
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/151300

Corberán, A.; Plana, I.; Rodríguez-Chía, AM.; Sanchís Llopis, JM. (2013). A branch-and-cut
algorithm for the maximum benefit Chinese postman problem. Mathematical Programming.
141(1-2):21-48. https://doi.org/10.1007/s10107-011-0507-6

https://doi.org/10.1007/s10107-011-0507-6

Springer-Verlag



A New Approach to the Maximum Benefit

Chinese Postman Problem
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Abstract

The Maximum Benefit Chinese Postman Problem (MBCPP) is an interesting and
practical generalization of the classical Chinese Postman Problem (CPP). Associated
with each edge, the MBCPP considers a cost of traversal if the edge is serviced, a
deadhead cost associated with its traversal when it is not serviced, and several benefits
(one per each time the edge is traversed with service). The objective is to find a
closed walk starting and ending at the depot with maximum net benefit. Unlike the
classical CPP, the MBCPP is NP-hard and generalizes other arc routing problems as the
Rural Postman Problem (RPP) and the Prize-Collecting RPP. Although the MBCPP
was introduced in 1993, we propose here for the first time an IP formulation for the
undirected case. We also study its associated polyhedron and introduce several families
of valid inequalities inducing facets of it. Based on this polyhedron description, we
propose a branch-and-cut algorithm for the MBCPP and present computational results
on different sets of instances with up to 1000 vertices and 3000 edges.

Keywords: Chinese Postman Problem, Maximum Benefit Chinese Postman Problem,
Rural Postman Problem, facets, branch-and-cut.

1 Introduction

The Chinese Postman Problem (CPP) consists of finding a minimum cost closed walk travers-
ing each edge of a graph at least once [13]. It is well known that the CPP can be solved in
polynomial time when the graph is directed or undirected (see [9]). However, if the CPP is
defined on a mixed ([18]) or a ‘windy’ graph ([6], [12]) the problem becomes NP-hard.

The Maximum Benefit Chinese Postman Problem (MBCPP) is a generalization of the
CPP in which not all the edges have to be traversed and a benefit is realized each time
an edge of the graph is serviced. Each edge of the graph has an associated cost for its
traversal with service, a deadhead cost for its traversal with no service, and a set of gross
benefits. The objective is to find a closed walk (tour) starting and ending at the depot with
maximum net benefit. Applications of the MBCPP include the routing of street cleaners
and the construction of street snow-plowing and snow-salting tours. An additional benefit
is derived when a street is plowed multiple times and the benefit may depend upon whether
the link represents an arterial or a low-traffic neighborhood street. Unlike the classical CPP,
this problem allows us to obtain solutions that do not traverse some edges while other edges
can be traversed multiple times.

More precisely, the MBCPP can be defined as follows. Let G = (V,E) be an undirected
connected graph, where vertex 1 ∈ V represents the depot. Each edge e ∈ E has two different
costs associated, cs

e and cd
e. The first one represents the cost of traversing and servicing edge

e, while the second one corresponds to the cost of just traversing that edge without servicing
it (deadhead cost). Moreover, each edge e ∈ E has ne benefits, b1

e, b
2
e, . . . , b

ne
e , giving the gross

benefit of servicing the edge for the first, second,. . ., ne-th time. Therefore, the net benefit
of the t-th traversal of edge e is given by bt

e − cs
e for t = 1, . . . , ne, while the net benefit of

deadheading an edge is −cd
e. Then, the MBCPP consists of finding a tour, starting from the

depot, traversing a certain number of times some of the edges in E, and returning to the
depot, with maximum total net benefit. This problem is NP-hard, since the Rural Postman
Problem ([17]), which was proved to be NP-hard in [14], can be considered a special case of
the MBCPP ([20]).

2



In the literature of routing problems we can find several attempts to study this problem.
Malandraki and Daskin [15] introduced the MBCPP and studied its directed version. They
modeled it as a minimum cost flow problem with subtour elimination constraints. Based
on this approach, they proposed a branch-and-bound procedure and solved instances on a
25 vertices network. In [20], an approximate algorithm to solve the MBCPP on undirected
graphs is devised. The procedure is illustrated on an example with 15 vertices and 26 edges.
The algorithm expands the original graph by replacing each edge with a set of edges of positive
net benefit. Minimal spanning tree and matching algorithms are then applied to generate a
postman tour. In [19], several heuristic algorithms for solving the MBCPP on directed graphs
are proposed. Authors report computational results on graphs with up to 30 vertices and 780
arcs. In all these papers it is assumed that cs

e ≥ cd
e and b1

e ≥ b2
e ≥ · · · ≥ bne

e ≥ 0. Although
these assumptions seem to appropriately reflect real world situations, they are not needed for
the study we present in this paper and (we think) restrict the problem unnecessarily.

Some related problems have also been subject of study. Among them, the Prize-collecting
Arc Routing Problem (PCARP), also called Privatized Rural Postman Problem. In the
PCARP only the edges in a given subset of edges D ⊆ E have an associated benefit, and
it is assumed that this benefit can be collected only once, independently of the number of
times the edge is traversed. Note that this problem is a special case of the MBCPP in which
ne = 1 for all the edges in D, while ne = 0 for the rest. The PCARP was introduced in
[3], where an ILP formulation with binary variables was provided. In particular, the authors
used a new family of inequalities, called the set-parity inequalities, which are an adaptation
to this problem of the so-called cocircuit inequalities introduced in [5]. In [2], an LP-based
algorithm to solve the problem on undirected graphs was proposed. A related problem, the
Clustered Prize-collecting Arc Routing Problem, has been recently studied in [1] and [11].
In this last problem, the connected components defined by the edges with net benefit are
considered, and for each component either all or none of its edges have to be serviced. The
same problem defined on a ‘windy’ graph has been studied in [7]. Other arc routing problems
with benefits have been studied in [10] and [4]. In the first paper, benefits are associated
with a subset of arcs and can be collected a given number of times. The objective is to find a
set of tours in the graph that maximizes the net benefit without exceeding a maximal length
for each tour. Authors proposed a branch-and-price algorithm to solve this problem. In the
second paper, the authors presented a branch-and-price algorithm and several heuristics for
the Capacitated Arc Routing Problem with benefits.

In this paper we propose a new approach to the MBCPP that provides a more general
and useful framework, present a formulation for the undirected MBCPP, study its associated
polyhedron and propose a branch-and-cut algorithm for its exact resolution. More precisely,
in Section 2 ...

2 Problem formulation

Consider an undirected and connected graph G = (V,E). Associated with each edge e ∈ E,

there are ne + 1 net benefits. The ne first ones, b
t

e = bt
e − cs

e, t = 1, . . . , ne, correspond to

the traversals of the edge servicing it, while the last one, b
ne+1
e = −cd

e , is associated with the
deadheading of e.
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We now define

bodd
e = max

{

k
∑

ℓ=1

b
ℓ

e : k odd with k ≤ ne + 1

}

beven
e = max

{

k
∑

ℓ=1

b
ℓ

e : k even with k ≤ ne + 1

}

− bodd
e .

If ne = 0, we define beven
e := bodd

e (= −cd
e). It is not difficult to see that solving the

MBCPP on the graph with ne + 1 parallel edges for each original edge e is equivalent to
solve it on a smaller graph having only one parallel edge to each edge in the original graph.
Or, equivalently, to solve the problem on the original graph G, but considering that the first
traversal of edge e has net benefit bodd

e , while beven
e is the net benefit associated with its second

traversal. Note that to get the net benefit beven
e traversing edge e, we need first to traverse it

with net benefit bodd
e . In this way, the MBCPP can be formulated as follows.

For each e = (i, j) ∈ E we define two binary variables xe and ye. Variable xe takes value
1 if e is traversed and 0 if e is not traversed, while variable ye takes value 1 if e is traversed
twice and 0 otherwise. In other words, variables xe and ye represent the first and second
traversal of edge e, respectively. We have the following formulation for the MBCPP:

Maximize
∑

e∈E

(

bodd
e xe + beven

e ye

)

s.t.:
∑

e∈δ(i)

(

xe + ye

)

≡ 0 (mod 2), ∀i∈V (1)

∑

e∈δ(S)

(

xe + ye

)

≥ 2xf , ∀S⊂V \ {1}, ∀f ∈ E(S) (2)

xe ≥ ye ∀e∈E (3)

xe, ye ∈ {0, 1} ∀e∈E (4)

Constraints (1) force the vertices to be of even degree in the solution, its connectivity is
assured with conditions (2), and constraints (3) guarantee that a second traversal of an edge
can occur only when it has been previously traversed. Note that although constraints (1) are
not linear, they can be easily linearize by introducing new integer variables. However, this
will be not necessary since we are proposing a polyhedral approach to solve the problem. Note
also that (x, y) = (0, 0) satisfies the above constraints and is, therefore, a feasible solution to
the MBCPP.

3 MBCPP Polyhedron

Let us call MBCPP tour to each vector (x, y) ∈ {0, 1}2|E| satisfying (1) to (4) and let
MBCPP(G) be the convex hull of all MBCPP tours. Obviously, it is a polytope.

Remember that a graph G is called 3-edge connected if every proper cut-set δ(S), S ⊂ V ,
contains, at least, 3 edges. It is well known that G is 3-edge connected if, and only if, for
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every pair of nodes i, j ∈ V , there are at least three edge-disjoint paths in G connecting i
and j .

Theorem 1 MBCPP(G) is a full-dimensional polyhedron (dim(MBCPP(G))= 2|E|) if, and
only if, G is 3-edge connected.

Proof: If G is not 3-edge connected there is a cut-set δ(S) with at most 2 edges. If δ(S)
contains exactly two edges, namely e and f , it can be seen that all MBCPP tours satisfy the
equation xe − ye = xf − yf . Moreover, if δ(S) = {e}, then all MBCPP tours satisfy xe = ye.
Therefore, in both cases, the polyhedron is not full-dimensional.

On the other hand, let us suppose now that graph G is 3-edge connected. We will prove
that the polyhedron is full-dimensional. Let ax+by = c (that is,

∑

e∈E aexe+
∑

e∈E beye = c)
be an equation satisfied by all the MBCPP tours. We have to prove that a = b = c = 0.

Given that (x, y) = (0, 0) is a solution to the MBCPP, a · 0 + b · 0 = c holds and, then,
c = 0.

Let (i, j) ∈ E be an arbitrary edge. Given that G is connected, there is a path P joining
nodes 1 and i. The solution that traverses the path P twice (that is, xe = ye = 1 ∀e ∈
P) is a MBCPP tour and then

∑

e∈P ae +
∑

e∈P be = 0 holds. On the other hand, the
solution that traverses the path P and the edge (i, j) twice is also a MBCPP tour and then
∑

e∈P ae+
∑

e∈P be+aij+bij = 0. By subtracting both expressions we obtain that aij+bij = 0
for all (i, j) ∈ E.

Let C be any cycle in graph G. There is a path P joining node 1 and a node i in the
cycle. The solution that traverses the path P twice (xe = ye = 1) and the cycle C once
(xe = 1, ye = 0) is a MBCPP tour and then

∑

e∈P ae +
∑

e∈P be +
∑

e∈C ae = 0. Given that
aij + bij = 0 we obtain that

∑

e∈C

ae = 0 for any cycle C in G.

Let (i, j) ∈ E be an arbitrary edge. Since G is 3-edge connected, there are two
edge-disjoint paths P1, P2 joining nodes i and j that do not contain edge (i, j). Let us
suppose, w.l.o.g., that either the depot 1 is in path P1 or it can be joined to some node
in path P1 without using edges in P2. Then, the solution (x1, y1) that traverses path P1

and edge (i, j) once and the path to the depot twice is a MBCPP tour. Let now (x2, y2)
be the MBCPP tour obtained from (x1, y1) after replacing the edge (i, j) by the edges in
path P2. By subtracting the two expressions ax1 + by1 = 0 and ax2 + by2 = 0 we obtain
aij −

∑

e∈P2
ae = 0, and, since (i, j) ∪ P2 is a cycle in G, we obtain aij +

∑

e∈P2
ae = 0, and,

thus, aij = 0 for each edge (i, j) ∈ E. Given that aij + bij = 0, we obtain bij = 0 for each
edge (i, j) ∈ E. Hence, a = b = c = 0 and the polyhedron MBCPP(G) is full-dimensional.
�

In the following, we will assume that graph G is 3-edge connected and thus MBCPP(G)
is full dimensional. Therefore every facet of the polyhedron is induced by a unique inequality
(except scalar multiples).
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Theorem 2 Inequality yuv ≥ 0, for each edge (u, v) ∈ E, is facet-inducing of MBCPP(G)
(if graph G is 3-edge connected).

Proof: Let us suppose there is another valid inequality ax + by ≥ c such that

{(x, y) ∈ MBCPP(G) : yuv = 0} ⊆ {(x, y) ∈ MBCPP(G) : ax + by = c}

We will prove that inequality ax + by ≥ c is a scalar multiple of yuv ≥ 0. Given that
(x, y) = (0, 0) is a MBCPP tour that satisfies yuv = 0, we can assume that c = 0.

A similar argument to that used in the proof of Theorem 1 leads to aij + bij = 0 for all
(i, j) ∈ E, (i, j) 6= (u, v), and

∑

e∈C ae = 0 for any cycle C in G. Then,
∑

e∈C be = 0 also
holds for every cycle C in G that does not contain edge (u, v).

Let (i, j) ∈ E be an arbitrary edge. Given that G is 3-edge connected, there are two edge-
disjoint paths P1, P2 joining nodes i and j that do not contain edge (i, j). Let us suppose,
w.l.o.g., that either the depot 1 is in path P1 or it can be connected to some node in path
P1 without using edges in P2 nor edge (u, v). Then the solution (x1, y1) that traverses path
P1 and edge (i, j) once and the path to the depot twice (if needed), is a MBCPP tour that
satisfies yuv = 0. Let now (x2, y2) be the MBCPP tour obtained from (x1, y1) replacing the
edge (i, j) by the edges in path P2. This MBCPP tour also satisfies yuv = 0.

By subtracting the two expressions ax1 + by1 = 0 and ax2 + by2 = 0 and considering that
(i, j) ∪P2 is a cycle in G, we obtain that aij = 0 for each edge (i, j) ∈ E. Since aij + bij = 0,
also bij = 0 for each edge (i, j) ∈ E \ {(u, v)}. Then, inequality ax + by ≥ c turns out to be
buvyuv ≥ 0 and yuv ≥ 0 is facet-inducing for MBCPP(G). �

Theorem 3 Inequality xuv ≤ 1, for each edge (u, v) ∈ E, is facet-inducing for MBCPP(G)
(if graph G is 3-edge connected).

Proof: Let us suppose there is another valid inequality ax + by ≤ c such that

{(x, y) ∈ MBCPP(G) : xuv = 1} ⊆ {(x, y) ∈ MBCPP(G) : ax + by = c}

Let (i, j) ∈ E \{(u, v)}. Given that G is 3-edge connected, graph G\{(i, j)} is connected,
and there is a MBCPP tour (x1, y1) that traverses edge (u, v) at least once and visits node
i. This tour satisfies x1

uv = 1. The MBCPP tour (x2, y2) obtained from (x1, y1) by adding
edge (i, j) twice, also satisfies x2

uv = 1. After subtracting the expressions ax1 + by1 = c and
ax2 + by2 = c, we obtain that aij + bij = 0 for all (i, j) ∈ E \ {(u, v)}.

Let P be a path joining nodes 1 and u that does not use edge (u, v). The MBCPP
tour (x1, y1) that traverses the path P and the edge (u, v) twice satisfies x1

uv = 1 and then
ax1 +by1 = c, i.e.,

∑

e∈P(ae +be)+auv +buv = c. Since aij +bij = 0 for all (i, j) ∈ E \{(u, v)}
we obtain that auv + buv = c. The same argument can be applied to deduce that

∑

e∈C ae = c
for all cycle C containing edge (u, v).

Let C now be any cycle in graph G that does not contain edge (u, v). There is a MBCPP
tour that traverses the edges in C once and a subset F of other edges in E including (u, v)

6



twice. This tour satisfies x1
uv = 1 and then ax1+by1 = c, that is,

∑

e∈F (ae+be)+
∑

e∈C ae = c.
Since aij + bij = 0 for all (i, j) ∈ E \ {(u, v)} and auv + buv = c we obtain that

∑

e∈C ae = 0
for all cycle C not containing edge (u, v).

By combining the previous results we can deduce that
∑

e∈C be = 0 for all cycle C in G.

Let (i, j) ∈ E be an arbitrary edge. Given that G is 3-edge connected, there are two edge-
disjoint paths P1, P2 joining nodes i and j that do not contain the edge (i, j). As G \ {(i, j)}
is a connected graph, there is a tour traversing paths P1, P2 exactly once, traversing the edge
(u, v) and connected to the depot. Let (x1, y1) be the MBCPP tour consisting of the previous
tour plus edge (i, j) twice, which satisfies x1

uv = 1. Let (x2, y2) be the MBCPP tour obtained
from (x1, y1) by replacing the second traversal of (i, j) by a second traversal of the edges in
path P1, which also satisfies x2

uv = 1. By subtracting the two expressions ax1 + by1 = c and
ax2 + by2 = c we obtain bij −

∑

e∈P1
be = 0 and considering that (i, j)∪P1 is a cycle in G, we

obtain bij +
∑

e∈P1
be = 0 and thus, bij = 0 for each edge (i, j) ∈ E. Since aij + bij = 0 for all

(i, j) ∈ E \{(u, v)} and auv + buv = c we obtain that aij = 0 and auv = c holds. Then, the in-
equality ax+by ≤ c turns out to be cxuv ≤ c and xuv ≤ 1 is facet-inducing for MBCPP(G). �

Theorem 4 Inequalities (3), xuv ≥ yuv for every edge (u, v) ∈ E are facet-inducing for
MBCPP(G) if, and only if, graph G \ {(u, v)} is 3-edge connected.

Proof: If graph G is 3-edge connected but graph G \ {(u, v)} is not 3-edge connected, there
is at least one cut-set δ(S) containing exactly the edge (u, v) and two more edges, say f, g.
In this case, it can be seen that the inequality xuv ≥ yuv is not facet-inducing because it is
the sum of two parity inequalities (6), which will be presented in Section 4.1, associated with
δ(S) and with F = {f} and F = {g}, respectively.

On the other hand, let us suppose that there is another valid inequality ax + by ≥ c such
that

{(x, y) ∈ MBCPP(G) : xuv − yuv = 0} ⊆ {(x, y) ∈ MBCPP(G) : ax + by = c}

Again, since (0, 0) ∈ G, c = 0 holds. Let (i, j) ∈ E be an arbitrary edge. Given that
G is (3-edge) connected, there is a path P joining nodes 1 and i that does not use edge
(i, j). Let (x1, y1) be the MBCPP tour that traverses the path P twice and let (x2, y2) be
the MBCPP tour that traverses the path P and the edge (i, j) twice. Both tours x1 and x2

satisfy xuv − yuv = 0 and then they also satisfy ax1 + by1 = 0, ax2 + by2 = 0. By subtracting
these expressions we obtain aij + bij = 0 for all (i, j) ∈ E.

With a similar reasoning to that in the proof of Theorem 3 we obtain that
∑

e∈C ae =
∑

e∈C be = 0 for each cycle C not containing edge (u, v).

Let (i, j) ∈ E \ {(u, v)}. Given that graph G \ {(u, v)} is 3-edge connected, there
are two edge-disjoint paths P1, P2 joining nodes i and j that do not contain edge (i, j)
nor (u, v). Let us suppose, w.l.o.g., that either the depot 1 is in path P1 or it can be
joined to some node in path P1 without using edges in P2. Then the solution (x1, y1) that
traverses path P1 and edge (i, j) once and the path to the depot twice (if needed), is a
MBCPP tour satisfying x1

uv − y1
uv = 0. Let now (x2, y2) be the MBCPP tour obtained

from (x1, y1) after replacing edge (i, j) by path P2, which also satisfies x2
uv − y2

uv = 0. By
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subtracting the two expressions and considering that (i, j) ∪ P2 is a cycle in G that does
not contain the edge (u, v), we obtain aij +

∑

e∈P2
ae = 0 and thus, aij = bij = 0 for each

edge (i, j) ∈ E \ {(u, v)}. The inequality ax + by ≥ c turns out to be auvxuv + buvyuv ≥ 0
and given that auv+buv = 0, we obtain that xuv−yuv ≥ 0 is facet-inducing for MBCPP(G). �

Theorem 5 Connectivity inequalities (2) are facet-inducing for MBCPP(G) if graph G is
3-edge connected and subgraphs G(S) and G(V \ S) are 2-edge connected.

Note: serı́a faceta si G(V \ S) fuese solo un nodo (o dos nodos y una arista)?

Y si G(S) fuese solo la arista f?

Proof: Let us suppose there is another valid inequality ax + by ≥ c such that

{(x, y) ∈ MBCPP(G) :
∑

e∈δ(S)

(

xe + ye

)

− 2xf = 0} ⊆ {(x, y) ∈ MBCPP(G) : ax + by = c}

Again, we can assume that c = 0. As in previous theorems, it can be seen that aij +bij = 0
for all (i, j) ∈ E(V \ S) ∪ E(S) \ {f}. For each edge (l,m) ∈ δ(S), we can build a MBCPP
tour that uses twice each edge in a path in G from node 1 to edge f traversing (l,m). This
tour satisfies (2) with equality and, therefore, alm + blm + af + bf = 0.

Let C be any cycle in graph G(V \ S). It is easy to obtain that
∑

e∈C ae =
∑

e∈C be = 0.
Let C be now any cycle in graph G(S) that does not contain edge f . Let P be a path joining
node 1 with a node i belonging to the cycle and contains the edge f . If we traverse all the
edges in C ∪P twice, we obtain a MBCPP tour (x1, y1) satisfying

∑

e∈δ(S)

(

x1
e +y1

e

)

= 2x1
f . If

we remove one copy of each edge in C from (x1, y1) we obtain another MBCPP tour (x2, y2)
also satisfying

∑

e∈δ(S)

(

x2
e + y2

e

)

= 2x2
f . By subtracting the expressions ax1 + by1 = 0 and

ax2 + by2 = 0 we obtain that
∑

e∈C be = 0 and also
∑

e∈C ae = 0 for all the cycles in graph
G(S) that do not contain edge f . Then,

∑

e∈C

ae = 0,
∑

e∈C

be = 0 ∀ cycle C in graphs G(V \ S) or G(S) \ {f}

Let (i, j) ∈ E(V \S). Given that graph G is 3-edge connected, there are two edge-disjoint
paths P1, P2 joining nodes i and j that do not contain the edge (i, j). If P1, P2 are both in
G(V \ S), the usual process leads us to aij = bij = 0. Otherwise, given that graph G(V \ S)
is 2-edge connected, at least one of these paths does not traverse the cut-set δ(S). Let us
suppose that path P2 does traverse δ(S) and notice that we can assume that P2 traverses
the cut-set δ(S) exactly twice. Let (x1, y1) be the MBCPP tour that uses once the edge
(i, j) and the path P2 (plus the edges needed to connect it with f if f is not in P2) and let
(x2, y2) the MBCPP tour obtained after replacing in (x1, y1) the edge (i, j) by the edges in
the path P1. Both tours satisfy inequality (2) with equality and, by comparing them, we
obtain aij = bij = 0.

Let (i, j) ∈ E(S) \ {f}. Given that graph G is 3-edge connected, there are two edge-
disjoint paths P1, P2 joining nodes i and j that do not contain edge (i, j). If G(S) is 2-edge
connected, we can assume that at most one of these paths traverses the cut-set δ(S). Let
us suppose that this path is P2 and notice that we can assume that P2 traverses the cut-set
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δ(S) exactly twice (once in each direction). Let (x1, y1) be the MBCPP that uses once the
edge (i, j) and the path P2 (plus the edges in E(V \ S) needed to connect it with the depot
and those in E(S) needed to connect the solution with f if f is not in P2). Let (x2, y2)
be the MBCPP tour obtained after replacing in (x1, y1) the edge (i, j) by the edges in the
path P1. Both tours satisfy

∑

e∈δ(S)

(

x1
e + y1

e

)

= 2x1
f and, after subtracting the expressions

ax1+by1 = 0 and ax2+by2 = 0 and applying (∗∗) we obtain aij = bij = 0. Then, aij = bij = 0
for each edge e ∈ E(V \ S) ∪ E(S) \ {f}.

Let us denote e1, e2, . . . , ep the edges in δ(S), where p ≥ 3 since graph G is 3-edge
connected. Consider now two edges e1, e2 ∈ δ(S). Given that graphs G(S) and G(V \ S)
are connected, there is a MBCPP tour (x1, y1) using twice the edges in a path that starts at
the depot, traverses e1 and ends at edge f . Let (x2, y2) be the MBCPP tour obtained from
(x1, y1) after replacing the second traversing of e1 by the first traversals of the edges in a path
joining the endpoints of e1 and using e2. After subtracting the two expressions ax1 + by1 = 0
and ax2 + by2 = 0 we obtain that be1 = ae2 . If we interchange the roles of the edges e1 and
e2 we obtain that be2 = ae1. Proceeding in this way with all the pairs of edges in δ(S) we
obtain that aei

= bej
for all i 6= j ∈ {1, 2, . . . , p} and then aei

= aej
= bei

= bej
for all i, j

(because p ≥ 3 holds).

Finally, given that graph G(S) is 2-edge connected, there is a cycle C in graph G(S) that
contains the edge f . Let (x1, y1) be a MBCPP tour using the edges in C once and the edges
in a path P joining the depot 1 to a node i belonging to the cycle C twice. Let (x2, y2) be
the MBCPP tour that uses all the edges in P, the edges in the path formed with the edges
in the cycle C from node i to an end-point of edge f plus the edge f twice. Both MBCPP
tours satisfy

∑

e∈δ(S)

(

xe + ye

)

= 2xf and after subtracting the expressions ax1 + by1 = 0

and ax2 + by2 = 0 we obtain that bf = 0. Substituting in alm + blm + af + bf = 0 for any
edge (l,m) ∈ δ(S) we obtain that af = −2alm and, hence, the connectivity inequality (2) is
facet-inducing for MBCPP(G). �

4 Other inequalities

In this section we present several new families of valid inequalities for the MBCPP, parity, K-C
and p-connectivity inequalities, and we study conditions under which they are facet-inducing
for MBCPP(G).

4.1 Parity inequalities

Constraints (1) are not linear inequalities. In order to force the solution to satisfy these
parity constraints, we can use other linear inequalities as the set-parity inequalities proposed
in [2] for the Prize-collecting Rural Postman Problem (PRPP), which as has been said is a
special case of the MBCPP. A first version of these inequalities was proposed in [3], and later
corrected in [2]. They are based on the so called co-circuit inequalities proposed by Barahona
and Grötschel ([5]) for the binary matroid problem, and are as follows. Given a vertex set
S ⊂ V \ {1} and two edge sets F ⊆ δ(S) and L ⊆ F , such that |F | + |L| is odd, then the
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set-parity inequality is

x(δ(S) \ F ) + y(F \ L) ≥ x(F ) + y(L) − (|F | + |L|) + 1. (5)

It is easy to see that inequalities (5) are valid for the MBCPP, but we failed in proving
that they induce facets of MBCPP(G). However, we found the following ones, which we will
call parity inequalities, that dominate inequalities (5) and are facet inducing for MBCPP(G):

x(δ(S)\F )−y(δ(S)\F ) ≥ x(F )−y(F )−|F |+1, ∀S⊂V, ∀F ⊂δ(S) with |F | odd (6)

Theorem 6 Parity inequalities (6) are valid for MBCPP(G).

Proof: Let (x∗, y∗) be a MBCPP tour. We have to prove that x∗(δ(S)\F )−y∗(δ(S)\F ) ≥
x∗(F ) − y∗(F ) − |F | + 1. If x∗(F ) − y∗(F ) ≤ |F | − 1, this inequality reduces to
x∗(δ(S) \F )− y∗(δ(S) \F ) ≥ 0, which is obviously satisfied. Let us suppose then that
x∗(F ) − y∗(F ) = |F |. This is only satisfied when x∗(F ) = |F | and y∗(F ) = 0. In this case,
the inequality becomes x∗(δ(S)\F )−y∗(δ(S)\F ) ≥ 1. Since cutset (S : V \ S) must be
traversed an even number of times, |F | is odd and x∗

e ≥ y∗e for any edge e, the inequality has
to be satisfied. �

Theorem 7 Parity inequalities (6) are stronger than set-parity inequalities (5).

Proof: Let S ⊂ V \ {1}, F ⊆ δ(S), L ⊆ F, |F |+ |L| odd. Define F ′ = F \L. Since |F |+ |L|
is an odd number, |F ′| is also odd. We will prove that the parity inequality (6) associated
with S and F ′ dominates the cocircuit inequality (5) associated with sets S, F and L.

Given that F ′ = F \L, δ(S) \ F ′ = (δ(S) \ F ) ∪ L and the inequality (6) associated with
sets S and F ′ can be written as:

x(δ(S) \ F ) + x(L) − y(δ(S) \ F ) − y(L) ≥ x(F ) − x(L) − y(F ) + y(L) − (|F | − |L|) + 1,

or equivalently

x(δ(S) \ F ) + y(F ) − y(L) ≥ x(F ) + y(L) − 2x(L) + y(δ(S) \ F ) − (|F | − |L|) + 1,

which can be written as

x(δ(S) \ F ) + y(F \ L) ≥ x(F ) + y(L) − (|F | + |L|) + 1 + 2|L| − 2x(L) + y(δ(S) \ F ) =
x(F ) + y(L) − (|F | + |L|) + 1 + 2(|L| − x(L)) + y(δ(S) \ F ),

whose RHS is, obviously, greater than or equal to the RHS in the set-parity inequality. �

Note 1 Before proving that parity inequalities induce facets of MBCPP(G), we will describe
in what follows two types of MBCPP tours satisfying (6) with equality. Given a graph
G = (V,E) and T ⊂ V , with |T | even, recall that a subset of edges E′ ⊂ E is a T-join if, in
the subgraph G′ = (V,E′), the degree of v is odd if and only if v ∈ T (see [16]).
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Figure 1: Construction of MBCPP tours of type 1 satisfying (6) with equality.

Type 1: Let us consider the cut-set depicted in Figure 1(a), with |F | = 3. Each MBCPP
solution traversing all the edges in F has to traverse the cut-set (S, V \ S) at least once
more time. Let e′ be either an edge in δ(S)\F or a copy of an edge in F . Figure 1(b)
shows this second case. Let T ⊂ S be the set of vertices incident with an odd number of
edges in F ∪ {e′}. Given that |F ∪ {e′}| is even, |T | is also even and there is a T-join E′ in
G(S) (see Figure 1(c)). The subgraph in G(S), G∗, induced by the edges in E′, the vertices
incident with F ∪ {e′}, and the depot can be disconnected. If graph G(S) is connected, G∗

can be converted into a connected graph (see Figure 1(d)) by adding two copies of some edges
connecting its components (and any other vertex i as needed in the proof of Theorem 8).
This same process is done in G(V \S). Then, the two subgraphs build in G(S) and G(V \S)
plus the edges in F ∪ {e′} define a MBCPP tour that satisfies (6) with equality.

Note that the above procedure can be used also if in the cut-set (S, V \ S), besides the
edges in F ∪{e′}, we consider also two copies of any q edges in δ(S)\F . In this case we would
obtain:

x(F ) = |F |, y(F ) = 0, x(δ(S)\F ) = 1 + q and y(δ(S)\F ) = 0 + q if e′ ∈ δ(S)\F , or

x(F ) = |F |, y(F ) = 1, x(δ(S)\F ) = 0 + q and y(δ(S)\F ) = 0 + q if e′ ∈ F .

In both cases, the MBCPP tours satisfy (6) with equality.

Type 2: Consider now all the edges in F , except one of them, and two copies of any q edges
in δ(S)\F . From these |F | − 1 + 2q edges we can apply the above procedure to obtain a
MBCPP tour satisfying:

x(F ) = |F | − 1, y(F ) = 0, x(δ(S)\F ) = 0 + q and y(δ(S)\F ) = 0 + q,
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and, therefore, satisfies (6) with equality.

Theorem 8 Parity inequalities (6) are facet-inducing for MBCPP(G) if graph G is 3-edge
connected and graphs G(S) and G(V \ S) are 2-edge connected.

Proof: Inequalities (6) can be written in the following form:

x(F ) − y(F ) − x(δ(S)\F ) + y(δ(S)\F ) ≤ |F | − 1 (7)

Let us suppose there is another valid inequality ax + by ≤ c such that

{(x, y) ∈ MBCPP(G) : x(F ) − y(F ) − x(δ(S)\F ) + y(δ(S)\F ) = |F | − 1} ⊆

⊆ {(x, y) ∈ MBCPP(G) : ax + by = c},

where, we can assume that c = |F | − 1.

Let (i, j) ∈ E(S) ∪ E(V \ S). Given that G is 3-edge connected, graph G \ {(i, j)} is
connected, and there is a MBCPP tour (x1, y1) that satisfies (7) with equality and visits
node i (see Note 1). The MBCPP tour (x2, y2) obtained from (x1, y1) by adding the traversal
of edge (i, j) twice, also satisfies (7) with equality. Then ax1 + by1 = ax2 + by2 = c and, after
subtracting both expressions, we obtain

aij + bij = 0 ∀(i, j) ∈ E(S) ∪ E(V \ S) (∗)

Let (i, j) ∈ E(S). Given that G is 3-edge connected, there are two edge-disjoint paths
P1, P2 joining nodes i and j that do not contain the edge (i, j). Note that given that G(S)
is 2-edge connected, at least one of this paths is in G(S). Let us suppose first that both
paths P1 and P2 are in G(S). Given that graphs G \ {(i, j)}, G(S)\{(i, j)} and G(V \ S)
are connected, proceeding as in Note 1, we can build a MBCPP tour (x1, y1) in G satisfying
(7) with equality such that it uses edge (i, j) exactly once. To do that, the “parity” label of
vertices i and j is switched before the T-join is computed and then the edge (i, j) is added.

We define three more MBCPP tours in the following way. Consider (x1, y1) and suppose
we add one copy of each edge in paths P1, P2. The resulting tour is even and connected, but
it is not necessarily a MBCPP tour because some edges can appear three times. If we remove
two copies of each one of these edges used three times, we obtain an even and connected tour
(x2, y2) that is a feasible solution for the MBCPP. Let (x3, y3) be the tour obtained from
(x1, y1) after removing the edge (i, j), adding one copy of each edge in path P1, and then
removing two copies of each one of these edges used three times. Finally, let (x4, y4) be the
tour obtained from (x1, y1) after removing the edge (i, j), adding one copy of each edge in
path P2, and then removing two copies of each one of these edges used three times. All these
four MBCPP tours satisfy (7) with equality and then also satisfy ax + by = c.

Let us call α(Pi) =
∑

e∈P 1
i

ae +
∑

e∈P 2
i

be, where P 1
i is the set of edges in path Pi that are

traversed only once in (x1, y1) and P 2
i the set of edges in path Pi that are not traversed or

traversed twice in (x1, y1). If we subtract the expressions ax1 + by1 = c and ax2 + by2 = c
we obtain α(P1) + α(P2) = 0. In the same way, by comparing tours 3 and 4 above we obtain
that α(P1) = α(P2) and then α(P1) = α(P2) = 0. Finally, if we compare the tours 1 and
3, we obtain that aij = α(P1) and then aij = 0. From (∗), also bij = 0. For each edge
(i, j) ∈ E(V \ S), a similar process leads to aij = bij = 0.
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Let us suppose now that path P2 is not in G(S), i.e., it leaves the graph G(S) and
traverses the cut-set δ(S). Given that graph G(V \S) is connected, we can assume that path
P2 traverses the cut-set δ(S) exactly once in each direction through two edges, say e1 and e2.
We consider three cases:

(1) e1, e2 ∈ F . Let (x1, y1) be the MBCPP tour of type 2, satisfying (7) with equality,
which traverses all the edges in F \ {e2} once and does not traverse e2. It can be seen
that three MBCPP tours (x2, y2), (x3, y3) and (x4, y4) defined as above satisfy also (7) with
equality. Note that when we add one copy of each edge in path P2 we obtain a MBCPP tour
of type 1 that uses each edge in F \ {e1} exactly once and edge e1 twice.

(2) e1, e2 /∈ F . Let (x1, y1) be the MBCPP tour of type 1, satisfying (7) with equality,
which traverses all the edges in F ∪{e1} once and does not traverse e2. Again, three MBCPP
tours (x2, y2), (x3, y3) and (x4, y4) defined as above satisfy also (7) with equality. Note that
when we add one copy of each edge in path P2 we obtain a MBCPP tour of type 1 that uses
each edge in F \ {e1} exactly once and the edge e1 twice.

(3) e1 ∈ F, e2 /∈ F . Let (x1, y1) be the MBCPP tour of type 2 satisfying (7) with equality,
traversing all the edges in F \ {e1} once and not traversing e2. Again, the three MBCPP
tours (x2, y2), (x3, y3) and (x4, y4) defined as above satisfy also (7) with equality. Note that
when we add one copy of each edge in path P2 we obtain a MBCPP tour of type 1 that uses
each edge in F ∪ {e2} exactly once.

In any of the 3 cases above, following a similar reasoning to that of the case in which path
P2 is in G(S), we obtain that aij = bij = 0 for all edges (i, j) ∈ E(S) ∪ E(V \ S).

Consider now an edge (i, j) ∈ δ(S). As we have seen in Note 1, there is a MBCPP
tour (x1, y1) that satisfies (7) with equality and does not use (i, j), while visiting nodes i
and j. Let (x2, y2) be the tour obtained after adding edge (i, j) twice to (x1, y1). Since
ax1 + by1 = ax2 + by2 = c, subtracting these expressions we obtain that aij + bij = 0 for all
(i, j) ∈ δ(S).

Let e1, e2 ∈ F . Let (x1, y1) be the MBCPP tour that uses all the edges in F \ {e1}
exactly once and edge e1 twice and let (x2, y2) be the tour that uses all the edges in F \ {e2}
exactly once and edge e2 twice. Both tours can be constructed satisfying (7) with equality.
By comparing them, and considering that aij = bij = 0 for all edges (i, j) ∈ E(S)∪E(V \S),
we obtain that be1 = be2 and, therefore, ae1 = ae2. By iterating this argument we obtain that
aij = λ and bij = −λ for all (i, j) ∈ F .

For each e1 /∈ F , consider any e2 ∈ F . Let (x1, y1) be the MBCPP tour that uses all the
edges in F ∪ e1 exactly once and let (x2, y2) be the tour that uses all the edges in F \ {e2}
exactly once and edge e2 twice. By comparing them, we obtain that ae1 = be2 = −λ and,
therefore, be1 = λ.

Then we have that inequality ax + by ≤ c reduces to λx(F ) − λy(F ) − λx(δ(S)\F ) +
λy(δ(S)\F ) ≤ |F | − 1. Given that the MBCPP tour (x1, y1) above, for example, satisfies
this inequality with equality, we obtain that λ|F | − λ = |F | − 1 and, therefore, λ = 1, which
completes the proof. �
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4.2 K-C inequalities

K-C inequalities ([8]) are a well-known family of facet-inducing inequalities for the RPP and
many other arc routing problems. In this section we show that these inequalities can be
transformed in order to obtain new valid and facet-inducing inequalities for MBCPP(G) that
we will continue calling K-C inequalities for the sake of simplicity.

Let M0,M1, . . . ,MK , with K ≥ 3, be a partition of V , where 1 ∈ M0 ∪ MK . Given an
edge ei ∈ E(Mi) for each i = 1, . . . ,K − 1, and a subset of edges F ⊆ (M0 : MK) with |F |
even, the K-C inequalities for the MBCPP are defined as:

(K − 2)
(

x((M0 : MK) \ F ) − y((M0 : MK) \ F )
)

− (K − 2)(x(F ) − y(F )) +

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(

(j − i)x(Mi : Mj) + (2 − j + i)y(Mi : Mj)
)

− 2
K−1
∑

i=1

xei
≥ −(K − 2)|F | (8)

The coefficients and structure of the K-C inequalities are shown in Figure 2, where for
each pair (a, b) associated with an edge e, a and b represent the coefficients of xe and ye,
respectively. Note that if we add 2(K−2)(x(F )− y(F )) to both sides of inequality (8), it can
be written as

(K−2)
(

x((M0 : MK)) − y((M0 : MK))
)

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(

(j − i)x(Mi : Mj) + (2 − j + i)y(Mi : Mj)
)

≥ (K − 2)
(

2(x(F ) − y(F )) − |F |
)

+ 2

K−1
∑

i=1

xei
,

and, if a given solution traverses exactly once each edge in F and each edge ei, it has to
satisfy

(K−2)
(

x((M0 : MK)) − y((M0 : MK))
)

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(

(j − i)x(Mi : Mj) + (2 − j + i)y(Mi : Mj)
)

≥ (K − 2)|F | + 2(K − 1),

which, regarding the x variables, resembles the version of the K-C inequality for the undirected
RPP ([8]).

If the depot 1 /∈ M0 ∪ MK but 1 ∈ Md, for some d ∈ {1, 2, . . . ,K − 1}, and |F | ≥ 2, the
corresponding K-C inequality is

(K − 2)
(

x((M0 : MK) \ F ) − y((M0 : MK) \ F )
)

− (K − 2)(x(F ) − y(F )) +

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(

(j − i)x(Mi : Mj) + (2 − j + i)y(Mi : Mj)
)

− 2

K−1
∑

i=1
i6=d

xei
≥ −(K − 2)|F | + 2. (9)

Note that when |F | = 0 or K = 2 the K-C inequality (9) is not valid. Moreover, when
K = 2, the K-C inequality (8) reduces to a connectivity inequality (2).
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Figure 2: Coefficients of the K-C inequality.

Theorem 9 K-C inequalities (8) and (9) are valid for MBCPP(G).

Proof: We will prove only the validity of inequalities (8) since the proof for inequalities (9)
is analogous. Let (x∗, y∗) be a MBCPP tour. We have to prove that (x∗, y∗) satisfies (8).

Note that if x∗
ej

= 0 for some j ∈ {1, . . . ,K − 1}, then we could consider a new K-C
configuration with K − 1 nodes where nodes Mj and Mj+1 have been merged into a single
node Mj ∪ Mj+1, and it can be proved that, if its associated K-C inequality is satisfied by
(x∗, y∗), then the original K-C inequality is also satisfied by (x∗, y∗). Then, in what follows,
we can assume that x∗

e1
= x∗

e2
= . . . x∗

eK−1
= 1 and we have to prove that

(K − 2)
(

x∗((M0 : MK) \ F ) − y∗((M0 : MK) \ F )
)

− (K − 2)(x∗(F ) − y∗(F )) +

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(

(j − i)x∗(Mi : Mj) + (2 − j + i)y∗(Mi : Mj)
)

≥ 2(K − 1) − (K − 2)|F |. (10)

Let us suppose first that x∗(F ) − y∗(F ) = |F |. This means that (x∗, y∗) traverses once
each edge in F . In this case, inequality (10) reduces to

(K − 2)
(

x∗((M0 : MK) \ F ) − y∗((M0 : MK) \ F )
)

+

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(

(j − i)x∗(Mi : Mj) + (2 − j + i)y∗(Mi : Mj)
)

≥ 2(K − 1). (11)

Since (x∗, y∗) starts at M0, visits all the nodes M1, . . . ,MK−1 and returns to M0 (see
Figures 3a and 3b, where edges in F used by the tour are depicted in bold), it is easy to see
that inequality (11) holds.

Consider now that x∗(F ) − y∗(F ) = |F | − 1, that is, (x∗, y∗) traverses the edges in F an
odd number of times. In this case, inequality (10) reduces to

(K − 2)
(

x∗((M0 : MK) \ F ) − y∗((M0 : MK) \ F )
)

+

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(

(j − i)x∗(Mi : Mj) + (2 − j + i)y∗(Mi : Mj)
)

≥ K. (12)

15



�

��
M0

�

��
MK

�

��

�

��

�

��

�

��

�

��
Mi

�
��

�

@
@@

@

HHHH

����

AAAA

����

. . .

. .
.

(a)

�

��
M0

�

��
MK

�

��

�

��

�

��

�

��

�

��
Mi

�
�

@
@

HH

��

AA

��

. . .

. .
.

(b)

�

��
M0

�

��
MK

�

��

�

��

�

��

�

��

�

��
Mi

�
�

@
@

HH

��

AA

��

. . .

. .
.

(c)

Figure 3: MBCPP solutions in the proof of Theorem 9.

The best way of starting at M0, visit M1, . . . ,MK−1 and ending at MK (remember that
the edges in F are traversed an odd number of times) has an F -cost cambiarlo por a left-hand
side cost greater than or equal to K (see Figure 3c), and inequality (12) holds.

All the other cases when x∗(F ) − y∗(F ) < |F | − 1 can be proved easily. Note that, when
x∗(F )−y∗(F ) = |F |−2, the right-hand side of the inequality expressed as in (12) is 2, while,
when x∗(F ) − y∗(F ) ≤ |F | − 3, the right-hand side is non-positive. �

Note 2 There are two types of MBCPP solutions that satisfy a K-C inequality (8) with
equality that will be used in the proof of Theorem 10:

Type 1: MBCPP tours where xei
= 1 ∀i = 1, . . . ,K − 1. There are 3 possibilities:

(a) solutions traversing exactly once each edge in F , twice each edge ei (xei
= yei

= 1),
i = 1, 2, . . . ,K − 1, and connecting sets Mj , j = 0, 1, 2, . . . ,K − 1, with either two different
edges in (Mj : Mj+1) used once or an edge used twice as in Figure 3(a).

(b) solutions traversing each edge in F and one more edge in (M0 : MK) (this could be a
second traversal of an edge in F ), once each edge ei, i = 1, 2, . . . ,K − 1, and connecting sets
Mj , j = 0, 1, 2, . . . ,K − 1, with exactly an edge in each set (Mj : Mj+1), j = 0, . . . ,K − 1
(see Figure 3(b)).

(c) solutions traversing exactly once each edge in F except one of them, once each edge
ei, i = 1, 2, . . . ,K − 1, and connecting sets Mj , j = 0, 1, 2, . . . ,K − 1, with exactly an edge in
each set (Mj : Mj+1), j = 0, . . . ,K − 1 (see Figure 3(c)).

Type 2: MBCPP tours traversing exactly once each edge in F but having some variables
xei

equal to zero. There are 3 possibilities:

(d) solutions with xei
= 0 ∀i = 1, . . . ,K − 1 (see Figure 4(d)).

(e) solutions with xei
= yei

= 1 ∀i = 1, . . . , l and xei
= yei

= 0 ∀i = l+1, l+2, . . . ,K−
1, and connecting sets Mj , j = 1, 2, . . . , l, as in Figure 4(e).

(f) solutions traversing twice each edge ei except one of them, say ep, and connecting sets
Mj , j 6= p as in Figure 4(f).

Note that in the previous MBCPP solutions we have not described how the edges in each
set E(Mi) are traversed. It can be seen that all these solutions can be completed by using
T-joins as described in Note 1 for the parity inequalities.
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Figure 4: MBCPP solutions satisfying (8) with equality

Theorem 10 K-C inequalities (8) and (9) are facet-inducing for MBCPP(G) if graph G is
3-edge connected, graph G(Mi) is 3-edge connected for i = 0, 1, . . . ,K, |(Mi : Mi+1)| ≥ 2 for
i = 0, . . . ,K − 1, and |F | ≥ 2.

Proof: Let us prove that inequalities (8) are facet inducing. The proof for inequalities (9) is
similar and is omitted here. Assume, w.l.o.g., that 1 ∈ M0. Let us suppose there is another
valid inequality ax + by ≤ c such that
{

(x, y) ∈ MBCPP(G) : (x, y) satisfies (8) with equality
}

⊆
{

(x, y) ∈ MBCPP(G) : ax+by = c
}

,

where c = (2 − K)|F |.

Let e = (u, v) ∈ E(Mi) \ {ei}, i ∈ {0, 1, . . . ,K}. Given that G is 3-edge connected,
graph G \ {(u, v)} is connected, and there is a MBCPP tour (x1, y1) of type (b) in Note 2
that satisfies (8) with equality and visits node u. The MBCPP tour (x2, y2) obtained from
(x1, y1) by adding the traversal of edge (u, v) twice, also satisfies (8) with equality. Then
ax1 + by1 = ax2 + by2 = c and, after subtracting these expressions, we obtain

auv + buv = 0 ∀(u, v) ∈ E(Mi) \ {ei}, i ∈ {0, 1, . . . ,K} (∗)

Let e = (u, v) ∈ (M0 : MK) and let (x1, y1) be a MBCPP tour of type (c) in Note 2
that does not traverse edge (u, v) and visits node u. The MBCPP tour (x2, y2) obtained
from (x1, y1) by adding the traversal of edge (u, v) twice, also satisfies (8) with equality,
since xe = ye = 1 and the sum of the coefficients of both variables in (8) is zero. Then
ax1 + by1 = ax2 + by2 = c and, after subtracting these expressions, we obtain

auv + buv = 0 ∀(u, v) ∈ (M0 : MK) (∗∗)

Let (u, v) ∈ E(Mi) \ {ei}, i ∈ {0, 1, . . . ,K}. Given that G(Mi) is 3-edge connected, there
are two edge-disjoint paths P1, P2 joining nodes u and v that do not contain the edge (u, v)
and both paths P1 and P2 are in G(Mi). Given that the graph G(Mi)\{(u, v)} is connected,
we can build a MBCPP tour (x1, y1) in G of type (b) satisfying (8) with equality such that
it uses edge (u, v) exactly once. We define three more MBCPP tours in the following way:

Consider (x1, y1) and suppose we add one copy of each edge in paths P1, P2. The resulting
tour is even and connected, but it is not necessarily a MBCPP tour because some edges could
appear three times. If we remove two copies of each one of these edges used three times, we
obtain an even and connected tour (x2, y2) that is a feasible solution for the MBCPP. Let
(x3, y3) be the tour obtained from (x1, y1) after removing the edge (u, v), adding one copy
of each edge in path P1 and then removing two copies of each one of these edges used three
times. Finally, let (x4, y4) be the tour obtained from (x1, y1) after removing the edge (u, v),
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adding one copy of each edge in path P2 and then removing two copies of each one of these
edges used three times. All these four MBCPP tours satisfy (8) with equality and then also
satisfy ax + by = c.

Let us call α(Pr) =
∑

e∈P 1
r

ae +
∑

e∈P 2
r

be, where P 1
r is the set of edges in path Pr that

are traversed only once in (x1, y1) and P 2
r the set of edges in path Pr that are not traversed

or traversed twice in (x1, y1). If we subtract the expressions ax1 + by1 = c and ax2 + by2 = c
we obtain α(P1) + α(P2) = 0. In the same way, by comparing tours 3 and 4 above we obtain
that α(P1) = α(P2) and then α(P1) = α(P2) = 0. Finally, if we compare the tours 1 and 3
we obtain that auv = α(P1) and then auv = 0. From (∗), also buv = 0.

For each i ∈ {1, 2, . . . ,K − 1}, let (x1, y1) be the MBCPP tour of type (a) in note 2
traversing twice an edge in each set (Mj : Mj+1), j 6= i and let (x2, y2) be the MBCPP tour
of type (f) traversing twice the same edge in each set (Mj : Mj+1), j 6= i − 1, i. Both tours
satisfy (8) with equality and then also satisfy ax + by = c. Hence, auv + buv = −aei

− bei

for all (u, v) ∈ (Mi−1 : Mi). If we consider the MBCPP tour (x3, y3) of type (a) traversing
twice an edge in each set (Mj : Mj+1), j 6= i − 1, we can conclude auv + buv = −aei

− bei

for all (u, v) ∈ (Mi : Mi+1). Iterating this argument, we obtain: auv + buv = 2λ for all
(u, v) ∈ (Mi : Mi+1) and aei

+ bei
= −2λ for all i = 1, . . . ,K − 1, where λ is a certain

constant value.

For each i ∈ {1, 2, . . . ,K − 1}, let (x1, y1) be the MBCPP tour of type (c) in note 2
traversing edge ei = (u, v) once. Given that subgraph G(Mi) is 3-edge connected, we can
find a path connecting u and v that does not use ei. If we add this path plus one copy of ei to
(x1, y1), we obtain a MBCPP tour (x2, y2) satisfying (8) with equality. By comparing both
tours, and given that ae = be = 0 for all e ∈ E(Mi) \ {ei}, we obtain bei

= 0 and therefore
aei

= −2λ.

For each i ∈ {0, 1, 2, . . . ,K − 1}, let (u, v), (w, z) be two edges in E(Mi : Mi+1) (recall
that |(Mi,Mi+1)| ≥ 2 for i = 0, . . . ,K − 1, holds). Then, it is easy to see that there are two
MBCPP tours (x1, y1) and (x2, y2) of type (c) in note 2 traversing edges (u, v) and (w, z)
once respectively. Comparing both tours, we get auv = awz. Since we have proved that
auv + buv = 2λ = awz + bwz, we have buv = bwz. Furthermore, let (x3, y3) be a tour of type (f)
traversing edge (u, v) twice and (x4, y4) a similar tour traversing (u, v) and (w, z) once. By
comparing both tours, we obtain buv = awz and, since awz = auv, we get auv = buv. Therefore
auv = buv = λ for each edge (u, v) ∈ E(Mi : Mi+1) for all i.

From the MBCPP tour of type (d), we obtain that
∑

e∈F ae = (2 − K)|F |. Let e, f be
two edges in F and let (x1, y1) and (x2, y2) be the tours of type (c) that traverse all edges in
F except for e and f respectively. By comparing both tours, we get ae = af and, iteratively,
all the edges in F have the same coefficient ae = 2 − K, and also be = K − 2. If there is any
edge e in E(M0 : MK) \ F , comparing a tour of type (b) traversing e and another tour of
type (c), we get ae = K − 2 and therefore be = 2 − K.

If we compare a tour of type (a) and another one of type (c), we obtain 2−K+(K−1)λ = λ.
Hence λ = 1.

Finally, for each edge e ∈ E(Mi : Mj), |i − j| > 1, comparing tours of type (g) and (h)
in Figure 5, we obtain ae + be = 2. Then, comparing tours of type (h) and (i), we obtain
ae + |i − j| = ae + be + 2(|i − j| − 1). Therefore, be = 2 − |i − j| and ae = |i − j|, which
completes the proof. �
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Figure 5: MBCPP solutions satisfying (8) with equality

Note 3 The 3-edge-connectivity hypothesis on graphs G(Mi) may be unnecessary for a given
K-C inequality to induce a facet, but we needed it in the proof above. In the same way, if
|E(Mi : Mi+1)| = 1 for some i, we do not know if the K-C inequality is facet-inducing or not.
Only in the case K = 3 and |E(M1 : M2)| = 1 we have proved that the K-C inequality is
dominated by a 2-connectivity inequality (see Section 4.3) defined with S0 = M0 ∪ M3.

4.3 p-connectivity inequalities

All the previous inequalities do not describe the polyhedron MBCPP(G) completely. For
example, consider a MBCPP instance defined on the complete graph with 5 vertices, K5.
Consider the fractional solution shown in Figure 6(a), where a double solid (dotted) line
means that both variables x and y take value 1 (0.5). It can be seen that it satisfies all
the inequalities presented in previous sections. Specifically, it satisfies the connectivity in-
equalities (2) associated with sets S1 = {2, 3} and S2 = {4, 5} and edges (2, 3) and (4, 5),
respectively.

(a) (b) (c)

Figure 6: MBCPP fractional solution satisfying connectivity inequalities

Note, however, that some features concerning connectivity are not satisfied by this frac-
tional solution. As we will show later, the following inequality is valid for the MBCPP and
cuts fractional solutions like the one depicted in Figure 6(a):

x(δ({1}) + y(δ({1}) + 2x(S1 : S2) ≥ 2x23 + 2x45.

The above inequality can be extended as follows. Let S0, S1, S2 be a partition of V and
assume that 1 ∈ S0. Let e1 ∈ E(S1) and e2 ∈ E(S2). The following inequality will be referred
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to as 2-connectivity inequality:

x(δ(S0)) + y(δ(S0)) + 2x(S1 : S2) ≥ 2xe1 + 2xe2 .

This inequality is represented in Figure 6(b), where for each pair (a, b) associated with
an edge e, a and b represent the coefficients of xe and ye, respectively. A different version
of these 2-connectivity inequalities is obtained when the depot is not in S0. If, for example,
1 ∈ S1 (see Figure 6(c)), the inequality takes the form:

x(δ(S0)) + y(δ(S0)) + 2x(S1 : S2) ≥ 2xe0 + 2xe2 ,

where e0 is a given edge in S0.

2-connectivity inequalities can be generalized by considering any number p + 1 of sets.
Let S0, S1, . . . , Sp be a partition of V . Assume that 1 ∈ Sd, d ∈ {0, 1, . . . , p} and consider an
edge ej ∈ E(Sj) for every j ∈ {0, 1, . . . , p} \ {d}. The following inequality

x(δ(S0)) + y(δ(S0)) + 2
∑

1≤r<t≤p

x(Sr : St) ≥ 2

p
∑

i=0,i6=d

xei
(13)

is valid and will be referred to as p-connectivity inequality.

Theorem 11 p-connectivity inequalities (13) are valid for MBCPP(G).

Proof: For the sake of simplicity we will assume that 1 ∈ S0. Let (x∗, y∗) be a MBCPP
tour. We have to prove that x∗(δ(S0)) + y∗(δ(S0)) + 2

∑

1≤r<t≤p x∗(Sr : St) ≥ 2
∑p

i=1 x∗
ei

.

Note that if x∗
ej

= 0 for some j ∈ {1, . . . , p}, then we could consider a new p-connectivity
configuration with p− 1 nodes where nodes Sj and Sj+1 have been merged into a single node
Sj∪Sj+1, and it can be proved that, if its associated (p−1)-connectivity inequality is satisfied
by (x∗, y∗), then the original p-connectivity inequality is also satisfied by (x∗, y∗). Then, in
what follows, we can assume that x∗

e1
= x∗

e2
= . . . x∗

ep
= 1.

Similarly, if x∗
e = 1 for some e ∈ (Sr, St) with 1 ≤ r < t ≤ p, we can define a new

partition with p− 1 elements where Sr and St have been merged into S′
r = Sr ∪St and where

e′r = er. Again, if its associated (p − 1)-connectivity inequality is satisfied by (x∗, y∗), then
the original p-connectivity inequality is also satisfied by (x∗, y∗). Hence, we can assume that
x∗(Si, Sj) + y∗(Si, Sj) = 0 for any i, j ∈ {1, . . . , p}.

Therefore, since x∗
ei

= 1 for each i = 1, . . . , p, x∗(S0, Si) + y∗(S0, Si) ≥ 2, and in this case
the inequality holds. �

Theorem 12 p-connectivity inequalities (13) are facet-inducing for MBCPP(G) if graph G
is 3-edge connected, subgraphs G(Si), i = 1, . . . , p, are 3-edge connected, |(S0, Si)| ≥ 2,
∀ i = 1, . . . , p, and the graph induced by V \ S0 is connected.

Proof: We will assume that 1 ∈ S0. The case 1 ∈ Si, i 6= 0, is similar and the proof is
omitted here. Let us suppose there is another valid inequality ax + by ≥ c such that

{(x, y) ∈ MBCPP(G) : (x + y)(δ(S0)) + 2
∑

1≤r<t≤p

x(Sr : St) − 2

p
∑

i=1

xei
= 0} ⊆

⊆ {(x, y) ∈ MBCPP(G) : ax + by = c},
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where, w.l.o.g., we can assume that c = 0.

Similar arguments to those used in the proof of Theorem 10, lead to prove that auv =
buv = 0 for every edge (u, v) ∈ E(Si) \ {ei} for all i = 0, 1, 2, . . . , p and that bei

= 0 for all
i = 1, 2, . . . , p.

Let Si and Sj, i, j 6= 0 be two sets such that there is an edge (u, v) ∈ (Si, Sj). Since
(S0, Si) 6= ∅, we can construct the tour that traverses twice both an edge f ∈ (S0, Si) and
edge ei, which satisfies the inequality (13) as an equality. If we compare this tour with the
empty tour, we obtain af + bf + aei

= 0. This result also holds for set Sj. We construct
now three tours satisfying (13) with equality such as those depicted in Figure 7. Comparing
them, we conclude a0i + b0i = aij + bij = a0j + b0j = −aei

= −aej
, where akl (bkl) represents

the coefficient of variable x (y) corresponding to any edge in (Sk, Sl). Given that the graph
induced by V \ S0 is connected, we can iterate this argument to conclude that

auv + buv = −aei
= 2λ

for every edge (u, v) joining any pair of sets Su and Sv and for every edge ei, i = 1, . . . , p.
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Figure 7: MBCPP solutions satisfying (13) with equality

Given that |(S0, Si)| ≥ 2 for each i = 1, . . . , p, using a similar argument as in the proof of
Theorem 10 we obtain auv = buv = λ for each edge (u, v) ∈ (S0, Si), i = 1, . . . , p.

As above, let Si and Sj, i, j 6= 0 be two sets such that there is an edge (u, v) ∈ (Si, Sj).
The tour that traverses once edge (u, v), one edge in (S0, Si), one edge in (S0, Sj), and edges
ei and ej satisfies inequality (13) with equality. Then, it satisfies auv + a0i + a0j + aei

+ aej
=

auv + λ + λ − 2λ − 2λ = 0, and therefore auv = 2λ, which implies buv = 0.

Finally, since the right-hand side c is 0, dividing the inequality by λ we get the coefficients
of the p-connectivity inequality and the proof is completed. �
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Set # inst Gap 0 # opt 0 Nodes Time Gap 0 # opt 0 Time 0

D16 9 0,000% 9 0,00 0,05 0,51% 8 0,3
D36 9 0,000% 9 0,00 0,10 0,12% 5 14,58
D64 9 0,000% 9 0,00 0,21 0,14% 7 105,34

D100 9 0,000% 9 0,00 1,75 0,40% 4 1890,71
G16 9 0,000% 9 0,00 0,03 0,00% 9 0,28
G36 9 0,000% 9 0,00 0,12 0,00% 9 18,31
G64 9 1,111% 8 0,44 0,67 1,85% 8 139,97

G100 9 0,452% 7 1,11 3,52 0,44% 6 2798,35
R20 5 0,000% 5 0,00 0,05 0,26% 4 0,4
R30 5 0,000% 5 0,00 0,11 0,00% 5 2,7
R40 5 0,000% 5 0,00 0,13 0,00% 4 3,69
R50 5 0,065% 4 0,20 0,24 0,07% 4 60,86

P 24 0,068% 20 0,21 0,07 0,44% 20 1,97
AlbaidaA 1 0,000% 1 0,00 0,38 0,19% 0 562,5
AlbaidaB 1 0,000% 1 0,00 0,22 0,00% 1 25,15

118 0,136% 110 0,369% 94

Table 1: Add caption

Set Con. H Con. H2 Con. Ex Imp. H Imp. 1v Imp. Ex CPK P-con.

D16 8,4 1,2 1,6 1,4 16,7 1,6 0,2 1,1
D36 17,6 2,4 4,3 5,1 47,0 0,2 0,2 2,9
D64 24,3 8,6 14,4 15,1 83,1 3,4 2,0 7,4

D100 40,6 39,6 38,7 23,4 130,1 93,3 10,6 32,4
G16 9,0 1,9 0,2 0,2 16,0 0,3 0,0 0,0
G36 22,7 10,3 3,6 3,6 47,2 8,4 0,8 3,1
G64 37,3 20,4 17,8 7,6 80,3 24,3 4,9 34,2

G100 52,7 101,8 50,1 18,2 131,2 173,8 13,4 86,0
R20 10,4 0,8 2,4 1,6 21,8 0,4 0,0 0,0
R30 23,8 1,8 7,0 10,2 41,4 3,8 0,0 1,8
R40 26,0 2,2 3,2 4,4 45,0 14,2 0,8 0,0
R50 33,2 6,6 11,6 9,8 66,2 20,6 0,0 2,2

P 7,8 1,3 2,7 1,6 25,0 2,5 0,9 1,3
AlbaidaA 43,0 6,0 14,0 8,0 93,0 44,0 0,0 0,0
AlbaidaB 33,0 11,0 6,0 4,0 70,0 10,0 0,0 2,0

Table 2: Add caption
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Set # inst Gap 0 # opt 0 Nodes Time

B3 3 0,18% 0 3,00 55,2
B4 3 0,08% 1 4,33 119,8
B5 3 0,00% 3 0,00 63,4
B6 3 0,00% 3 0,00 42,3
C3 3 0,03% 1 1,33 251,4
C4 3 0,00% 2 0,33 503,0
C5 3 0,01% 1 2,67 831,4
C6 3 0,00% 3 0,00 410,0
D3 3 0,01% 1 0,67 1265,6
D4 3 0,00% 2 0,33 2366,3
D5 3 0,00% 3 0,00 1252,8
D6 3 0,00% 3 0,00 380,1

Table 3: Add caption

Set Conn. H1 Conn. H2 Conn. E. Odd H Odd E1v Odd E. CPK P-conn.

B3 200,7 492,0 373,3 211,0 465,0 300,7 12,7 110,3
B4 74,7 63,3 559,0 291,3 525,3 702,3 48,7 83,0
B5 50,0 22,0 154,0 269,3 490,0 84,3 33,0 9,3
B6 25,3 4,0 24,3 158,7 449,7 44,7 5,3 1,7
C3 251,3 995,3 1073,7 312,0 668,0 1186,7 1,3 179,3
C4 120,3 51,0 535,0 369,3 736,7 397,3 16,7 53,0
C5 65,3 8,7 609,3 357,0 724,3 984,3 16,3 19,3
C6 37,0 0,7 105,3 364,7 727,3 812,7 10,0 6,3
D3 447,7 2261,0 1599,0 549,7 993,0 4195,0 6,3 317,3
D4 174,7 204,3 1123,3 523,0 979,7 1604,3 72,7 119,0
D5 124,7 18,0 745,7 457,3 973,3 367,0 33,7 31,3
D6 68,0 3,7 90,3 328,3 933,3 379,3 0,0 37,7

Table 4: Add caption

Set # inst. Gap N0 # opt N0 # opt Nodes Time

B3 3 0,02% 1 3 3,33 190,9
B4 3 0,01% 2 3 1,33 100,8
B5 3 0,00% 3 3 0,00 70,3
B6 3 0,00% 3 3 0,00 58,6
C3 3 0,01% 1 2 0,67 857,9
C4 3 0,00% 3 3 0,00 420,3
C5 3 0,00% 3 3 0,00 385,2
C6 3 0,00% 3 3 0,00 317,4
D3 3 0,00% 1 2 1,00 1896,2
D4 3 0,00% 3 3 0,00 3578,8
D5 3 0,00% 3 3 0,00 350,9
D6 3 0,00% 3 3 0,00 660,4

Table 5: Add caption
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Set Conn. H1 Conn. H2 Conn. E. Odd H Odd E1v Odd E. CPK P-conn.

B3 176,0 220,3 1388,3 176,3 461,0 615,0 98,0 351,0
B4 53,7 9,3 145,7 297,0 518,3 620,0 45,7 33,3
B5 4,0 0,3 19,0 263,7 479,3 80,0 0,3 0,0
B6 1,7 0,0 2,0 149,0 449,0 82,0 0,0 0,7
C3 225,7 358,7 3416,7 308,0 737,7 3219,3 46,0 998,3
C4 48,7 8,7 400,0 187,7 643,3 74,0 2,7 75,0
C5 5,7 3,0 62,3 364,3 707,0 102,0 0,0 1,0
C6 0,3 0,3 7,7 381,3 759,3 38,7 0,0 0,3
D3 387,3 1280,3 8580,3 474,3 1006,0 3274,7 80,3 1322,0
D4 56,0 17,7 2617,3 496,0 958,0 174,3 5,3 139,3
D5 2,7 0,0 11,3 278,0 884,0 19,7 0,0 0,0
D6 0,7 0,0 9,0 317,0 941,0 59,0 0,0 0,3

Table 6: Add caption

5 Branch-and-cut algorithm for the MBCPP

6 Computational results

7 Conclusions
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