

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/151321

Usach Molina, H.; Vila Carbó, JA. (2020). Reconfigurable Mission Plans for RPAS.
Aerospace Science and Technology. 96:1-20. https://doi.org/10.1016/j.ast.2019.105528

https://doi.org/10.1016/j.ast.2019.105528

Elsevier

Reconfigurable Mission Plans for RPAS

Hector Usach∗, Juan A. Vila

Universitat Politècnica de València, Camı́ de Vera s/n, València, 46022, Spain

Abstract

This paper deals with the problem of formally defining and specifying Mission

Plans for Remotely Piloted Aircraft Systems (RPAS). Firstly, the profile of

RPAS missions is highly variable and different from those of commercial flights.

Route variability from the planned route is frequent due to operating conditions

and, especially, contingencies. For this reason, RPAS Mission Plans should be

reconfigurable: they should allow the nominal plan to be modified during flight

time. Secondly, aviation authorities may require the ability to operate in an

autonomous mode in response to Command and Control (C2) link losses. As a

result, RPAS Mission Plans should specify all possible routings and behaviors

in greater detail. The Reconfigurable Mission Plan concept introduced in this

paper expands on current flight plans by providing a level of description that im-

proves predictability and allows for reconfiguration, contingency handling, and

higher levels of automation and pilot assistance. The paper presents a detailed

discussion of RPAS contingency handling and develops a formal specification of

the Reconfigurable Mission Plan concept. The paper also develops algorithms

for dynamically configuring Mission Plan routes that might mitigate the ef-

fect of contingencies. Finally, the whole proposal is validated with a prototype

implementation and a proof of concept.

Keywords: Flight planning, Mission replanning, Flight automation,

Automated contingency management, RPAS

∗Corresponding author
Email address: hecusmo@doctor.upv.es (Hector Usach)

Preprint submitted to Journal of Aerospace Science and Technology May 20, 2019

1. Introduction

The increasing number of civil applications using Unmanned Aircraft Sys-

tems (UAS) presents a challenge for the Air Traffic System. Remotely Pi-

loted Aircraft Systems (RPAS) are a subclass of UASs that excludes all those

“autonomous” vehicles for which no human action is necessary after take-off.5

According to the International Civil Aviation Organization (ICAO), “only un-

manned aircraft that are remotely piloted (i.e. RPAS) could be integrated

alongside manned aircraft in non-segregated airspace and at aerodromes” [1].

Civil Aviation Authorities are currently developing a new regulatory frame-

work to ensure the safe insertion of RPAS into the civil airspace. To this aim,10

the ICAO published the guidance material in Doc. 10019 AN/507. From this

document, it can be extracted that RPAS need to: 1) demonstrate an Equivalent

Level Of Safety (ELOS) to that of a manned aircraft, 2) operate in compliance

with existing aviation regulations, and 3) appear transparent to other airspace

users. These guidelines require, among other things, the use of flight plans for15

RPAS missions.

This paper addresses the problem of designing the formal specification of a

Mission Plan for RPAS. RPAS Mission Plans are devised as a generalization of

the flight plan concept used in manned aviation for traffic planning and traffic

control purposes standardized by ICAO in Doc. 4444 [2]. In our proposal,20

flight plans should serve additional purposes: to provide automatic guidance

whenever required and to specify RPAS behavior in case of contingencies so as

to be predictable and suitable for automatization in case of a Communication

and Control (C2) link loss event.

To meet the previous goals, RPAS missions should fulfill new requirements:25

a) RPAS Mission Plans should be flexible to allow different mission profiles to be

specified. RPAS missions have a wide variety of profiles and are quite different

from a typical “transport mission” between one origin and one destination.

It is, however, difficult to define a “typical RPAS” profile. b) RPAS Mission

Plans should specify the flight segments to be covered in controlled and non-30

2

controlled areas. This is because Mission Plans serve additional purposes, such

as automation. Additionally, RPAS can fly under non-conventional Air Traffic

Control (ATC) services not included in controlled areas. One example is the

NASA proposal for the airspace below 400 ft known as Unmanned Aircraft

System Traffic Management (UTM) [3]. Another example would be an ATC35

unit specifically for the operations area, similar to the one used to access the

operations area in firefighting. c) RPAS Mission Plans should allow for dynamic

trajectory replanning. RPAS missions usually have a preferred or nominal route,

but contingencies or some other flight conditions may require the current plan

to be abandoned and replaced by an alternate one. This will be termed mission40

reconfiguration or replanning.

In accordance with these requirements, this paper develops the concept of

Reconfigurable Mission Plans. These plans enable the nominal route to be mod-

ified at flight time and replaced with an alternate plan that might be regarded as

a kind of “degraded mission”, the goal of which is to mitigate the risks of a con-45

tingency. Mission replanning is unusual in commercial aviation, so conventional

flight plans do not include it. The only alternate routes that conventional flight

plans take into consideration are “alternate airports”. However, aircraft behav-

ior in case of some contingency is not specified any further, nor is it automated in

flight plans of manned aviation: it is the responsibility of the pilot-in-command50

to make a decision and execute it. We believe these alternate plans need to be

specified in the Mission Plan because RPAS can fly in a completely autonomous

way; and, under this condition, any alternate route must be still predictable. If

RPAS are operated in semi-automatic or manual mode, alternate plans can also

be used to suggest possible options to the remote pilot.55

Reconfigurable Mission Plans improve the specification of an RPAS mission

by providing a level of description that allows for reconfiguration, contingency

handling and higher levels of automation and pilot assistance. The Mission

Plan proposal of this work will be modeled using Graph Theory and formalized

using the Unified Modeling Language (UML) [4]. The approach for this pro-60

posal is to extend the capabilities of current trends and technologies in manned

3

aviation. Concepts like Performance-based Navigation (PBN) [5] or standards

like ARINC-424 [6] will be used in so far as possible. ICAO recommendations

will be also taken into consideration [1], especially when it comes to contin-

gency handling. In accordance with this, the system should seamlessly accept65

conventional transport missions as a particular case.

The rest of the paper is organized as follows. Sec. 2 presents related works in

the literature. Sec. 3 explains the need for performing automated contingency

management functions onboard the RPAS and discusses how the specification

of a contingency management scheme influences the design of the Mission Plan.70

Sec. 4 presents the RPAS Mission Management System which will fly Reconfig-

urable Mission Plans. Sec. 5 develops the Reconfigurable Mission Plan concept

and models it using Graph Theory and UML. Sec. 6 presents the algorithms

for dynamically configuring Mission Plan routes according to the current oper-

ational condition. Sec. 7 validates the proposed concepts in an RPAS mission75

example. Finally, Sec. 8 concludes the paper.

2. Related work

Two of the most widely used models for defining UAS missions are: a) a

declaration with the list of waypoints of a mission, and b) a behavior-based

description of the flight procedures of the mission. The first approach consists80

of setting a number of waypoints and associated commands to define the mis-

sion route. This is usually done through a Graphical User Interface (GUI).

Navigation commands are used to specify movements to and around waypoints.

Payload-related commands are used for setting options like the camera trigger

distance or setting a servo value. A survey of autopilots using this type of speci-85

fication can be found in [7]. On the other hand, the behavior-based paradigm is

based on using a set of behaviors, which are a high level description of the flight

procedures of a mission plan [8, 9, 10]. Behaviors are structured in a hierarchical

way: complex behaviors can be built on top of lower-level ones. Such mission

plans are usually system-specific, so they cannot be easily generalized.90

4

None of the previous approaches assumes a controlled airspace where a

number of well defined flight procedures are required by navigation charts or

databases. The work by [11, 12] aims to enhance the level of automation of

an RPAS in a controlled airspace using a formal specification of Mission Plans

with semantically richer constructs to enable the definition of more complex95

flight plans and new RPAS-specific features. The Mission Plan is specified us-

ing the Extensible Markup Language (XML). The authors propose some Area

Navigation (RNAV) leg types extensions for complex paths, as well as some con-

trol structures for repetitive and conditional behavior. Although these proposals

have the same goal as this paper’s and share the approach of extending current100

navigation concepts and technologies, they concentrate on complex routing and

do not address in detail the topic of dynamically reconfiguring a flight plan and

dealing with contingencies.

Regarding the use of autonomous systems in defense, the compilation work

done by the North Atlantic Treaty Organization (NATO) [13] provides a good105

discussion on the definition of the levels of automation that can be introduced

into an aircraft and their associated risks. It covers the challenging legal, ethical,

policy, operational, and technical issues of autonomous systems from a multi-

disciplinary point of view. In [14], the authors present the development of the

Intelligent Mission Planner and Pilot. The goal is to reduce operator workload110

and increase the level of automation. This proposal shares some goals with this

paper, although in practice they concentrate on testing some previously pro-

posed algorithms in the robotics field, like C-Space and collision avoidance, in

a flight simulation environment.

Finally, in the field of software architectures for mission planners, one of the115

most significant for us has been the automated Mission Planner and Execution

(MiPlEx) system developed at the German Aerospace Center (DLR) [15, 16, 17].

This architecture combines the main ideas of the behavior-based paradigm

[18, 19] and the three-tier architecture defined by NASA [20]. The collaboration

with this group has provided some ideas on how to introduce contingency man-120

agement into the proposed architecture [21, 22]. Other software architectures

5

for mission planning have been proposed in the work cited above [11].

3. RPAS missions and the need for contingency management

RPAS are mainly used on missions involving dirty, dangerous, or dull tasks

(too long, or too tedious for a crew). Some examples of typical RPAS mis-125

sions include surveillance, image acquisition, and firefighting. Certainly, some

of these missions have been traditionally flown using manned aircraft. Reasons

for flying these missions using RPAS may be economical in nature, but an even

stronger reason is safety: some risks and failure conditions can be less severe if

RPAS is used instead of manned aviation. For example, a catastrophic failure130

condition in a manned aircraft is “one that would prevent continued safe flight

and landing” [23]; however, the severity level of not landing in an RPAS can

be lowered if it has some sort of Flight Termination System (FTS). FTSs are

capable of safely bringing the vehicle back to ground using parachutes, for in-

stance, or even destroying it without any loss in human life. This opens up new135

possibilities for contingency handling in RPAS.

Contingencies in RPAS are unsafe conditions that put other airspace users

or people and facilities on the ground at risk. The work of [24] analyzes the

most notorious contingencies in RPAS: some of them are common to manned

aviation –such as the loss of control in-flight, or a collision alert–, whilst others140

are specific to RPAS. Among these, the loss of performance in the Command

and Control (C2) link between the remote pilot and the unmanned aircraft is

the most remarkable example.

The C2 link loss event is a key factor in the design of Mission Manage-

ment Systems for RPAS. Even though the RPAS category excludes completely145

autonomous vehicles, aviation authorities require an autonomous mode (com-

pletely automatic) in some circumstances. According to ICAO and EUROCON-

TROL [1, 25], this mode is necessary in the last level of a hierarchy of collision

avoidance mechanisms that get activated when Air Traffic Control (ATC) ac-

tions and the remote pilot actions fail, for instance. As a result, assuming that150

6

any combination of contingencies can happen along with the C2 link loss, the

Mission Management System should incorporate automated contingency man-

agement functions. Contingency management refers to the ability to handle

contingencies, in an automatic or semiautomatic way, in order to maintain an

acceptable safety level during the entire mission. Performing contingency man-155

agement often demands a dynamic reconfiguration of the Mission Plan.

The problem with operating in an autonomous condition is keeping up the

Target Level of Safety (TLS). The TLS of an automated system is achieved

through a combination of automated functions and a human operator. Ac-

cording to NATO, the specified TLS for a fully automated system is always160

higher than one for a system with human intervention [13]. Specifically, the

TLS with no human operator involved is increased by a factor of 10. For exam-

ple, in the application of the Required Navigation Performance (RNP) concept

to automatic landings, the probability of a catastrophic accident per landing is

specified as 10−9. In the risk analysis, the pilot is credited for reducing risk by165

a factor of 10. In this sense, in an Instrument Landing System (ILS) CAT II

approach, where the pilot can veto up to a decision height of 100 ft, the au-

tomated system is required to achieve a TLS of 10−8. However, if the level of

automation is increased in a way that the automated system executes the flight

procedure automatically, and simply informs the human about the decision of170

executing it, such a reduction cannot be applied and the TLS of the automated

system will be 10−9.

3.1. Design of a contingency management scheme

In previous work, the authors of this paper presented a contingency man-

agement scheme for RPAS [21, 22]. It was developed on the basis of avoiding as175

much as possible any hardcoding of policies: it should provide the right mech-

anisms to allow for different contingency options. For this reason, we proposed

decoupling the following tasks: 1) the detection and triggering of contingency

events, 2) the selection of a suitable contingency handler, and 3) the execution of

this handler. A contingency handler is a flight procedure that can mitigate the180

7

risk posed by the contingency. For example, a contingency handler can imple-

ment some of the behaviors specified by ICAO, like “land at nearest designated

landing site”, “climb to regain the C2 link signal”, or “flight termination” [1].

In this section, we analyze how the specification of this scheme influences the

design of a suitable Mission Plan specification for RPAS.185

To start with, we take as fault hypothesis five of the most representative

contingencies covering the key risk areas reported by the European Aviation

Safety Agency [26]. These are loss of control, traffic alert, mission boundary

limits violation, C2 link loss, and GPS loss of performance (Global Positioning

System). The nature of these events has already been discussed in the seminal190

works.

Then, in order to mitigate the risk caused by the aforementioned contin-

gencies, we propose several contingency handlers. The required handlers vary

depending on the type of contingencies under study; according to our fault hy-

pothesis, we envision the following six handlers, classified according to their195

impact on the planned route:

• Tactical contingency handlers are flight procedures that deviate the air-

craft from the intended route until the effect of the contingency has been

mitigated; after which, the planned route is likely to be resumed. Among

them, we envision avoidance maneuvers, loiter procedures, climbing in200

order to regain GPS signal or C2 link, and reverting to manual control.

• Strategic contingency handlers replace the original flight path with a new

route. The new route often implies a degradation of the nominal plan.

Among them, we include landing at a designated landing site and flight

termination.205

The last aspect of the contingency management scheme is how to carry out

the mapping between contingency events and contingency handlers. In general,

the selection of one handler depends on the system state. Although the system

state is huge and comprises many variables, we can limit the selection process

to some subset of variables: the aircraft position, the operational mode, and210

8

the contingency event being faced. This way, the required decision logic for

selecting a contingency handler can be modeled as a state automaton. We call

the specification of this automaton the Contingency Plan. As was deduced in

Sec. 3, the goal of the Contingency Plan is to minimize the flight time of the

RPAS experiencing a contingency.215

The key design issue is which part of this decision logic should be hardcoded

into the embedded software in the design phase, and which part could be spec-

ified and customized on a mission basis in the Mission Plan. Two opposing

trends affect this issue. On one hand, specifying a state automaton with lots

of states and transitions is a difficult and critical task; and given that safety220

critical aspects in aviation are subject to the certification process, it seems in-

adequate to specify the automaton’s behavior in the Mission Plan. On the other

hand, if the remote pilot has the ability to specify the RPAS behavior after a

contingency happens, he or she will handle the situation in a more responsive

way.225

For this reason, we opted for a mixed solution represented in Fig. 1: the

specification of the Contingency Plan is assigned to the system developer and

is pre-programmed into the embedded software; but if the contingency handlers

have some configuration parameters, then they can be specified in the Mission

Plan pre-flight. This means that the remote pilot cannot specify what state230

leads to the selection of one handler, but he or she can designate how to execute

this handler.

The configuration parameters of most handlers include the target destination

and the possible routes towards this destination. For example, in the case of

the “landing” procedure, the remote pilot can specify the possible landing sites235

and the suitable routes for reaching them. The same occurs with the “loiter”

procedure, the “regain signal” procedure, and the “flight termination” proce-

dure. By contrast, “avoidance” maneuvers and “reverting to manual control”

are contingency handlers whose required trajectory depends on in-flight condi-

tions and thus cannot be customized in the Mission Plan pre-flight. Section 5240

develops a Mission Plan specification that brings together all these aspects.

9

Hardcoded
contingency
management
aspects

Contingency handlers

Customizable
contingency

management
aspects

Tactical Strategic

Decision logic

Mission
Plan

Contingency Plan

Figure 1: Contingency management specification scheme.

4. A Mission Management System for RPAS

In a conventional airliner, the Flight Management System (FMS) is the on-

board system that performs the automatic flight guidance and control based

on the directives of a flight plan. In general, this system is organized into the245

following two-layer scheme:

• A Flight Manager Computer (FMC) responsible for the Strategic Oper-

ation. It can handle the entire route and usually includes the Lateral

Navigation (LNAV) mode and the Vertical Navigational (VNAV) mode.

• A Flight Director (FD) responsible for the Tactical Operation. It controls250

the current maneuver by programming the autopilot and auto-throttle

modes for the speed, course, and altitude control. It can be commanded

by the upper layer (the FMC) or directly by the pilot when the FMC is

not engaged.

In the case of an UAS, the equivalent system is called the Mission Manage-255

ment System, which emphasizes the difference between flight plan and mission

plan. It can be assumed that this system follows the same scheme as the Flight

Management System. However, as was deduced in previous sections, such a

system should enhance the Flight Management System functionality by provid-

ing an autonomous mode with automated contingency management functions.260

To this end, we shall first examine the required levels of automation and the

10

Table 1: Proposed operational modes in a Mission Management System for RPAS.

Operational mode
Responsible agent

Routing decisions Guidance actions

Manual Remote pilot Remote pilot

Automatic Remote pilot Automatic system

Autonomous Automatic system Automatic system

role of the remote pilot in each mode; and then, we shall develop a software

architecture that extends the previous layers in accordance with the proposed

contingency management scheme.

4.1. Levels of automation265

Much research has been devoted in the literature to address the levels of

autonomy of an automatic system and the interaction between the automatic

system and a human operator [13, 27, 28, 29, 30]. The work by Sheridan [27]

is one of the seminal ones and for the first time it defined ten different levels of

autonomy. A slightly different classification for the Autonomy Levels for Un-270

manned Rotorcraft Systems (ALFURS) is presented in [28]. This classification

is closer and more suited to unmanned aircraft. In short, the ALFURS frame-

work introduces a taxonomy with eleven automation levels according to the

automated functionalities: guidance, navigation and control functions. Level 0

represents remote control, and Level 10 is fully autonomous capability.275

Relating the levels of autonomy to the existing two-layer scheme of automa-

tion of conventional aircraft, we propose deriving a Mission Management System

with three operational modes: Manual, Automatic and Autonomous, summa-

rized in Table 1. The difference between these modes is made attending to

decision-making at two different levels: a) who decides the route to be followed280

and makes strategic decisions (in the long term), and b) who is in charge of the

guidance actions at the tactical level (in the short term), like flight level changes,

turns, or speed selections. The proposed automation modes are described below

in more detail.

11

• The Manual mode is the lowest level of automation, that corresponds to285

an ALFURS level 0. In this mode, all decisions in the long and short term

are taken by the remote pilot. It is similar to navigating in a conventional

airliner with the FMC disengaged and the pilot exercising direct control

over the aircraft by either using the yoke or by setting the proper control

targets in the FD. This mode demands high performance from the C2290

link (bandwidth, delays, etc.) because real-time imaging and control are

required for manual control.

• The Automatic mode is an intermediate automation level (ALFURS levels

1 to 4) where route selection is made by the pilot and guidance actions

are performed by the automatic system. It is similar to navigating in a295

conventional airliner where the route has been programmed by the pilot

in the FMC and then the FMC decides about the commands that will be

delivered to the FD to follow the desired route. In this mode, the pilot is

responsible for the strategic decision-making by choosing between different

alternative routings, or by approving/rejecting proposals of the automatic300

system. This mode must also include some capability to override the

actions of the automatic system using manual control or to abort some

decision of the automatic system and reverting to manual control when

necessary. For example, if the pilot has decided an automatic landing, the

pilot is allowed to abort the maneuver before a deadline if something goes305

wrong. The performance requirements on the C2 link are not as stringent

as in the previous mode.

• The Autonomous mode is the highest level of automation (ALFURS levels

5 and above). This mode does not exist in conventional airliners. It is

intended for completely automating the aircraft mission when all commu-310

nication links are down or some other serious contingency prevents the

pilot to take control of the aircraft. In this mode, the on-board system

must assume both strategic and tactical decision making. Autonomous op-

eration can solve an out-of-control situation perhaps in a better or more

12

C2 link recovery

C2 link loss

AutonomousManual Automatic

C2 link loss

manual/automatic
disengagement

manual/automatic
engagement

manual/automatic
mission replanning

automatic
mission replanning

Figure 2: Operational modes and transitions between modes.

efficient way than a flight termination.315

The resulting automatic system can be represented as a state automaton, as

in Fig. 2. One important aspect to this machine is how transitions occur. Most

often, these transitions are triggered manually by the remote pilot; however,

they can also occur automatically after a contingency occurs. This is discussed

below:320

• Transitions from manual to automatic mode often occurs upon the pilot’s

decision to engage this mode. However, some contingencies, such as a

collision threat, could be handled in an automatic collision avoidance mode

without requiring the pilot’s approval (although suppressing this approval

is an important design decision). In other cases, these transitions require a325

pilot’s decision on a rerouting to be followed and how the transition to the

new route is to be performed. If no suitable route exists, then a stabilizing

mode that maintains course, altitude and speed should be engaged.

• Transitions from automatic to manual mode can occur for three rea-

sons: programmed disengagements, pilot decisions, or contingency han-330

dling strategies. Programmed disengagements occur when a transition to

manual mode is pre-programmed in the middle of a sequence of automatic

maneuvers, or at the end of this sequence. A disengagement can also be

forced by pilot decision at any time: this can be done by simply acting

on any flight control. Finally, if the autopilot control becomes unstable,335

it may cause the loss of control event. This is a severe contingency of-

13

Safety

Monitor

Contingency

Manager

 Mission

Manager

Remotely

Piloted

Aircraft

control

actions

contingency

state

mission

goal

Flight

Terminator

Flight

Director

reference

state

system

state

Figure 3: Software architecture of a Mission Management System for RPAS.

ten handled by reverting to manual control, an automatic (unexpected)

autopilot disengagement procedure.

• Transitions from manual or automatic to autonomous mode are always

triggered by the loss of all C2 links. All further contingencies must be340

handled in this mode. A recovery of the C2 link triggers a transition from

autonomous to automatic mode.

4.2. On-board software architecture

In previous works, the authors presented the software architecture of a Mis-

sion Management System for RPAS [21, 22]. The proposed architecture ex-345

tends the two-layer scheme of a conventional airliner to provide higher levels

of automation and to enable automated contingency handling. The resulting

architecture is structured into five software components named Safety Monitor,

Contingency Manager, Mission Manager, Flight Director, and Flight Termina-

tor, see Fig. 3. Each of the components is briefly introduced next.350

The Safety Monitor and the Contingency Manager are responsible for the

strategic decision-making. The role of the Safety Monitor is to check the system

state looking for contingency states. When an contingency state is detected, it

decides between a risk mitigation or a flight termination action. This decision

is critical, so that is why the Safety Monitor is implemented as a completely355

separated component that has a failure independent mode from the rest of the

components.

14

The referred decision is made based on the criticality of the contingency

state. When there is a safety margin for attempting a risk mitigation option,

the resolution of this state will be delegated to the Contingency Manager. But if360

the contingency state is considered safety-critical, i.e, there is a low probability

of successfully handling the contingency, then the Safety Monitor will command

the Flight Terminator to act. If this occurs, the Contingency Manager, the

Mission Manager and the Flight Director will be instantly disengaged.

When risk mitigation is a plausible option, the Contingency Manager should365

react and decide a handling strategy. This way, the Contingency Manager can

be also seen as a component that tries to minimize the probability of flight

termination by defining a new mission goal. This goal usually consists of par-

tially completing the mission in a degraded form, while ensuring safety. When

no contingency has been declared, the mission goal is simply the nominal goal:370

to perform the intended mission. After a contingency occurs, the Contingency

Manager interrupts the current mission execution to set a new goal and exe-

cute the corresponding actions. The selection of a goal is made in accordance

with the Contingency Plan. Once a selection has been made, if the RPAS

is operated in manual or automatic mode, the Contingency Manager informs375

the remote pilot about this goal. The pilot can decide between accepting the

proposed contingency handling or changing to manual mode. If the RPAS is

operated in autonomous mode, the Contingency Manager instructs the Mission

Manager directly to execute the selected goal.

The Mission Manager is the architectural component responsible for the380

tactical decision-making: it defines a RPAS trajectory that allows to perform

the current mission goal. It is thus equivalent to the FMC in a conventional

airliner. The internal design of the Mission Manager (not represented in Fig. 3)

is structured into two layers: the Path Planner and the Guidance System. A

Path Planner can be considered as an abstract object with the ability to provide385

a reference trajectory to meet a goal. There exist multiple instances of Path

Planners in the Mission Manager, but there is only one active instance at a

time. The different instances use different criteria depending of the goal type.

15

A particularly important instance of the Path Planner is the “Mission Plan-

ner” which determines the trajectory based on the directives of a Mission Plan.390

Additionally, there are some “Task Specific Planners” which provide trajectory

guidance under special contingency conditions such as, for example, collision

avoidance. These planners usually provide deviations on the nominal path for a

short period of time. Once a reference trajectory is defined, the Guidance Sys-

tem decomposes the trajectory into the corresponding horizontal (LNAV) and395

vertical (VNAV) profiles. Finally, these profiles generate targets for the Flight

Director, which executes the control loops.

The last architectural component is the Flight Terminator. This system is

responsible for conducting the flight termination action when no other option

is effective for mitigating the effect of a contingency. The flight termination400

system is a mandatory equipment in most RPAS safety requirements. It can

be implemented in different manners. Self-destruction systems, or parachute

release systems are the most popular ones. Emergency landing systems are not

considered a flight termination system in our proposal. In order to increase

flight safety, this system must be completely independent from the rest of the405

systems and should be triggered by the Safety Monitor or by the remote pilot

[13, 31, 32].

The proposed architecture has been prototyped in Matlab/Simulink, tested

in a simulation environment, and deployed on a partitioned architecture based

on XtratuM. XtratuM is a hypervisor for real-time embedded systems developed410

in our research group [33]. It is based on the Integrated Modular Avionics (IMA)

concept and provides compliance with the ARINC-653 standard [34] by means

of LithOS: a guest real-time operating system also developed in our research

group [35].

5. Reconfigurable Mission Plans415

Reconfigurable Mission Plans are based on the idea that an RPAS has a

preferred or nominal route, though it is possible to modify this route at flight

16

time to respond to contingencies or pilot decisions. The alternate routes that

result from changing the nominal route must be deduced from the specifications

in the Mission Plan. To do so, all possible deviations from the nominal route420

should be specified in advance in the Mission Plan. The aim is to achieve

completely predictable behavior, especially when the RPAS is in autonomous

mode. In manual mode, the remote pilot can always override the Mission Plan

if necessary.

As an example, consider a mission where the current goal is reaching an425

airfield via a preferred route. If the C2 link is lost, the Mission Plan can be

reconfigured so the new mission goal can be to regain the C2 link signal. If

the C2 link is restored, the original goal can be resumed, perhaps by using a

different route. This way, the notion that a mission goal can be achieved through

different alternative routes is another feature of Reconfigurable Mission Plans.430

From the above discussion, a Reconfigurable Mission Plan is defined as a

specification of all the possible goals of a mission and the associated routes that

can be used to achieve these goals. One of these goals will be designated as the

nominal goal; it defines the intended behavior if no contingency occurs. When

some contingency occurs, the Mission Plan also defines alternative goals and435

one or more routes to manage the contingency. Alternative goals make use of

different contingency handlers, such as the ones proposed in the contingency

management scheme. In manual or automatic mode, it is the remote pilot who

decides on following the Mission Plan directions. In autonomous mode, the

Contingency Manager always uses the Mission Plan specifications to guide the440

aircraft.

The flight path of a route is structured into segments. A segment is a se-

quence of legs that correspond to a specific phase of flight or to a flight procedure

(e.g. departure, arrival, etc). The Mission Plan comprises the set of all possible

segments that can be used in a mission: different departure procedures, different445

routes, different payload related procedures, different landing procedures, etc.

The set of all possible routes in a Reconfigurable Mission Plan can be deduced

from a graph that results from the union of these segments.

17

waypoint

*

nominalRoute

1

segment

1..*

missionBoundary

0..*

missionGoal

1..*

leg

2..* (ordered)

ReconfigurableMissionPlan

Waypoint

Goal

Segment Leg

Route

Boundary

Figure 4: Structure diagram of a Reconfigurable Mission Plan object.

The formal description of a Reconfigurable Mission Plan and all its compo-

nents is formally introduced below by using Graph Theory concepts and UML.450

At present time, we have not addressed the subject of designing a specific lan-

guage or syntax to formally specify Mission Plans other than UML. Nevertheless,

UML is a powerful representation that allows to derive a different specification

or representation through a code generation process. This representation can

be generated for a specific target system. For example, in our case we test Mis-455

sion Plans on a Mission Manager prototype in Matlab/Simulink; so we need to

translate the Mission Plan specification in UML to the Matlab language. This

process can be automatized using a code generator. However, we will always

refer throughout this paper to the original UML specification.

5.1. UML model460

The UML model of a ReconfigurableMissionPlan object is shown in Fig. 4.

The structural components of the plan are detailed below.

Attribute waypoint in Fig. 4 is the declaration of a set of relevant waypoints

used in other Mission Plan attributes. This attribute is explained further in

Sec. 5.2.465

18

Attribute missionGoal is the definition of the set of all mission goals that a

mission may have, one of which is the nominal one (see Sec. 5.3).

Attribute segment is the set of all possible segments that a mission may

have. A segment is the description of a phase of flight or a flight procedure

(see Sec. 5.5). The possible routes allowed in the Mission Plan are derived from470

this set of segments. One of these routes is the nominalRoute, which is the

only route statically declared in the Mission Plan (see Sec. 5.6). The remaining

routes will be dynamically specified, as will be shown in Sec. 6.

Attribute missionBoundary is a set of relevant airspace volumes that a mis-

sion may have (see Sec. 5.7). Examples are geofenced areas (like the area of475

operations) and no-fly zones. The reason the specification of these volumes are

entered into the Mission Plan is to detect mission boundary limits violations.

This is the basis for any sort of geofencing or warning system.

5.2. Waypoints

A waypoint is the most elementary object in a Mission Plan. It identifies480

a point over the earth surface using its WGS-84 coordinates. These points are

used by other Mission Plan objects, like goals, routes, etc. In PBN (Performance

Based Navigation), all fixes in a flight procedure are specified as waypoints and

not by their relative position to some ground navaid.

The waypoint declaration of a Mission Plan identifies a set of well defined485

points, similar to how they are declared in a navigation database. A variant of

the waypoint class is the variable waypoint class. This class is used to specify

waypoints whose coordinates may vary depending on aircraft performance, and

for this reason they do not appear in the initial waypoint declaration of the

mission plan. These types of points will be used by some leg types in Sec. 5.4.490

5.2.1. UML model

The UML model of a point is shown in Fig. 5. It shows an abstract class Point

which has two two subclasses or specializations: the Waypoint class, and the

VariableWaypoint class. Both subclasses present two attributes: an id(entifier)

19

Point

id : char

Waypoint

POSITION : Coordinates2d

VariableWaypoint

position : Coordinates2d

Coordinates2d

latitude : double

longitude : double

Figure 5: Structure diagram of a Waypoint object.

and a position. The attribute position is a Coordinates2d object for expressing495

latitude and longitude coordinates in decimal degrees. The difference between

each subclass is that in the Waypoint class, the position attribute is constant

(emphasized using capital letters), while in the VariableWaypoint class, the

coordinates of the position can vary.

5.3. Mission goals500

A mission goal represents a kind of “motivation” that leads RPAS behavior

and trajectory. Examples of such goals may be flying to a location, landing,

loitering, etc. In a Reconfigurable Mission Plan, the required goal types are

mostly derived from the ICAO recommendations on contingency handling cited

in Sec. 3.1. Once in flight, there is only one active goal at a time, which is505

selected by the remote pilot or the Contingency Manager, depending on the

system configuration.

Formally, a goal has an associated location (a loiter point, an airport, etc.)

that must be reached to achieve the goal, and an enabled procedure that is

flown upon reaching this location. Table 2 shows some goal types with their510

associated locations and procedures. For example, the “loiter” goal is associated

with a loiter point; reaching a loiter point allows the RPAS to perform a holding

procedure.

One of the mission goals specified in a Reconfigurable Mission Plan is des-

ignated as the nominal goal. This goal describes the primary intended RPAS515

20

Table 2: Goal types in the proposed Reconfigurable Mission Plan.

Goal type Associated location Enabled procedure

Fly-over Waypoint None

Loiter Loiter point Hold position

Regain signal Waypoint Climb trying to regain the C2

link or the GPS signal

Land Airport IAF Approach procedure

Flight termination Flight termination point Flight termination action

mission and it is the default goal to be achieved.

A goal can consist either of a single goal or a sequence of sub-goals or stages.

For example, a goal may have an initial stage to fly to the operations area, a

stage to perform the payload task inside the operations area, a stage to exit the

operations area and a final stage to land at some given location. Stages can520

be also used to meet route constraints. For example, imagine accomplishing

a “land” goal requires flying a standard arrival procedure with some required

intermediate waypoints. This could be modeled as a sequence of “fly-over”

stages followed by a “land” stage.

The associated location of a goal can be specified as a single point or as a set525

of alternative points. For example, a “land” stage may have a set of alternative

Initial Approach Fixes (IAFs); each IAF corresponding to a different landing

procedure to be chosen according to the airport configuration. Similarly, the

operations area may have several entry points or several exit points that the

pilot can select. In general, only one of the listed points can be enabled at530

a time: the decision maker agent (usually the pilot) must choose between the

different options according to the current state or condition.

5.3.1. UML model

The UML model of a Goal object is shown in Fig. 6. Their attributes are

an id(entifier), a nominal boolean to indicate if it is the nominal goal, and535

a sequence (ordered set) of stage objects. The UML’s composition operator

21

stage1..* (ordered)

≪uses≫

Goal

id : char

nominal : boolean

Stage

id : char

type : GoalStageType

location : Point [1..*]

enabledVariant : Point

≪enum≫
GoalStageType

flyOver

loiter

regainSignal

land

flightTermination

Figure 6: Structure diagram of a Goal object.

represents a parent-child relationship between a goal and the list of stages with

a strong lifecycle dependency. The parent-child relationship means that the

goal object has exclusive ownership over the stage object; and the lifecycle

dependency states that if a goal object is deleted, then all its stages will also be540

deleted.

A Stage object is labeled with a type attribute, which is one of the enu-

merated values in Table 2. Stages have an associated location that has to be

reached. Recall that several alternative points can be associated with one stage,

representing different alternatives, so they are mutually exclusive. In this case,545

one of them has to be selected as the enabledVariant.

5.4. Legs

As it was introduced at the beginning of this section, a Reconfigurable Mis-

sion Plan route is structured into segments. A segment is defined as a sequence of

legs. Legs are the most basic maneuvers in a segment. In conventional airliners,550

legs are specified in the FMC using the path terminator concept of ARINC-424.

ARINC-424 is a standard that defines the format of navigation databases [6].

The standard defines a number of entities (like waypoints, airports, airways,

22

navaids, path terminators, etc), their attributes and their format. ARINC-424

path terminators have been adopted by ICAO in Doc. 8168 OPS/611 [36] to555

describe the basic flight maneuvers of RNAV flight procedures.

Path terminators provide higher flexibility and richness of behaviors than

simple “waypoint navigation” used by most Mission Plan proposals. A path

terminator is defined using two letters, the first one describing the type of path,

and the second, the termination condition. For example, the most common path560

terminator is the track to fix, coded as “TF”. This coding defines a maneuver

that the FMC must implement as navigating a path that is the shortest ortho-

dromic track between two fixes. The terminator indicates that the maneuver

ends when the target fix is reached. But path terminators provide additional

path types (like arcs with constant radius, paths with constant heading, paths565

with constant course, etc), and additional types of terminators (reaching an

altitude, manual termination, etc).

The advantage of using path terminators is that it allows flight procedures to

be defined using PBN standards [5] and, ultimately, provides compatibility with

commercial FMC technologies. Path terminators were originally intended to570

describe airliner maneuvers. We propose to extend this concepts to RPAS. This

requires to introduce new path terminators to describe RPAS specific maneuvers

in a way that is close to the ARINC-424 standard. Our proposal is a resulting

set of path terminators referred to as Extended Path Terminators (EPTs). New

features introduced by EPT’s are:575

a) New types of paths and new types of terminations, gathered in Table 3. Ex-

amples of new paths include the “S-path” to describe scanning patterns

around a geographical area; while new terminators include the “L-terminator”

(used to specify a maximum number of laps) or the “T-terminator” (used to

specify a given time limit). Accordingly, some examples of new EPTs would580

be: SL (perform a scanning pattern for a number of laps), ST (scan for a

given time) or SM (scan to manual termination).

b) Combinations of paths and terminators not included in the standard. Exam-

23

Table 3: Extended Path and Terminator codes.

Path Terminator

Code Description Code Description

S Scanning pattern L Lap limit

T Time limit

ples of new combinations of existing paths and terminators not defined in

the standard include: RA (helicoidal ascents or descents to an altitude), or585

RM (orbit until pilot intervention).

On the other hand, EPTs also restrict some features defined by the ARINC-

424 standard: since RPAS navigation is mostly based on GNSS, path termi-

nators based on the use of ground beacons (like VORs, ILS, etc) not usually

available in RPAS will be restricted in practice.590

Table 4 summarizes the EPTs that will be used in this approach. It includes

18 EPT codings: 11 out of the 14 standard path terminators defined for RNAV

operations [5], plus 7 extended procedures for RPAS. As this table shows, each

EPT requires a number of definition parameters. For example, the course to

altitude (CA) needs the following parameters: the reference course, the altitude595

limit, and optionally the speed limit and the required vertical path angle.

Note that EPTs can lead the plane to a well defined waypoint or to a variable

waypoint. The termination point is a waypoint in the case that the EPT specifies

a fix as the terminator. If the EPT specifies an altitude or some other condition,

then the termination point is a variable waypoint since different planes can reach600

that altitude at different points depending on their performance.

5.4.1. UML model

The UML model of legs shown in Fig. 7 is derived from the previous dis-

cussion. There is an abstract class Leg, and the different EPTs are subclasses

or specializations of this class. Each EPT has its own set of attributes, which605

basically corresponds to the parameters of Table 4.

24

Table 4: Extended Path Terminators and definition parameters.

Description co
d

in
g

w
ay

p
oi

n
t1

w
ay

p
oi

n
t2

fl
y
-o

ve
r

co
u

rs
e

p
a
th

le
n

gt
h

al
ti

tu
d

e1

al
ti

tu
d

e2

sp
ee

d
li

m
it

ra
d

iu
s

tu
rn

d
ir

ec
ti

on

li
m

it
va

lu
e

ve
rt

ic
al

an
g
le

Course to altitude ca X O 1 O

Course to fix cf X O X O O O O

Direct to fix df X O O O O

Fix to an altitude fa X X O 1 O

Fix to manual fm X X O O O

Initial fix if X O O O

Radius to fix rf X 2 X O O O X O

Track to fix tf X O X O O O O

Heading to altitude va 3 O 1 O

Heading to intercept vi 3 O O O

Heading to manual vm 3 O O O

Radius to altitude ra 2 O X X 1 O

Radius to lap number rl 2 O O O X X 4

Radius to manual rm 2 O O O X X

Radius to time rt 2 O O O X X 5

Scan to lap number sl X X 6 O O O X 4

Scan to manual sm X X 6 O O O X

Scan to time st X X 6 O O O X 5

X– Required 4 – Laps limit

O – Optional 5 – Time limit

1 – Altitude limit (at or above) 6 – Initial course

2 – Arc center Shaded – Not applicable field

3 – Heading not course

25

Leg

terminationPoint : Point

CA

course : double

speedlim : double

limvalue : double

vpath : double

TF

waypoint1 : Waypoint

flyover : boolean

pathlength : double

alt1 : double

alt2 : double

speedlim : double

vpath : double

. . .

Figure 7: Structure diagram of two of the possible specializations of a Leg object.

In addition, the abstract class Leg has an attribute common to all EPTs,

which is the terminationPoint. When the termination condition of the EPT

is a fix (IF, RF, etc), the termination point is the Waypoint (fix) specified as

the terminator of the EPT (attribute waypoint1 in Table 4). Otherwise, this610

attribute is a VariableWaypoint. Since every leg has an associated termination

point, there is a bijective relationship between legs and their corresponding

termination waypoints.

5.5. Segments

A segment is defined as a sequence of legs that correspond to a phase of flight615

or to a flight procedure. As stated in the Mission Plan definition, the Mission

Plan specifies the set of all possible segments of a mission.

Every segment is tagged with a segment type. Six types of segments have

been defined according to the phases of flight of an RPAS mission [37]: depar-

ture, en-route, operation (i.e. performing the payload task in the operations620

area), ingress/egress (transitions between en-route and operation), and arrival.

26

Table 5: Valid initial and final legs per segment type.

Segment type Initial leg Final leg

Departure IF CF, DF, RF, TF

En-route IF TF

Ingress IF CF, DF, RF, TF

Operations IF CF, DF, RF, TF

Egress IF CF, DF, RF, TF

Arrival IF CF, RF, TF

The specification of the sequence of legs is subject to the following con-

straints:

Definition 1. (Well formed segment) A segment is said to be well formed

iff its sequence of legs meets the following rules derived from the ARINC-424625

standard1:

WFS1 Permitted legs per segment type. Not all EPT types are permitted in

every segment type. For example, en-route segments can be composed of

legs coded as IF and TF only. Similarly, EPTs for performing scanning

patterns are limited to operations segments.630

WFS2 Permitted beginning and ending leg types. The ARINC-424 standard [6]

defines a table of valid initial and final path terminators. Table 5 is an

extension of the ARINC-424 proposal considering the new phases of flight

proposed by EUROCONTROL for RPAS [37].

WFS3 Permitted leg sequences. The ARINC-424 standard [6] also defines a635

table of valid sequences of legs. The general rule is that RF and TF legs

should be preceded by legs whose target point is a waypoint. For example,

the CA/TF sequence is not allowed because the TF requires a previous

fix for defining the flight path. Another prohibited sequence is DF/RF

1They are also the basis for the corresponding rules in ICAO Doc. 8168 OPS/611 [36].

27

because the resulting flight path is not predictable. We have derived an640

equivalent table of permitted EPT sequences that has been omitted for

brevity.

Regarding Table 5, it must be noted that the initial leg of every segment type

is coded as IF. This initial leg must be associated with a waypoint with well

defined coordinates (not a variable waypoint), except in departure segments.645

In such segments, the starting condition is any point along the runway, so this

point must be identified using a variable waypoint. The de facto starting leg in

departures will be the second leg which must be coded as CA, CF, VA, or VI

[36]; but the IF leg is still required to support the definition of the segment, and

particularly the segment graph, as it will be discussed below. Note also that the650

permitted final legs in Table 5 are always EPTs ending at a fix; this will allow

segments to be connected at a well defined waypoint (not a variable waypoint),

thus making the flight procedure more deterministic.

From the point of view of Graph Theory, a well formed segment can be

modeled as a directed path [38]. A directed path (sometimes called dipath) is655

a sequence of edges which connect a sequence of nodes, but with the added

restriction that the edges all be directed in the same direction. In our case, the

graph nodes represent the termination points of the legs of the segment (either

a well defined or a variable waypoint), and directed edges are the path between

these points. Figure 8 shows an example of a segment graph as compared with660

the segment representation in a navigation chart.

Segment nodes will be named wi,j , where i is the segment identifier, and j

is the identifier of the segment leg (or more precisely its associated termination

point). Notation w1,1 → w1,2 expresses that there is a directed edge from node

w1,1 to node w1,2. This means that waypoint w1,2 is reached (navigated) right665

after w1,1 in segment 1.

By definition of directed path, the set of nodes of a segment are are totally

ordered. As a result, a segment node can be reached from any node that precedes

it in the ordering. If the in-degree of a node is the number of ingoing edges, the

28

(a) Navigation chart view.

(b) Graph view.

Figure 8: Example of segment representation.

in-degree of all segment nodes is 1, except in the first node (called the source670

node), where it is 0. In the same way, if the out-degree of a node is the number

of outgoing edges, the out-degree of all segment nodes is 1, except in the last

node (called the sink node), where it is 0.

In order to optimize route reconfigurations, the edges of a segment graph are

weighted, with the weight representing the cost of flying between two consec-675

utive nodes. In this work, the cost is measured in terms of the resulting path

length, but it could also represent flight time, fuel consumption, etc. In order

to compute the path length between two consecutive nodes, it is necessary to

distinguish between the following cases:

a) When both nodes are waypoints, the path is defined completely so the length680

can be computed using spherical geometry functions.

b) When some of the nodes are a variable waypoint, the path depends on the

aircraft performance, so the length should be estimated using trajectory

planning functions like EUROCONTROL’s Base of Aircraft Data (BADA)

libraries [39].685

A special case where the cost cannot be easily estimated is an EPT with manual

29

≪uses≫

leg2..* (ordered) containmentArea1

Segment

id : char

type : SegmentType

≪enum≫
SegmentType

departure

enroute

ingress

operations

egress

arrival

Leg ≪interface≫
ContainmentArea

BoundaryNavigationSpec

Figure 9: Structure diagram of a Segment object.

termination, since the termination point completely depends on pilot decision.

A maximum weight should be assigned in this case.

5.5.1. UML model

The UML model of a Segment object is shown in Fig. 9. There are two basic690

attributes: the segment’s id(entifier) and the segment’s type. The attribute leg is

the sequence of legs of the segment, where each leg is a subclass of the abstract

class Leg.

In addition, the attribute containmentArea represents the protected volume

that encircles the defined flight path. This attribute describes the flight toler-695

ance error allowed in order to fly the segment. As shown in Fig. 9, the con-

tainment area is modeled as an interface that can be realized in two ways: by

means of a NavigationSpec object (a PBN navigation specification that defines

the allowed cross track error); or by defining a Boundary object (an airspace

volume). For example, a NavigationSpec can be an RNP-1 specification that700

defines a containment area of 1 NM at each side of the intended flight path.

Boundary objects define the containment area by its geographical limits, see

Sec. 5.7.

30

5.6. Routes

As it was introduced at the beginning of this section, Reconfigurable Mission705

Plans allow to specify all the different routes that an aircraft can fly. One among

all the possible routes must be declared as the nominal route. This route is

the only one that is statically declared in the Mission Plan. The remaining

alternative routes are dynamically derived from the segments declared in the

Mission Plan. The set of all the possible routes is described by the Mission710

Graph. The Mission Graph is defined as the union of all the segments of the

Mission Plan.

The union operator defines the conditions that allow to fly from one segment

to another. The necessary condition for setting a path between two segments is

that they shall have a waypoint in common. This is not a sufficient condition,715

though. In order for the resulting path to be consistent, it is also necessary

to account for the position of the common waypoint in the sequence of legs of

each segment, and for the phase of flight of the segments under consideration.

Therefore, the definition of the union operator is similar to the notion of union

in Graph Theory, but it should be particularized to cope with some restrictions720

on the path construction:

Definition 2. (Segment union) Given the graph of two well formed segments

sa and sb, the union of sa with sb, denoted as sa ∪ sb, is the directed graph that

results out of performing the following two operations:

SU1 Performing the disjoint union of both segment graphs. This implies that,725

in the resulting graph, the nodes of sa and the nodes of sb will have no el-

ements in common (even though they may reference the same waypoints).

SU2 Creating additional edges between nodes associated with the same way-

point, iff the following conditions hold:

SU2.1 The waypoint is not associated with the termination point of the730

first leg of sa.

31

Table 6: Permitted phase of flight transitions.

Next segment (sb)

D
ep
a
rt
u
re

E
n
-r
o
u
te

In
gr
es
s

O
pe
ra
ti
o
n
s

E
gr
es
s

A
rr
iv
a
l

C
u
rr
en
t
se
g
.
(s

a
)

Departure – X X X – X

En-route – X X X – X

Ingress – – – X X –

Operations – X – X X X

Egress – X X X – X

Arrival – – – – – –

SU2.2 The waypoint is not associated with the termination point of the

last leg of sb.

SU2.3 The phase of flight transition from sa to sb is permitted by Table 6.

The new edges created when condition SU2 holds will be called transition735

edges because they allow to fly between segments. An important remark is that,

since the nodes connected by a transition edge are geographically co-located,

the cost of flying a transition edge will be zero.

To illustrate this definition, imagine the two segments s1 and s2 in Fig. 10a;

assume that both of them correspond to the en-route phase. The graph obtained740

after performing the disjoint union of these segments (operation SU1) is shown

in Fig. 10b. As it can be observed, the resulting graph is not connected: there

are two subgraphs, each one representing the graph of a segment, but they

have no elements in common. In order to connect these graphs, it is necessary

to perform operation SU2. The resulting graph is shown in Fig. 10c. As745

it can be observed, there exists an additional edge from node w1,3 to node

w2,1 (depicted as a dashed line) since both nodes are associated with the same

waypoint (WP02) and conditions SU2.1, SU2.2 and SU2.3 hold. This way, it

is possible to fly from s1 to s2 through this transition edge.

32

Hèctor�

(a) Navigation chart view.

(b) Disjoint union of segments s1 and s2 (operation SU1).

(c) Union of segments s1 and s2 (operations SU1 and SU2).

Figure 10: Example of segment union. Leg codings, path distances, and edge weights are

omitted for simplicity.

An important property of the segment union is that the union operator is750

not commutative: sa ∪ sb 6= sb ∪ sa. In the above example, the union of s2 with

s1 (s2 ∪ s1) does not allow to fly from s2 to s1 through the common waypoint

WP02 because conditions SU2.1 and SU2.2 fail in this case. Therefore, in

order to obtain the Mission Graph, it is necessary to perform the segment union

of each segment declared in the Mission Plan with all the remaining segments.755

Another important property of the segment union is that, although the graph

of a segment is totally ordered, the graph that results out of performing the

segment union might be partially ordered. This might occur if the resulting

graph has multiple source nodes and/or multiple sink nodes; or if it presents

33

Hèctor�

(a) Navigation chart view.

(b) Graph view.

Figure 11: Example of Mission Graph.

cycles. To illustrate this, imagine a more complex example like the one in760

Fig. 11a. In this case, there are 5 segments which connect 12 waypoints. The

Mission Graph that results out of performing the union of all these segments is

presented in Fig. 11b. As it can be observed, it presents one source (w1,1) but

three sinks (w3,2, w4,3, and w5,3), so it is not possible to define a total order.

Once the Mission Graph has been defined, we can define mission routes based765

on the concept of reachability between nodes of the Mission Graph:

Definition 3. (Node reachability) Let wa,i and wb,j be two nodes of the

Mission Graph. Node wb,j is said to be reachable from node wa,i, denoted as

wa,i ⇒ wb,j, iff there is at least one directed path from wa,i to wb,j in the

Mission Graph.770

34

Hèctor�

Accordingly, a route between two nodes wa,i and wb,j of the Mission Graph

exists iff wa,i ⇒ wb,j . The resulting route is a directed path in the Mission

Graph that can traverse the nodes of different segments. The set of all the

nodes traversed by a route is totally ordered. The node in which the directed

path reaches a segment is called the entry point of that segment in this route.775

The node in which the directed path leaves a segment is called the exit point of

that segment in this route.

As a result, a route can be specified as the sequence of the segments traversed

by a directed path in the Mission Graph, along with the entry point and the

exit point of each segment in the sequence. This will be denoted as:780

r = 〈WP0
s0−→WP1

s1−→WP2 . . .〉 (1)

Where WP0 and WP1 are the entry and exit points of s0, and WP1 and

WP2 are the entry and exit points, respectively, of s1. For example, a possible

route in the Mission Graph example of Fig. 11 is:

r0 = 〈WP01
s1−→WP03

s2−→WP06
s4−→WP10〉 (2)

Finally, a route is considered to be effective for achieving a specific mission

goal if it traverses all the associated locations of that goal. For example, if we785

assume that a mission goal for the mission example in Fig. 11 is declared as

“fly over waypoint WP05; then perform the landing procedure associated to

waypoint WP10”, then r0 in Eq. (2) will be effective in achieving this because

it traverses both waypoints in the required order.

5.6.1. UML model790

The UML model of a Route object is shown in Fig. 12. The attribute goal

specifies the mission goal for which the route is intended. The attribute route-

Segment specifies the flight path of the route as a sequence of RouteSegment

objects. Each RouteSegment is associated with a Segment instance of the Mis-

sion Plan. In addition, the RouteSegment also specifies the entryPoint and the795

35

routeSegment

1..* (ordered)

segment1

Route

goal : Goal

RouteSegment

entryPoint : Point

exitPoint : Waypoint

Segment

Figure 12: Structure diagram of a Route object.

exitPoint of this segment. These attributes are specified using a Point object.

Note that all entryPoints and exitPoints are instances of class Waypoint, except

the entry point of a departure segment, which is an instance of class Variable-

Waypoint.

The UML’s direct association between the RouteSegment and the Segment800

object has an important implication on the route definition: as depicted in

Fig. 4, the ownership of the Segment objects of a route is the Reconfigurable-

MissionPlan class, not the Route class itself. In other words: routes are built

using segments defined by the Mission Plan. For this reason, a segment used in

the nominal route can also be used in another route.805

5.7. Mission boundaries

Apart from the route information, the Mission Plan allows mission bound-

aries to be specified. A mission boundary is an airspace volume with well-

specified limits which are monitored so as to produce a contingency if the limits

are close to being trespassed. There are two main types of boundaries: no-fly810

zones, and geofenced areas. In no-fly zones, the contingency is produced when

the aircraft gets close to entering this area. In geofenced areas, the contingency

is produced when the aircraft gets close to exiting this area. From the ATC

point of view, a no-fly zone is an area subject to special authorization, while

a geofenced area can be a segregated area used as the operations area of an815

RPAS, for example. Both of them can be published as NOTAMs.

36

≪uses≫

Boundary

id : char

type : BoundaryType

altitude1 : double

altitude2 : double

entryPoint : Waypoint [0..*]

exitPoint : Waypoint [0..*]

≪enum≫
BoundaryType

geofencedArea

noFlyZone

CircularBoundary

waypoint : Waypoint

radius : double

PolygonalBoundary

waypoint :

Waypoint [3..*] (ordered)

Figure 13: Structure diagram of a Boundary object.

5.7.1. UML model

The UML model of a Boundary object is shown in Fig. 13. According to this

figure, a Boundary class has two possible specializations or subclasses: circular

boundaries and polygonal boundaries. The specification of a circular boundary820

requires a waypoint object be provided and the corresponding radius defined;

while a polygonal boundary is formed from three or more waypoints in some

given order.

Boundary objects may also have vertical limits: an upper limit, a lower limit,

or a given altitude window. Attribute type is used to indicate whether it is a825

no-fly zone or a geofenced area. Finally, Boundary objects may be associated

with a list of entry and exit points. These points are waypoints that allow

an ingress/egress segment to be connected with an operation segment that is

geofenced.

37

6. Dynamic route configuration830

As introduced in Sec. 5, Reconfigurable Mission Plans provide two types of

routes: static and dynamic routes. Static routes are statically declared in the

Mission Plan pre-flight; by contrast, dynamic routes are not statically declared,

but rather generated at flight time as a function of the Mission Graph, the

current position, and the active mission goal. The problem in dynamically835

(re)configuring a Mission Plan route can be stated as the problem of finding the

lowest cost route that is effective for achieving the active mission goal from the

current position of the RPAS.

As an example, let us return the mission example in Fig. 11. Assume that

the nominal goal is declared as “fly over waypoint WP05; then land at WP10”,

and that the nominal route is r0 in Eq. (2). There are also two alternate

goals for performing the “flight termination” at waypoints WP08 and WP12,

for instance. Now, once in flight time, the RPAS is flying the nominal route,

somewhere in between waypoints WP02 and WP03, and a contingency occurs.

If the decision maker agent sets the new goal type to “flight termination” (for

instance), then the Mission Management System can reconfigure the plan to fly

any of the following routes:

r1 = 〈WP02
s1−→WP03

s5−→WP12〉

r2 = 〈WP02
s1−→WP03

s2−→WP07
s3−→WP08〉

If the cost of flying a route r is C(r), and we assume that C(r1) < C(r2),

then the optimal (shortest) route would be r1. However, if the contingency840

had occurred after reaching WP03, then waypoint WP12 would have not been

reachable, so the only suitable route in the Mission Graph would have been r2.

In this section, we develop a series of tools for dynamically configuring a

Mission Plan route. These tools rely on Graph Theory to exploit features like

graph analysis and shortest path algorithms [38]. In order to develop these845

tools, we have first prototyped the UML models of a Reconfigurable Mission

Plan object using object-oriented programming (OOP) in Matlab. Then, based

38

on this model, it is possible to perform the following actions: 1) construct the

Mission Graph object; 2) find a path in the Mission Graph that is effective for

achieving some given type of goal; and 3) specify a path in the graph as a Route850

object. The following subsections provide more detail on these topics.

6.1. Constructing the Mission Graph object

Constructing the Mission Graph object consists of performing the union of

all the segments in a Reconfigurable Mission Plan object. The pseudocode of

Listing 1 performs this process based on rules SU1 and SU2. In short, the855

pseudocode that implements rule SU1 (lines 4 to 7) reads the Mission Plan

data structure missionObj. Then, it gets the nodes (s, t) and the edge weights

(w) of all the segments in missionObj using the getSegmentNodes procedure.

Finally, these nodes are added to the Mission Graph structure G. Note that this

code exploits functions of the Matlab toolkit “Graph and Network Algorithms”.860

Then, the pseudocode for rule SU2 (lines 9 to 16) shows a double for

loop that iterates for every couple of segments in the missionObj and checks if

some pair of waypoints meet conditions SU2.1, SU2.2 and SU2.3 (procedure

getTransitionEdgeNodes). If so, a transition edge is added to the digraph G.

Recall that the associated weight of these edges is w=0.865

6.2. Finding a path that is effective for achieving one given mission goal type

Once the Mission Graph object G has been created, the next problem is

finding a route in this graph that allows some given type of goal to be achieved.

As deduced in Sec. 5.6, a mission route is a directed path that connects one

given source with one given destination. In this case, the source represents the870

initial position of the RPAS, and the destination is a location that is associated

with the target goal. When this goal is composed of multiple sub-goals, the

route should connect the origin with the destination, with the difference that

this route must traverse all the required intermediate positions. According to

this, the problem of finding a route in the graph consists of two major steps875

in the general case: 1) locating all the nodes of the Mission Graph that are

39

Listing 1: Pseudocode for constructing the Mission Graph.

1 function G = getMissionGraph(missionObj)

2 G=digraph(); %Initialize digraph object

3 %1.- Perform disjoint union of segments (SU1)

4 for i=1:getNumSegments(missionObj)

5 [s,t,w]=getSegmentNodes(missionObj.segmentObj(i));

6 G=addedge(G,s,t,w); %Add nodes to graph object

7 end

8 %2.- Create transition edges (SU2)

9 for i=1:getNumSegments(missionObj)

10 for j=1:getNumSegments(missionObj)

11 currentSegmentObj=missionObj.routeSegment(i);

12 nextSegmentObj=missionObj.routeSegment(j);

13 [s,t,w]=getTransitionPointNodes(currentSegmentObj, ...

nextSegmentObj);

14 G=addedge(G,s,t,w); %Add nodes to graph object

15 end

16 end

17 end

associated with that goal, and 2) finding a path in the Mission Graph that

connects the source node with all the required nodes.

In Graph Theory, the problem of finding a path between nodes is known

as the shortest path problem: the problem of finding the path that minimizes880

the sum of its edges’ weights. There exist multiple algorithms that solve this

problem [38]; for the particular case of a Mission Graph (a weighted, directed

graph, where all weights are positive), Dijkstra’s algorithm is suggested. Based

on this algorithm, we have developed a procedure for finding dynamic routes

that is structured into the following three levels:885

a) Find the path for achieving one given goal type. The highest level of this

problem requires all the goals in the Mission Plan matching the target goal

type be found (for example, all the “loiter” goals, or the “flight termination”

40

Listing 2: Pseudocode for finding the path to achieve one given goal type.

1 function [POut,dOut] = getPathToGoalsByType(G,missionObj, ...

srcNode,trgGoalType)

2 goalObjArr=getGoalsByType(missionObj,trgGoalType);

3 for i=1:length(goalObjArr)

4 [P,d]=getPathToGoal(G,srcNode,goalObjArr(i));

5 POut{i,:}=P; %Add path to output struct

6 dOut=[dOut d]; %Add cost to output struct

7 end

8 [POut,dOut]=sort(POut,dOut); %Sort paths by cost

9 end

goals, etc), and then the path for achieving each of these goals is computed.

The algorithm getPathToGoalsByType of Listing 2 performs this task for890

a given Mission Graph G and a Mission Plan data structure missionObj.

The remaining input arguments are the source node srcNode and the target

goal type trgGoalType. The algorithm returns the paths for achieving these

goals (POut), as well as the length of these paths (their associated cost,

dOut). These paths are computed by invoking the getPathToGoal procedure895

multiple times, as described next.

b) Find the path for achieving one given mission goal. This problem requires

a path traversing all the associated locations of a given goal be found. The

algorithm getPathToGoal of Listing 3 performs this task for a given in-

put goal goalObj. When the goal is a single stage goal, the problem is900

trivial and is solved as computing the path from the source node srcNode

to a node associated with the target location. This path is computed us-

ing the getPathToWaypoint procedure, which will be introduced below.

In multiple stage goals, we assume that the intermediate stages are to be

flown in some given order, so the problem can be solved by invoking the905

getPathToWaypoint procedure between every two consecutive stage way-

41

Listing 3: Pseudocode for finding the path to achieve one given goal.

1 function [POut,dOut] = getPathToGoal(G,srcNode,goalObj)

2 s0=srcNode; %Initialize source node

3 n=getNumStages(goalObj);

4 for i=1:length(n)

5 trgWaypoint=goalObj.stage(i).enabledVariant;

6 [P,d]=getPathToWaypoint(G,s0,trgWaypoint);

7 if isempty(P)

8 return;

9 end

10 POut=[POut P(1)]; %Append path to output struct

11 dOut=dOut+d(1); %Update path cost

12 s0=POut(end); %Update source node

13 end

14 end

points and appending this sub-path to the output path structure POut. The

overall path distance (dOut) is then computed as the sum of the distances of

each sub-path.

c) Find the path towards one given waypoint. The most elementary problem910

consists of finding all the nodes of the Mission Graph associated with a

given waypoint, and then computing the path from a given source node to

these target nodes. The algorithm getPathToWaypoint of Listing 4 performs

this task for a given input waypoint waypointObj. In this algorithm, the

path between nodes is computed using the Matlab procedure shortestpath,915

setting the ‘Method’ attribute to ‘positive’. This method implements

Dijkstra’s algorithm in Matlab. The getPathToWaypoint procedure returns

the path from the source node to all these target nodes (POut) and sorts

these paths according to their cost.

42

Listing 4: Pseudocode for finding the path towards one given waypoint.

1 function [POut,dOut] = getPathToWaypoint(G,srcNode,waypointObj)

2 trgNodeArr=getNodesInWaypoint(G,waypointObj);

3 for i=1:length(trgNodeArr)

4 [P,d]=shortestpath(G,srcNode,trgNodeArr(i),'Method','positive')

5 POut{i,:}=P; %Add path to output struct

6 dOut=[dOut d]; %Add cost to output struct

7 end

8 [POut,dOut]=sort(POut,dOut); %Sort paths by cost

9 end

6.3. Specifying a path in the graph as a Route object920

The last step of the dynamic route configuration process is converting one

path described as a sequence of nodes of the Mission Graph to a Route object

like in Fig. 12. This step requires all the segments traversed by the path be

identified, as well as the points in which the path traverses from one segment

to another segment (i.e. the entry points and the exit points of each segment,925

see Sec. 5.6). The advantage of using the disjoint union in the graph creation

is that this task is straightforward.

7. A Reconfigurable Mission Plan design and specification example

In order to illustrate the process for both designing Reconfigurable Mission

Plans and validating the algorithms for dynamic route construction, the fol-930

lowing example is proposed. An RPAS mission seeks to perform some direct

observations over the Albufera natural park in Spain. The operations area is

defined as the boundary of this natural park, which coincides with the protected

area F15B of the Spanish Aeronautical Information Service (AIS)2. This area

is located within the Controlled Traffic Region (CTR) of the Valencia Airport935

2Available online at https://ais.enaire.es/aip/ (accessed on June 2018).

43

https://ais.enaire.es/aip/

Figure 14: Reconfigurable Mission Plan example: navigation chart view. Note that some

departure and arrival segments have been omitted for clarity.

(ICAO code LEVC), so the mission will require special permission from ATS

authorities. The planned mission departs at the uncontrolled airport Teruel

(LETL) and the expected arrival site is Castellón (LECH), a controlled one.

Alternative landing sites are LETL and the Requena aerodrome (LERE). There

are three no-fly zones in this mission: the nuclear plant LEP138, the military940

zone LED65, and the Aerodrome Traffic Zone (ATZ) around LEVC. The overall

picture is presented in Fig. 14. The proposed Mission Plan will be designed in

compliance with the flight charts and airspace information available in the AIS.

44

missionBoundary1

:PolygonalBoundary

id = F15B

type = geofencedArea

altitude2 = 3000 ft

entryPoint = F15B2

exitPoint = F15B2

waypoint1:Waypoint

id = F15B1

position.lat = 39◦18’07”N

position.lon = 000◦17’15”W

waypoint2:Waypoint

id = F15B2

position.lat = 39◦18’15”N

position.lon = 000◦22’49”W

ReconfigurableMissionPlan

waypoint5:Waypoint

...

Figure 15: Reconfigurable Mission Plan example: specification of the operations area.

7.1. Mission Plan specification945

Reconfigurable Mission Plans are formally specified as UML object diagrams

and, as previously said, we have not addressed the subject of designing a specific

language or syntax to formally specify Mission Plans other than UML. Recall

that the high-level view of the Reconfigurable Mission Plan object diagram

follows the structure described in Fig. 4: a declaration of the waypoints used by950

other components of the Mission Plan; a declaration of the possible goals (and

degraded goals) of the mission; a declaration of the segments used to build the

routes of a mission; a declaration of the nominal route; and a declaration of the

mission boundaries. Next, we describe the specification of the different objects

that conform the Reconfigurable Mission Plan example in UML.955

To start with, Fig. 15 shows the specification of the Boundary object de-

scribing the operations area. As shown, the operations area is geofenced and

has a polygonal shape outlined by five waypoints. The boundary has vertical

limits to avoid conflicts with upper traffic, and the entry and the exit point

of this area is the same waypoint F15B2. The other Boundary objects for the960

no-fly zones are specified in a similar manner, so they are omitted for brevity.

45

segment4:Segment

id = S4

type = operations

containmentArea = F15B

leg1:IF

terminationPoint = F15B2

waypoint1 = F15B2

altitude2 = 3000 ft

leg2:FM

terminationPoint = VWP3

waypoint1 = F15B2

course = 0◦

altitude2 = 3000 ft

leg3:DF

terminationPoint = F15B2

waypoint1 = F15B2

flyover = true

altitude2 = 3000 ft

Figure 16: Reconfigurable Mission Plan example: specification of the operations segment.

The segments declared in the Mission Plan include segments performed in

controlled and uncontrolled areas. Based on the AIS charts, the nominal route

will be composed of the following seven segments, represented in Fig. 14:

s1: Departure segment s1 describes the departure phase from LETL runway965

18 to MANDY, the first waypoint of the en-route phase. The flight path is

constructed as a sequence of three legs, coded as IF, CA, and DF (where

the IF simply supports the graph definition).

s2: En-route segment s2 traverses the lower ATS route R29 from MANDY to

RETBA, and then the RNAV airway M871 from RETBA to LASPO. All970

legs are coded as IF and TF, as required by rule WFS1.

s3: Ingress segment s3 connects LASPO with waypoint F15B2, the entry point

of the operations area.

s4: Operations segment s4 is linked to the operations area F15B. The flight

path of s4 is specified using three legs coded as IF, FM, and DF, see975

Fig. 16. One of these legs has a manual termination condition as the

mission task to be performed manually by the remote pilot. Afterwards,

a DF directs the aircraft towards the exit point of this area.

s5: Egress segment s5 connects the exit point with waypoint VLC, traversing

46

nominalRoute:Route

goal = G1

routeSegment1:RouteSegment

segment = S1

entryPoint = VWP1

exitPoint = MANDY

routeSegment7:RouteSegment

segment = S7

entryPoint = SOPET

exitPoint = NIBEN

...

Figure 17: Reconfigurable Mission Plan example: specification of the nominal route.

the VFR corridor of the Valencia CTR. The segment legs have well speci-980

fied vertical limits to ensure that the boundaries of the Valencia ATZ are

not infringed.

s6: En-route segment s6 flies airway B26 from VLC to SOPET.

s7: Arrival segment s7 describes the standard arrival procedure SOPET1S

from SOPET to waypoint NIBEN, the IAF for LECH runway 06.985

The resulting nominal route is specified as r0 = 〈VWP1
s1−→ MANDY

s2−→

LASPO
s3−→ F15B2

s4−→ F15B2
s5−→ VLC

s6−→ SOPET
s7−→ NIBEN〉, where

“VWP” denotes a variable waypoint. The UML diagram of this route is schema-

tized in Fig. 17 as a composition of 7 routeSegment objects that are associated

with the previous segments. The goal in this figure will be detailed below.990

Along with the previous segments, the proposed Mission Plan also declares

additional segments for alternative routings. For example, there is an alternate

departure segment s8 for departing in the opposite runway direction of LETL;

however, this segment is not used in the assumed airport configuration. There

is also an arrival segment s9 towards OSPES, the IAF for the alternate airport995

configuration of LECH, as well as other arrival segments towards the alternative

landing sites (s10 . . . s13). With respect to alternate en-route segments, s15 con-

nects the operations area with the emergency landing site LERE. This segment

47

goal1:Goal

id = G1

nominal = true

stage1:Stage

id = G1S1

type = flyOver

location = VWP3

enabledVariant = VWP3

stage2:Stage

id = G1S2

type = land

location = [NIBEN, OSPES]

enabledVariant = NIBEN

Figure 18: Reconfigurable Mission Plan example: specification of the nominal goal.

goes below airway M871 following a dedicated flight corridor because M871 is a

single direction airway. The remaining segments allow the nominal route to be1000

connected with the proposed flight termination points (FTPs) (s16 . . . s19).

Based on the previous discussion, the nominal goal can be stated as: “to

perform the manual task in the operations area and then land at LECH”. Ac-

cordingly, the nominal goal is specified as a sequence of the two stages repre-

sented in Fig. 18. The first stage is a “fly-over” stage to fly over the termination1005

point of the FM leg in s4. This way, the first stage will be considered to be

completed when the remote pilot ends the manual control. The second stage

is a “land” stage in which the associated location is the set of IAFs of LECH

(waypoints NIBEN and OSPES), where the current enabled variant is assumed

to be NIBEN.1010

The remaining alternate goals are all single staged. In particular, we have

specified: a) five “loiter” goals associated to waypoints MANDY, CLS, RETBA,

F15B2, and SOPET; b) three “land” goals for performing the landing at LETL

(associated locations LETL18IAF and LETL36IAF), at LERE (LERE12IAF

and LERE30IAF), and at LECH (NIBEN and OSPES); and c) three “flight1015

termination” goals for performing the flight termination action at waypoints

48

FTP1, FTP2, and FTP3. Note that, in this example, the “regain signal” goal

has been omitted for simplicity.

In summary, the specification of this Reconfigurable Mission Plan example

required 32 waypoints, 5 variable waypoints, 19 segments, 12 mission goals, 41020

mission boundaries, and 1 static route.

7.2. Mission analysis

Based on the previous specification, the Mission Graph can be automatically

constructed using the algorithm in Listing 1. The resulting graph is depicted

in Fig. 19. The correspondence between the node names of this figure and1025

their associated waypoint is presented in Table 7. As can be observed in the

figure, the Mission Graph is a connected, directed graph with cycles. It has 2

sources (one per runway direction at the departure site), and 10 sinks (each one

associated with a different goal). The nominal route, shown as a solid line, has

an estimated length of 149 NM plus the manual segment. Note that the weight1030

of the edges between variable waypoints has been estimated using a simplified

point-mass model; and the weight of the manual termination leg has been set

to 50 NM, an arbitrary maximum weight.

It is possible to use the graph analysis tools in Sec. 6.2 to compute some

relevant safety metrics of the Mission Graph. For example, function getPath-1035

ToGoalsByType can be used to check what goal types are achievable from each

waypoint in the mission and what the required route length is in each case.

Based on these results, we can also compute the average distance to achieve a

given goal type; or determine what is the farthest waypoint from a landing site,

the farthest waypoint from a flight termination point, etc. Table 8 summarizes1040

these safety metrics for the particular mission under study.

As can be observed, the “loiter” goal can be achieved at 64.0% of the nodes

in the Mission Graph3; the average route distance for achieving this goal is 7.3

3 Excluding the nodes relative to the operations segment, where these metrics are not

significant because they carry the weight penalty of the legs with manual termination

49

Land @
LEC

H
 RW

Y24

Land @
LER

E RW
Y12

Land @
LER

E RW
Y30

Land @
LETL RW

Y18

Land @
LETL RW

Y36

D
eparture

LETL RW
Y18

D
eparture

LETL RW
Y36

Flight term
. @

FTP1

Flight term
. @

FTP2

Flight term
. @

FTP3

Loiter @
C

LS

Loiter @
M

AN
D

Y

Flyover @
VW

P3
Land @
LEC

H
 RW

Y24

Flight term
. @

FTP1

Loiter @
M

AN
D

Y

Loiter @
R

ETBA

Loiter @
SO

PET

Loiter @
F15B2

Loiter @
R

ETBA

Loiter @
F15B2

Figure 19: Reconfigurable Mission Plan example: nominal route in the Mission Graph.

50

Table 7: Correspondence between nodes and their associated waypoints.

Node Waypoint Node Waypoint Node Waypoint Node Waypoint

w1,1 VWP1 w5,2 VLC w10,3 LETL36IAF w15,1 LASPO

w1,2 VWP2 w6,1 VLC w11,1 MANDY w15,2 MOPIR

w1,3 MANDY w6,2 SOPET w11,2 LETLAUX1 w15,3 RETBA

w2,1 MANDY w7,1 SOPET w11,3 LETLAUX2 w16,1 CLS

w2,2 CLS w7,2 TATOS w11,4 LETL18IAF w16,2 FTP1

w2,3 RETBA w7,3 NIBEN w12,1 RETBA w17,1 RETBA

w2,4 MOPIR w8,1 VWP4 w12,2 LERE30IAF w17,2 FTP1

w2,5 LASPO w8,2 VWP5 w13,1 RETBA w18,1 F15B2

w3,1 LASPO w8,3 MANDY w13,2 LERE30IAF w18,2 FTP2

w3,2 F15B2 w9,1 SOPET w13,3 LEREAUX1 w19,1 SOPET

w4,1 F15B2 w9,2 LECHAUX1 w13,4 LEREAUX2 w19,2 FTP3

w4,2 VWP3 w9,3 OSPES w13,5 LERE12IAF

w4,3 F15B2 w10,1 MANDY w14,1 F15B2

w5,1 F15B2 w10,2 LETLAUX1 w14,2 LASPO

NM (2σ = 23.6 NM); and the farthest node from a loiter point is VWP4, which

is 36.0 NM away from the loiter point associated with MANDY. Similar results1045

can be extracted from the remaining goals under analysis. Note that these

metrics are not applicable to the “fly over” goal because it is used to specify

intermediate route constraints, not for safety reasons.

Finally, these metrics can also be used to refine some aspect of a particular

mission design. For example, if the average route distance for achieving the1050

“flight termination” goal is considered to be above some given safety threshold,

then an additional flight termination point can be proposed. However, such

conclusions go beyond the scope of this example.

7.3. In-flight contingency management

The last part of this example aims at illustrating the advantages of the1055

Reconfigurable Mission Plan concept with respect to automated contingency

management. Imagine an RPAS is flying the nominal route of the proposed

51

Table 8: Safety metrics of the proposed Reconfigurable Mission Plan example.

Goal type Nodes where goal

type is achievable

(%)

Average route

distance (NM)

Worst case route

distance (NM)

Fly-over N/A N/A N/A

Loiter 64.0 7.3± 23.6 (95%) 36.0 (VWP4)

Regain signal N/A N/A N/A

Land 66.0 23.8±42.3 (95%) 66.0 (VWP4)

Flight termination 60.0 25.2±35.4 (95%) 64.0 (VWP4)

N/A – Not applicable

mission, that the active mission goal is the nominal goal, and that the RPAS is

about to enter the operations area somewhere in between waypoints LASPO and

F15B2, see Fig. 20. If a contingency occurs in this scenario and the mission is not1060

replanned, the remaining route length would be 70 NM plus the manual segment

in the operations area (see blue dotted line in Fig. 20). In order to reduce the

risk caused by the contingency, the mission can be replanned as follows.

a) If the C2 link is up, the Contingency Manager informs the remote pilot of

a possible type of mission goal that could mitigate the effect of the contin-

gency (for example, a ”land” goal). This suggestion is made in accordance

with the state machine of the Contingency Plan, which is hardcoded into

the embedded software (Sec. 3.1). However, the decision maker agent is

still the remote pilot, so he or she can select the new mission goal type

at will. If we assume that the selected mission goal type is indeed “land”,

then the Mission Manager computes all the possible routes in the Mission

Graph that are effective at achieving this. This task is performed using the

getPathToGoalsByType procedure described in Sec. 6. For the particular

scenario under study, the procedure returns the following routes, along with

52

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
Longitude [deg]

39

39.5

40

40.5
La

tit
ud

e
[d

eg
]

MANDY

RETBA

LASPO

VLC

SOPET

CLS

LETL

LERE

LECH

FTP1

FTP2

FTP3

NIBEN

OSPESVWP1
VWP2

F15B2

TATOS

VWP3

r0
(nominal route)

r2
(land)

r1
(land) r4

(flight termination)

Figure 20: Reconfigurable Mission Plan example: dynamic route configuration options in a

contingency scenario.

their associated route distance (cost):

r1 = 〈LASPO
s3−→ F15B2

s14−→ LASPO
s15−→ RETBA

s12−→ LERE30IAF〉;

r2 = 〈LASPO
s3−→ F15B2

s5−→ VLC
s6−→ SOPET

s7−→ NIBEN〉

The first route r1 (the red path in Fig. 20) has an associated cost of 37 NM

and is effective for landing at the alternate landing site LERE. The second1065

route r2 (green path) has a cost of 70 NM and is effective for landing at

the main destination site LECH. Note that, although r2 steers towards the

nominal destination, this route is not effective for achieving the nominal goal

53

since it does not fly over VWP3 (the first stage in Fig. 18). Also note that,

in this case, the getPathToGoalsByType procedure is unable to find a route1070

towards the other alternative landing site LETL because this point is not

reachable from the current position of the RPAS.

Then, the remote pilot must also select one of the previous dynamic routes

for achieving the new mission goal type (probably the shortest one).

b) Should the C2 link be lost, the Contingency Plan can select a different (more1075

conservative) contingency option than when the C2 link is up because the

remote pilot is now unable to intervene in the operation. As a result, the

mission goal type determined by the Contingency Manager (the current de-

cision maker) is provided directly to the Mission Manager and the shortest

route for achieving this goal is automatically selected.1080

Finally, in the case where the selected goal type had been “loiter” or “flight

termination”, the corresponding routes returned by the getPathToGoalsByType

procedure would have been r3 = 〈LASPO
s3−→ F15B2〉, and r4 = 〈LASPO

s3−→

F15B2
s18−→ FTP2〉 (where r4 is the orange path in Fig. 20). Their associated cost

is 8 NM, and 24 NM, respectively. Thus, any of the possible alternative routes1085

is shorter than the nominal route in this contingency scenario. Consequently,

it is possible to affirm that the proposed Reconfigurable Mission Plan design

allows the flight time of the RPAS experiencing a contingency to be reduced,

which is the major guideline of the ICAO contingency management policy [1].

8. Conclusions1090

A novel Mission Plan specification that overcomes the limitations of the

conventional flight plans for describing RPAS missions has been introduced in

this paper. The proposed concept of Reconfigurable Mission Plan is based on

the idea that the RPAS has a nominal route, but this route can be changed

at flight time due to operational conditions or contingencies. The novelty is1095

that Reconfigurable Mission Plan allows detailed specification of all the possible

routes the aircraft can fly. This improves predictability and increases the level

54

of automation by enabling automatic reconfiguration of the intended plan when

a contingency or some other event occurs.

In this work, the Reconfigurable Mission Plan specification has been formal-1100

ized using UML models. A series of algorithms for dynamically configuring a

Mission Plan route that is expected to handle the contingency state being faced

have been also presented in this paper. Lastly, the resulting specification and

the algorithms for handling Reconfigurable Mission Plans have been prototyped

and validated in a representative operational scenario.1105

Results show that the proposed specification is able to describe the specifici-

ties of an RPAS mission. Results also demonstrate that the proposed contin-

gency management scheme is a good mechanism for reducing the flight time of

an RPAS experiencing a contingency, a key aspect for maintaining an adequate

level of safety. Future work is to integrate the algorithms for flying Reconfig-1110

urable Mission Plans in the proposed Mission Management System architecture

and to test the complete system working in a simulation environment.

Conflict of interest statement

There is no conflict of interest.

Acknowledgments1115

This work was supported by the Spanish Regional Government “Generalitat

Valenciana” under contract ACIF/2016/197.

References

[1] International Civil Aviation Organization, Doc. 10019, AN/507: Manual

on Remotely Piloted Aircraft Systems (RPAS), 1st ed., ICAO, Montréal,1120

Canada, 2015.

[2] International Civil Aviation Organization, Doc. 4444, ATM/501: Proce-

dures for Air Navigation Servicies: Air Traffic Management, 16th ed.,

ICAO, Montréal, Canada, 2016.

55

[3] P. Kopardekar, Safely enabling UAS operations in low-altitude airspace,1125

in: Unmanned Aerial Systems Traffic Management (UTM) Convention,

NASA, Moffett Field, CA, USA, 2015.

[4] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language.

Reference Manual, Adisson Wesley Longman Inc., 1999.

[5] International Civil Aviation Organization, Doc. 9613, AN/937:1130

Performance-based Navigation (PBN) Manual, 4th ed., ICAO, Montréal,

Canada, 2013.

[6] Aeronautical Radio, Inc., ARINC specification 424-15. Navigation System

Data Base, 2000.

[7] H. Chao, Y. Cao, Y. Chen, Autopilots for small fixed-wing unmanned air1135

vehicles: A survey, in: International Conference on Mechatronics and Au-

tomation, IEEE, Harbin, China, 2007, pp. 3144–3149. doi:10.1109/ICMA.

2007.4304064.

[8] M. Barbier, E. Chanthery, Autonomous mission management for unmanned

aerial vehicles, Aerospace Science and Technology 8 (2004). doi:10.1016/1140

j.ast.2004.01.003.

[9] F. Adolf, M. M. Carneiro, Behavior-based High Level Control of a VTOL

UAV, in: AIAA Infotech @ Aerospace Conference, AIAA, Seattle, WA,

USA, 2009, pp. 1–13. doi:10.2514/6.2009-1977.

[10] M. Kao, G. Weitzel, X. Zheng, M. Black, A simple approach to planning1145

and executing complex AUV missions, in: Symposium on Autonomous Un-

derwater Vehicle Technology, IEEE, 1992, pp. 95–102. doi:10.1109/AUV.

1992.225188.

[11] E. Santamaria, C. Barrado, E. Pastor, An Event Driven Approach for

Increasing UAS Mission Automation, in: AIAA Infotech @ Aerospace,1150

Seattle, WA, USA, 2009, pp. 1–21. doi:10.2514/6.2009-2044.

56

http://dx.doi.org/10.1109/ICMA.2007.4304064
http://dx.doi.org/10.1109/ICMA.2007.4304064
http://dx.doi.org/10.1109/ICMA.2007.4304064
http://dx.doi.org/10.1016/j.ast.2004.01.003
http://dx.doi.org/10.1016/j.ast.2004.01.003
http://dx.doi.org/10.1016/j.ast.2004.01.003
http://dx.doi.org/10.2514/6.2009-1977
http://dx.doi.org/10.1109/AUV.1992.225188
http://dx.doi.org/10.1109/AUV.1992.225188
http://dx.doi.org/10.1109/AUV.1992.225188
http://dx.doi.org/10.2514/6.2009-2044

[12] E. Santamaria, C. Barrado, E. Pastor, P. Royo, E. Salami, Reconfigurable

automated behavior for UAS applications, Aerospace Science and Technol-

ogy 23 (2012) 372–386. doi:10.1016/j.ast.2011.09.005.

[13] A. P. Williams, P. D. Scharre (Eds.), Autonomous Systems: Issues for1155

Defense Policymakers, NATO Supreme Allied Command Transformation,

Norfolk, VA, USA, 2015.

[14] I. A. McManus, R. A. Clothier, R. A. Walker, Highly Autonomous UAV

Mission Planning and Piloting for Civilian Airspace Operations, in: 11th

Australian International Aerospace Congress (AIAC-11), Melbourne, Aus-1160

tralia, 2005.

[15] J. S. Dittrich, A. Bernatz, F. Thielecke, Intelligent systems research using a

small autonomous rotorcraft testbed, in: 2nd AIAA Unmanned Unlimited

Conference, Workshop and Exhibit, AIAA, San Diego, CA, USA, 2003, pp.

6561–6572. doi:10.2514/6.2003-6561.1165

[16] F. Adolf, F. Thielecke, A Sequence Control System for Onboard Mission

Management of an Unmanned Helicopter, in: AIAA Infotech @ Aerospace,

AIAA SciTech, AIAA, Rohnert Park, CA, USA, 2007, pp. 2769–2780.

doi:10.2514/6.2007-2769.

[17] F. Adolf, F. Andert, S. Lorenz, L. Goormann, J. Dittrich, An Unmanned1170

Helicopter for Autonomous Flights in Urban Terrain, in: T. Kröger,

F. Wahl (Eds.), Advances in Robotics Research: Theory, Implementation,

Application, volume 9, Springer, Berlin, Heidelberg, 2009, pp. 275–285.

[18] R. Brooks, A robust layered control system for a mobile robot, IEEE

Journal on Robotics and Automation 2 (1986) 14–23. doi:10.1109/JRA.1175

1986.1087032.

[19] C. Flanagan, D. Toal, R. Strunz, Subsumption architecture for the con-

trol of robots, in: Polymodel 16: Applications of Artificial Intelligence,

Sunderland, UK, 1995, pp. 150–158.

57

http://dx.doi.org/10.1016/j.ast.2011.09.005
http://dx.doi.org/10.2514/6.2003-6561
http://dx.doi.org/10.2514/6.2007-2769
http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1109/JRA.1986.1087032

[20] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. P. Miller, M. G.1180

Slack, Experiences with an architecture for intelligent, reactive agents,

Journal of Experimental & Theoretical Artificial Intelligence 9 (1997) 237–

256. doi:10.1080/095281397147103.

[21] H. Usach, C. Torens, F. Adolf, J. Vila, Architectural Considerations To-

wards Automated Contingency Management for Unmanned Aircraft, in:1185

AIAA Infotech @ Aerospace, AIAA SciTech, AIAA, Grapevine, TX, USA,

2017, pp. 1–13. doi:10.2514/6.2017-1293.

[22] H. Usach, J. Vila, C. Torens, F. Adolf, Architectural design of a Safe

Mission Manager for Unmanned Aircraft Systems, Journal of Systems

Architecture 90 (2018) 94–108. doi:10.1016/j.sysarc.2018.09.003.1190

[23] F. De Florio, Airworthiness: An Introduction to Aircraft Certification and

Operations, 3rd ed., Butterworth-Heinemann, 2016.

[24] G. Wild, J. Murray, G. Baxter, Exploring civil drone accidents and inci-

dents to help prevent potential air disasters, MDPI Aerospace 3 (2016).

doi:10.3390/aerospace3030022.1195

[25] European Organisation for the Safety of Air Navigation, EUROCONTROL

Specifications for the Use of Military Remotely Piloted Aircraft as Opera-

tional Air Traffic Outside Segregated Airspace, 2nd ed., 2012.

[26] European Aviation Safety Agency, Introduction of a regulatory framework

for the operation of unmanned aircraft, 2015.1200

[27] T. B. Sheridan, W. L. Verplank, Human and computer control of under-

sea teleoperators, Technical Report, Massachusetts Institute of Technology,

1978.

[28] F. Kendoul, Survey of advances in guidance, navigation, and control of

unmanned rotorcraft systems, Journal of Field Robotics 29 (2012) 315–1205

378. doi:10.1002/rob.20414.

58

http://dx.doi.org/10.1080/095281397147103
http://dx.doi.org/10.2514/6.2017-1293
http://dx.doi.org/10.1016/j.sysarc.2018.09.003
http://dx.doi.org/10.3390/aerospace3030022
http://dx.doi.org/10.1002/rob.20414

[29] H.-M. Huang, E. Messina, J. Albus, Autonomy levels for Unmanned Sys-

tems (ALFUS) Framework - Volume II: Framework Models, Technical Re-

port, National Institute of Standards and Technology (NIST), 2007.

[30] B. T. Clough, Metrics, schmetrics! How the heck do you determine a1210

UAV’s autonomy anyway?, in: Performance Metrics for Intelligent Systems

(PerMIS) Conference, Gaithersburg, MD, USA, 2002.

[31] NATO Standardization Agency, STANAG 4671: Unmanned Aerial Vehi-

cles Systems Airworthiness Requirements (USAR), NATO, 2009.

[32] Civil Air Navigation Services Organisation, Air Navigation Service Provider1215

(ANSP) Considerations for RPAS Operations, 2014.

[33] M. Masmano, I. Ripoll, A. Crespo, J. Metge, XtratuM: a hypervisor for

safety critical embedded systems, in: 11th Real-Time Linux Workshop,

Dresden, Germany, 2009.

[34] Aeronautical Radio, Inc., ARINC specification 653-1. Avionics Application1220

Software Standard Interface, 2003.

[35] M. Masmano, Y. Valiente, P. Balbastre, I. Ripoll, A. Crespo, J. Metge,

LithOS: a ARINC-653 guest operating for XtratuM, in: 12th Real-Time

Linux Workshop, Nairobi, Kenia, 2010.

[36] International Civil Aviation Organization, Doc. 8168, OPS/611: Proce-1225

dures for Air Navigation Services: Aircraft Operations, 5th ed., ICAO,

Montréal, Canada, 2006.

[37] European Organisation for the Safety of Air Navigation, EUROCONTROL

Specification for the application of the Flexible Use of Airspace (FUA),

2009.1230

[38] J. Bang-Jensen, G. Z. Gutin, Digraphs: Theory, Algorithms and Applica-

tions, 2nd ed., Springer, 2008.

59

[39] EUROCONTROL Experimental Centre, User manual for the Base of Air-

carft Data (BADA) revision 3.12, EUROCONTROL, 2014.

60

