible plastic segments,

which allows perfect

positioning. The panel is

equipped with 16 hidden X-ray-

opaque markers and is then

irradiated at random poses to

derive fZhang
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calculations accelerated the stable and consistent calibra-

tion, as shown in Fig. 12c.

6 Conclusions

We have applied three well-known camera calibration

methods to primary diagnostic X-ray environments. All

calibration methods share the same principle: determining

a projection matrix that connects 3D points in the scene

with their projections in the image. For this study, we

developed a 3D calibration frame fitted with fiducial

markers and a set of metrics.

The main and most evident outcome is that all three

methods can perform well with these types of X-ray set-

tings. In other words, when using a similar calibration

frame to ours, all three methodologies deliver functional

projection matrices and accurate intrinsics before or after

non-linear least-squares refinement. However, each tech-

nique exhibits some significant operational differences and

particularities that have also been analyzed.

We have paid special attention to the Zhang method,

which is frequently used for computer vision but not in

regular X-ray settings, and demonstrated that it can be a

reasonable alternative to heavier 3D phantoms. Within a

Zhang framework, three radiographs from a single planar

device can suffice; however, very oblique projections can

significantly alter the calculations and should be previously

identified and discarded. From the observations reported in

this paper, fixed 3D calibration structures are preferable

when working under the DLT or Tsai schemes.

Finally, we have proposed an innovative method to

derive the detector pixel density from pairs of X-ray

snapshots. This procedure might be suitable for the QA of

clinical environments for verifying detector and contrast

sensor resolution against original factory specifications.
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ométricas de objetos mediante combinación de sistemas

radiológicos y cámaras de profundidad. Consejo Superior de

Investigaciones Cientı́ficas. 2012.
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