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Abstract

We continue the work of [4, 2, 3], in which we discuss published asser-
tions concerning fixed points in digital topology - assertions that are
incorrect or incorrectly proven; that are severely limited or reduce to
triviality; or that we improve upon.
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1. Introduction

As stated in [2]:

The topic of fixed points in digital topology has drawn much
attention in recent papers. The quality of discussion among
these papers is uneven; while some assertions have been correct
and interesting, others have been incorrect, incorrectly proven,
or reducible to triviality.

Paraphrasing [2] slightly: in [4, 2, 3], we have discussed many shortcomings
in earlier papers and have offered corrections and improvements. We continue
this work in the current paper.

A common theme among many weak papers concerning fixed points in digital
topology is the use of a “digital metric space” (see section 2.2 for its definition).
This seems to be a bad idea.
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• Nearly all correct nontrivial published assertions concerning digital
metric spaces use either the adjacency of the digital image or the met-
ric, but not both. Where our sources do not use adjacencies, we will
state our results using the more general framework of a metric space.

• If X is finite (as in a “real world” digital image) or the metric d is a
common metric such as any ℓp metric, then (X, d) is uniformly discrete,
hence not very interesting either as a topological space or as a metric
space.

• Many of the published assertions concerning digital metric spaces mimic
analogues for connected subsets of Euclidean Rn. Often, the authors
neglect important differences between the topological space Rn and dig-
ital images, resulting in assertions that are incorrect, trivial, or trivial
when restricted to conditions that many others regard as essential.
E.g., in many cases, functions that satisfy fixed point assertions must
be constant or fail to be digitally continuous [4, 2, 3].

This paper continues the work of [4, 2, 3] in discussing shortcomings of pub-
lished assertions concerning fixed points in digital topology.

2. Preliminaries

We use N to represent the natural numbers, Z to represent the integers, and
R to represent the reals.

A digital image is a pair (X,κ), where X ⊂ Zn for some positive integer
n, and κ is an adjacency relation on X. Thus, a digital image is a graph. In
order to model the “real world,” we usually take X to be finite, although there
are several papers that consider infinite digital images. The points of X may
be thought of as the “black points” or foreground of a binary, monochrome
“digital picture,” and the points of Zn \X as the “white points” or background
of the digital picture.

2.1. Adjacencies, connectedness, continuity, fixed point. In a digital
image (X,κ), if x, y ∈ X, we use the notation x ↔κ y to mean x and y are
κ-adjacent; we may write x ↔ y when κ can be understood. We write x !κ y,
or x ! y when κ can be understood, to mean x ↔κ y or x = y.

The most commonly used adjacencies in the study of digital images are the
cu adjacencies. These are defined as follows.

Definition 2.1. Let X ⊂ Zn. Let u ∈ Z, 1 ≤ u ≤ n. Let x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ X. Then x ↔cu y if

• x ∕= y,
• for at most u distinct indices i, |xi − yi| = 1, and
• for all indices j such that |xj − yj | ∕= 1 we have xj = yj .

Definition 2.2 ([14]). A digital image (X,κ) is κ-connected, or just connected
when κ is understood, if given x, y ∈ X there is a set {xi}ni=0 ⊂ X such that
x = x0, xi ↔κ xi+1 for 0 ≤ i < n, and xn = y.
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Definition 2.3 ([14, 1]). Let (X,κ) and (Y,λ) be digital images. A function
f : X → Y is (κ,λ)-continuous, or κ-continuous if (X,κ) = (Y,λ), or (digitally)
continuous when κ and λ are understood, if for every κ-connected subset X ′

of X, f(X ′) is a λ-connected subset of Y .

Theorem 2.4 ([1]). A function f : X → Y between digital images (X,κ) and
(Y,λ) is (κ,λ)-continuous if and only if for every x, y ∈ X, if x ↔κ y then
f(x) !λ f(y).

Theorem 2.5 ([1]). Let f : (X,κ) → (Y,λ) and g : (Y,λ) → (Z, µ) be con-
tinuous functions between digital images. Then g ◦ f : (X,κ) → (Z, µ) is
continuous.

We use 1X to denote the identity function on X, and C(X,κ) for the set of
functions f : X → X that are κ-continuous.

A fixed point of a function f : X → X is a point x ∈ X such that f(x) = x.
Functions f, g : X → X are commuting if f(g(x)) = g(f(x)) for all x ∈ X.

2.2. Digital metric spaces. A digital metric space [8] is a triple (X, d,κ),
where (X,κ) is a digital image and d is a metric on X. We are not convinced
that this is a notion worth developing; under conditions in which a digital
image models a “real world” image, X is finite or d is (usually) an ℓp metric, so
that (X, d) is uniformly discrete as a topological space, i.e., there exists ε > 0
such that for x, y ∈ X, d(x, y) < ε implies x = y. Typically, assertions in the
literature do not make use of both d and κ, so that this notion has an artificial
feel. E.g., for a discrete topological space X, all functions f : X → X are
continuous, although on digital images, many functions g : X → X are not
digitally continuous.

We say a sequence {xn}∞n=0 is eventually constant if for some m > 0, n > m
implies xn = xm. The notions of convergent sequence and complete digital
metric space are often trivial, e.g., if the digital image is uniformly discrete, as
noted in the following, a minor generalization of results of [9, 4].

Proposition 2.6. Let (X, d) be a metric space. If (X, d) is uniformly discrete,
then any Cauchy sequence in X is eventually constant, and (X, d) is a complete
metric space.

Remarks 2.7. If X is finite or X ⊂ Zn and d is an ℓp metric, then (X, d) is
uniformly discrete.

2.3. Common conditions, limitations, and trivialities. In this section,
we state results that limit or trivialize several of the assertions discussed later
in this paper.

Although there are papers that discuss infinite digital images, a “real world”
digital image is a finite set. Further, most authors writing about a digital metric
space choose their metric from the Euclidean metric, the Manhattan metric,
or some other ℓp metric.

Other frequently used conditions:
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• The adjacencies most often used in the digital topology literature are
the cu adjacencies.

• Functions that attract the most interest in the digital topology litera-
ture are digitally continuous.

Thus, the use of cu-adjacency and the continuity assumption (as well as the as-
sumption of an ℓp metric) in the following Proposition 2.8 should not be viewed
as major restrictions. The following is taken from the proof of Remark 5.2
of [4].

Proposition 2.8. Let X be cu-connected. Let T ∈ C(X, cu). Let d be an ℓp
metric on X, and 0 < α < 1

u1/p . Let S : X → X such that d(S(x), S(y)) ≤
αd(T (x), T (y)) for all x, y ∈ X. Then S must be a constant function.

Similar reasoning leads to the following.

Proposition 2.9. Let (X, d) be a uniformly discrete metric space. Let f ∈
C(X,κ). Then if {xn}∞n=1 ⊂ X and limn→∞ xn = x0 ∈ X, then for almost all
n, f(xn) = f(x0).

Other choices of (X, d) need not lead to the conclusion of Proposition 2.9,
as shown by the following example.

Example 2.10. Let X = N ∪ {0},

d(x, y) =

!
""#

""$

0 if x = 0 = y;
1/x if x ∕= 0 = y;
1/y if x = 0 ∕= y;
|1/x− 1/y| if x ∕= 0 ∕= y.

Then d is a metric, and limn→∞ d(n, 0) = 0. However, the function f(n) = n+1
satisfies f ∈ C(X, c1) and

lim
n→∞

d(0, f(n)) = 0 ∕= f(0).

Proof. Example 2.10 of [4] notes that d has the properties of a metric for values
of X \ {0}. Since clearly d(0, 0) = 0 and d(x, 0) = d(0, x), we must show that
the triangle inequality holds when 0 is one of the points considered. We have
the following.

• If x, y > 0, then d(0, y) = 1/y ≤ 1/x+ |1/y − 1/x| = d(0, x) + d(x, y).
• Similarly, if x, y > 0 then d(x, 0) ≤ d(x, y) + d(y, 0).
• If x, y > 0 then d(x, y) = |1/x− 1/y| < 1/x+ 1/y = d(x, 0) + d(0, y).

Thus, the triangle inequality is satisfied.
Note f ∈ C(X, c1), limn→∞ d(n, 0) = 0, and limn→∞ d(f(n), f(0)) = 1. □

3. Compatible functions and weakly compatible functions

The papers [11, 13, 7] discuss common fixed points of compatible and weakly
compatible functions (the latter also know as “coincidentally commuting”) and
related notions.
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3.1. Compatibility - definition and basic properties.

Definition 3.1 ([6]). Suppose S and T are self-functions on a metric space
(X, d). Consider {xn}∞n=1 ⊂ X such that

(3.1) lim
n→∞

S(xn) = lim
n→∞

T (xn) = t ∈ X.

If every sequence satisfying (3.1) also satisfies limn→∞ d(S(T (xn)), T (S(xn))) =
0, then S and T are compatible functions.

Proposition 3.2. Let f, g : X → X be commuting functions on a metric space
(X, d). Then f and g are compatible.

Proof. Since f and g are commuting, the assertion is immediate. □
Definition 3.3 ([11]). Let S and T be self-functions on a metric space (X, d).
The pair (S, T ) satisfies the property E.A. if there exists a sequence {xn}∞n=1 ⊂
X that satisfies (3.1).

Definition 3.4 ([11]). Let S and T be self-functions on a metric space (X, d).
The pair (S, T ) satisfies the property common limit in the range of T , denoted
CLR(T ), if there exists a sequence {xn}∞n=1 ⊂ X that satisfies

lim
n→∞

S(xn) = lim
n→∞

T (xn) = T (x) for some x ∈ X.

Proposition 3.5. Let S and T be self-functions on a metric space (X, d).

(1) Suppose the pair (S, T ) satisfies the property CLR(T ). Then the pair
(S, T ) satisfies the property E.A.

(2) Suppose S and T have a coincidence point, i.e., there exists x ∈ X such
that S(x) = T (x). Then the pair (S, T ) satisfies the property CLR(T ).

(3) If X is finite, then the following are equivalent.
(a) (S, T ) satisfies the property E.A.
(b) (S, T ) satisfies the property CLR(T ).
(c) S and T have a coincidence point, i.e., there exists x ∈ X such

that S(x) = T (x).

Proof.

(1) Suppose the pair (S, T ) satisfies the property CLR(T ). It is trivial that
the pair (S, T ) satisfies the property E.A.

(2) Suppose S(x) = T (x). Then the sequence xn = x satisfies Defini-
tion 3.4, so (S, T ) has property CLR(T ).

(3) Now suppose X is finite.
(a) ⇒ (b) and (a) ⇒ (c): Suppose (S, T ) satisfies the property E.A.

Let {xn}∞n=1 ⊂ X satisfy (3.1). Since X is finite, there is a subse-
quence {xni} that is eventually constant; say, xni is eventually equal
to x ∈ X. Hence T (xn) is eventually limni→∞ T (xni) = T (x). Thus
(S, T ) satisfies the property CLR(T ). Similarly, S(xn) is eventually
limni→∞ S(xni) = S(x). Thus

S(x) = lim
ni→∞

S(xni
) = lim

ni→∞
T (xni

) = T (x).
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(b) ⇒ (a): This is shown in part (1).
(c) ⇒ (b): This is shown in part (2).

□

3.2. Variants on compatibility. In classical topology and real analysis, there
are many papers that study variants of compatible (as defined above) functions.
Several authors have studied analogs of these variants in digital topology. Of-
ten, the variants turn out to be equivalent.

Definition 3.6 ([5]). Let S, T : X → X. Then S and T are weakly compatible
or coincidentally commuting if, for every x ∈ X such that S(x) = T (x) we have
S(T (x)) = T (S(x)).

Theorem 3.7. Let S, T : X → X. Compatibility implies weak compatibility;
and if X is finite, weak compatibility implies compatibility.

Proof. Suppose S and T are compatible. We show they are weakly compatible
as follows. Let S(x) = T (x) for some x ∈ X. Let xn = x for all n ∈ N. Then

lim
n→∞

S(xn) = S(x) = T (x) = lim
n→∞

T (xn).

By compatibility,

0 = lim
n→∞

d(S(T (xn)), T (S(xn))) = d(S(T (x)), T (S(x))).

Thus, S and T are weakly compatible.
Suppose S and T are weakly compatible and X is finite. We show S and T

are compatible as follows. Let {xn}∞n=1 ⊂ X such that

lim
n→∞

S(xn) = lim
n→∞

T (xn) = t ∈ X.

Proposition 2.6 yields that for almost all n, S(xn) = T (xn) = t. Since X is
finite, there is an infinite subsequence {xni

} of {xn}∞n=1 such that xni
= y ∈

X, hence S(y) = T (y). Therefore, for almost all n and almost all ni, weak
compatibility implies

S(T (xn)) = S(T (xni)) = S(T (y)) = T (S(y)) = T (S(xni)) = T (S(xn)).

It follows that S and T are compatible. □

We have the following, in which we restate (3.1) for convenience.

Definition 3.8. Suppose S and T are self-functions on a metric space (X, d).
Consider {xn}∞n=1 ⊂ X such that

(3.2) lim
n→∞

S(xn) = lim
n→∞

T (xn) = t ∈ X.

• S and T are compatible of type A [6] if every sequence satisfying (3.2)
also satisfies

lim
n→∞

d(S(T (xn)), T (T (xn))) = 0 = lim
n→∞

d(T (S(xn)), S(S(xn))).
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• S and T are compatible of type B [7] if every sequence satisfying (3.2)
also satisfies

lim
n→∞

d(S(T (xn)), T (T (xn))) ≤

(3.3) 1/2 [ lim
n→∞

d(S(T (xn)), S(t)) + d(S(t), S(S(xn)))]

and

lim
n→∞

d(T (S(xn)), S(S(xn))) ≤

(3.4) 1/2 [ lim
n→∞

d(T (S(xn)), T (t)) + d(T (t), T (T (xn)))].

Note this is a correction of the definition as stated in [7], where the
inequality here given as (3.4) uses a left side equivalent to

lim
n→∞

d(T (S(xn)), T (T (xn))) instead of lim
n→∞

d(T (S(xn)), S(S(xn))).

The version we have stated is the version used in proofs of [7] and
corresponds to the version of [12] that inspired the definition of [7].

• S and T are compatible of type C [7] if every sequence satisfying (3.2)
also satisfies

lim
n→∞

d(S(T (xn)), T (T (xn))) ≤

(3.5) 1/2

%
limn→∞ d(S(T (xn)), S(t)) + limn→∞ d(S(t), S(S(xn)))+

limn→∞ d(S(t), T (T (xn)))

&

and

lim
n→∞

d(T (S(xn)), S(S(xn))) ≤

(3.6) 1/2

%
limn→∞ d(T (S(xn)), T (t)) + limn→∞ d(T (t), T (T (xn)))+

limn→∞ d(T (t), S(S(xn)))

&
.

• S and T are compatible of type P [6] if every sequence satisfying (3.2)
also satisfies

lim
n→∞

d(S(S(xn)), T (T (xn))) = 0.

We augment Theorem 3.7 with the following.

Theorem 3.9. Let (X, d) be a metric space that is uniformly discrete. Let
S, T : X → X. The following are equivalent.

• S and T are compatible.
• S and T are compatible of type A.
• S and T are compatible of type B.
• S and T are compatible of type C.
• S and T are compatible of type P.
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Proof. The equivalence of compatible, compatible of type A, and compatible
of type P was shown in Theorem 3.3 of [2], where the assumption that X is
finite or d is an ℓp metric easily generalizes to the assumption that (X, d) is
uniformly discrete.

Compatible of type A implies compatible of type B, by Proposition 4.7 of [7].
We show compatible of type B implies compatible, as follows. Let S and T

be compatible of type B. Let {xn}∞n=1 ⊂ X satisfy (3.2). By Proposition 2.6,
S(xn) = t = T (xn) for almost all n. From (3.3) we have

d(S(t), T (t)) ≤ 1/2 [d(S(t), S(t)) + d(S(t), S(t))] = 0,

so S(t) = T (t). Thus

lim
n→∞

d(S(T (xn)), T (S(xn))) = lim
n→∞

d(S(t), T (t)) = 0.

Therefore, S and T are compatible.
We show compatible implies compatible of type C, as follows. Let S and T

be compatible. Let {xn}∞n=1 ⊂ X satisfy (3.2). By Proposition 2.6, S(xn) =
t = T (xn) for almost all n, and by compatibility, S(t) = T (t). Therefore,

lim
n→∞

d(S(T (xn)), T (T (xn))) = lim
n→∞

d(S(t), T (t)) = 0,

so (3.5) is satisfied, and

lim
n→∞

d(T (S(xn)), S(S(xn))) = d(T (t), S(t)) = 0,

so (3.6) is satisfied. Thus S and T are compatible of type C.
We show compatible of type C implies compatible, as follows. Let S and T

be compatible of type C. Let {xn}∞n=1 ⊂ X satisfy (3.2). By Proposition 2.6,
S(xn) = t = T (xn) for almost all n. From (3.5) it follows that

d(S(t), T (t)) ≤ 1/2 [d(S(t), S(t)) + d(S(t), S(t)) + d(S(t), T (t))],

or
d(S(t), T (t)) ≤ 1/2 [0 + 0 + d(S(t), T (t))],

which implies

0 = d(S(t), T (t)) = lim
n→∞

d(S(T (xn)), T (S(xn))).

Therefore, S and T are compatible. □
3.3. Fixed point assertions of [11]. The following assertion appears as The-
orem 3.1.1 of [11] and as Theorem 4.12 of [7] (there is a minor difference
between these: [11] requires µ ∈ (0, 1/2) while [7] requires µ ∈ (0, 1)).

Assertion 3.10. Let (X, d,κ) be a complete digital metric space. Let S and T
be compatible self-functions on X. Suppose

(i) S(X) ⊂ T (X);
(ii) S or T is continuous; and
(iii) for all x, y ∈ X and some µ ∈ (0, 1/2),

d(Sx, Sy) ≤ µmax{d(Tx, Ty), d(Tx, Sx), d(Tx, Sy), d(Ty, Sx), d(Ty, Sy)}.
Then S and T have a unique common fixed point in X.
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Remarks 3.11. The argument given as proof in [11] for this assertion clarifies
that the continuity assumed is topological (the classical ε− δ continuity), not
digital.

Further, Assertion 3.10 and the argument offered for its proof in [11] are
flawed as discussed below (this is the first of several assertions with related
flaws; we discuss these assertions together), beginning at Remark 3.17. Flaws
in the treatment of Assertion 3.10 in [7] are discussed below, beginning at
Remark 3.32.

The following assertion appears as Theorem 3.2.1 of [11].

Assertion 3.12. Let (X, d,κ) be a complete digital metric space. Let S and T
be weakly compatible self-functions on X. Suppose

(i) S(X) ⊂ T (X);
(ii) S(X) or T (X) is complete; and
(iii) for all x, y ∈ X and some µ ∈ (0, 1/2),

d(Sx, Sy) ≤ µmax{d(Tx, Ty), d(Tx, Sx), d(Tx, Sy), d(Ty, Sx), d(Ty, Sy)}.
Then S and T have a unique common fixed point in X.

However, this assertion and the argument offered for its proof are flawed as
discussed below, beginning at Remark 3.17.

The following is Theorem 3.3.2 of [11].

Theorem 3.13. Let (X, d,κ) be a digital metric space. Let S, T : X → X be
weakly compatible functions satisfying the following.

(i) For some µ ∈ (0, 1) and all x, y ∈ X, d(Sx, Sy) ≤ µd(Tx, Ty).
(ii) S and T satisfy property E.A.
(iii) T (X) is a closed subspace of X.
Then S and T have a unique common fixed point in X.

However, this result is limited, as discussed below, beginning at Remark 3.17.
The following appears as Theorem 3.3.3 of [11].

Assertion 3.14. Let (X, d,κ) be a complete digital metric space. Let S and T
be weakly compatible self-functions on X. Suppose

(i) for all x, y ∈ X and some µ ∈ (0, 1/2),

d(Sx, Sy) ≤ µmax{d(Tx, Ty), d(Tx, Sx), d(Tx, Sy), d(Ty, Sx), d(Ty, Sy)};
(ii) S and T satisfy the property E.A.; and
(iii) T (X) is a closed subspace of X.
Then S and T have a unique common fixed point in X.

However, this assertion and the argument offered for its proof are flawed as
discussed below, beginning at Remark 3.17.

The following is Theorem 3.4.3 of [11].

Theorem 3.15. Let S and T be weakly compatible self-functions on a digital
metric space (X, d,κ) satisfying

(i) for some µ ∈ (0, 1) and all x, y ∈ X, d(Sx, Sy) ≤ µd(Tx, Ty); and
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(ii) the CLR(T ) property.
Then S and T have a unique common fixed point in X.

However, this result is quite limited, as discussed below at Remark 3.19.
The following appears as Theorem 3.4.3 of [11].

Assertion 3.16. Let S and T be weakly compatible self-functions on a digital
metric space (X, d,κ) satisfying

(i) for all x, y ∈ X and some µ ∈ (0, 1/2),

d(Sx, Sy) ≤ µmax{d(Tx, Ty), d(Tx, Sx), d(Tx, Sy), d(Ty, Sx), d(Ty, Sy)}; and
(ii) the CLR(T ) property.
Then S and T have a unique common fixed point in X.

However, this assertion and the argument offered for its proof are flawed as
discussed below.

Remarks 3.17. Several times in the arguments offered as proofs for Asser-
tions 3.10, 3.12, 3.14, and 3.16, inequalities appear that seem to confuse “min”
and “max”. E.g., in the argument for Assertion 3.10, it is claimed that the
right side of the inequality

d(yn, yn+1) ≤ µmax

'
d(yn−1, yn), d(yn−1, yn), d(yn−1, yn+1),

d(yn, yn), d(yn, yn+1)

(

is less than or equal to µd(yn−1, yn+1), which would follow if “max” were re-
placed by “min”. Thus, these assertions as given in [11] must be regarded as
unproven.

Remarks 3.18. Further, suppose “min” is substituted for “max” so that (iii) in
each of the Assertions 3.10 and 3.12 and (i) in each of Assertions 3.14 and 3.16
becomes

for all x, y ∈ X and some µ ∈ (0, 1/2),

d(Sx, Sy) ≤ µmin{d(Tx, Ty), d(Tx, Sx), d(Tx, Sy), d(Ty, Sx), d(Ty, Sy)}.
Then for all x, y ∈ X, d(Sx, Sy) ≤ µd(Tx, Ty). If T ∈ C(X, cu), d is an ℓp
metric, and µ < 1/u1/p, then by Proposition 2.8, S is constant. It would then
follow from compatibility (respectively, from weak compatibility) that S and
T have a unique fixed point coinciding with the value of S.

Remarks 3.19. Similarly, in Theorems 3.13 and 3.15, if T ∈ C(X, cu), d is an
ℓp metric, and µ < 1/u1/p, then by Proposition 2.8, S is constant. It would
then follow from compatibility (respectively, from weak compatibility) that S
and T have a unique fixed point coinciding with the value of S.

3.4. Fixed point assertions of [13]. The following is stated as Lemma 3.3.5
of [13].

Assertion 3.20. Let S, T : (X, d,κ) → (X, d,κ) be compatible.
1) If S(t) = T (t) then S(T (t)) = T (S(t)).
2) Suppose limn→∞ S(xn) = limn→∞ T (xn) = t ∈ X.
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(a) If S is continuous at t, limn→∞ T (S(xn)) = S(t).
(b) If S and T are continuous at t, then S(t) = T (t) and

S(T (t)) = T (S(t)).

But the continuity used in the proof of this assertion is topological continuity,
not digital continuity. We observe that if (X, d) is uniformly discrete, then the
assumption of continuity need not be stated, as every self-function on X is
continuous in the topological sense.

The argument given as proof of this assertion in [13] depends on the principle
that an → a0 implies S(an) → S(a0) if S is continuous at a0, a valid principle
for topological continuity and also for digital continuity if (X, d) is uniformly
discrete, but, as shown in Example 2.10, not generally true for digital continuity.
Thus the assertion must be regarded as unproven.

We can modify this assertion as follows. Notice we do not use a continuity
hypothesis, but for part 2) we assume (X, d) is uniformly discrete.

Lemma 3.21. Let S, T : (X, d) → (X, d) be compatible.
1) If S(t) = T (t) then S(T (t)) = T (S(t)).
2) Suppose (X, d) is uniformly discrete. If

lim
n→∞

S(xn) = lim
n→∞

T (xn) = t ∈ X,

then limn→∞ T (S(xn)) = S(t) = T (t) and S(T (t)) = T (S(t)).

Proof. We modify the argument of [13].
Suppose S(t) = T (t). Let xn = t for all n ∈ N. Then S(xn) = T (xn) =

S(t) = T (t), so d(S(T (t)), T (S(t))) = d(S(T (xn)), T (S(xn))) →n→∞ 0 by
compatibility. This establishes 1).

Suppose limn→∞ S(xn) = limn→∞ T (xn) = t ∈ X. Since we assume X is
uniformly discrete, we have S(xn) = T (xn) = t for almost all n. Therefore, for
almost all n, the triangle inequality and compatibility give us

d(T (S(xn)), T (t)) ≤ d(T (S(xn)), S(T (xn))) + d(S(T (xn)), T (t))

→ 0 + lim
n→∞

d(S(T (xn)), T (S(xn))) = 0,

so limn→∞ T (S(xn)) = T (t). Since X is uniformly discrete, by compatibility
we have

d(S(t), T (t)) = lim
n→∞

d(S(t), T (S(xn))) = lim
n→∞

d(S(T (xn)), T (S(xn))) = 0.

Therefore, S(t) = T (t) and by part 1), S(T (t)) = T (S(t)). □

The following is stated as Theorem 3.3.6 of [13].

Assertion 3.22. Let S and T be continuous compatible functions of a complete
digital metric space (X, d,κ) to itself. Then S and T have a unique common
fixed point in X if for some α ∈ (0, 1),

(3.7) S(X) ⊂ T (X) and d(S(x), S(y)) ≤ αd(T (x), T (y)) for all x, y ∈ X.
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Remarks 3.23. The argument given as proof of this assertion in [13] clarifies
that the assumed continuity is topological, not digital; the argument is also
flawed by its reliance on Assertion 3.20, which we have seen is not generally
valid. Thus, the assertion must be regarded as unproven.

As above, we can drop the assumption of continuity from Assertion 3.22 if
we assume X is uniformly discrete, as shown in the following.

Theorem 3.24. Let S and T be compatible functions of a uniformly discrete
metric space (X, d) to itself. If S and T satisfy (3.7) for some α ∈ (0, 1), then
they have a unique common fixed point in X.

Proof. We use ideas from the analogue in [13].
Let x0 ∈ X. Since S(X) ⊂ T (X), we can let x1 ∈ X such that T (x1) =

S(x0), and, inductively, xn ∈ X such that T (xn) = S(xn−1) for all n ∈ N.
Then for all n > 0,

d(T (xn+1), T (xn)) = d(S(xn), S(xn−1)) ≤ αd(T (xn), T (xn−1)).

It follows that d(T (xn+1), T (xn)) ≤ αnd(T (x1), T (x0)). By Proposition 2.6,
there exists t ∈ X such that T (xn) = t for almost all n. Our choice of the
sequence xn then implies S(xn) = t for almost all n. By Lemma 3.21, S(t) =
T (t) and S(T (t)) = T (S(t)). Then

d(S(t), S(S(t))) ≤ αd(T (t), T (S(t))) = αd(S(t), S(T (t))) = αd(S(t), S(S(t))),

so (1− α)d(S(t), S(S(t))) ≤ 0. Therefore, d(S(t), S(S(t))) = 0, so

S(t) = S(S(t)) = S(T (t)) = T (S(t)).

Thus S(t) is a common fixed point of S and T .
To show the uniqueness of t as a common fixed point, suppose S(x) = T (x) =

x and S(y) = T (y) = y. Then

d(x, y) = d(S(x), S(y)) ≤ αd(T (x), T (y)) = αd(x, y),

so (1− α)d(x, y) ≤ 0, so x = y. □
The following is stated as Theorem 3.4.3 of [13].

Assertion 3.25. Let S and T be weakly compatible functions of a complete
digital metric space (X, d,κ) to itself. Then S and T have a unique common
fixed point in X if either of S(X) or T (X) is complete, and for some α ∈ (0, 1),
statement (3.7) is satisfied.

Remarks 3.26. The argument given in [13] as a proof for Assertion 3.25 defines
a sequence {xn}∞n=1 ⊂ X such that limn→∞ S(xn) = limn→∞ T (xn) = t ∈ X.
From this is claimed that a subsequence of {xn}∞n=1 converges to a limit in X.
How this is justified is unclear. Therefore, Assertion 3.25 as stated is unproven.
If we additionally assume that X is finite, then the claim, that a subsequence
of {xn}∞n=1 converges to a limit in X, is certainly justified.

The following is a version of Assertion 3.25 with the additional hypothesis
that X is finite. We have not stated an assumption of completeness, since a
finite metric space must be complete.
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Theorem 3.27. Let S and T be weakly compatible functions of a uniformly
discrete metric space (X, d) to itself. Then S and T have a unique common
fixed point in X if for some α ∈ (0, 1), (3.7) is satisfied.

Proof. Since X is finite, it follows from Theorem 3.9 that S and T are compat-
ible. The assertion follows from Theorem 3.24. □

Note also that Assertion 3.22 and Theorems 3.24 and 3.27 are limited by
Proposition 2.8.

3.5. Fixed point assertions of [7]. The following appears asProposition 4.10
of [7]. Apparently, the authors neglected to state a hypothesis that S and T
are compatible; they used this hypothesis in their “proof”, and with this hy-
pothesis, the desired conclusion is correctly reached.

Assertion 3.28. Let S, T ∈ C(X,κ) for a digital metric space (X, d,κ). If
S(t) = T (t) for some t ∈ X, then

S(T (t)) = T (S(t)) = S(S(t)) = T (T (t)).

As stated, this is incorrect, as shown by the following example.

Example 3.29. Let S, T : N → N be the functions

S(x) = 2, T (x) = x+ 1.

Then S, T ∈ C(N, c1) and S(1) = T (1) = 2, but

S(T (1)) = S(S(1)) = 2, T (S(1)) = T (T (1)) = 3.

Further, the argument of [7] uses neither the hypothesis of continuity nor
the adjacency κ. A corrected version of Assertion 3.28 is above at Lemma 3.21.

The following appears as Proposition 4.11 of [7].

Assertion 3.30. Let (X, d,κ) be a digital metric space and let S, T ∈ C(X,κ).
Suppose limn→∞ S(xn) = limn→∞ T (xn) = t ∈ X. Then

(i) limn→∞ T (S(xn)) = S(t);
(ii) limn→∞ S(T (xn)) = T (t); and
(iii) S(T (t)) = T (S(t)) and S(t) = T (t).

The “proof” of this assertion in [7] confuses topological and digital continuity.
The following shows that the assertion is not generally true.

Example 3.31. Let S, T : N∪{0} → N∪{0} be the functions S(x) = 0, T (x) =
x+1. Let d be the metric of Example 2.10. Clearly, S, T ∈ C(N∪ {0}, c1), and
with respect to d, we have limn→∞ S(n) = 0 = limn→∞ T (n). However, with
respect to d we have

(i) limn→∞ T (S(n)) = T (0) = 1, S(0) = 0.
(ii) limn→∞ S(T (n)) = 0, T (0) = 1;
(iii) S(T (0)) = 0, T (S(0)) = 1, S(0) = 0, T (0) = 1.

Remarks 3.32. We have stated Theorem 4.12 of [7] above as Assertion 3.10.
The argument for this assertion in [7] is flawed as follows.
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The argument considers the case xn = xn+1 and reaches the statement

d(T (xn), T (xn+1)) = d(S(xn−1), S(xn)) ≤

αmax{d(T (xn−1), T (xn)), d(T (xn−1), T (xn+1)), d(T (xn), T (xn+1))}.
This yields three cases, each of which is handled incorrectly:

(1) d(T (xn), T (xn+1)) ≤ αd(T (xn−1), T (xn)). Nothing further is stated
about this case.

(2) d(T (xn), T (xn+1)) ≤ αd(T (xn−1), T (xn+1)). The authors misstate this
case as d(T (xn), T (xn+1)) ≤ αd(T (xn), T (xn+1)) and propagate this
error forward.

(3) d(T (xn), T (xn+1)) ≤ αd(T (xn), T (xn+1)). This implies T (xn) = T (xn+1),
since 0 < α < 1, but the authors reach a slightly weaker conclusion
differently. They reason that d(T (xn), T (xn+1)) ≤ αnd(T (x0), T (x1)),
from an implied induction with the unjustified assumption that this
case applies at every level of the induction.

Later in the argument, the error of confusing topological and digital continuity
also appears.

Therefore, we must consider Assertion 3.10 unproven.
The following is stated as Theorem 4.13 of [7].

Assertion 3.33. Let S, T : (X, d,κ) → (X, d,κ) be functions that are compatible
of type A on a digital metric space, such that

(i) S(X) ⊂ T (X);
(ii) S or T is (κ,κ)-continuous; and
(iii) for all x, y ∈ X and some α ∈ (0, 1),

d(Sx, Sy) ≤ αmax{d(Tx, Ty), d(Tx, Sy), d(Ty, Sx), d(Tx, Sx), d(Ty, Sy)}.

Then S and T have a unique common fixed point in X.

However, the argument given in [7] to prove this assertion relies on Asser-
tion 3.30, which we have shown above is unproven.

Assertion 3.34. Let S, T : (X, d,κ) → (X, d,κ) be functions on a digital metric
space satisfying (i), (ii), and (iii) of Assertion 3.33. If

(a) (stated as Theorem 4.14 of [7]) S and T are compatible of type B, or
(b) (stated as Theorem 4.15 of [7]) S and T are compatible of type C, or
(c) (stated as Theorem 4.16 of [7]) S and T are compatible of type P,
then S and T have a unique common fixed point in X.

Remarks 3.35. Each part of Assertion 3.34 must be regarded as unproven, as
each has a “proof” in [7] that depends on Assertion 3.10, which we have shown
above to be unproven. (The arguments in [7] for parts (b) and (c) also depend
on the unproven part (a).) Note also that, by Theorem 3.9, a correct proof of
any of (a), (b), or (c) for the case that (X, d) is uniformly discrete would prove
the other parts correct for this case.
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4. Commutative and weakly commutative functions

The paper [13] discusses common fixed points for commutative and weakly
commutative functions on digital metric spaces.

Definition 4.1. Let (X, d) be a metric space. Functions f, g : X → X are
commutative if f ◦ g(x) = g ◦ f(x) for all x ∈ X. They are weakly commutative
if d(f(g(x)), g(f(x))) ≤ d(f(x), g(x)) for all x ∈ X.

Proposition 4.2 ([13]). Let (X, d,κ) be a digital metric space. Let T : X → X.
Then T has a fixed point in X if and only if there is a constant function
S : X → X such that S commutes with T .

The following is Theorem 3.1.4 of [13].

Theorem 4.3. Let T be a continuous self-function on a complete digital met-
ric space (X, d,κ) into itself. Then T has a fixed point in X if and only if
there exists α ∈ (0, 1) and a function S : X → X that commutes with T and
satisfies (3.7).

If (3.7) holds then S and T have a unique common fixed point.

We give a modified version of Theorem 4.3 as follows.

Theorem 4.4. Let T be a function of a metric space (X, d) into itself.

• If T has a fixed point in X, then there exists α ∈ (0, 1) and a function
S : X → X that commutes with T and satisfies (3.7).

• Suppose (X, d) is uniformly discrete. If there exists α ∈ (0, 1) and a
function S : X → X that commutes with T and satisfies (3.7), then T
has a fixed point in X.

Proof. It follows from Proposition 4.2 that if T has a fixed point, then there is
a function S : X → X that commutes with T and satisfies (3.7).

Suppose X is uniformly discrete. Suppose there exists α ∈ (0, 1) and a
function S : X → X that commutes with T and satisfies (3.7). Then S and T
are compatible by Proposition 3.2. It follows from Theorem 3.24 that T has a
fixed point. □

We will use the following.

Example 4.5 ([4]). Let X = {p1, p2, p3} ⊂ Z5, where

p1 = (0, 0, 0, 0, 0), p2 = (2, 0, 0, 0, 0), p3 = (1, 1, 1, 1, 1).

Let d be the Manhattan metric and let T : (X, c5) → (X, c5) be defined by
T (p1) = T (p2) = p1, T (p3) = p2. Clearly T (X) ⊂ 1X(X), 1X ∈ C(X, c5),
and for all x, y ∈ X we have d(T (x), T (y)) ≤ 2/5 d(1X(x), 1X(y)). However,
T ∕∈ C(X, c5) since p2 ↔c5 p3 and T (p2) ∕↔c5 T (p3).

In the following, given a function S : X → X and k ∈ N, Sk is the k-fold
iterate of S, i.e., S1 = S and Sj+1 = S ◦ Sj .
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Proposition 4.6 ([13]). Let T and S be commuting functions of a digital
metric space (X, d,κ) into itself. Suppose T is continuous and S(X) ⊂ T (X).
If there exists α ∈ (0, 1) and k ∈ N such that d(Sk(x), Sk(y)) ≤ αd(T (x), T (y))
for all x, y ∈ X, then T and S have a common fixed point.

Remarks 4.7. The continuity hypothesized for Proposition 4.6 in [13] is topo-
logical continuity, not digital continuity. The assumption is used in the proof to
argue that (3.7) implies S is (topologically) continuous. Note if X is a discrete
topological space, then every self-function on X is topologically continuous. If
we were to assume instead that T is digitally continuous, it would not follow
from (3.7) that S is digitally continuous, as shown by Example 4.5.

The following is a modified version of Proposition 4.6. In it, there is no
continuity assumption.

Corollary 4.8. Let T and S be commuting functions of a complete metric
space (X, d) into itself. Suppose S(X) ⊂ T (X). If there exists α ∈ (0, 1) and
k ∈ N such that d(Sk(x), Sk(y)) ≤ αd(T (x), T (y)) for all x, y ∈ X, then T and
S have a common fixed point.

Proof. As above, we modify the analogous argument of [13].
We see easily that Sk commutes with T and Sk(X) ⊂ S(X) ⊂ T (X). By

Theorem 4.3 - whose proof in [13] does not use an adjacency κ, hence is appli-
cable in the more general setting of a metric space - there exists a ∈ X such
that a is the unique common fixed point of Sk and T . Then a = Sk(a) = T (a).
Since S and T commute, we can apply S to the above to get

S(a) = S(Sk(a)) = S(T (a)) = T (S(a))

and, from the first equation in this chain, S(a) = Sk(S(a)), so S(a) is a common
fixed point of T and Sk. Since a is unique as a common fixed point of T and
Sk, we must have a = S(a) = T (a). □

A function T : X → X on a digital metric space (X, d,κ) is a digital expan-
sive function [10] if for some k > 1 and all x, y ∈ X, d(T (x), T (y)) ≥ kd(x, y).
However, this definition is quite limited, as shown by the following, which com-
bines Theorems 4.8 and 4.9 of [4].

Theorem 4.9. Let (X, d,κ) be a digital metric space. Suppose there are points
x0, y0 ∈ X such that

d(x0, y0) ∈ {min{d(x, y) |x, y ∈ X,x ∕= y}, max{d(x, y) |x, y ∈ X,x ∕= y}}.
Then there is no T : X → X that is both onto and a digital expansive function.

Note the hypothesis of Theorem 4.9 is satisfied by every finite digital metric
space.

The following appears as Corollary 3.1.6 of [13].

Assertion 4.10. Let n ∈ N, K ∈ R, K > 1. Let S : X → X be a κ-
continuous onto function of a complete digital metric space (X, d,κ) such that
d(Sn(x), Sn(y)) ≥ Kd(x, y) for all x, y ∈ X. Then S has a unique fixed point.
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Remarks 4.11. Theorem 4.9 shows that Assertion 4.10 is vacuous for finite
digital metric spaces, since S being onto implies Sn is onto. Similarly, Asser-
tion 4.10 is vacuous whenever κ = c1, since x ↔c1 y implies Sn(x) !c1 Sn(y),
hence d(Sn(x), Sn(y)) ≤ d(x, y).

We get Corollary 4.12 below by modifying Assertion 4.10 to consider con-
tractive rather than expansive functions, making the following changes.

• We do not require S to be either continuous or onto, nor do we require
completeness.

• We use K ∈ (0, 1) rather than K > 1.
• We use d(Sn(x), Sn(y)) ≤ Kd(x, y) instead of d(Sn(x), Sn(y)) ≥ Kd(x, y).

Corollary 4.12. Let n ∈ N and let K ∈ (0, 1). Let S : X → X for a metric
space (X, d) such that d(Sn(x), Sn(y)) ≤ Kd(x, y) for all x, y ∈ X, then S has
a unique fixed point.

Proof. Take T = 1X . Then this assertion follows from Proposition 4.6, whose
proof in [13] does not use an adjacency and therefore is applicable to metric
spaces. □

We modify assumptions of the second bullet of Theorem 4.4 to obtain a
similar result with a much shorter proof.

Theorem 4.13. Let (X, d, cu) be a digital metric space, where d is an ℓp metric
and X is cu-connected. Let T ∈ C(X, cu). Suppose we have a function S : X →
X such that S commutes with T , S(X) ⊂ T (X), and for some α ∈ (0, 1/u1/p)
and all x, y ∈ X, d(S(x), S(y)) ≤ αd(T (x), T (y)). Then S is constant, and S
and T have a unique common fixed point.

Proof. It follows from Proposition 2.8 that S is a constant function. Since
S(X) ⊂ T (X), the value x0 taken by S is a member of T (X), and since S
commutes with T ,

T (x0) = T (S(x0)) = S(T (x0)) = x0 = S(x0).

Since S is constant, x0 is a unique common fixed point. □

The following is Theorem 3.2.3 of [13].

Theorem 4.14. Let T be a function on a complete digital metric space (X, d,κ)
into itself. Then T has a fixed point in X if and only if there exists α ∈ (0, 1)
and a function S : X → X that commutes weakly with T and satisfies (3.7).
Indeed T and S have a unique common fixed point if (3.7) holds.

However, Theorem 4.14 is limited by Proposition 2.8, which gives conditions
implying that the function S must be constant.

5. Commuting functions

The paper [7] studies common fixed points for commuting functions.
The following appears as Theorem 3.2 of [7].
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Assertion 5.1. Let ∅ ∕= X ⊂ Zn, n ∈ N, and let S and T be commuting
functions of a complete digital metric space (X, d,κ) into itself such that

(i) T (X) ⊂ S(X);
(ii) S ∈ C(X,κ); and
(iii) for some α ∈ (0, 1) and all x, y ∈ X, d(T (x), T (y)) ≤ αd(S(x), S(y)).
Then S and T have a common fixed point in X.

Remarks 5.2. The argument given as proof for Assertion 5.1 in [7] claims that
(ii) and (iii) imply T ∈ C(X,κ), but this is incorrect (another instance of
confusing topological and digital continuity), as shown in Example 4.5.

However, if we add to Assertion 5.1 the hypothesis that (X, d) is uniformly
discrete, then we can delete the continuity assumption and get the following
corrected version of Assertion 5.1.

Theorem 5.3. Let ∅ ∕= X ⊂ Zn, n ∈ N. Let S and T be commuting functions
of a uniformly discrete metric space (X, d) into itself such that

(i) T (X) ⊂ S(X); and
(ii) for some α ∈ (0, 1) and all x, y ∈ X, d(T (x), T (y)) ≤ αd(S(x), S(y)).
Then S and T have a unique common fixed point in X.

Proof. By Proposition 3.2, S and T are compatible. The result follows from
Theorem 3.24. □

The following is presented as Corollary 3.3 of [7].

Assertion 5.4. Let S and T be commuting functions of a complete digital metric
space (X, d,κ) into itself such that

(i) T (X) ⊂ S(X);
(ii) S ∈ C(X,κ); and
(iii) for some α ∈ (0, 1) and k ∈ N we have

d(T k(x), T k(y)) ≤ αd(S(x), S(y)) for all x, y ∈ X.

Then S and T have a unique common fixed point.

However, the argument given in [7] for this assertion depends on Asser-
tion 5.1, shown above as unproven. Assertion 5.4 can be modified as follows.

Corollary 5.5. Let S and T be commuting functions of a metric space (X, d)
into itself such that

(i) T (X) ⊂ S(X); and
(ii) for some α ∈ (0, 1) and k ∈ N we have

d(T k(x), T k(y)) ≤ αd(S(x), S(y)) for all x, y ∈ X.

If (X, d) is uniformly discrete, then S and T have a unique common fixed point.

Proof. We use the analogous argument of [7].
Clearly, T k commutes with S and T k(X) ⊂ T (X) ⊂ S(X). From Theo-

rem 5.3, there is a unique a ∈ X such that a = S(a) = T k(a). By applying the
function T and the commuting property, we have

T (a) = T (S(a)) = S(T (a)) and T (a) = T (T k(a)) = T k(T (a)),
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so T (a) is a common fixed point of S and T k. But a is the unique common fixed
point of S and T k, so we must have a = T (a), and we have already observed
that a = S(a), so a is a common fixed point of S and T .

To show the uniqueness of a as a common fixed point, suppose x, y are
common fixed points of S and T . From hypothesis (ii),

d(x, y) = d(T (x), T (y)) = d(T k(x), T k(y)) ≤ αd(S(x), S(y)) = αd(x, y).

Since 0 < α < 1, it follows that x = y. □

Remarks 5.6. Note that Theorem 5.3 and Corollary 5.5 are limited by Propo-
sition 2.8.

6. Further remarks

We have discussed assertions that appeared in [11, 13, 7]. We have discussed
errors or corrections for some, shown some to be limited or trivial, and offered
improvements for some.

Acknowledgements. The suggestions and corrections of an anonymous re-
viewer are gratefully acknowledged.
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