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Abstract

Background: The breast dense tissue percentage on digital mammographies

is one of the most commonly used markers for breast cancer risk estimation.
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Geometric features of dense tissue over the breast and the presence of texture

structures contained in sliding windows that scan the mammographies may

improve the predictive ability when combined with the breast dense tissue

percentage.

Methods: A case/control study nested within a screening program covering

1563 women with craniocaudal and mediolateral-oblique mammographies

(755 controls and the contralateral breast mammographies at the closest

checkpoint before cancer diagnostic for 808 cases) aging 45 to 70 from Comunitat

Valenciana (Spain) was used to extract geometric and texture features. The

dense tissue segmentation was performed using DMScan and validated by

two experienced radiologists. A model based on Random Forests was trained

several times varying the set of variables. The dataset of 1172 patients was

evaluated with a 10-stratified-fold cross-validation scheme. The area under

the Receiver Operating Characteristic curve (AUC) was the metric for the

predictive ability. The results were assessed by only considering the output

after applying the model to the test set, which was composed of the remaining

391 patients.

Results: The AUC score obtained by the dense tissue percentage (0.55)

was compared to a machine learning-based classifier results. The classifier,

apart from the percentage of dense tissue of both views, firstly included global

geometric features such as the distance of dense tissue to the pectoral muscle,

dense tissue eccentricity or the dense tissue perimeter, obtaining an accuracy

of 0.56. By the inclusion of a global feature based on local histograms of

oriented gradients, the accuracy of the classifier was significantly improved

(0.61). The number of well-classified patients was improved up to 236 when
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it was 208.

Conclusion: Relative geometric features of dense tissue over the breast

and histograms of standardized local texture features based on sliding windows

scanning the whole breast improve risk prediction beyond the dense tissue

percentage adjusted by geometrical variables. Other classifiers could improve

the results obtained by the conventional Random Forests used in this study.

Keywords:

Breast density, Texture features, Cancer development risk, Breast Cancer

1. Background

Since the last quarter of the 20th century, thanks to Wolfe’s work [1], the

study of parenchymal breast patterns has become increasingly important in

the pursuit predicting the risk of developing breast cancer. Wolfe was one

of the main contributors in Mammographic Density (MD) based research.

This term is used to quantify the fibroglandular as opposed to fatty tissue

in the breast. It is considered to be among the strongest risk factors of

breast cancer, [2, 3]. Furthermore, the authors of a recent study [4] have

demonstrated that MD is an age-related feature which is highly consistent

across diverse groups of women worldwide, suggesting that it results from an

intrinsic mechanism common to women.

One way to measure MD is the well-studied percentage density (PD)

which is the fibroglandular tissue area FGTarea over breast area Barea ratio

FGTarea

Barea
. Boyd et al. in their work [5] concluded that PD is a factor to which

a substantial fraction of breast cancers can be attributed. Actually, women

with a percentage of dense tissue higher than 75% have four to six times

3



higher risk of developing the disease than similar aged women with lower

density [5–8].

The American College of Radiology Breast Imaging Reporting and Data

System (BI-RADS) has reported a breast classification based on density,

disposition, shape, and granularity of the dense tissue [9] suggesting that

geometric and texture patterns may influence in a better prediction of the risk

of developing the disease [10, 11]. This classification was probably motivated

by the influence of some authors that had already studied percentages of

dense tissue in different breast areas [12, 13], assuming that the distance of

this tissue to the pectoral muscle could influence the breast cancer development.

Previously to the aforementioned classification by BI-RADS, some features

based on texture approaches were explored, like the study of gray-level co-

occurrence matrices (GLCM) of neighboring pixels [14] or the analysis of the

relationship between PD and a range of texture features based on digital

mammography and Digital Breast Tomosynthesis (DBT) [15].

Numerous articles have emerged from this new approach, demonstrating

the importance and interest from the community to address this challenge

by adding new feature extraction methods based on parenchymal textures.

Nielsen et al. [16] defined a mammographic texture resemblance (MTR)

marker independent on PD which improved the prediction ability by the

combination of both features. In the case of Wang et al. [8], the baseline

was the estimation ability of a volume-based measure of fibroglandular dense

tissue (FGT), which was improved by the addition of gray-level co-occurrence

matrix (GLCM) texture features at low mammography resolutions. The

lattice-based method proposed by Zheng et al. [17] obtained texture features
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after splitting the images in a regular grid; the final features were a summary

(mean) of statistical and structural-based measures at different-sized windows.

Novel approaches based on deep learning have also been assessed. Among

them, we could highlight the work carried out by Kallenberg et al. [18] which

included an unsupervised autoencoder method to extract texture features not

only for risk scoring estimation but also for automatic breast segmentation.

The study of Gastounioti et al. [19] extended Zheng work [17] using convolutional

neural networks to lattice-based feature extraction.

The objective of this work is to improve the rate of risk breast cancer

estimation. To this end, we attempted to define global texture features

from both cranio-caudal (CC) and medio-lateral oblique (MLO) views which

summarize local texture structures from healthy breasts images according to

the hypothesis that they could improve the estimation of breast cancer risk

provided by PD only.

The paper is organized as follows: data description, preprocessing, feature

extraction and model development are presented in Section 2. Section 3

shows the experimental results on real images. Impact, contributions, limitations

and future work are presented in Section 4. Finally, a short conclusion is

drawn in Section 5.

2. Methods

2.1. Setting and study design

A 1:1 case/control study was designed using women recruited from 10

breast cancer medical centers, in and out of the screening program.The

acquisition devices for each center are shown in Table 1. Cases without
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pathological anatomy report, bilateral tumors or without mammography

were excluded from this study. A total of 1563 patients aging from 45 to

70 are paired in case/control couples so that each control was attempted to

be associated with a case by age and screening center. This pairing strategy

resulted in 808 cases of breast and 755 controls which is slightly unbalanced.

Nevertheless, the evaluation was designed to compensate for this imperfect

1-to-1 matching using stratified fold of case/control pairs (see section 3.1).

Each patient has both CC and MLO DICOM-formatted mammographies. If

available, for each case the contralateral mammography was taken from the

checkpoint previous to diagnostic. Otherwise, the contralateral mammography

to the one diagnosed with cancer from the closer previous checkpoint was

selected; Finally, if no previous mammography exists, then the contralateral

mammography at the diagnostic time was extracted. Please, note that

although they are called cases, the images come from breasts that are still

healthy.

Unit Mammography device

Castellón FUJIFILM

Fuente de San Luis FUJIFILM

Alcoi IMS s.r.l. / Giotto IRE (*)

Xàtiva FUJIFILM

Requena HOLOGIC / Giotto IRE (*)

Elda SIEMENS / Giotto IRE (*)

Elche FUJIFILM

Orihuela FUJIFILM

Denia IMS s.r.l. / Giotto IRE(*)

Serreŕıa (**)

Table 1: Screening units and their mammography devices. (*) implies the use of a new

device [Gioto IRE] since 2015. (**) the device is not known
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Mammographies were analyzed using DMScan [20, 21], the semi-automatic

thresholding segmentation produced by this tool was validated by two experienced

radiologists. The PD’s was obtained by the validation of the breast segmentations

provided by the two radiologists were highly correlated (0.807 and 0.894

Pearson’s correlation coefficients for CC and MLO views respectively). The

segmentation applied to each mammography is randomly taken among the

two available.

2.2. Data description

The variables which were progressively introduced into the model can be

classified as geometrical and textural.

2.2.1. Geometrical variables

In addition to the percentage of dense tissue, 22 geometrical features were

computed for each of the two available views of the mammographies. The

resolution variability produced by the use of different devices was normalized

by converting pixel (px) to millimeters (mm) with the DICOM metadata.

Breast and FGT area were obtained by counting the pixels contained in

the breast and FGT binary masks after image segmentation; these masks

were also used to compute the breast perimeter. The relation of the FGT

area over the breast area defined the PD. FGT morphology was introduced

by the calculation of the FGT perimeter, compactness, aspect ratio, and

eccentricity after reducing noise by the morphological opening operation

[22]. The position in millimeters of the FGT with respect to the breast

was obtained by the coordinates of the FGT center of mass taking as origin

the breast center of mass. We also characterized FGT distribution among
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the breast by the calculation of the PD into the five regions proposed by

Blot et al. [12] and Oliver et al. [13]. Lastly, we calculated the seven

FGT translation, scale and, rotation invariant moments defined by Hu [23]

as geometric features to be included in the study. The imaging preprocessing

steps carried out to extract geometrical variables are shown in figure 1.

2.2.2. Texture variables

We have built global texture features based on Histograms of Oriented

Gradients (HOG) [24]. They were extracted from the whole breast as a

single region by using squared different-sized windows to scan the breast and

to calculate the proposed textural features (G-HOGH) as a combination of

the local window-based HOG’s.

The DICOM images were resized so that each pixel covered 0.05 × 0.05

mm since this resolution was the most frequent in the dataset. Windows

sizes were selected taking into account the image area wanted to be covered,

24 × 24, 32 × 32, 64 × 64 and 128 × 128 pixel-sized windows were built to

analyze areas of 1.44, 2.56, 5.12 and 10.24 mm2 respectively. Only windows

with more than 40% of pixels belonging to the breast were considered.

HOG descriptors represent images taking into account the distribution of

the neighboring pixel gradients. The region of interest is divided into blocks,

which can overlap, and each block into cells, which are composed of pixels.

Each pixel is represented by a magnitude and an angle (m,α) computed from

the gradient using Sobel’s Operator [25]. Each cell produces a histogram with

a predefined number of bins covering the range of possible orientations ([0, π]

for unsigned gradients or [0, 2π] for signed gradients). For example, let’s

imagine 9 bins covered unsigned gradients.
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Figure 1: Imaging preprocessing steps for extraction of geometrical variables. (a) Original

image. (b) The breast and the FGT thresholding segmentation (blue and green lines

respectively); the breast and FGT area, the breast perimeter, the FGT center of mass,

and the distance to pectoral muscle is calculated from this information. (c) The FGT

region once opening algorithm was applied five times; FGT morphology features and Hu

moments were obtained from this image. (d) Regions at different distances to the breast

skin line were used to calculate PD in each region.
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The value of each bin is calculated as follows:

1. Each bin is represented by the first angle that it covers. For instance,

bin 0 represents angles between [0, 20).

2. Considering the pixel defined by (m,α), if α is equal to the name of a

bin then m is added to this bin, else m is balanced between this bin

and the following. For example, a magnitude 5 with angle 0 will be

added to the bin 0, while a magnitude 5 with angle 12 will add 2 to

the bin represented by 0 and 3 to the bin represented by 20.

An example of 32×32 Global-HOG based Histogram (G-HOGH) calculation

may be followed in Figure 2 for the purpose of making the descriptor definition

clearer.

Once the histograms of the whole set of cells belonging to a block have

been extracted, a vector concatenating the magnitude of all bins is built and

normalized by its euclidean norm. This step is known as block normalization.

The vector which is composed of the normalized vectors of all blocks covering

the window is the HOG descriptor for the window defining a local texture

feature of the region of interest.

The novelty of our approach resides in the construction of a global descriptor

using the local texture features obtained by the HOGs computation in each

window. We have tested the aforementioned window sizes (without overlapping,

50% overlap, and 75% overlap) using 8 × 8 pixels per cell, 2 × 2 cells per

block, 50% overlap blocks and signed gradients (orientations ∈ [0, 2π]) for

windows HOG calculation. When all HOG features describing windows

had been extracted, a matrix in which each row is the one-window HOG-

feature was built. With the purpose of reducing the columns dimension
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Figure 2: G-HOGH calculation A) describes the schemes used to cover the image with

the windows. B) shows how blocks of cells run through windows. C) is the flow-chart to

obtain the G-HOGH. Each cell produces a 9-bin histogram then each block produces a

36-bin normalized histogram. The number of blocks needed to scan a 32×32 window is 9,

so the HOG window vector has 324 components. Building the matrix in which each row

is one HOG window vector allows the dimension reduction by PCA. Computing a 50-bin

histograms, the G-HOGH is finally obtained.
11



of the matrix, we applied principal component analysis (PCA) [26]. By

varying the number of components we observed that when 50 components

were chosen, more than 60% of the cumulative variance was explained. Since

the new coordinates of the window HOG-features described in some way

the most variable window gradients, by building a histogram from the new

descriptors of all the windows, we were able to define a Global HOG-based

Histogram (G-HOGH) which characterized the difference between window

gradients through the entire breast.

2.2.3. Predictive model: Random Forest Classifier

In this study, the predictive model is trained to differentiate between

women being or becoming cases and healthy controls.

A family of techniques that is receiving a lot of attention in machine

learning research is the paradigm of ensemble methods that combine their

results, as the case of Random Forests (RF) which construct many decision

trees that are used to classify by the majority vote [27, 28].

Many recent works [29–31] have shown that in some tasks RF classification

can outperforms other conventional machine learning algorithms, such as

back propagation neural networks or support vector machines, and with

the advantage of dealing easily with unbalanced or multiclass classification

problems [30].

These reasons have motivated the use of RF in our experiments. The

parameters were fixed to 512 decision trees composing the forests, the maximum

number of decision variables in each tree are set to the log2N where N is

the number of model inputs and the remaining parameters were fixed to

the default proposed by the python implementation of scikit-learn [32]. For
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example, our model takes N = 146 when more variables are used, then the

maximum number of decision variables in each tree is log2146 = 7.

2.2.4. Evaluation of model performance

Although case/control studies are efficient for diseases with long latency

periods, such as cancer [33], there is a lot of controversy about how to measure

the model performance because of the potential vulnerability to bias and loss

of generalization power [34]. Several studies have proposed different ways to

quantify the discriminatory power of classifiers [35, 36] but the area under the

Receiver Operating Characteristic (ROC) curve [37] is still the most widely

used metrics to assess the model performance. Due to the design of our

study, besides the AUC, we have used the Net Reclassification Improvement

(NRI) score proposed by Pencina et al. [36] to assess the added predictive

ability provided by the inclusion of new features to the model. This score

was defined as follows:

N̂RI = (p̂up,events − p̂down,events)− (p̂up,nonevents − p̂down,nonevents) (1)

Where p̂up,events denotes the percentage of misclassified cases in the old

model that are well-classified in the new model, p̂down,events the percentage

of well-classified cases in the old model that are misclassified in the new

model, p̂down,nonevents the percentage of well-classified controls in the old

model that are misclassified in the new model and p̂up,nonevents the percentage

of misclassified controls in the old model that are well-classified in the new

model. A positive value represents that the new model outperforms the

number of well-classified patients while a negative value represents that the

old-model had more well-classified patients, finally, a value of 0 indicates that
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both models have the same number of well-classified patients.

3. Results

3.1. Study characteristics

The original dataset contained a total of 808 case/control pairs, 51.69%

of 1563 patients had developed a breast cancer and the remaining percentage

had not. It was randomly stratified to shape training and test sets preserving

the paired couples and the a priori case/control proportion. The training

case/control set had a total of 606 cases and 566 controls summing up to

1172 patients (51.71% cases and 48.29% controls) and was 10-fold stratified

to cross-validate the models. The test set was composed of 202 (51.66%)

cases and 189 (48.34%) controls.

The original dataset included risk factors such as the number of pregnancies,

the age at first pregnancy, the number of breastfeeding months and the age

at the onset of menopause. These risk factors were completed by adding

three preprocessed variables. The patient age at mammography acquisition

was computed as the difference between the mammography date and their

birth date. The Body Mass Index (BMI) was calculated as the weight over

the height squared. The number of cigarettes per day was ponderated by

the weight defined in Equation 2, where f is a logical variable that denotes

whether a patient is currently a smoker or not and y denotes the years without

smoking. The statistics of risk factor features of the patients at the groups

defined by cases and controls in the training and test sets are summarized in
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Table 2.

w(f, y) =


1 if f

1 - y
10

if f̄ and y < 10

0 if f̄ and y ≥ 10

(2)

Training set Test set

Cases Controls Cases Controls

Mean std Mean std Mean std Mean std

Age 57.20 6.46 57.39 6.61 57.03 6.82 56.66 6.80

BMI 27.18 4.81 27.32 4.88 27.05 4.54 27.23 5.31

Cigarettes per day ratio 3.03 6.34 2.68 6.12 2.97 6.76 3.14 6.69

Number of pregnancies 2.40 1.04 2.58 1.20 2.34 0.95 2.56 1.22

First pregnancy 24.69 5.20 24.30 5.07 24.58 5.27 24.67 4.82

Breastfeeding months 9.02 9.89 9.85 10.42 8.94 10.48 9.57 10.18

Menopause age 48.43 5.47 48.44 4.85 47.85 5.59 48.38 4.30

Table 2: Descriptive statistics for cases/controls in the training and test sets. BMI is the

body mass index and std is the standard deviation.

Taking as baseline the accuracy obtained after computing the AUC defined

by the ROC of PD in CC and MLO views (0.559 and 0.551 respectively), we

have followed a methodology in which each iteration added features sets as

inputs for a Random Forest classifier. The features sets, which were added

in this order, were:

• Percentage of dense tissue. In order to assess an estimator that

mimics the volumetric-based PD (which is another extended-used marker

for mammographic density), RF will firstly take as inputs the PD for

CC and MLO views.
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• Global geometric variables covering from layout features, such as

relative FGT center of mass, FGT distance to pectoral muscle, breast

area or FGT perimeter, to the rotation, translation, and scale invariant

FGT moments.

• G-HOGH. Global summaries of local HOG descriptors. We have

tested the results with different window sizes and methods to cover

the breast.

The training set was 10-fold stratified cross-validated in order to assure

that overfitting did not occur. The following results show the performance

evaluation using the test set which was not used as training corpus.

3.2. Experimental results

The PD is known to be a marker of breast cancer development risk. In

this sense, to fix the PD-risk obtained from the test set of our data as a

baseline seems reasonable. After calculating the PD ROC curve for both

views in the test set (391 patients, 202 of which developed cancer and 189

were controls), we obtain AUCs of 0.559 and 0.551 for CC view and MLO

view respectively.

Taking the aforementioned results as the baseline, new features were

progressively added to test its discriminatory capacity between cases and

controls and their possible contribution to a better estimate of cancer risk

compared to PD.

Our first Random Forest-based model only included PD from both views

and the results showed an AUC of 0.560. After adding the geometrical

variables, the AUC improved up to 0.568. The number of well-classified cases
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was 116 while the number of well-classified controls was 92 which meant a

total of 208 (53%) patients well-classified, always taking as cohort point 0.50.

Finally, several G-HOGH configurations were tested, as mentioned in

Section 2.2.2. All of them produced better results than those obtained by the

previous models, with exception of 24-pixel overlap windows. It may indicate

that the proposed texture feature strengthens the variables introduced before

into the model. A short brief of the results are shown in Figure 3 and Table

3.

Window size Overlap (%) AUC NRI 1 NRI 2 TP TN

24× 24 0 0.571 0.130 0.064 131/202 90/189

24× 24 50 0.566 0.110 0.044 126/202 91/189

24× 24 75 0.558 0.089 0.023 125/202 88/189

32× 32 0 0.614 0.190 0.154 142/202 94/189

32× 32 50 0.605 0.118 0.083 135/202 86/189

32× 32 75 0.589 0.119 0.083 133/202 88/189

64× 64 0 0.610 0.165 0.130 136/202 94/189

64× 64 50 0.600 0.165 0.130 137/202 93/189

64× 64 75 0.588 0.114 0.079 130/202 90/189

128× 128 0 0.609 0.171 0.135 136/202 95/189

128× 128 50 0.600 0.165 0.130 137/202 93/189

128× 128 75 0.584 −0.005 0.110 133/202 93/189

Table 3: Indicators for the evaluation of models performance. Number of cases and controls

well classified. NRI 1 denotes the NRI score from CC PD view taking as cohort point 0.5

and NR2 denotes the NRI score from PD + geometrical model. TP refers to true positives

and TN to true negatives

It is worth to mention that the percentage of well-classified cases improves

up to 70% when the percentage of well-classified cases in the model which
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Figure 3: Geometric and Best G-HOGH configuration ROC curve against the baseline

ROC curve. Different G-HOGH configurations produced ROC curves which outperform

the results obtained by only including geometrical variables. The best AUC, which is

shown in this figure, increased a 5% with respect to the previous model.

only considered both PD views and geometrical variables was 56%. After

adding the different G-HOGH features, the best ROC curve produces a 5-

point increment from the previous model. The best NRI score is obtained

by the G-HOGH configuration with non-overlap 32-pixel window size. This

configuration achieved 31 patients (28 cases and 3 controls) more well-classified

from those obtained only considering PD, and 28 (26 cases and 2 controls)

more well-classified patients from the model which took as entries PD and
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geometric features.

These results arouse that the texture information extracted from the

mammography increase in a higher extent the sensitivity of PD as a risk

marker of developing breast cancer than the specificity, although this last is

also improved.

In order to assess the performance indicators for the best model, the

confusion matrix, AUC, and sensitivity and specificity scores are presented

in Table 4.

CASESreal CONTROLSreal Totalpred

CASESreal 142 96 238

CONTROLSreal 60 93 153

Totalreal 202 189 391

AUC ROC 0.614

Sensitivity ≈ 70%

Specificity ≈ 49%

Table 4: Confusion matrix for the predictions achieved by the best model. AUC score,

sensitivity and specificity are also shown.

Besides, the experiment was also replicated by introducing the G-HOGH

features calculated only scanning the FGT in addition to PD and geometric

variables. The results (AUCs ranging from 0.557 to 0.586) did not improve

those obtained by the G-HOGH across the entire breast, which indicates that

texture information extracted from the whole breast is more discriminative

than the extracted only from the FGT.

A model was also trained taking as inputs the G-HOGH features only.

The results were lower than those obtained using only PD, which indicates

that the information provided by the proposed texture descriptor strengthens
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PD as cancer risk marker, but it can not be considered alone as a marker.

4. Discussion

4.1. Impact and contributions

The study aimed to predict breast cancer risk from healthy breast mammographies

using texture information. The clinical importance of PD is not only the

reduced mammographic sensitivity but also an increased breast cancer risk

[38]. In this sense, the search of malignant patterns blurred by the dense

tissue in digital mammographies is a growing research line [14–17, 19, 39]

which is known as parenchymal texture descriptors.

In line with this, the first contribution of our work is the definition of

a global texture descriptor based on local HOG covering the entire breast.

The results showed evidence that the texture of a healthy breast increases

the specificity of PD as a marker of breast cancer development risk. More

than 30 of 391 (≈ 8%) patients were well-classified by adding the information

provided by the G-HOGH. Window sizes of 32× 32 px covering areas of 2.56

mm2 (1.6 × 1.6mm) provided the best results both in terms of ROC AUC

and number of well-classified patients.

The second noteworthy contribution is the use of Random Forests. The

common model used in tasks similar to those carried out in this work is

the logistic regression [8, 40–42]. Even though the principal argument of

the present paper is the contribution of the texture features role in the

breast cancer development risk, we have developed a logistic regressor using

as inputs (PD, geometric variables, and G-HOGH) the same used in the

Random Forest model for comparison purposes (see Figure 4).
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Figure 4: Comparison of the best ROC curve using logistic regression and the best ROC

curve using RF. The ROC curves for testing samples after developing a logistic regression

model with training samples obtained worse results than RF.

The AUC results of Random Forest ([0.584, 0.614]) for all the configurations

of G-HOGH provided better results than logistic regression ([0.551, 0.570])

and the NRI scores comparing Random Forest with logistic regression are

between [0.005, 0.171] (all the values fall within the positive real numbers)

demonstrating the better performance of that model.
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4.2. Limitations an Future work

The use of a global texture feature summarizing local HOG descriptors

strives to characterize the overall texture distribution in an affordable way,

but it may become a drawback due to the possible local texture smoothing

which could hide pattern structures that would be helpful for the task at

hand. New encoded descriptors based on HOG are proposed as a line for

future work, changing the use of dimension reduction linear methodologies,

such as PCA which has been used in the present study, by non-linear methodologies

such as ISOMAP [43] or autoencoders [44] what could improve the predictive

ability.

As previously mentioned, the scope of this paper is the presentation of

new texture features which strengthens PD as a cancer risk marker. In this

sense, a machine learning based model was fixed and trained with incremental

sets of variables, with the purpose of searching the combinations which

produced the best estimation. Once the task was achieved, the next step

consists of the performance optimization. Among the future works which are

contemplated, we want to highlight the use of feature selection algorithms,

such as Sequential Forward Floating Searching [45]. These methods not

only search sets of variables but also particular variables influencing cancer

development risk with the purpose of avoiding possible redundancies and

consequently improving the performance. We also consider the use of other

state-of-the-art classifiers, such as algorithms based on visual bag of words

[46], which may improve the decision space representability and therefore

provide better results.
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5. Conclusion

A global texture feature (G-HOGH) based on HOG of the entire breast

has been proposed as a characteristic which increases the specificity (up to

70%) of breast cancer development risk. The G-HOGH is a sliding-window-

based algorithm; in our study, the 32 × 32px windows covering the breast

have provided the best results.

The G-HOGH bolstered the information which can be extracted from

geometrical variables improving the predictive ability. The results of our

experiments inform that in our dataset the proposed G-HOGH features

contribute to a higher extent when non-overlapping windows are used. The

model which obtained the best results increased in 31 the number of well-

classified patients with respect to PD. Our model not only outperformed the

specificity of PD as a marker of developing breast cancer risk, but also the

sensitivity. It highlights this last with an increment of approximately 14%.

The use of Random Forests instead of other models commonly used

in the field, such as logistic regression, improved the results thanks to its

adaptability to the decision space. In any case, the use of more powerful

machine learning-based classifiers may even increase the results shown in

this paper.
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Pérez-Cortés, Semi-automated and fully automated mammographic

density measurement and breast cancer risk prediction, Comput.

Methods Programs Biomed. 116 (2) (2014) 105–115 (2014). doi:

10.1016/j.cmpb.2014.01.021.

[22] R. M. Haralick, L. G. Shapiro, Computer and robot vision, Addison-

wesley, 1992 (1992).

28

https://doi.org/10.1109/TMI.2016.2532122
https://doi.org/10.1016/j.acra.2017.12.025
https://doi.org/10.1016/j.acra.2017.12.025
https://doi.org/10.1186/2193-1801-2-242
https://doi.org/10.1186/2193-1801-2-242
https://doi.org/10.1016/j.cmpb.2014.01.021
https://doi.org/10.1016/j.cmpb.2014.01.021


[23] M.-K. Hu, Visual pattern recognition by moment invariants, IRE

transactions on information theory 8 (2) (1962) 179–187 (1962).

[24] N. Dalal, B. Triggs, Histograms of oriented gradients for human

detection, in: 2005 Proc IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit. (CVPR’05), Vol. 1, 2005, pp. 886–893 vol. 1 (2005).

doi:10.1109/CVPR.2005.177.

[25] I. Sobel, G. Feldman, A 3x3 isotropic gradient operator for image

processing, a talk at the Stanford Artificial Project in (1968) 271–272

(1968).

[26] I. Jolliffe, Principal component analysis, Springer, 2011 (2011).

[27] L. Breiman, Random Forests, Mach. Learn. 45 (1) (2001) 5–32 (2001).

doi:10.1023/A:1010933404324.

[28] T. M. Oshiro, P. S. Perez, J. A. Baranauskas, How Many Trees in a

Random Forest?, in: International workshop on machine learning and

data mining in pattern recognition, Springer, Berlin, Heidelberg, 2012,

pp. 154–168 (2012). doi:10.1007/978-3-642-31537-4-13.

[29] B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone,

D. Ward, K. Williams, H. Zhao, Comparison of statistical methods

for classification of ovarian cancer using mass spectrometry data,

Bioinformatics 19 (13) (2003) 1636–1643 (2003). doi:10.1093/

bioinformatics/btg210.

[30] M. Liu, M. Wang, J. Wang, D. Li, Comparison of random forest, support

vector machine and back propagation neural network for electronic

29

https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-642-31537-4-13
https://doi.org/10.1093/bioinformatics/btg210
https://doi.org/10.1093/bioinformatics/btg210


tongue data classification: Application to the recognition of orange

beverage and Chinese vinegar, Sens. Actuators B Chem. 177 (2013)

970–980 (2013). doi:10.1016/j.snb.2012.11.071.

[31] T. PanduRanga Vital, M. Murali Krishna, G. V. L. Narayana, P. Suneel,

P. Ramarao, Empirical analysis on cancer dataset with machine learning

algorithms, Vol. 758, Springer Verlag, 2018 (2018). doi:10.1007/

978-981-13-0514-6\_75.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn.

Res. 12 (2011) 2825–2830 (2011).

[33] K. F. Schulz, D. A. Grimes, Case-control studies: research in

reverse, Lancet 359 (9304) (2002) 431–434 (2002). doi:10.1016/

S0140-6736(02)07605-5.

[34] K. Han, K. Song, B. W. Choi, How to Develop, Validate, and Compare

Clinical Prediction Models Involving Radiological Parameters: Study

Design and Statistical Methods, Korean J. Radiol. 17 (3) (2016) 339–

350 (2016). doi:10.3348/kjr.2016.17.3.339.

[35] A. R. Brentnall, J. Cuzick, J. Field, S. W. Duffy, A concordance index

for matched case–control studies with applications in cancer risk, Stat.

Med. 34 (3) (2015) 396–405 (2015). doi:10.1002/sim.6335.

30

https://doi.org/10.1016/j.snb.2012.11.071
https://doi.org/10.1007/978-981-13-0514-6_75
https://doi.org/10.1007/978-981-13-0514-6_75
https://doi.org/10.1016/S0140-6736(02)07605-5
https://doi.org/10.1016/S0140-6736(02)07605-5
https://doi.org/10.3348/kjr.2016.17.3.339
https://doi.org/10.1002/sim.6335


[36] M. J. Pencina, R. B. D. Agostino, R. B. D. Agostino, R. S. Vasan,

Evaluating the added predictive ability of a new marker: From area

under the ROC curve to reclassification and beyond, Stat. Med. 27 (2)

(2008) 157–172 (2008). doi:10.1002/sim.2929.

[37] S. H. Park, J. M. Goo, C.-H. Jo, Receiver Operating Characteristic

(ROC) Curve: Practical Review for Radiologists, Korean J. Radiol. 5 (1)

(2004) 11–18 (2004). doi:10.3348/kjr.2004.5.1.11.

[38] S. J. Vinnicombe, Breast density: why all the fuss?, Clin. Radiol. 73 (4)

(2018) 334–357 (2018). doi:10.1016/j.crad.2017.11.018.

[39] W. Sun, T.-L. B. Tseng, W. Qian, E. C. Saltzstein, B. Zheng, H. Yu,

S. Zhou, A new near-term breast cancer risk prediction scheme based

on the quantitative analysis of ipsilateral view mammograms, Comput.

Methods Programs Biomed. 155 (2018) 29–38 (2018).

[40] C. Wang, A. R. Brentnall, J. Cuzick, E. F. Harkness, D. G.

Evans, S. Astley, Exploring the prediction performance for breast

cancer risk based on volumetric mammographic density at different

thresholds, Breast Cancer Res. 20 (1) (2018) 49 (2018). doi:10.1186/

s13058-018-0979-x.

[41] S. M. Wong, I. Prakash, N. Trabulsi, A. Parsyan, D. Moldoveanu,

D. Zhang, B. Mesurolle, A. Omeroglu, A. Aldis, S. Meterissian,

Evaluating the Impact of Breast Density on Preoperative MRI in

Invasive Lobular Carcinoma, J. Am. Coll. Surg. 226 (5) (2018) 925–932

(2018). doi:10.1016/j.jamcollsurg.2018.01.045.

31

https://doi.org/10.1002/sim.2929
https://doi.org/10.3348/kjr.2004.5.1.11
https://doi.org/10.1016/j.crad.2017.11.018
https://doi.org/10.1186/s13058-018-0979-x
https://doi.org/10.1186/s13058-018-0979-x
https://doi.org/10.1016/j.jamcollsurg.2018.01.045


[42] S. W. Duffy, O. W. E. Morrish, P. C. Allgood, R. Black, M. G. C. Gillan,

P. Willsher, J. Cooke, K. A. Duncan, M. J. Michell, H. M. Dobson,

R. Maroni, Y. Y. Lim, H. N. Purushothaman, T. Suaris, S. M. Astley,

K. C. Young, L. Tucker, F. J. Gilbert, Mammographic density and breast

cancer risk in breast screening assessment cases and women with a family

history of breast cancer, Eur. J. Cancer 88 (2018) 48–56 (2018). doi:

10.1016/j.ejca.2017.10.022.

[43] J. B. Tenenbaum, V. d. Silva, J. C. Langford, A Global Geometric

Framework for Nonlinear Dimensionality Reduction, Science 290 (5500)

(2000) 2319–2323 (2000). doi:10.1126/science.290.5500.2319.

[44] G. E. Hinton, R. R. Salakhutdinov, Reducing the Dimensionality of

Data with Neural Networks, Science 313 (5786) (2006) 504–507 (2006).

doi:10.1126/science.1127647.

[45] A. Jain, D. Zongker, Feature selection: evaluation, application, and

small sample performance, IEEE Trans. Pattern Anal. Mach. Intell.

19 (2) (1997) 153–158 (1997). doi:10.1109/34.574797.

[46] P. Koniusz, F. Yan, K. Mikolajczyk, Comparison of mid-level feature

coding approaches and pooling strategies in visual concept detection,

Comput. Vision Image Understanding 117 (5) (2013) 479–492 (May

2013). doi:10.1016/j.cviu.2012.10.010.

32

https://doi.org/10.1016/j.ejca.2017.10.022
https://doi.org/10.1016/j.ejca.2017.10.022
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.1127647
https://doi.org/10.1109/34.574797
https://doi.org/10.1016/j.cviu.2012.10.010

