

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/151165

Zúñiga-Prieto, MÁ.; Gonzalez-Huerta, J.; Insfran, E.; Abrahao Gonzales, SM. (2018).
Dynamic reconfiguration of cloud application architectures. Software Practice and
Experience. 48(2):327-344. https://doi.org/10.1002/spe.2457

https://doi.org/10.1002/spe.2457

John Wiley & Sons

 Zuñiga-Prieto et al.

Dynamic Reconfiguration of Cloud Application Architectures

Miguel Zúñiga-Prieto1,2, Javier González-Huerta3, Emilio Insfran1, Silvia Abrahão1

1Department of Information Systems and Computation, Universitat Politècnica de València,

Camino de Vera, s/n, 46022, Valencia, Spain

{mzuniga, einsfran, sabrahao}@disc.upv.es

2Department of Computer Science, Universidad de Cuenca,

Av. 12 de Abril y Agustín Cueva, 01.01.168, Cuenca, Ecuador

miguel.zunigap@ucuenca.edu.ec

3Software Engineering Research Lab, Blekinge Institute of Technology,

371 79 Karlskrona, Sweden

javier.gonzalez.huerta@bth.se

Abstract:

Service-based cloud applications are software systems that continuously evolve to satisfy

new user requirements and technological changes. This kind of applications also require

elasticity, scalability and high-availability, which means that deployment of new function-

alities or architectural adaptations to fulfill Service Level Agreements (SLAs) should be

done while the application is in execution. Dynamic architectural reconfiguration is essen-

tial to minimize system disruptions while new or modified services are being integrated

into existing cloud applications. Thus, cloud applications should be developed following

principles that support dynamic reconfiguration of services, and also tools to automate

these reconfigurations at runtime are needed. This paper presents an extension of a model-

driven method for dynamic and incremental architecture reconfiguration of cloud services

that allows developers to specify new services as software increments, and the tool to gen-

erate the implementation code for the services integration logic and the deployment and

architectural reconfiguration scripts specific to the cloud environment in which the service

will be deployed (e.g., Microsoft Azure). We also report the results of a quasi-experiment

that empirically validate our method. It was conducted to evaluate their perceived ease of

use, perceived usefulness, and perceived intention to use. The results show that the partic-

ipants perceive the method to be useful and they also expressed their intention to use the

method in the future. Although further experiments must be carried out to corroborate these

results, the method has proven to be a promising architectural reconfiguration process for

cloud applications in the context of agile and incremental development processes.

Keywords: cloud architecture, dynamic reconfiguration, service oriented architecture,

model driven development, empirical validation.

1 INTRODUCTION

Service-based applications are software systems made up of software components

produced either in an internal development process or provided by third parties. The

architecture of a service-based application differs from the architecture of traditional

software systems mainly because of its fundamental architectural element, the service;

which encapsulate business functionalities and act as components from a business

mailto:%7d@disc.upv.es
mailto:miguel.zunigap@ucuenca.edu.ec

 Zuñiga-Prieto et al.

perspective. From a development point of view, service-based applications are mainly

developed using an incremental/iterative development process [1], where the integration

of new software increments not only provides the application with new functionalities but

also changes (reconfigure) the current application architecture. If the integration of

software increments is handled off-line, the whole system should be stopped, updated, and

finally restarted. Therefore, in elastic, highly-available cloud environments, dynamic

reconfiguration is required for managing architectural modifications at run-time in order to

minimize system disruptions.

Cloud applications are service-based software systems, typically composed of Web ser-

vices that run on cloud computing environments and consume their resources (e.g., execu-

tion environment, storage, computing, message queue services). In this context, elasticity,

is one of the distinguishable characteristics of the cloud computing environments [2],

which allows services acquiring more resources during a peak of demand and releasing

them once they are no longer required. Furthermore, adopting a cloud computing platform

introduce additional technical challenges: applications that will be deployed in cloud envi-

ronments must be developed using cloud-specific APIs, project structures, and even provi-

sioning/deployment services, thus preventing developers from creating portable services

that could be redeployed in another cloud environment with regard to a given Quality of

Service (QoS) level or a Service Level Agreement (SLA). Not only approaches to support

developers to design, implement, and deploy software systems are required [3]; but also

architectural approaches to cope with interoperability and portability of services [4]. Fur-

thermore, in terms of architectural reconfiguration, as far as we know, there are no pro-

posals that support a systematic reasoning about the architectural impact of the integration

of services included in a given software increment into the current application architecture.

 Even though the dynamic reconfiguration of software architectures occur at runtime, it

should be supported along the different stages of the development process from the very

beginning. A Model-Driven Development (MDD) approach may provide good support to

automate the dynamic reconfiguration of cloud application architectures. MDD may also

overcome portability issues by modeling the cloud application architectures at different

levels of abstractions and then to obtain implementation/deployment artifacts by means of

model to model and model to code transformations.

In previous works [5],[6], we introduced the main ideas of the process definition for the

DIARy method to support the specification and generation of some software artifacts for

service architecture reconfigurations. The DIARy method follows an incremental and

MDD approach that supports the incremental integration of cloud service applications and

their dynamic architecture reconfiguration triggered by the integration of new software in-

crements (hereafter referred to as increments). In this paper, we extend the DIARy method

by redefining and defining new activities and tasks to support the building, packing, pro-

visioning, and deployment of cloud services. For example, new activities were defined in

order to allow developers not only to organize services into projects that can be built,

packed and deployed as an independent deployment artifact in order to share cloud envi-

ronment resources, but also to specify the cloud environment resources (infrastructure and

platform) needed for the deployment. We also provide the tool support to automate these

tasks by defining the metamodels, which define the service architecture and the cloud re-

sources needed to deploy services, as well as the transformation chains, which automate

 Zuñiga-Prieto et al.

the generation of software artifacts that implement the integration logic (orchestration

among services), scripts for infrastructure/platform provisioning and deployment, and

scripts for architectural reconfiguration that change service invocations according to the

integration specification. Finally, this paper also reports the results of a quasi-experiment

carried out by 20 participants, including PhD and Master’s computer science students, in

which we analyze the perceived ease of use, perceived usefulness, and intention to use of

the participants in using the DIARy method and its corresponding tool.

The remainder of this paper is structured as follows: Section 2 discusses the related

works. Section 3 presents an overview of the method proposed. Section 4 illustrates the use

of our method on a running example. Section 5 presents the preliminary results of the val-

idation of the method through a quasi-experiment. Finally, Section 6 presents our conclu-

sions and final remarks.

2 RELATED WORK

In this section we discuss approaches that support the development of cloud applications

as well as the dynamic architecture reconfiguration. There exist some development

approaches that apply MDD principles in order to tackle portability issues when developing

or migrating cloud applications (e.g., [7], [8], [9]). With regard to approaches that propose

mechanisms with which to document design decisions in cloud environments we can

highlight CAML [10], MULTICLAPP [11] and CloudML [12]. These works define UML

profiles or other modeling languages used to describe deployment topologies, applications

as a composition of software artifacts to be deployed across multiple clouds, or resources

that a given application may require from existing clouds. Additionally proposal such as

Chef [13] or [14] abstract the deployment of services from specific cloud providers and

offer deployment platforms; however, these proposals create dependencies with their

technology. Although “getting integration right is the single most important aspect of the

technology associated with agile approaches” [15], these proposals do not provide

mechanisms with which to specify architectural decisions regarding integration and the

impact of integrating increments in the current cloud application architecture.

With regard to proposals that support the dynamic architecture reconfiguration,

Breivold et al. [4] conducted recently a systematic review on architecting for the cloud.

They categorized studies that describe architectural approaches and design considerations

when architecting for the cloud. The authors identified the need for design/architectural

approaches for supporting the maintenance of cloud services. The EU project SeaClouds

[16], proposes a platform to performs seamless adaptive multi-cloud management of ser-

vice-based applications and dynamically reconfigures them by changing the orchestration

(interaction coordination) of services depending on monitoring results. The MODAClouds

[9] project is another research that focuses on the implementation of a framework with

which to develop and deploy applications in multi-clouds, in which monitoring triggers

adaptation actions such as the migration of system components from one cloud to another,

along with the dynamic re-deployment of the final application or its components. Despite

the fact that the reconfiguration takes place by replacing orchestration or as result of the

re-deployment of components, these proposals take into account alternatives as regards

provisioning and deployment, they do not focus on software architecture aspects nor take

into account implementation alternatives that facilitate scalability and architectural recon-

 Zuñiga-Prieto et al.

figuration. What is more, in the aforementioned proposals, the reconfiguration/re-deploy-

ment starts as the result of monitoring activities; however, adaptive changes (e.g., integra-

tion of software increments resulting from new functionalities) that require architectural

reconfiguration are not taken into account.

According to [17] architecture centric reconfiguration proposals included some formal

proofs as part of the evaluation, evidence is often obtained from applying the approach to

small case studies and examples, and only a few empirical studies have been undertaken;

however none of them is related to the cloud environment. With regard to empirical vali-

dation of the before identified related proposals (SeaClouds, and MODAClouds), as far as

we know, they do not present empirical validations; therefore a lack of frameworks and

standard criteria for the comparison of dynamic architecture reconfiguration processes trig-

gered by new services integration. For instance, MODAClouds uses an example [9] in or-

der to provide intuition on the benefits of the proposal. However in software architecture

field more empirical studies to build the body of knowledge.

3 THE DIARY METHOD

In this section, we briefly describe the DIARy method (see Figure 1), a model-driven

approach for the dynamic reconfiguration of cloud application architectures caused by the

integration of software increments. This method allows developers to specify how the

services included in an increment will be integrated into a cloud application which is

already deployed. In this work, we redefined two out of the three the activities of the

DIARy method. The Increment Implementation activity was redefined to explicitly deal

with the increment integration specification to generate software artifacts corresponding to

the implementation of the integration logic (e.g., services orchestration, interaction

protocol), and scripts with which to build, deploy and architecturally reconfigure the

current cloud application, all of which are generated according to the cloud environment

where services will be deployed.

We also redefined the activity Deployment & Architectural Reconfiguration to deal with

the specification of cloud resources that services need to be deployed, and the generation

of the corresponding provisioning and deployment scripts. As a consequence of these

changes the DIARy new activities are shown in Figure 1.

Figure 1. The DIARy process

3.1 Increment Integration Specification

The activity is aimed at supporting the systematic reasoning about the integration logic and

the architectural impact of integrating the services included in a software increment into

Cloud Artifacts/

Cloud Adaptors

Application Cloud

Artifacts Model

Increment Cloud

Artifacts Model

Increment Integration Specification

Building Scripts/

Packing ScriptsExtended Increment

Architecture Model

Increment

Integration

Specification

Guidelines

Application

Architecture Model

Increment Cloud

Resources

Model

2Increment Implementation

Deployment Scripts/

Reconfiguration Scripts

SLA

guide

Deployment & Architectural Reconfiguration

Increment

Architecture Model

Interaction

Protocol

Deployment

Guidelines

 Zuñiga-Prieto et al.

the current cloud application (Application Architecture Model), regardless the cloud

environment. In this activity, developers: i) take as input the architectural design of a

software increment (Increment Architecture Model - IAM) described with the Service

oriented architecture Modeling Language (SoaML) [18], an OMG standard specifically

designed for the modeling of service-oriented architectures. ii) Apply the DIARy-

Specification-profile [19] to the IAM, extending the expressiveness of the SoaML, and

providing it with features that allow software architects to specify integration logic and

architectural impact. and iii) Follow Increment Integration Specification Guidelines to

make integration design decisions based on SLA term; producing as output the Extended

Increment Architecture Model (EIAM) (see Figure 4a). The EIAM complies with the

Extended Increment Architecture Model metamodel which we defined by extending UML

and SoaML metamodels using the same concepts we used to define the DIARy-

Specification-profiled, see [19],[5] for details.

Architects use the current Application Architecture Model to identify the architectural

elements of the current architecture which, after integration, will change or will interoper-

ate with architectural elements of the IAM; then specify the integration logic and the archi-

tectural impact. Integration logic is specified by describing interoperation (Service Con-

tract) among Participants involved in a service. Service Contracts inner parts include in-

terfaces that Participant elements must implement in order to interoperate, as well as the

interaction protocol which is described by an activity diagram. A Participant represents: i)

a service to be integrated, ii) a service/component already existing in the current Applica-

tion Architecture Model with which a service/component of the IAM will interoperate, and

iii) a service/component to be created in order to consume or provide services.

Similarly, developers specify architectural impact by tagging every IAM architectural

element (e.g., ServiceContracts, Participants, and dependencies among them - RoleBind-

ings) with values that describe how its integration will change the current Application Ar-

chitecture Model (e.g., Adding or removing architectural elements). (see architecturalIm-

pact attribute in architectural elements of Figure 4a). Additionally, developers specify the

requirements about the management of performance of services by providing information

about the expected level of elasticity and delay in processing requests (see elasticityLevel

and delayLevel attributes Figure 4a). Developers use this information, in later development

phases, to select either implementation/provisioning/deployment alternatives, or cloud en-

vironment resources that satisfy SLA terms or other requirements.

3.2 Increment Implementation

This activity was redefined for this work. It aims to support the integration process by

generating platform-specific cloud artifacts (software artifacts to be deployed on a specific

cloud environment) that implement the increment integration specification (e.g. integration

logic). This activity includes the following steps:

3.2.1 Check Increment Compatibility

This step is aimed to reduce the risk of incompatibilities that avoid the integration between

the software increment and the current cloud application architecture. Developers

participate in verifying whether the EIAM is compatible with the current Application

Architecture Model. If discrepancies exist between interfaces (e.g., different names for

methods and services, different message ordering), they design a ServiceContract that

 Zuñiga-Prieto et al.

overrides the current one and apply model-to-text (M2T) transformations that generate

Cloud Adaptors (see Figure 1) that implement the new integration logic.

3.2.2 Specify the Packing and Deployment Structure

In this step, the Increment Cloud Artifacts Model is generated in order to describe the cloud

artifacts (Artifacts) and cloud environment resources needed to implement EIAM

architectural elements (i.e., Service Contracts, Participants and Rolebindings).

The way in which services are deployed has an influence on satisfying SLA terms or

other nonfunctional requirements (e.g., agility to deploy, cost of provisioning) [20]; there-

fore, this model organizes services’ related Artifacts into Projects or group of Projects that

can be built, packed and deployed independently on different cloud environments in ac-

cordance with decisions made during the development process (e.g. implementation tech-

nology, management of performance of services, managing of running cost by deploying

a group of Projects on a shared host). Additionally, in order to promote the decoupling of

the integration/interaction logic from the Participants logic (business logic), and ease the

architectural reconfiguration by replacing either the interaction protocol or dependencies

among Participants, we propose to place Artifacts related to interaction into Interac-

tionProjects and Artifacts related to Participants logic into ImplementationProjects.

Best practices in continuous delivery suggest storing configuration information that

change at runtime outside the deployable package [21] thus enabling them to be updated

without requiring the redeployment of the entire package. Therefore, in order to facilitate

dynamic architectural reconfiguration by updating dependencies among services; the In-

crement Cloud Artifacts Model allows to specify services’ dependencies (EndPoints) in

configuration Artifacts (DynamicConfiguration) that will be independently deployed.

 The Increment Cloud Artifacts Model complies with the Cloud Artifacts Model meta-

model that we already proposed in [5]. In this work, in order to support the Packing and

Deployment Structure specification, we provide an Eclipse plug-in which executes M2M

transformations carried out using the Atlas Transformation Language (ATL) to generate

Increment Cloud Artifacts Models from EIAMs. Figure 2 (lines 3, 6 and 10) shows an

example of the transformation rule applied to assign the Artifacts corresponding to services

(e.g., FrontEndServices) offered by Participants that require a high elasticityLevel into an

exclusive Project, which will be deployed on an exclusive host (e.g., a virtual machine).

3.2.3 Generate Implementation Code

In this step, architects make the implementation decisions that best fit the individual

requirements of each service included in an increment and complete the previously

generated Increment Cloud Artifacts Model by specifying: i) the technology in which

services related Artifacts will be implemented (e.g., source code language); ii) service’s

configuration information that could change at runtime, by creating or updating meta-

classes of DynamicConfiguration type; iii) inter-service communication information (e.g.

SOAP/REST service style, message format, protocols); and iv) the location of Artifacts to

be generated. Once developers have completed the Increment Cloud Artifacts Model, they

execute M2T transformations that use this model and the EIAM as input in order to generate

Artifacts’ implementations according to the specified technology, which are: i) the

Interaction Protocol between the services to be integrated and the current application,

 Zuñiga-Prieto et al.

which will be offered as another service; ii) interface implementations or skeletons of

service`s logic, depending on how detailed is the design of architectural elements inner

parts; iii) as many configuration files as DynamicConfiguration Environments (e.g.,

development, testing, production), iv) Building/Packing scripts, according to the

DeploymentProjects’ structure (see outputs of this activity in Figure 1). Finally, cloud

developers complete the generated skeletons, then run the previously generated

Building/Packing scripts obtaining a deployment artifact.

Figure 2. Excerpt of M2M for generating the Increment Cloud Artifact Model

3.3 Deployment & Architectural Reconfiguration

This activity was redefined for this work. Once developers have released increments as

deployment artifacts, they prepare artifacts to be deployed on the corresponding cloud

environment(s) (e.g., production, testing). In this activity cloud developers specify cloud

resource requirements and generate scripts that automate infrastructure provisioning,

deployment and architectural reconfiguration.

3.3.1 Deployment

Architects make provisioning and deployment decisions, about the infrastructure and

platform resources that must be provisioned in order to deploy and allow execution of the

services included in a deployment artifact, and document them in the Increment Cloud

Resources Model. The Increment Cloud Resources Model complies with the Increment

Cloud Resources Model metamodel (see Figure 3) and allow architects to specify the

CloudEnviroments where a DeploymentArtifact will be deployed. A CloudEnvironment is

made of Infrastructure and Platform resources and architects define as many

CloudEnvironments as cloud providers, where resource characteristics vary according to

the offerings of a specific cloud provider. The Increment Cloud Resources Model also

allows to describe Subscription information (e.g. Credentials, Parameters), which is used

to manage the provisioning and deployment.

After specifying cloud resources requirements, cloud developers execute the M2T trans-

formations that use as input the Increment Cloud Resources Model to generate Deployment

Scripts (see outputs of this activity in Figure 1) not only specific for the cloud environ-

ment(s) chosen for deployment, but also according to the architecturalImpact specified for

Participants and Service Contracts during the Increment Integration Specification activity.

For example, scripts will include instructions to deploy packages when architecturalIm-

pact = Add, and instructions to undeploy when architecturalImpact = Delete. Cloud pro-

viders allow developers to provision resources or deploy services by executing scripts (or

using APIs). However, according to what we have experienced when deploying services,

01. rule ParticipantUse2Implementation { -- Create a Implementation project (and related elements) per ParticipantUse

02. from

03. ParticipantInput : eiam!ParticipantUse(

04. ParticipantInput.elasticityLevel = 4) -- Filter elements whose elasticityLevel = high (4)

05. to

06. implementation : cam!ImplementationProject(-- Crate an Implementation Project

07. name <- ParticipantInput.name, -- Assign the Participant name to the Project name

08. belongsToParticipant <- ParticipantInput.participantType,

09. artifacts <- front, -- Create an Artifact FrontEndService

10. deployment <- thisModule.resolveTemp(-- Assign Implementation Project to Participant’s Deployment project

11. ParticipantInput.participantType, 'DeploymentProject')),

12. front : cam!FrontEndService(-- Create a FrontEndService element

13. serviceProject <- implementation),

14. configimplement : cam!DynamicConfiguration(-- Create a DynamicConfiguration element

 Zuñiga-Prieto et al.

developers are not asked to provide detailed information about resources they need to pro-

vision; instead they create predefined cloud environment instances. For example, instead

of creating a virtual machine (IaaS_Computing) with 2GB of memory, two cores and

PaaS_OS Windows; developers create a predefined small virtual machine. Even though

the Increment Cloud Resources Model describe detailed resources’ characteristics, the

mapping to a specific predefined instance is done when defining the transformation rules.

The later avoid architects to have to know the predefined cloud environment instances of-

fered by a cloud provider. Instead the model transformation process finds the instance that

best fit the resource requirements that were specified in the Increment Cloud Resources

Model, then generates the script to create that instance.

Figure 3. Excerpt of Increment Cloud Resources Model metamodel

3.3.2 Architectural Reconfiguration

Architectural reconfiguration is achieved by deploying/removing services, and by

changing service dependencies at run time. After executing the deployment scripts the

Cloud Artifacts Model is updated with information about EndPoints that will use services

to expose their functionalities as well as to invoke other services. Then, cloud developers

execute M2T transformations that generate scripts with which to reconfigure the

application architecture, which use the architecturalImpact specified for RoleBindings

during the Increment Integration Specification activity to dynamically update EndPoints

information stored in the service configuration files.

Finally, the EIAM and the Increment Cloud Artifacts Model are used as the input for the

M2M transformations that update both the current Application Architecture Model and the

Application Cloud Artifacts Model by integrating the increment corresponding architec-

tural elements and cloud artifact descriptions (see outputs of this activity in Figure 1).

4 ILLUSTRATIVE EXAMPLE

In this section, we describe the main DIARy artifacts and activities through an illustrative

 Zuñiga-Prieto et al.

example. A manufacturing company wishes to improve the technological support given to

its dealers, and is considering updating its already existing manufacturer service by

including new functionalities which will allow dealers to place production orders and get

their products shipped through a third-party shipping service. This illustrative example has

been adapted from the examples included in the SoaML documentation [18], and which

are widely used/adapted in proposals that refer to SoaML.

First, In the Increment Integration Specification activity, architects take as input the

IAM and the current Application Architecture Model and generate EIAM as output. These

models are built by using SoaML and the DIARy-specification-profile, respectively. The

integration logic is specified by refining existing ServiceContract elements of the IAM or

by creating new ones, while architectural impact is defined by tagging the architectural

elements of the IAM according to their architecturalImpact on the current Application Ar-

chitecture Model (see the training material provided in [22] for a detailed explanation). In

this example, the IAM includes only the Shipper service design, therefore a ServiceCon-

tract that describe interaction/integration must be created.

Figure 4a shows the generated EIAM, where, in order to integrate a new service (pro-

vided by a Shipper) the interoperation protocol with services already existing in the current

Application Architecture Model must be replaced with the new versions of the services.

Therefore the PlaceOrder ServiceContract must be deleted and a new ServiceContract (Pla-

ceOrderWithShipping) that define the integration of the new service with the already ex-

isting services must be added. Additionally the Manufacturer logic must be modified in

order to implement interfaces that allow interaction with the new Shipper service. Finally,

The Dealer, which is the participant who initiates the interaction must change its depend-

encies to point to the new interoperation/integration service (OrderWithShiping), therefore

the architecturalImpact of its RoleBindigs with the actual interoperation/integration ser-

vice (PlaceOrder) must be deleted; whereas RoleBindings with OrderWithShipping are

added. The requirements of workload change management for OrderWithShipping are

ElasticityLevel = High.

During the Increment Implementation activity developers use the Eclipse plug-in pro-

vided as support for this activity in order to execute M2M transformations that generate

the Increment Artifacts Model (Figure 4b) from the EIAM, then complete this model by

providing Project information related to the packing structure. Elasticity level require-

ments of Shipper and interaction/integration services1 were High, therefore Artifacts re-

lated to each service were placed in an exclusive project and will be deployed inde-

pendently. Our deployment platform was Windows Azure, therefore we use Visual Studio

2013 as the development platform. We define M2T ATL Transformations that generate

Implementation Code corresponding to Interaction Protocol (Figure 4d). This transfor-

mation take as input the interaction protocol specified as a sequence diagram (described as

the inner part of the ServiceContract) and generate as output the choreography to be de-

ployed as an Azure workflow WCF service. With regards to configuration files, infor-

mation related to EndPoints was manually modified in Visual Studio 2013 according to the

Increment Cloud Artifact Model description.

1 The interaction/integration among services is handled by a new Interaction/Integration service which is

specified as ServiceContracts among participants.

 Zuñiga-Prieto et al.

For the deployment, we model the resources to support the increment as instances of

the Increment Cloud Resources Model metamodel (see Figure 4c). We specify the cloud

resource requirements of the Shipper and OrderWithShipping services. We generate the

deployment scripts through an Acceleo (http://www.eclipse.org/acceleo/) M2T transfor-

mation that takes as input this Increment Cloud Resources Model.

Figure 4. DIARy method main transformation chain; excerpts of: a) Extended Increment

Architecture Model, b) Increment Cloud Artifacts Model, c) Increment Cloud Resources

Model, d) generated artifacts and models update

In this example reconfiguration takes place by deploying new services and updating

dependencies among services which are included in services' configuration files. During

the Architectural Reconfiguration, we use Acceleo in order to obtain these Reconfiguration

Scripts that update services' configuration files (see Figure 5). We generated XML Docu-

ment Transform (XDT) files used in Visual Studio to modify service configuration files

while the deployment takes place. Figure 5 (lines 12, 13, 14) shows an example of the

b)

a)

M2M

M2M

Update Current Application models:

App. Architecture Model

App. Cloud Artifacts Model

d)
Implementation Code:

Interaction Protocol

Cloud Adaptors

Services’ logic/skeletons

Building/Packing Scripts

Deployment scripts:

Infrastructure Scripts

Deployment Scripts

M2MM2T

Reconfiguration scripts:

Reconfiguration Scripts

c)

http://www.eclipse.org/acceleo/

 Zuñiga-Prieto et al.

transformation rule applied to generate scripts that modify configuration information re-

lated to RoleBindings among services in accordance with architectural impact specification

(see artifactImpact of RoleBindings in Figure 4a). Finally, deployment and reconfiguration

scripts were executed.

Figure 5. Excerpt of M2T used to generate Reconfiguration Scripts

5 EMPIRICAL VALIDATION

This section presents a quasi-experiment, an empirical study aimed at testing descriptive

causal hypotheses about manipulable causes in which units (subjects) are not assigned to

conditions randomly [23], with the aim of analyzing the DIARy method for the dynamic

reconfiguration of cloud architectures triggered by the integration of new services into

cloud applications. One of the reasons for selecting a quasi-experiment for the validation

of DIARy is the absence of widely accepted and integrated methods that support the

dynamic reconfiguration of cloud service architectures due to adaptive changes. This fact

increases the difficulty to perform controlled experiments that compare DIARy with other

similar methods. The validation strategy is also intended to contribute to Software

Engineering through a well-defined validation framework that can be reused by other

researchers in the empirical validation of other architecture reconfiguration methods.

5.1 Experiment Planning

The quasi-experiment was designed following the guidelines proposed by [24]. According

to the Goal-Question Metric (GQM) paradigm [25], the goal of this quasi-experiment is to

analyze the DIARy method with the aim of evaluating the perceived ease of use, perceived

usefulness, and intention to use of this method from the point of view of a group of novel

software architects.

The research questions addressed by the experimentation are:

 RQ1: Is the DIARy method perceived as both easy to use and useful in the architectural

reconfiguration of cloud applications?

 RQ2: Is there an intention to use the DIARy method in the future?

The context of the experiment was determined by: i) the cloud application in which

cloud services will be integrated, and whose architecture will be dynamically reconfigured;

ii) the DIARy method activities to be evaluated in the quasi-experiment; and iii) the subject

selection. In this experiment we focus on a cloud application of a Reservation System,

based on the example presented in [26], which allows travel agencies to manage their cus-

tomers’ reservations. The experimental tasks consisted in the integration of the architecture

of an increment (i.e., Increment-1) in the existing architecture of the Reservation System.

01. [template public generateElement(aCloudArtifactsModel : CloudArtifactsModel)]

02. [for(InteractionProjects:InteractionProject | projects->select(oclIsTypeOf(InteractionProject)))]

03. [file (InteractionProjects.name.concat('/ServiceDefinicion.csdef'), false)]

04.

05. <?xml version="1.0" encoding="utf-8"?>

06. <ServiceConfiguration serviceName="[InteractionProjects.name/]" xmlns=“…" xmlns:xdt="http://.../XML-Document-Transform" >

07.

08. [for(IK:Invoked | InteractionProjects.interactionService.endpoints->select(oclIsTypeOf(Invoked)))]

09. <WebRole name="[InteractionProjects.name/]">

10. <ConfigurationSettings xdt:Transform="InsertIfMissing">

11.

12. [comment parseXDT executes a mapping between artifactImpact and XDT values /]

13. <Setting name="[IK.name.concat('_EndPoint')/]" [parseXDT(IK.artifactImpact)/]/>

14. <Setting name="[IK.name.concat('_Binding')/]" [parseXDT(IK. artifactImpact)/]/>

 Zuñiga-Prieto et al.

The goal was to modify the cloud application architecture due to the deployment of the

Increment-1 by incorporating a new actor, modifying the business logic of the existing

actors, and replacing the interaction protocol of the services in which the new actor is in-

volved. We provided an initial version of the system which was deployed in the Microsoft

Azure© cloud environment. The architecture of the system was initially composed of 5

services, 4 participants and 10 role bindings. The IAM (after applying the DIARy-specifi-

cation-profile on it) corresponding to Increment-1 consisted of 1 service, 3 participants,

and 3 role bindings. We included as experimental tasks only the DIARy method tasks re-

quired to obtain the reconfiguration scripts that change links among services at runtime

since this quasi-experiment context is the architectural reconfiguration of cloud applica-

tions. The participants worked with the integration scenario, performing tasks that sup-

ported both the Increment Integration Specification of the Increment-1, and the Generation

of the Reconfiguration Scripts needed to reconfigure the Reservation System architecture

at run-time. Once reconfigured, the behavior of the system changed, due to the addition of

the new actors and the changes performed in the interaction protocol.

We focus on a novel architect profile since one of our goals is to provide a reconfigura-

tion method suitable to support inexperienced architects while performing dynamic recon-

figuration activities. The quasi-experiment was executed in an academic environment with

subjects selected by convenience from two research groups at the Universitat Politècnica

de València, with experience on modeling and/or web services development (their profiles

are shown in Table 1) and whose participation was voluntary.

Table 1. Participant Profiles

Profile Description

PRO1 PhD students all currently working on research topics related to various areas of SE.

PRO2 PhD students all currently working on research topics related to various areas of Computer Science

PRO3 Master students all currently working on research topics related to various areas of SE.

PRO4 Undergraduate students all currently working on research topics related to various areas of SE.

We defined three subjective dependent variables based on the Technology Acceptance

Method (TAM) [27], which is a theoretical model for analyzing user acceptance and usage

behavior of emerging information technologies [28]; its primary constructs are the follow-

ing subjective variables:

 Perceived Ease of Use (PEOU), which refers to the degree to which evaluators believe

that learning and using a particular method will be effort-free.

 Perceived Usefulness (PU), which refers to the degree to which evaluators believe that

using a specific method will increase their job performance within an organizational

context.

 Intention to Use (ITU), which refers to the extent to which an evaluator intends to use

a particular method. This last variable represents a perceptual judgment of the method’s

efficacy – that is, whether it is cost-effective and is commonly used to predict the

likelihood of acceptance of a method in practice.

We relied on an existing measurement instrument to measure the subjective variables,

the Method Evaluation Model (MEM) [29] which is based on TAM; although we adapted

it (basically by rewording statements) for use in the context of a dynamic architecture re-

configuration processes and to operationalize TAM. The measurement instrument was a 5-

 Zuñiga-Prieto et al.

point Likert scale questionnaire with a set of 15 closed questions: 5 for PEOU, 7 for PU,

and 3 for ITU, formulated by using a 5-point Likert scale. The aggregated value of each

subjective variable was calculated as the arithmetical mean of the answers to the questions

associated with each subjective dependent variable. The order of the questions in this ques-

tionnaire was shuffled in order to prevent systemic response bias, and were formulated to

become negative statements on the left-hand side to avoid monotonous responses [30].

We also defined two performance-based variables to measure subjects’ actual effective-

ness (number of correctly specified architectural changes (as being coherent with the inte-

gration scenario defined in the booklet) and actual efficiency (ratio between the number of

correctly specified architectural changes and the total time spent on their specification.)

when applying the DIARy method. Finally, the questionnaire also contained three open-

questions in order to obtain feedback from the participants.

The likelihood of acceptance of a dynamic architecture reconfiguration method that sup-

port the integration of new services in practice can be predicted by testing the following

hypotheses:

 H10: The DIARy method is perceived as difficult to use. H11=¬H10.

 H20: The DIARy method is perceived as not useful. H21=¬H20.

 H30: There is no intention to use the DIARy method in the future. H31=¬H30.

Other factors may have an effect on the variables under study such as the actors back-

ground: the previous experience of participants on topics related to software modeling and

web services development may affect the perceptions and performance when applying the

process. We defined three factors: i) modeling experience (ExpModeling), ii) experience

on services development (ExpServ), and iii) experience using UML (YearsUML) to analyze

such effects.

ExpModeling and ExpServ was collected by using pre-experiment questionnaire with

open and 5-point Likert scale questions. ExpModeling and ExpServ were defined as

YES/NO factors, calculated as the arithmetic mean among responses to questions related

to each factor. We considered that a subject has experience if his/her calculated arithmetic

mean value is greater or equal to the 2.5. The number of years using UML (open question)

was used to calculate the factor YearsUML (i.e., the YES/NO value was calculated through

the Boolean expression YearsUML>=3).

5.2 Experiment Preparation and Execution

The experiment was planned to be conducted on two sessions. On the first day, a training

session of 150 minutes was performed before the experimental session, the goal of this

training session was to present the topics described in Table 2. The execution of the

experimental took place on the second day. The experimental session had an expected

duration of 45 minutes, however the subjects were allowed to finish the experiment even

when the 45 minutes was over in order to mitigate the possible ceiling effect [31]. The

experimental session consisted on two tasks, whose details are summarized in Table 2.

Multiple documents were designed as instrumentation for the quasi-experiment (avail-

able for download at [22]). The documentation of the experimental tasks included: i) a

booklet that contains the description of the Reservation System integration scenario and the

tasks to be performed by the subjects; ii) an annex with the Reservation System’s Current

 Zuñiga-Prieto et al.

Architecture Model; iii) an annex with the Increment Integration Specification Guidelines;

iv) a Response Sheet that contains the IAM after applying the DIARy-specification-profile,

which subjects had to complete as they specify the increment integration by executing the

Task 1; and v) the Cloud Artifacts Model Editor prototype which was used by subjects to

update the Increment Cloud Artifacts Model and to generate reconfiguration scripts in Task

2. The training material consisted of a set of slides containing the description of the DIARy

method and the use of the DIARy-specification-profile. Before the training and the experi-

mental session, we executed a pilot study with an expert in software architectures and his

observations were taken into account to improve both the experiment design and the ex-

perimental material.

Table 2. Schedule of the Quasi-Experiment

Session Task

Training

session

(150 min)

Basis on software architectures and architectural reconfiguration methods

Notations to describe service architectures and SoaML

DIARy method overview

Training in the DIARy method activities

Experiment

session

(45 min)

Demographic & Background pre-experiment questionnaire

Task 1: Specify Increment Integration

Task 1.1: Identification of the architectural elements of the current architecture that will be

affected by integration.

Task 1.2: Specification of the architectural changes that integration will produce over the

current architecture. For each element in the IAM subjects specified how will affect the

Current Architecture Model.

Task 1.3: Specification of how the changes on services workload is expected to be managed

Task 2: Reconfigure Architecture

Task 2.1: Update models with information about the endpoints used by orchestration

services to expose their operations. The participants accessed to the Microsoft Azure

Management Portal to obtain information of deployment of the new Reservation System’s

orchestration service and updated the corresponding configuration elements (Exposed

EndPoints) of the Cloud Artifact Model

Task 2.2: Update the models with information about the endpoints used by services to

invoke operations of their related services. The participants accessed to the Microsoft Azure

Management Portal to obtain information of deployment of the service that initiate the

interaction and updated the corresponding configuration elements (Invoked Endpoints) of

the Cloud Artifact Model.

Task 2.3: Generate the dynamic reconfiguration scripts and verification of the correctness

of the reconfiguration script generated based on the increment integration specification

(Task 1) and deployment information (Task 2.2 and Task 2.3).

Task 2.4: Modify the architecture of the cloud application in the Windows Azure cloud

environment by using the reconfiguration script. Reconfigure the actual running Reservation

System`s architecture by changing links among services.

Evaluation Questionnaire.

The quasi-experiment was held with one group of twenty computer science students: 9

PhD-level students with profile PRO1, 6 PhD-level students with profile PRO2, 2 master-

level students with profile PRO3, and 3 undergraduate-level students with profile PRO4.

The quasi-experiment took place in a single room, and no interaction between subjects was

allowed. The conductors of the experiment clarified the questions and doubts of the sub-

jects that arose during the experimental session.

Data for this quasi-experiment were collected during the execution of the DIARy

method activities by using the Response Sheet (for Task 1) and the Cloud Artifacts Model

 Zuñiga-Prieto et al.

Editor as well as the Microsoft Azure© cloud environment (for Task 2). Each participant

was handling the reconfiguration a different service instance, in order to avoid cross effects

due to the modifications of the service. The participants used the booklet to log the start

and finish time of each task.

5.3 Data Analysis

The data analysis was performed by using the SPSS v.20 statistical tool for Windows with

an 𝛼 = 0.05. In this analysis, we used descriptive statistics and statistical tests to analyze

the collected data.

First, we performed an analysis of the responses to the pre-experiment questionnaire

concerning to participants’ background (knowledge and experience in modeling and web

service development). Almost all subjects (90% of the subjects) possessed knowledge

about UML and had some basic knowledge about service-oriented architecture modeling.

With regard to knowledge in software development by applying cloud related development

approaches, 75% of the subjects had developed web services and just 13% of them had

deployed web services on cloud environments.

5.3.1 Qualitative Analysis

In order to analyze the effect that ExpModeling, ExpServ, and YearsUML may have on

dependent variables, we performed the non-parametric Mann-Whitney test since these

three variables (i.e., PEOU, PU and ITU) are measured by using aggregation of ordinal

data (i.e., the average of various Likert scales). Table 3 shows the results of this test, which

allowed us to verify that the ExpModeling, ExpServ, and YearsUML factors had no

statistically significant effects on the subjective variables under study.

Table 3. ExpModeling, ExpServ, and YearsUML effect test results

 Factor

Variable ExpModeling ExpServ YearsUML

PEOU 0.238 0.358 0.261

PU 0.624 0.440 0.131

ITU 0.238 0.358 0.080

Table 4 shows a summary of the overall results for the subjective variables per factor.

Table 4. Descriptive Results per ExpModeling, ExpServ, and YearsUML

 Variable

 PEOU PU ITU

Factor Level 𝑿̃ 𝝈𝟐 𝑿̃ 𝝈𝟐 𝑿̃ 𝝈𝟐

ExpModeling
No Exp. 4.000 0.578 4.357 0.328 4.667 0.717

Exp. in UML 4.400 0.297 4.357 0.218 4.667 0.183

ExpServ
No Exp. 4.200 0.487 4.429 0.296 4.667 0.604

Exp. in Serv. 3.400 0.520 3.857 0.048 4.000 0.148

YearsUML
<3 4.000 0.556 4.286 0.337 4.333 0.735

>=3 4.400 0.378 4.429 0.158 4.667 0.151

We used the median and variance deviations as descriptive statistics for qualitative sub-

jective variables PEOU, PU, and ITU. It can be noticed that all the variables are on average

bigger than the Likert’s scale neutral value equals to 3, meaning that, under the experi-

mental conditions, the method is perceived as easy to use and useful and that the subjects

show certain intention to use DIARy in the future.

 Zuñiga-Prieto et al.

It can be also noted that for the ExpModeling and YearsUML factor the values of each

variable (PEOU, PU, ITU) are better for the more experienced participants, whereas for

the ExpServ factor, we observe better values for the less experienced participants.

We checked the statistical significance of the results by performing the one-tailed one-

sample Wilcoxon test with a test value equal to three for each group (see Table 5). For

every variable, the results were found to be statistically significant in each sub-group, ex-

cept for the participants with experience in service development. This is probably owing

to the fact that the number of subjects in this group is low (i.e. N=3). We executed the one-

tailed one-sample Wilcoxon test for the whole set of participants (N=20) in order to verify

whether the data can be considered significant since there were no statistical differences

among populations. The results of the test were p-value=0.000 for the three variables, then

these results can be considered to be statistically significant for the population as a whole.

Table 5. One-Tailed One-Sample Wilcoxon Test Results

Variable
ExpModeling ExpServ YearsUML

No Exp.N=12 Exp N=8 No Exp.N=17 Exp.N=3 <3N=11 >=3N=9

PEOU 0.011 0.011 0.001 0.180* 0.014 0.012

PU 0.003 0.012 0.000 0.109* 0.004 0.008

ITU 0.004 0.011 0.001 0.102* 0.008 0.007
* Not statistically significant (p-value > 0.05)

The analysis of the open-questions’ responses revealed that the majority of the partici-

pants highlighted the reduction of the reconfiguration technical depth as reasons for the

adoption of DIARy in the future. However important issues which will allow us to improve

the DIARy method were exposed. Participants pointed the lack of automated support in

certain tasks. They recommended that the Cloud Artifacts Model Editor should be inte-

grated with cloud environments to collect the deployment information, and also the need

of an automated identification of architectural elements that already exist in the cloud ap-

plication to analyze the architectural impact.

5.3.2 Quantitative Analysis

Similar to the process carried out for analyzing the qualitative variables, we first analyzed

the effects that ExpModeling, ExpServ or YearsUML may have on the quantitative

variables. We applied the Shapiro-Wilk test to check whether the data was normally

distributed in order to select the statistical tests to be applied since the sample size was

smaller than 50. Effectiveness and Efficiency approaches a normal distribution (Shapiro-

Wilk 𝑝 − 𝑣𝑎𝑙𝑢𝑒  0.05) for each combination of groups and then the effect of

ExpModeling, ExpServ, and YearsUML can be analyzed using the three-way ANOVA test.

We carried out a three-way ANOVA test including ExpModeling, ExpServ, and YearsUML

as blocking variables to verify that there were no significant effects on the Effectiveness

and Efficiency variables (p-values  0.05). Table 6 summarizes the results for each variable

by factor. It can be observed that, on average, the participants with modeling experience

(ExpModeling and YearsUML>=3 years) obtained better results in terms of effectiveness

and efficiency. Effectiveness for participants with ExpModeling and YearsUML was 84%

and 85% respectively (measured by the correctness of the subject responses).

Regarding the experience on service development (i.e., ExpServ) it can be observed that

in average the no experienced participants obtained better results on terms of effectiveness

 Zuñiga-Prieto et al.

and efficiency than the experienced participants, although these differences were not found

to be statistically significant. This can be owing to the fact that the subjects work with

models at a high abstraction level which does not require high-level technical skills to ex-

ecute experimental tasks.

Table 6. Descriptive Statistics of the Quantitative Variables

 Variable

 Effectiveness Efficiency

Factor Level 𝒙̅ 𝝈 𝒙̅ 𝝈

ExpModeling
No Exp. 0.770 0.185 0.032 0.017

ExpModeling 0,839 0.171 0.035 0.013

ExpServ
No Exp. 0.818 0.175 0.035 0.016

ExpServ. 0.683 0.180 0.023 0.001

YearsUML
<3 0.758 0.193 0.036 0.019

>=3 0.847 0.154 0.030 0.010

5.4 Threats to the Validity

In this section, we analyze the main issues that may threatened the validity of the quasi-

experiment, by considering the four types of threats proposed in [32]:

Internal Validity: The main threats to the internal validity were: persistence effects,

participants’ experience and the understandability of the documents. In order to avoid

persistence effects, not only the cloud application used as part of integration scenario and

the one used as example in the training session belong to different domains but also the

architectural changes they suffered due to integration of new services were different. The

participants’ experience threat was mitigated by defining a Pre-experiment questionnaire

to analyze the possible differences between experienced and non-experienced subjects.

This allowed us to reject the possible impact that the factor background may have on the

variables under study. Even tough participants were students at the moment of the

experiment, under certain conditions, there is no great difference between students and

professionals [33], and they could be considered as the next generation of professionals

[34]; therefore we believe that their ability to understand architectural models, service

development principles, and to evaluate dynamic architecture reconfiguration processes

can be comparable to that of typical novice practitioners. Finally, the understandability of

the material was minimized by clearing up all of the misunderstandings that appeared in

the experimental session; the materials were also reviewed by a research group member

(not part of experimenters) but also by an expert in software architectures who did the pilot

study prior to the experimental sessions.

External Validity: The main threat to external validity is the representativeness of the

results which might be affected by the design of the evaluation, the size and complexity of

the tasks, and the participant context selected. To alleviate this threat, we included in the

experiment only the most representative DIARy method tasks applied during the

deployment of new cloud services. The size and complexity of the tasks might also have

affected the external validity. We attempted to propose a set of experimental tasks with a

sufficient level of complexity, given the time constraints of the sessions. We have also

provided tool prototypes in order to facilitate the execution of tasks; however, to

completely address this issue we should integrate the provided tools fully integrated with

the cloud environment management system. With regard to the participants’ experience,

the quasi-experiment was conducted with students with certain knowledge about system

 Zuñiga-Prieto et al.

modeling and web services development. The preliminary results obtained could be only

considered to be representative for a model-driven development environment and with

populations composed of novice practitioners. However, as further work, we intend to

conduct more experiments involving to professionals, bigger groups and greater

homogeneity among them.

Construct Validity: The main threat to construct validity is to reflect how the metrics that

have been studied represent the goals of the researcher. The subjective variables are based

on the Technology Acceptance Method (TAM), which is a well-known and empirically

validated model for the evaluation of information technologies [27]. Thus, the main threat

is the reliability of the evaluation questionnaire. We carried out a Cronbach's alpha test for

each set of questions related to each subjective variable. The results of the Cronbach

reliability test were greater than the minimum acceptance threshold α > 0.70 [35] (i.e.,

PEOU_ α =0.844, PU_ α=0.781, ITU_ α=0.747).

Conclusion Validity: The main threats to the conclusion validity is the validity of the

statistical tests applied. We reduced this threat by applying a set of commonly accepted

tests that are employed in the empirical SE community [35].

6 CONCLUSIONS AND FUTURE WORK

The reconfiguration of cloud service architectures triggered by the integration of new

services in cloud environments introduces a number of challenges. In particular, the high-

availability required for cloud applications implies that this reconfiguration should be done

while the application is in execution. In this paper, we presented i) an improvement of the

DIARy method that allows developers to specify new services as software increments, and

ii) the tool support to generate the implementation code for the services integration logic

and the deployment and reconfiguration scripts specific to the cloud environment in which

the service will be deployed. We also introduced the results of a quasi-experiment aimed

at evaluating the perceived ease of use, perceived usefulness, and intention to use of a group

of participants that applied the DIARy method, as well as the participants’ performance.

The main results indicated that under the experimental conditions the DIARy method is

perceived to be ease of use, useful, and likely to be used, independently of the participants’

background. Participants with experience in modeling and those with less experience in

service development perceived the method as easier to use and useful, and they showed

more intention to use it in the future. To the best of our knowledge, this is the first empirical

study that provides evidence of the usefulness of the dynamic reconfiguration process for

supporting the incremental implementation and integration of software increments into

existing cloud applications.

We also identified some limitations. Architectural reconfiguration is achieved by de-

ploying/redeploying services and by updating dependencies among them; however, it is

not always feasible to redeploy a service when it has running instances. This is a challeng-

ing task, especially if those instances are running of different cloud providers since they

offer different mechanisms to manage instances. The instance management of the proposed

method is in initial stage and does not support the management of instances of services

running on different cloud environments. Additionally, some specific resource character-

istics offered by a cloud provider might not be used efficiently due to some resource char-

 Zuñiga-Prieto et al.

acteristics are abstracted in our models, making unable to take advantage of some proprie-

tary advanced characteristics. Fortunately, the model-driven approach followed by our

method enables us to abstract the instance management mechanisms, as well as to describe

some proprietary advanced characteristics at a detailed level. In addition, our method may

have impact in both research and industry because it provides mechanisms to deal with the

integration impact of cloud architectures at a high abstraction level and tools to automate

the process. Currently, we are investigating how to adopt the DevOps paradigm. This par-

adigm will allow us to move from an incremental integration to a continuous integration

approach joining development and operations activities, as well as, to define a comprehen-

sive view of the tool chaining needed. We are also exploring the impact of other architec-

tural styles, such as microservices. As future work, we plan to study and implement the

transformation code to support other cloud environments, such as Google App Engine or

Amazon EC2. We also plan to better integrate and package our different Eclipse plugins

into a standalone application. Regarding the empirical validation, we plan to conduct rep-

lications of the quasi-experiment by considering homogenous groups with a larger number

of subjects and different experimental objects in order to improve the representativeness of

our results. We also plan to conduct other empirical studies, such as industrial case studies,

to gather empirical evidence from practitioners of the actual feasibility of the approach.

ACKNOWLEDGEMENTS

This research is supported by the Value@Cloud project (MINECO TIN2013-46300-R),

DIUC_XIV_2016_038 project, and the Microsoft Azure Research Award.

REFERENCES

1. Lane, S., Gu, Q., Lago, P., Richardson, I.: A Pragmatic Approach for Analisys and Design of Service

Inventories. Service Oriented Computing and Applicat. pp. 1–19 (2013).

2. Motta, G., Sfondrini, N., Sacco, D.: Cloud Computing: An Architectural and Technological Overview,

International Joint Conference on Service Sciences (IJCSS). pp. 23–27. IEEE, Shanghai (2012).

3. Chhabra, B., Verma, D., Taneja, B.: Software Engineering Issues from the Cloud Application

Perspective. Int. J. Inf. Technol. Knowl. Manag. 2, 669–673 (2010).

4. Breivold, H.P., Crnkovic, I., Radosevic, I., Balatinac, I.: Architecting for the Cloud: A Systematic

Review. 17th International Conference on Computational Science and Engineering. pp. 312–318. IEEE

(2014).

5. Zuñiga-Prieto, M., Abrahao, S., Insfran, E.: An Incremental and Model Driven Approach for the

Dynamic Reconfiguration of Cloud Application Architectures. 24th International Conference on

Information Systems Development (ISD) Harbin, China, (2015).

6. Zuñiga-Prieto, M., Gonzalez-Huerta, J., Abrahao, S., Insfran, E.: Towards a Model-Driven Dynamic

Architecture Reconfiguration Process for Cloud Services Integration. 8th International Workshop on

Models and Evolution (ME@ MoDELS). pp. 52–61 (2014).

7. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: Developing Migratable Multicloud Applications based

on MDE and Adaptation Techniques. Proceedings of the Second Nordic Symposium on Cloud

Computing & Internet Technologies. 30–37 (2013).

8. Frey, S., Hasselbring, W.: The CloudMIG Approach: Model-Based Migration of Software Systems to

Cloud-Optimized Applications. International Journal on Advances in Software,. 4, 342–353 (2011).

9. Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., Mohagheghi, P., Mosser, S., Matthews, P., Gericke, A.,

Ballagny, C., D’Andria, F., Others: MODACLOUDS : A Model-Driven Approach for the Design and

Execution of Applications on Multiple Clouds. Proceedings of the 4th International Workshop on

Modeling in Software Engineering. pp. 50–56 (2012).

10. Bergmayr, A., Troya, J., Neubauer, P., Wimmer, M., Kappel, G.: UML-based Cloud Application

Modeling with Libraries, Profiles, and Templates. In CloudMDE@MoDELS. pp. 56–65 (2014).

 Zuñiga-Prieto et al.

11. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: A UML Profile for Modeling Multicloud Applications.

European Conference on Service-Oriented and Cloud Computing. pp. 180–187 (2013).

12. Brandtzæg, E., Mosser, S., Mohagheghi, P.: Towards CloudML, a Model-based Approach to Provision

Resources in the Clouds. 8th European Conference on Modelling Foundations and Applications

(ECMFA). pp. 18–27 (2012).

13. Chef Software, I.: DevOps and the Cloud: Chef and Microsoft Azure (2015).

14. Meireles, F., Malheiro, B.: Integrated Management of IaaS Resources. European Conference on Parallel

Processing. pp. 73–84. Springer International Publishing (2014).

15. Newman, S.: Building Microservices. O’Reilly Media, Inc. (2015).

16. Brogi, A., Ibrahim, A., Soldani, J., Carrasco, J., Cubo, J., Pimentel, E., D’Andria, F.: SeaClouds: A

European Project on Seamless Management of Multi-Cloud Applications. ACM SIGSOFT Softw. Eng.

Notes. 39, 1–4 (2014).

17. Jamshidi, P., Ghafari, M., Ahmad, A., Pahl, C.: A Framework for Classifying and Comparing

Architecture-Centric Software Evolution Research. 17th European Conference on Software

Maintenance and Reengineering. pp. 305–314. IEEE, Genova (2013).

18. OMG: Service Oriented Architecture Modeling Language (SoaML)-Specification for the UML Profile

and Metamodel for Services (UPMS), (2008).

19. Zuñiga-Prieto, M., Insfran, E., Abrahao, S.: Architecture Description Language for Incremental

Integration of Cloud Services Architectures. IEEE 10th Symposium on the Maintenance and Evolution

of Service-Oriented Systems and Cloud-Based Environments (MESOCA), Raleigh, USA (2016).

20. Costa, B., Pires, P.F., Delicato, F.C., Merson, P.: Evaluating REST Architectures-Approach, Tooling

and Guidelines. J. Syst. Softw. 112, 156–180 (2014).

21. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation. Pearson Education (2010).

22. Zuñiga-Prieto, M.: DIARy-Method: Experimental Material, http://thediarymethod.azurewebsites.net/.

23. Shadish, W.R.., Cook, T.D., Campbell, D.T.: Experimental and Quasi-Experimental Designs for

Generalized Causal Inference. Houghton Mifflin Company, Boston, ME, USA (2002).

24. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in

Software Engineering. Springer Heidelberg (2012).

25. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. Encyclopedia of

Software Engineering. pp. 1–10. Wiley (1994).

26. SOFTEAM R&D web-site: Full SoaML Tutorial - BPMN, SoaML, BPEL Transformation,

http://rd.softeam.com/demos/soaml/.

27. Davis, F.F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information

Technology. MIS Q. 13, 319–340 (1989).

28. Venkatesh, V.: Determinants of Perceived Ease of Use : Integrating Control , Intrinsic Motivation , and

Emotion into the Technology Acceptance Model. Inf. Syst. Res. 11, 342–365 (2000).

29. Moody, D.L.: Dealing with Complexity: a Practical Method for Representing Large Entity Relationship

Models, (PhD Thesis), University of Melbourne (2001).

30. Hu, P.J., Chau, P.Y.K., Liu Sheng, O.R., Tam, K.Y.: Examining the Technology Acceptance Model

Using Physician Acceptance of Telemedicine Technology. J. Manag. Inf. Syst. 16, 91–112 (1999).

31. Sjøberg, D., Anda, B., Arisholm, E., Dyba, T., Jørgensen, M., Karahasanovic, A., Vakác, M.: Challenges

and Recommendations When Increasing the Realism of Controlled Software Engineering Experiments.

In: Empirical Methods and Studies in Software Engineering. pp. 24–38 (2003).

32. Cook, T., Campbell, D.: Quasi-experimentation: Design & Analysis Issues for Field Settings. Houghton

Mifflin Company (1979).

33. Höst, M., Regnell, B., Wohlin, C.: Using Students as Subjects—A Comparative Study of Students and

Professionals in Lead-Time Impact Assessment. Empir. Softw. Eng. 5, 201–214 (2000).

34. Kitchenham, B.A., Pfleeger S.L., Pickard L.M., Jones P.W., Hoaglin D.C., El Eman K., Rosenberg J.:

Preliminary Guidelines for Empirical Research in Software Engineering. Softw. Eng. IEEE Trans. 28,

721–734 (2002).

35. Maxwell, K.: Applied Statistics for Software Managers. Prentice Hall (2002).

