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Summary 24 

Uterine capacity (UC), defined as the total number of kits from unilaterally 25 

ovariectomized does at birth, has a high genetic correlation with litter size. The aim of 26 

our research was to identify genomic regions associated with litter size traits through 27 

a genome-wide association study using rabbits from a divergent selection experiment 28 

for UC. A high-density SNP array (200K) was used to genotype 181 does from a control 29 

population, high and low UC lines. Traits included total number born (TNB), number 30 

born alive (NBA), number born dead, ovulation rate (OR), implanted embryos (IE), and 31 

embryo, foetal and prenatal survivals at second parity. We implemented the Bayes B 32 

method and the associations were tested by Bayes factors and the percentage of 33 

genomic variance (GV) explained by windows. Different genomic regions associated 34 

with TNB, NBA, IE, and OR were found. These regions explained 7.36%, 1.27%, 35 

15.87%, and 3.95% of GV, respectively. Two consecutive windows on chromosome 36 

17 were associated with TNB, NBA, and IE. This genomic region accounted for 6.32% 37 

of GV of TNB. In this region, we found the BMP4, PTDGR, PTGER2, STYX and 38 

CDKN3 candidate genes which presented functional annotations linked to some 39 

reproductive processes. Our findings suggest that a genomic region on chromosome 40 

17 has an important effect on litter size traits. However, further analyses are needed 41 

to validate this region in other maternal rabbit lines. 42 

 43 

Keyword: divergent selection, GWAS, litter size, QTL, rabbits, uterine capacity. 44 

 45 
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Introduction 46 

Litter size has high economic importance in all polytocous livestock species, including 47 

rabbits (Cartuche, Pascual, Gómez, & Blasco, 2014) and swine (Quinton, Wilton, 48 

Robinson, & Mathur, 2006). However, the selection response for this complex trait, as 49 

well for several other reproduction traits, is small. For example, in rabbit selection 50 

experiments for litter size the response can be 0.1 kits per generation (see review Khalil 51 

& Al-Saef, 2008). This situation encouraged the application of alternative selection 52 

strategies based on litter size components such as uterine capacity (UC) (Argente, 53 

Santacreu, Climent, Bolet, & Blasco, 1997), ovulation rate (OR) (Laborda, Mocé, 54 

Blasco, & Santacreu, 2012), or selection using independent culling levels for OR and 55 

litter size (Badawy, Peiró, Blasco, & Santacreu, 2018; Ziadi, Moce, Laborda, Blasco, 56 

& Santacreu, 2013). 57 

 58 

UC is the prenatal survival when the OR is not a limiting factor of litter size and the 59 

uterine horn is crowded with embryos (Argente et al., 1997; Blasco, Argente, Haley, & 60 

Santacreu, 1994). This trait can be measured as total number of kits at birth under 61 

these conditions (Christenson, Leymaster, & Young, 1987; Mocé, Santacreu, Climent, 62 

& Blasco, 2004), since does have a double cervix preventing intrauterine 63 

transmigration; and thus, only one uterine horn remains functional and crowed, 64 

duplicating its OR when ovariectomies are implemented (Argente et al., 1997; Blasco, 65 

Argente, Haley, & Santacreu, 1994). From 1991 to 1998, the Animal Science 66 

Department of “Universitat Politècnica de València” carried out an experiment of 67 

divergent selection for UC. After ten generations of selection, the divergence between 68 

the two divergent lines (high and low UC lines) was 1.50 kits for UC (Blasco, Ortega, 69 

Climent, & Santacreu, 2005), with a correlated response in litter size of 2.35 kits 70 
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(Santacreu, Mocé, Climent, & Blasco, 2005). Approximately one-half of the response 71 

in UC was obtained in the first two generations suggesting the presence of a major 72 

locus with large effect segregating in these populations (Argente, Blasco, Ortega, 73 

Haley, & Visscher, 2003; Blasco et al., 2005). Thus, a candidate gene strategy was 74 

carried out to characterize this locus by comparing polymorphisms and expression 75 

levels between the two UC lines of a some promising candidates (Argente et al., 2010; 76 

Ballester et al., 2013; Peiró et al., 2008). Some of these genes (progesterone receptor 77 

- PGR, hydroxysteroid (17-beta) dehydrogenase 4 - HSD17B4, and Endoplasmic 78 

Reticulum Oxidoreductase 1 - ERO1) showed different expression levels in the oviduct 79 

of the two UC line, remarkably overexpressed in the low UC line, but these result could 80 

not identify any putative causal mutations (Argente et al., 2010; Ballester et al., 2013; 81 

Peiró et al., 2008). 82 

 83 

The recent availability of an updated rabbit reference genome (Carneiro et al., 2014) 84 

and a high-density single nucleotide polymorphisms (SNP) array (Blasco & Pena, 85 

2018) has opened new possibilities for more comprehensive genomic analyses in this 86 

species, similar to what is possible in all other major livestock species.  Together with 87 

these tools, several methods for genome-wide association analyses have been also 88 

already developed and applied in many different species (Fan, Du, Gorbach, & 89 

Rothschild, 2010). Among them, genome-wide association studies (GWAS) using 90 

multi-marker regression approaches can attain better power detection to identify 91 

genomic regions associated with a trait than the classical approach of single maker 92 

simple regression (López de Maturana et al., 2014; Toosi, Fernando, & Dekkers, 93 

2018). 94 

 95 
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In this study, we designed a GWAS in rabbit based on the described extreme and 96 

divergent lines for UC and applied a Bayesian multi-marker regression approach to 97 

identify quantitative trait loci (QTL) affecting litter size traits in this species.  98 

 99 

Material and Methods 100 

Ethical statement 101 

Animal manipulations and the experimental procedures were approved by the Ethical 102 

Committee of the Polytechnic University of Valencia, according to Council Directives 103 

98/58/EC (European Economic Community, 1998). 104 

 105 

Animals and phenotypes 106 

Animals came from an experiment of divergent selection for uterine capacity and a 107 

cryopreserved control population (Blasco et al., 2005; Santacreu et al., 2005).  After 108 

ten generations of selection for uterine capacity, the selection was relaxed. For the 109 

current study, we collected blood samples from non-ULO female rabbits. The study 110 

involves 90 does of the high UC line, 69 does of the low UC line and 30 does of the 111 

control population. All samples of high and low UC lines came from the 11th and 12th 112 

generations (Mocé, Santacreu, Climent, & Blasco, 2005; Santacreu et al., 2005). The 113 

base population of divergent lines for UC came from the 12th generation of a line 114 

selected for number of kits at weaning (named V line). The control population was 115 

derived from cryopreserved embryos from the 13th and 15th generations of the V line. 116 

The embryos were transferred to receptor does to produce a control population which 117 

was contemporary to UC females from 11th generation (Santacreu et al., 2005). 118 

 119 
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The traits were recorded at the second parity: NBA, as the number of alive kits at parity; 120 

NBD, as the number of dead kits; TNB, as the sum of NBA and NBD; OR, calculated 121 

as the number of corpora lutea; IE, calculated as the number of implantation sites by  122 

laparoscopy at day 12 of the gestation; ES, computed as a ratio IE/OR; FS, as a ratio 123 

TNB/IE; and PS, as a ratio TNB/OR (Mocé et al., 2005; Santacreu et al., 2005). 124 

 125 

Genotypes and quality control  126 

Genomic DNA was isolated from blood using Favorgen Kit (FABGK 001-2; Favorgen 127 

Biotech Corp., Taiwan). We collected 189 samples with a minimum concentration of 128 

20 ηg/µl and minimum volume of 45 µl. The concentrations were estimated with 129 

Nanodrop ND-1000 (NanoDrop Technologies, Wilmington, DE, USA) and borne out 130 

with PicoGreen (Invitrogen Corp. Carlsbad, C.A.). The threshold values for the integrity 131 

of DNA were 1.8 OD260 /OD280 and 1.5 OD260 /OD320. The genotyping was performed 132 

in The National Genotyping Centre of “Universidad de Santiago de Compostela”.  133 

 134 

Does were genotyped using the Affymetrix Axiom OrcunSNP Array (Affymetrix, Inc. 135 

Santa Clara, CA, USA) (Blasco & Pena, 2018). The SNP array contains 199,692 136 

molecular markers. Quality control (QC)  and genotype calling from raw data in the 137 

form of CEL files were implemented with Axiom Analysis Suite v. 4.0 and reanalysed 138 

by ZANARDI (Marras et al., 2015). The SNP quality control was performed using the 139 

following criteria: call rate ≥ 0.95, P-value > 1.0E-7 for the χ2 test for Hardy Weinberg 140 

equilibrium, MAF ≥ 0.03 and only SNPs with known chromosome position. Animal 141 

samples were excluded from the dataset for values of dish quality control (DQC) < 142 

0.89, missing genotype frequency > 0.03, Plate QC ≤ 0.96 or for failing a Mendelian 143 

segregation test. Missing genotypes were imputed by BEAGLE v4.1. SNPs with 144 
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imputation quality score R2 > 0.75 were included (Browning & Browning, 2009). After 145 

quality control, genotyping data for association analysis consisted of 181 samples and 146 

117,791 SNPs. 147 

 148 

Statistical analysis 149 

Preceding to GWAS, we carried out a classical multidimensional scaling plot (Borg & 150 

Groenen, 2005) to find putative outliers or the presence of population stratification. The 151 

associations between SNPs and phenotypic traits were obtained using Bayes B 152 

Method. Briefly, this method computes all SNPs effects jointly and assumed for each 153 

marker a different genomic variance (Garrick & Fernando, 2013; Lehermeier et al., 154 

2013). The following statistical model was used for the GWAS analysis: 155 

 156 

𝒚𝒚 = 𝝁𝝁 +   𝑿𝑿 𝒃𝒃 +   �  𝒛𝒛𝒋𝒋 𝛼𝛼𝑗𝑗  𝛿𝛿𝑗𝑗  +   𝒆𝒆
𝑘𝑘

𝑗𝑗=1

 157 

 158 

in which 𝒚𝒚  is the vector of the phenotypic values; 𝝁𝝁   is the trait mean, 𝑿𝑿  is the 159 

incidence matrix for systematic effects; 𝒃𝒃 is the vector with the systematic effects of 160 

year-season (five levels), line (high UC, low UC or control) and physiological state 161 

(lactating or non-lactating does); 𝑘𝑘 is the total number SNP after quality control; 𝒛𝒛𝒋𝒋 is 162 

the vector including the genotypic covariate for each SNP or locus 𝑗𝑗 (0, 1 or 2 reference 163 

alleles); 𝛼𝛼𝑗𝑗 is the random allele substitution effect for SNP𝑗𝑗, which conditional on  𝜎𝜎𝛼𝛼
2  164 

is  assumed normally distributed Ν( 0 ,  𝑰𝑰 ∙  𝜎𝜎𝛼𝛼
2 );  𝛿𝛿𝑗𝑗  is the random 0/1 variable that 165 

represents the presence (𝛿𝛿𝑗𝑗 = 1, with probability 1-π) and the absence (𝛿𝛿𝑗𝑗 = 0, with 166 

probability π) of the SNP in  the model for a given iteration of the Markov chain; and 167 
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 𝒆𝒆  is the vector of the residual values with a normal distribution Ν( 0 ,  𝑰𝑰 ∙ 𝜎𝜎𝑒𝑒
2 ) (Cesar 168 

et al., 2014; Onteru et al., 2012). The genomic variance for every SNP was denoted 169 

as  𝜎𝜎𝛼𝛼
2 and the residual variance as  𝜎𝜎𝑒𝑒

2. In Bayesian approaches, variance parameters 170 

can be treated as unknown, but having assumed prior distributions (Garrick & 171 

Fernando, 2013). In our study, we assigned the prior genomic variance of the SNPs 172 

derived from the estimated total genetic variance (Lehermeier et al., 2013). The prior 173 

variances for each trait were retrieved from previous experiments (Blasco et al., 2005; 174 

García & Baselga, 2002; Ragab, Sánchez, Mínguez, Vicente, & Baselga, 2014) and 175 

are displayed in Table 1. A model including line effect can cause a reduction of the 176 

statistical power of the divergent selection experiment. The line effect can mistakenly 177 

capture markers effects with opposite frequencies between lines. Hence, GWAS 178 

analyses were repeated using a model without line effect. 179 

 180 

The π value defines the proportion of SNPs having zero effects in each iteration. We 181 

performed several analyses before defining this parameter. The π values were 182 

evaluated within range of 0.99 to 0.9995. The π values were very high according to 183 

the limited number of animals in this study (Ros-Freixedes et al., 2016). In addition, we 184 

also performed GWAS at chromosome level with π = 0.95 in order to corroborate the 185 

results consistency. 186 

 187 

The parameters of the model were estimated with marginal posterior distributions using 188 

Markov chain Monte Carlo (MCMC). After some exploratory analyses, a total of 189 

825,000 iterations were performed, with a burn-in period of 225,000 iterations. Only 190 

one sample every 60 iterations was saved to avoid the high correlation between 191 
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consecutive samples. The GenSel® v. 4.90 software (Garrick & Fernando, 2013) was 192 

used for the GWAS analysis.  193 

 194 

In our study, 2,171 genomic windows were allocated to the 21 autosomes and the 195 

chromosome “X”, containing around 54 SNP markers by each one. Genomic windows 196 

were defined for each chromosome according to the rabbit genetic map of OryCun2.0 197 

assembly, and the percentage of the genomic variance explained for non-overlapping 198 

genomic windows of one megabase was calculated by marginal posterior density 199 

(Cesar et al., 2014; Garrick & Fernando, 2013; Onteru et al., 2012). The genomic 200 

windows that explained at least 0.5% of the genomic variance of each trait and with a 201 

probability being higher than zero at chromosome level of at least 0.70 were 202 

considered to be putative QTL. This threshold of 0.5% was 10 times higher than the 203 

expected percentage of genomic variance explained for one window (Cesar et al., 204 

2014; Onteru et al., 2013). In addition, we considered relevant those SNPs markers 205 

that overcome at least a Bayes factor of 10, a value commonly considered as evidence 206 

of association (Kass & Raftery, 1995; Ros-Freixedes et al., 2016; Stephens & Balding, 207 

2009). The posterior probability of association (PPA) suggested was not used as 208 

criterion of association since the low number of records with a high number of SNPs 209 

leads always low PPA values, even for real associations (Stephens & Balding, 2009: 210 

supplementary information). Hence, additional information such as the results 211 

consistency for different models and priors was used to identified the genomic regions 212 

associated to the traits.  213 

 214 



11 
 

Linkage disequilibrium, pathways and functional enrichment analysis 215 

The analysis of LD was performed in order to assess its pattern within the consecutive 216 

associated windows. The aim of this analysis was to provide support for the association 217 

evidence. Hence, those windows with a great span of LD (r2 > 0.5) and with SNPs 218 

associated within this LD block were considered as a true association with the trait. We 219 

assumed that these SNPs are a tag of the same causal variant. In addition, the LD 220 

analysis was performed within line, in order to understand the selection process. The 221 

R LDheatmap package was used for this analysis (Shin, Blay, Graham, & McNeney, 222 

2006).  223 

 224 

The position of the candidate genes was determined for each QTL using UCSC Rabbit 225 

Genome Browser (Rosenbloom et al., 2015). The gene annotations were provided by 226 

Ensembl Genes 94 database using Biomart Software (Aken et al., 2016) and 227 

“GenerCards” (Stelzer et al., 2016). Moreover, the functional enrichment analyses 228 

were performed by Gene Ontology (GO) (Ashburner et al., 2000) and “Database for 229 

Annotation, Visualization and Integrated Discovery” (DAVID) v 6.8 (Jiao et al., 2012). 230 

 231 

Results and Discussion 232 

Descriptive statistics of phenotypic data 233 

Descriptive statistics for litter size traits of the rabbit lines of UC divergent selection 234 

experiment are shown in Table 2. The mean and standard deviation across lines for 235 

litter size traits were similar to other rabbit lines (Elmaghraby & Elkholya, 2010; Piles, 236 

García, Rafel, Ramon, & Baselga, 2006; Ragab et al., 2014). Apart from OR, there 237 

were phenotypic differences between lines in all the traits. The most noticeable 238 

differences were for TNB with mean (standard deviation) of 10.11 (2.71), 7.01 (3.08), 239 
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and 9.57 (2.82) kits for the high UC line, the low UC line and the control population, 240 

respectively; and for IE with 13.08 (2.65), 10.96 (3.04), and 12.07 (2.88) embryos; and 241 

for PS with 0.69 (0.17), 0.51 (0.21), and 0.65 (0.21), respectively.  242 

  243 

Description of genomic data 244 

A total of 181 rabbits from the two UC lines and for a control line were genotyped with 245 

the Affymetrix Axiom OrcunSNP Array, which interrogates 199,692 SNPs. The criteria 246 

to exclude SNPs for the GWAS analysis were: minor allele frequency smaller than 0.03 247 

(16.37%), unmapped SNPs (15.82%), mono-high resolution (8.65%), and call rate 248 

smaller than 0.95 (8.05%). After filtering, only 59% of SNPs in the array remained. This 249 

number was appropriate, taking into account the small phenotypic data size and the 250 

selection process performed before the UC experiment (Blasco et al., 1994). Besides, 251 

the rabbit lines from “Universitat Politècnica de València” were not considered to 252 

design the actual SNP-array. Thus, an important number of SNPs (17,282) was fixed 253 

in the experimental UC lines. The average distance between SNPs was 18.90 kb along 254 

the genome leading to a LD average around 0.79 for 100 kb, and 0.76 when all 255 

genomic data in consecutive pairs SNPs were used. This value seems to be high 256 

considering that an average distance of 98 kb showed a LD of 0.5, calculated within 257 

rabbit strains (Carneiro et al., 2011). 258 

 259 

The multidimensional scaling analysis using genomic data found an evident population 260 

stratification (Figure 1). This analysis identified three clusters corresponding to the high 261 

UC line, the low UC line, and the control population, respectively. The first two principal 262 

components jointly explained 23.6% of the total variance. This would indicate that 263 

SNPs captured the population stratification of this experiment. Bayesian multi-marker 264 
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regression models are quite robust to population stratification (Toosi et al., 2018). 265 

Although the inclusion of line effect reduced the power obtained by the divergent 266 

selection, we included the line effect in order to avoid the possible drift effect and check 267 

the consistency of the results. We are aware that this type of correction is very 268 

stringent. So, we also performed the analysis without line. The variance explained for 269 

the main associated region increased considerably (Table 3). However, the 270 

conclusions our findings did not change. The regions identified as associated were 271 

identical and with the similar order of importance which showed results consistency 272 

with and without line effect. 273 

 274 

 275 

Prior choice 276 

The exploratory analysis of the 𝜋𝜋 value under the model without line effect showed 277 

similar results across π values, being not sensitive to them. By contrast, the model with 278 

line effect showed a greater increase of shrinkage led to a lower number of windows 279 

overcoming the relevant threshold. Additionally, the percentage of the genomic 280 

variance explained by these associated windows was greater when the 𝜋𝜋 value was 281 

greater. For instance: using a 𝜋𝜋 value of 0.9995 the analysis reported four consecutive 282 

genomic windows associated with TNB that explained 16.3% of the genomic variance, 283 

whilst using 0.9992, 0.9975, 0.995, and 0.99, these explained 7.4%, 2.8%, 1.4% and 284 

0.6%, respectively. However, the ranking of the relevant genomic windows did not 285 

change. Therefore, the 𝜋𝜋 value used in this study was 0.9992 based on the average 286 

number of SNPs in the model per iteration (119) and the total number of samples (181).  287 

 288 
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Genomic windows associated with litter size traits 289 

The GWAS analyses showed associated genomic windows for TNB, NBA, IE, and OR. 290 

No associations were evidenced for NBD, ES, FS, and PS. 291 

 292 

Total number born and number born alive 293 

The genomic windows associated with TNB are located on chromosome 17 (windows 294 

1903, 1904, 1905 and 1906) (Figure 2). Two of them (1905 and 1906) also showed 295 

association with NBA (Figure 3). The genomic variance explained by these two 296 

windows was 6.32% for TNB and 1.27% for NBA (Table 3). This result would be in 297 

agreement with the high genetic correlation found between  NBA and TNB (0.964 +/- 298 

0.008) (García & Baselga, 2002).  299 

 300 

The associated genomic region (70.0 - 73.3 Mb) seems to have a major effect on TNB 301 

in the UC lines. This could make sense since half of response of selection was obtained 302 

in the first two generations of UC divergent selection (Blasco et al., 2005). This region 303 

accounted for up to 38.82% and 10.36 % of the genomic variance for TNB and NBA, 304 

respectively, under a model excluding the line effect. In addition, the genomic variance 305 

explained by all these genomic windows had a probability of being greater than zero 306 

at chromosome level of at least 0.95, except the 1906 being greater than 0.75.  307 

 308 

Other genomic regions with a smaller effect size than the region associated on 309 

chromosome 17 could not have been identified due to the small sample size. In swine, 310 

GWAS analyses for TNB and NBA have reported QTLs in several chromosomes. 311 

However, the sample size in these studies was greater (>600), and in both studies, 312 
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third terminal crossbred lines were used (Onteru et al., 2012; Schneider et al., 2012), 313 

generating a much higher LD in their population than in our lines. 314 

 315 

Implanted embryos 316 

A large relevant genomic region for IE was found on chromosome 11 (Figure 4). This 317 

region involved five associated genomic windows (35.2 – 39.0 Mb), from window 1143 318 

to 1147, accounting for 10% of the genomic variance of IE (Table 3). Besides, the 319 

same genomic region on chromosome 17 associated with TNB and NBA explained 320 

5.37% (32.23 % without line) of the genomic variance of IE. Therefore, this region could 321 

have a pleiotropic effect on these three litter size traits (TNB, NBA, and IE). These 322 

results could be related to the correlated response to selection for IE, shown in the UC 323 

divergent selection experiment (Blasco et al., 2005; Santacreu et al., 2005) which is in 324 

agreement with the moderate to high genetic correlation between IE and UC (0.66) 325 

(Blasco et al., 2005) and IE and TNB (0.46) (Laborda et al., 2012).  326 

 327 

Ovulation rate 328 

The results did not show a strong genomic association for this trait due to the low 329 

amount of genomic variance explained by each associated window. Moreover, none 330 

of the windows were consecutive. Two genomic windows on chromosome 9, window 331 

996 and 993, only explained 1.13% (0.84 % without line) and 1.03% (0.94 % without 332 

line) of the genomic variance, respectively (Table 3). Overall, all genomic windows 333 

associated with OR accounted for 3.95% (with and without line) of the genomic 334 

variance. This result is in contrast to a swine GWAS that found three relevant genomic 335 

regions associated with OR explaining 51% of the genomic variance (Schneider, 336 

Nonneman, Wiedmann, Vallet, & Rohrer, 2014). The sample size of their study was 337 



16 
 

considerably greater than in our study, and the swine population had much higher LD 338 

and genomic variability. Moreover, in our study animals came from a divergent 339 

selection experiment for UC, whose trait had a moderate (0.56) genetic correlation with 340 

OR (Blasco et al., 2005). Additionally, the genomic windows associated with OR did 341 

not agree with the associated genomic region found for three litter size traits - TNB, 342 

NBA, and IE (Figure 5). These results are in concordance with the null correlated 343 

response in litter size for OR selection in rabbits and the low genetic correlation 344 

estimated between OR and litter size (Laborda, Mocé, Santacreu, & Blasco, 2011).  345 

 346 

Associated SNPs in genomic regions 347 

The Bayes factor criteria showed only relevant SNP associations for IE and TNB. 348 

These associated SNPs map to chromosome 11 for IE (Figure 6), and chromosome 349 

17 for TNB and IE (Figure 6 and 7). The highest Bayes factor was for a SNP on 350 

chromosome 17, associated with TNB. The total number of SNPs between the two 351 

traits in chromosome 17 was 14 (five in the window 1905 and nine in the window 1906) 352 

(Table 4). This corroborated the remarkable importance of this genomic region on 353 

chromosome 17 as a putative QTL. However, the PPAs of SNPs within the putative 354 

QTL were low (0.04 to 0.15), which is expected with the small sample size used in our 355 

study. Stephens & Balding (2009) pointed out that PPAs have the adventage of being 356 

not very sensitive on sample size, power and number of tested SNPs. Despite that, 357 

they showed that small sample size can give low PPAs with real associations even 358 

under several Bayesian approaches based on different priors (supplementary 359 

material). In our study, the putative QTL on chromosome 17 was consistent across the 360 

analyses of GWAS, under window and SNP association criteria, allele frequencies and 361 

linkage disequilibrium analyses (as shown below). All associated SNPs had an overall 362 
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MAF above 0.28. Moreover, the associated SNPs for both TNB and IE showed an even 363 

higher value of MAF (from 0.33 to 0.49). The allele frequencies in the control population 364 

for these associated SNPs were intermediate (0.43 - 0.45), whilst they were higher for 365 

the low UC line (0.64 and 0.75) and very low (0.05) for the high UC line. We assumed 366 

that all of these SNPs were associated with the traits (TNB and IE) due to strong LD 367 

with their causal variants since selection could have modified the allelic frequency of 368 

the SNPs associated with the causal variants. In this case, the joint analysis of the 369 

divergent selection would have led to intermediate frequencies, increasing the SNP 370 

detection power (Kessner & Novembre, 2015; López de Maturana et al., 2014). Thus, 371 

our experiment has been valuable for revealing novel QTLs associated with litter size 372 

traits in rabbits. 373 

 374 

Linkage disequilibrium analysis 375 

We assessed the LD in the consecutive associated genomic windows on chromosome 376 

11 and 17. The genomic regions associated with IE (chromosome 11) showed a strong 377 

LD block amongst the windows 1145, 1146 and 1147. This block was more evident in 378 

the low UC line. This suggests that this QTL could have been under higher selection 379 

pressure for low UC than for high UC, in agreement with the asymmetric response 380 

estimated using the UC lines and the cryopreserved control population (Mocé et al., 381 

2005). This latter study showed the selection response was higher in the low UC line 382 

(Mocé et al., 2005; Santacreu et al., 2005). The SNPs that overreached the threshold 383 

for IE are indicated with black points in Figure 8. Most of them are mapped in the LD 384 

block made up by the three windows (1145, 1146 and 1147). This result is in contrast 385 

to the genomic region associated with TNB, NBA, and IE on chromosome 17 displaying 386 

several short LD blocks. Most of the associated SNPs within this QTL were in the 387 
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window 1906 (Figure 9). This window presents a steady LD block within the control 388 

population (r2 > 0.8). This would indicate that the UC selection formed new LD blocks 389 

from a large one in the control population.  390 

 391 

In our study, both LD and GWAS results support the idea that QTL on chromosome 17 392 

had a major impact on the divergent selection experiment. This hypothesis of an 393 

important QTL for litter size in the UC lines is supported by the great response at the 394 

second generation, half of the estimated response in this divergent selection 395 

experiment, as we said previously (Argente et al., 2003; Blasco et al., 2005). 396 

 397 

Gene search and functional annotations 398 

The associated genomic regions disclose 72 coding and noncoding genes (additional 399 

file 1: Table S1); nine of them located on the genomic region associated with TNB, 400 

NBA and IE (chromosome 17) (Table 3). The top five results of the functional 401 

annotation analysis, using the genes in putative QTLs, are shown in Table 5. The 402 

human, mice and rabbit functional annotations from DAVID databases gave similar 403 

results. Therefore, we described these results using the annotated rabbit genes to 404 

subsequently perform a detailed functional seeking for each gene. The most relevant 405 

functions were linked to terms such as activity prostanoid receptors, cellular response 406 

to prostaglandin, negative regulation of striated muscle tissue development, 407 

carbohydrate derivative binding, and cyclin-dependent protein kinase activity. The 408 

genes related to reproductive processes and associated with TNB were PTGDR, 409 

PTGER2, BMP4, STYX, and CDKN3. The PTGDR and PTGER2 belong to the 410 

prostaglandins receptor family which are essential for the adequate performance of 411 

uterus; mainly prostaglandin F receptor that presents underlying functions over the 412 
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female reproductive cycle in mammals (Blesson & Sahlin, 2014). Also, a severe 413 

deficiency in the PTGER2 genetic expression decreases fertilization and generates 414 

defects in cumulus expansion (Matzuk & Lamb, 2002). Otherwise, PTGDR gene 415 

presents an important role in the differentiation of germ and Sertoli cells of the 416 

embryonic testis in males (Rossitto, Ujjan, Poulat, & Boizet-Bonhoure, 2014). Genes 417 

of the transforming growth factor-β superfamily, including BMP4, are involved in 418 

follicular growth and development in mammals (Al-Samerria, Al-Ali, McFarlane, & 419 

Almahbobi, 2015)  avoiding the apoptosis of oocytes through regulation of both Sohlh2 420 

and c-ki (Ding, Zhang, Mu, Li, & Hao, 2013). Nevertheless, the BMP4 gene showed no 421 

association with OR, but it was associated with TNB and IE in our study. BMP4 has 422 

been also implicated in trophoblast development, implantation, and placentation in 423 

humans (Li & Parast, 2014). CDKN3 gene is related to inhibition and reduction of 424 

choline, particularly in the neural progenitor cells of the fetal hippocampus, producing 425 

cellular apoptosis (Zeisel, 2011). Moreover, the reduction of STYX expression disrupts 426 

spermatid development (Matzuk & Lamb, 2002). The 1903 window on chromosome 427 

17, associated only with TNB, contains the ERO1A gene. This gene did not show a 428 

functional annotation directly related to reproductive processes but was identified as 429 

overexpressed between the UC lines in a previous study (Ballester et al., 2013). 430 

Moreover, it is the precursor of the ER1L transcript, which is related to redox 431 

homeostasis and oxidative protein folding in the endoplasmic reticulum (Konno et al., 432 

2015). 433 

 434 

Regarding genes associated with IE, BMP4 and CDKN3 genes (chromosome 17) are 435 

annotated to embryo development processes in mice (Goggolidou et al., 2013). In 436 

chromosome 11, we found the CCT5 gene related to sperm quality in bulls  (Yathish 437 
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et al., 2017). Finally, the genes annotated for OR did not have a direct relationship with 438 

this trait or the female reproductive physiology.  439 

 440 

Previous candidate gene studies, using the UC divergent lines, showed genes 441 

associated with reproductive traits such as progesterone receptor (PGR) associated 442 

with IE (Peiró et al., 2008), tissue inhibitor of metalloproteinases 1 (TIMP1) associated 443 

with number of embryos (Argente et al., 2010) and oviduct glycoprotein 1 (OVGP1) 444 

associated with TNB (Merchán et al., 2009). However, our study did not identify 445 

associated genomic regions close to these genes. 446 

  447 

In general, the candidate genes found in our study are different from those identified 448 

in GWAS for OR, TNB and NBA in swine (Bergfelder-Drüing et al., 2015; Onteru et al., 449 

2012; Schneider et al., 2014). The main associations in these studies did not overlap 450 

amongst litter size traits. However, Schneider et al. (2012) found overlapping genomic 451 

windows for TNB, NBA, NBD and average piglet birth weight in swine; similar to the 452 

novel putative QTL found on chromosome 17. 453 

 454 

Conclusions 455 

Our study reveals associations between genomic regions and TNB, NBA, IE, OR. Two 456 

consecutive genomic windows on chromosome 17 were associated with three traits 457 

(TNB, NBA, and IE), and accounted for a meaningful percentage of the genomic 458 

variance for TNB, indicating that this genomic region could contain remarkable causal 459 

variants for litter size traits in rabbits. In addition, a genomic region on chromosome 11 460 

appears particularly important for IE. The associated genomic regions harboured 72 461 

genes. However, few of these genes were profiled as physiological candidate genes 462 
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due to their link to reproductive processes (i.e., BMP4, PTDGR, PTGER2, STYX, and 463 

CDKN3). In summary, our results disclosed new putative QTLs for TNB and IE, likely 464 

responsible for the large divergent response obtained in the first two generations of 465 

selection. However, these results must be validated in independent maternal rabbit 466 

lines before being used in breeding programs. This study is the first GWAS for 467 

reproductive traits in rabbits and provides a starting point to disentangle the genetic 468 

basis of litter size traits in rabbits.469 
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Table 1. Prior variances for Bayes B method. 729 

 730 

Table 2. Descriptive statistics of little size traits.  731 

 732 

Table 3. Genomic windows associated with total number born (TNB), number born 733 

alive (NBA), implanted embryos (IE), and ovulation rate (OR) in rabbits. 734 

 735 

Table 4. Relevant polymorphisms (SNPs) for total number born (TNB) and implanted 736 

embryos (IE). 737 
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Table 5. Top five functional enrichment from the analyses performed through DAVID 739 

online web. 740 
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Figures 743 

 744 

Figure 1. Multidimensional scaling plot of the genomic data. The first component 745 
(MDS1) explained 16.73% of the genomic variance and the second 746 
component (MDS2) explained 6.90% of the genomic variance. Populations: 747 
high uterine capacity line (HUC), low uterine capacity line (LUC) and control 748 
population or line selected for number of kits at weaning (V). 749 

 750 
Figure 2. Manhattan plot for total number born (TNB) using the percentage of 751 

genomic variance explained by each non-overlapping one megabase 752 
window. 753 

 754 
Figure 3. Manhattan plot for number born alive (NBA) using the percentage of 755 

genomic variance explained by each non-overlapping one megabase 756 
window. 757 

 758 
Figure 4. Manhattan plot for implanted embryos (IE) using the percentage of genomic 759 

variance explained by each non-overlapping one megabase window. 760 
 761 
Figure 5. Manhattan plot for ovulation rate (OR) using the percentage of genomic 762 

variance explained by each non- overlapping one megabase window. 763 
 764 
Figure 6. Manhattan plot for implanted embryos (IE) using the Bayes factors by each 765 

SNP along the rabbit chromosomes. 766 
 767 
Figure 7. Manhattan plot for total number born (TNB) using the Bayes factors by each 768 

SNP along the rabbit chromosomes. 769 
 770 
Figure 8. Linkage disequilibrium plot of chromosome 11 (35.2 – 40.0 Mb). Physical 771 

length is 4756 kb and contains a total of 353 SNPs. The black triangle 772 
stands for each one of five associated windows for implanted embryos. The 773 
black points are the 38 associated SNP. The colour red is the R-squared 774 
from 0.8 to 1.0 (strong LD). The computation was performed using data from 775 
(a) all lines, (b) HUC (high UC line), (c) LUC (low UC line) and (d) control 776 
population. 777 

 778 
Figure 9. Linkage disequilibrium plot of chromosome 17 (72.0 – 73.2 Mb). Physical 779 

length is 1278 kb and contains a total of 82 SNPs. The black triangle stands 780 
for each one of two associated windows for total number born, number born 781 
alive and implanted embryos. The black points are the 14 associated SNP 782 
for total number born and implanted embryos. The colour red is the R-783 
squared from 0.8 to 1.0 (strong LD). The computation was performed using 784 
data from (a) all lines, (b) HUC (high UC line), (c) LUC (low UC line) and (d) 785 
control population. 786 
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 790 
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