Document downloaded from:

http://hdl.handle.net/10251/151166

This paper must be cited as:

Delgado Garrido, O.; Sánchez Pérez, EA. (2017). Erratum to: Strong extensions for q-summing operators acting in p-convex Banach function spaces for $1 \le p \le q$. Positivity. 21(1):513-515. https://doi.org/10.1007/s11117-017-0473-1

The final publication is available at https://doi.org/10.1007/s11117-017-0473-1

Copyright Springer-Verlag

Additional Information

ERRATUM TO: STRONG EXTENSIONS FOR q-SUMMING OPERATORS ACTING IN p-CONVEX BANACH FUNCTION SPACES FOR $1 \le p \le q$ ". WEAK* COMPATNESS OF THE CLOSED UNIT BALL OF A KÖTHE DUAL SPACE

O. DELGADO AND E. A. SÁNCHEZ PÉREZ

ABSTRACT. Let X be a saturated Banach function space and denote by X' its Köthe dual. In the paper [1] referenced in the title, emulating what happens with the weak* topology of the topological dual of X, it is used that the closed unit ball $B_{X'}$ of X' is compact for the topology $\sigma(X', X)$ on X' defined by the elements of X. The purpose of this note is to clarify that this fact could be not true in general if X is not σ -order continuous.

Banach function space, Köthe dual, weak* compactness, $\sigma\text{-}\text{order}$ continuity 46B50 and 46E30 and 46B42

1. Notation

Let (Ω, Σ, μ) be a σ -finite measure space and denote by $L^0(\mu)$ the space of real measurable functions defined on Ω , where functions which are equal μ -a.e. are identified. Consider a saturated Banach function space X, that is, a Banach space contained in $L^0(\mu)$ with norm $\|\cdot\|_X$ satisfying

- (i) $f \in L^0(\mu)$, $g \in X$ and $|f| \le |g|$ μ -a.e. implies $f \in X$ with $||f||_X \le ||g||_X$.
- (ii) There is no $A \in \Sigma$ with $\mu(A) > 0$ such that $f\chi_A = 0$ μ -a.e. for all $f \in X$.

In particular X is a Banach lattice with the μ -a.e. pointwise order. The space X is called σ -order continuous if for every $(f_n) \subset X$ with $f_n \downarrow 0$ μ -a.e. it follows that $||f_n||_X \downarrow 0$. If $||f_n||_X \uparrow ||f||_X$ whenever $0 \leq f_n \uparrow f$ μ -a.e. with $f \in X$ then X is said to be order semi-continuous.

The σ -order continuous part X_a of X is defined as the largest σ -order continuous closed solid subspace of X and can be described as

$$X_a = \{ f \in X : |f| \ge f_n \downarrow 0 \text{ implies } ||f_n||_X \downarrow 0 \}.$$

Note that X_a could be the trivial space as in the case of $X = L^{\infty}(\mu)$ when μ is nonatomic. The space X_a is a saturated Banach function space with the norm of X if and only if there exists some $f \in X_a$ such that f > 0 μ -a.e. Such a function f is called a weak unit.

²⁰¹⁰ Mathematics Subject Classification. 46A50.

Key words and phrases. Graph distance, fraud detection, quasi-pseudo-metric, concentration of mass.

The first author gratefully acknowledges the support of the Ministerio de Economía y Competitividad (project #MTM2015-65888-C4-1-P) and the Junta de Andalucía (project FQM-7276), Spain. The second author acknowledges with thanks the support of the Ministerio de Economía y Competitividad (project #MTM2012-36740-C02-02), Spain.

The Köthe dual X' of X is defined as the space of functions $g \in L^0(\mu)$ such that $\int |fg| d\mu < \infty$ for all $f \in X$. The space X' is a saturated Banach function space with norm

$$||g||_{X'} = \sup_{f \in B_X} \left| \int fg \, d\mu \right|$$

where B_X denotes the closed unit ball of X. Note that X is always contained in its Köthe bidual X'' and $||f||_{X''} \le ||f||_X$ for all $f \in X$. It is known that $||f||_{X''} = ||f||_X$ for all $f \in X$ if and only if X is order semi-continuous.

The space X' can be identified with a closed subspace of the topological dual X^* of X via the linear isometry $\eta\colon X'\to X^*$ given by $\langle \eta(g),f\rangle=\int fg\,d\mu$ for all $g\in X'$ and $f\in X$. The map η is surjective if and only if X is σ -order continuous.

For issues related to Banach function spaces see for instance [4, Ch. 15], considering the function norm ρ defined there as $p(f) = ||f||_X$ if $f \in X$ and $p(f) = \infty$ in other case.

2.
$$\sigma(X', X)$$
-compactness for $B_{X'}$

Let X be a saturated Banach function space and consider the weak* topology $\sigma(X',X)$ defined by X on its Köthe dual X', that is, the Hausdorff locally convex topology induced by the family of seminorms $\{p_f\}_{f\in X}$ on X' given by $p_f(g) = |\int fg \,d\mu|$ for $g\in X'$. Through all the recently published paper [1] referenced in the title, the fact that the closed unit ball $B_{X'}$ of X' is $\sigma(X',X)$ -compact is used, but this is not in general true. We only have to take $X=L^\infty(\mu)$ for which $X'=L^1(\mu)$ and note that, by the Banach-Bourbaki theorem, $B_{L^1(\mu)}$ is not compact for the topology $\sigma(L^1(\mu), L^\infty(\mu))$.

However $B_{X'}$ is $\sigma(X',X)$ -compact whenever X is σ -order continuous, as in this case, since B_{X^*} is identified with $B_{X'}$ via the map $\eta^{-1}\colon X^*\to X'$ which is $\sigma(X^*,X)-\sigma(X',X)$ -continuous, we can apply the Banach-Alaoglu theorem. Therefore, requiring X to have the natural condition of σ -order continuity all the results in [1] hold.

A characterization of the weak* compactness of $B_{X'}$ follows as a particular case of a known result for Riesz spaces, see [3, Theorem 82G and Proposition 82B]. Namely, $B_{X'}$ is $\sigma(X', X)$ -compact if and only if

$$||f_n||_{X''} \downarrow 0$$
 whenever $(f_n) \subset X$ with $f_n \downarrow 0$ μ -a.e.,

that is, if and only if $X \subset (X'')_a$.

In the main results of the paper [1] the space X is also supposed to be order semi-continuous. Note that in this case, since $\|\cdot\|_X = \|\cdot\|_{X''}$ on X, the weak* compactness of $B_{X'}$ is equivalent to X being σ -order continuous.

Finally note that we can obtain compactness for $B_{X'}$ if we consider the topology on X' defined by the elements of X_a . Indeed, in the case when X_a has a weak unit we have that X_a is super order dense in X (see for instance [2, Lema 2.1]) and so it can be proved that $(X_a)' = X'$ with equal norms. Then, since X_a is σ -order continuous, it follows that $B_{X'}$ is $\sigma(X', X_a)$ -compact.

ACKNOWLEDGMENT

The authors would like to thank the referee for providing the reference [3].

References

- [1] O. Delgado and E. A. Sánchez Pérez, Strong extensions for q-summing operators acting in p-convex Banach function spaces for $1 \le p \le q$, Positivity **20** (2016), 999–1014.
- [2] O. Delgado and E. A. Sánchez Pérez, Optimal extensions for p-th power factorable operators, Mediterr. J. Math. 13 (2016), 4281-4303.
- [3] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, 1974.
- [4] A. C. Zaanen, Integration, 2nd rev. ed. North Holland, Amsterdam, 1967.

Olvido Delgado Departamento de Matemática Aplicada I, E. T. S. de Ingeniería de EDIFICACIÓN, UNIVERSIDAD DE SEVILLA, AVENIDA DE REINA MERCEDES, 4 A, SEVILLA 41012, Spain, and Enrique A. Sánchez Pérez Instituto Universitario de Matemática Pura y APLICADA, UNIVERSITAT POLITÈCNICA DE VALÈNCIA, CAMINO DE VERA S/N, VALENCIA 46022, ${\rm Spain},\ {\rm Tel.}\ 0034\text{-}963877660,\ {\rm Fax}.0034\text{-}963877669.$

 $E ext{-}mail\ address: olvido@us.es}$ $E ext{-}mail\ address: easancpe@mat.upv.es}$