Weak proximal normal structure and coincidence quasi-best proximity points

Farhad Fouladi ${ }^{a}$, Ali Abkar a and Erdal Karapinar ${ }^{b, c}$
${ }^{a}$ Department of Pure Mathemathics, Faculty of Science, Imam Khomeini International University, Qazvin 34149, Iran (fa_folade@yahoo.com; abkar@sci.ikiu.ac.ir)
${ }^{b}$ ETSI Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam (erdalkarapinar@tdmu.edu.vn, erdalkarapinar@yahoo.com)
${ }^{c}$ Department of Mathematics, Çankaya University, 06790, Etimesgut, Ankara, Turkey (erdal.karapinar@cankaya.edu.tr)

Communicated by S. Romaguera

Abstract

We introduce the notion of pointwise cyclic-noncyclic relatively nonexpansive pairs involving orbits. We study the best proximity point problem for this class of mappings. We also study the same problem for the class of pointwise noncyclic-noncyclic relatively nonexpansive pairs involving orbits. Finally, under the assumption of weak proximal normal structure, we prove a coincidence quasi-best proximity point theorem for pointwise cyclic-noncyclic relatively nonexpansive pairs involving orbits. Examples are provided to illustrate the observed results.

2010 MSC: 47H09; 46B20;46T99.
KEYWORDS: pointwise cyclic-noncyclic pairs; weak proximal normal structure; coincidence quasi-best proximity point.

1. Introduction

Let A, B be nonempty subsets of Banach space X. A mapping $T: A \cup B \rightarrow$ $A \cup B$ is said to be cyclic provided that $T(A) \subseteq B$ and $T(B) \subseteq A$. On the other hand, a mapping $S: A \cup B \rightarrow A \cup B$ is said to be noncyclic if $S(A) \subseteq A$ and $S(B) \subseteq B$.

For a cyclic mapping $T: A \cup B \rightarrow A \cup B$, a point $p \in A \cup B$ is said to be a best proximity point provided that

$$
d(p, T p)=\operatorname{dist}(A, B)
$$

Furthermore, we say that a pair (A, B) of subsets in a Banach space satisfies a property if each of the sets A and B has that property. Similarly, the pair (A, B) is called convex if both A and B are convex; moreover we write

$$
(A, B) \subseteq(E, F) \Leftrightarrow A \subseteq E, B \subseteq F
$$

In addition, we will use the following notations:

$$
\begin{aligned}
& \delta(A, B)=\sup \{\|x-y\|: x \in A, y \in B\} \\
& \delta(x, B)=\sup \{\|x-y\|: y \in B\}
\end{aligned}
$$

For a nonempty, bounded and convex subset F of a Banach space X, we write

$$
\begin{aligned}
& r_{x}(F)=\sup \{\|x-y\|: y \in F\} \\
& r(F)=\inf \left\{r_{x}(F): x \in F\right\} \\
& F_{c}=\left\{x \in F: r_{x}(F)=r(F)\right\}
\end{aligned}
$$

In 2017, M. Gabeleh introduced the notion of a pointwise cyclic relatively nonexpansive mapping involving orbits, and proved a theorem on the existence of best proximity points.

Definition 1.1 ([11]). Let (A, B) be a nonempty pair of subsets of a Banach space X. A mapping $T: A \cup B \rightarrow A \cup B$ is said to be pointwise cyclic relatively nonexpansive involving orbits if T is cyclic and for any $(x, y) \in A \times B$, if $\|x-y\|=\operatorname{dist}(A, B)$, then

$$
\|T x-T y\|=\operatorname{dist}(A, B)
$$

and otherwise, there exists a function $\alpha: A \times B \rightarrow[0,1]$ such that

$$
\|T x-T y\| \leq \alpha(x, y)\|x-y\|+(1-\alpha(x, y)) \min \left\{\delta_{x}\left[\mathcal{O}^{2}(y ; \infty)\right], \delta_{y}\left[\mathcal{O}^{2}(x ; \infty)\right]\right\}
$$

where, for any $(x, y) \in A \times B$

$$
\delta_{x}\left[\mathcal{O}^{2}(y ; \infty)\right]=\sup _{n \in \mathbb{N}}\left\|x-T^{2 n} y\right\|, \quad \delta_{y}\left[\mathcal{O}^{2}(x ; \infty)\right]=\sup _{n \in \mathbb{N}}\left\|T^{2 n} x-y\right\|
$$

Note that, if $A=B$, then we say that T is a pointwise nonexpansive mapping involving orbits. In [12], M. Gabeleh, O. Olela Otafudu, and N. Shahzad considered a pair of mappings T and S. According to [12], for a nonempty pair of subsets (A, B) in a metric space (X, d), and a cyclic-noncyclic pair $(T ; S)$ on $A \cup B$ (that is, $T: A \cup B \rightarrow A \cup B$ is cyclic and $S: A \cup B \rightarrow A \cup B$ is noncyclic); they called a point $p \in A \cup B$ a coincidence best proximity point for $(T ; S)$ if

$$
d(S p, T p)=\operatorname{dist}(A, B)
$$

Note that if $S=I$, the identity map on $A \cup B$, then $p \in A \cup B$ is a best proximity point for T.

In 2019, A. Abkar and M. Norouzian introduced the concept of coincidence quasi-best proximity point and proved the existence of such points for quasi-cyclic-noncyclic contraction pairs. We remark that the coincidence quasi-best proximity point theory is more general and includes both the best proximity point theory and the coincidence best proximity point theory.
Definition 1.2 ([2]). Let (A, B) be a nonempty pair of subsets of a metric space (X, d) and $T, S: X \rightarrow X$ be a quasi-cyclic-noncyclic pair on $A \cup B$; that is, $T(A) \subseteq S(B)$ and $T(B) \subseteq S(A)$. A point $p \in A \cup B$ is said to be a coincidence quasi-best proximity point for $(T ; S)$ if

$$
d(S p, T p)=\operatorname{dist}(S(A), S(B))
$$

In case that $S=I$, the point p reduces to a best proximity point for T.
In this article, we will focus on the coincidence quasi-best proximity point problem for pointwise cyclic-noncyclic and noncyclic-noncyclic relatively nonexpansive pairs. To do this, we need to recall some definitions and theorems. We begin with the following definition which is a modification of a concept in [8].

Definition 1.3. Let (A, B) be a nonempty pair of subsets of a Banach space X and $S: A \cup B \rightarrow A \cup B$ be a noncyclic mapping on $A \cup B$. A convex pair $(S(A), S(B))$ is called a proximal pair if for each $\left(a_{1}, b_{1}\right) \in A \times B$, there exists $\left(a_{2}, b_{2}\right) \in A \times B$ such that for each $i, j \in\{1,2\}$ with $i \neq j$ we have

$$
\left\|S a_{i}-S b_{j}\right\|=\operatorname{dist}(S(A), S(B))
$$

Given (A, B) a pair of nonempty subsets of a Banach space X, the associated proximal pair of $(S(A), S(B))$ is the pair $\left(S\left(A_{0}^{S}\right), S\left(B_{0}^{s}\right)\right)$ given by

$$
\begin{aligned}
& A_{0}^{s}:=\{a \in A:\|S a-S b\|=\operatorname{dist}(S(A), S(B)) \text { for some } b \in B\}, \\
& B_{0}^{s}:=\{b \in B:\|S a-S b\|=\operatorname{dist}(S(A), S(B)) \text { for some } a \in A\},
\end{aligned}
$$

In fact, if the pair $(S(A), S(B))$ is nonempty, weakly compact and convex, then its associated pair $\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)$ is also nonempty, weakly compact and convex. Furthermore, we have

$$
\operatorname{dist}\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)=\operatorname{dist}(S(A), S(B))
$$

The proof of the above statements goes in the same lines as in the case for the pair (A, B); see for instance [21]. Here's a definition we derive from [8] and we've made some changes to meet our needs.

Definition 1.4. Let $\left(K_{1}, K_{2}\right)$ be a nonempty pair of subsets of a Banach space X and $S: K_{1} \cup K_{2} \rightarrow K_{1} \cup K_{2}$ be a noncyclic mapping on $K_{1} \cup K_{2}$. We say that a convex pair $\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ has proximal normal structure (PNS) if for any closed, bounded, convex and proximal pair $\left(S\left(H_{1}\right), S\left(H_{2}\right)\right) \subseteq\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ which

$$
\operatorname{dist}\left(S\left(H_{1}\right), S\left(H_{2}\right)\right)=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right), \quad \delta\left(S\left(H_{1}\right), S\left(H_{2}\right)\right)>\operatorname{dist}\left(S\left(H_{1}\right), S\left(H_{2}\right)\right)
$$

there exists $(x, y) \in H_{1} \times H_{2}$ such that

$$
\delta\left(S x, S\left(H_{2}\right)\right)<\delta\left(S\left(H_{1}\right), S\left(H_{2}\right)\right), \quad \delta\left(S y, S\left(H_{1}\right)\right)<\delta\left(S\left(H_{1}\right), S\left(H_{2}\right)\right)
$$

Note that the pair (K, K) has proximal normal structure if and only if K has normal structure in the sense of Brodskii and Milman (see [4] and [20]).
Theorem 1.5 ([8]). Every bounded, closed and convex pair in a uniformly convex Banach space X has proximal normal structure.

The following definition is a modification of what already appeared in [11].
Definition 1.6. Let $\left(K_{1}, K_{2}\right)$ be a nonempty pair of subsets of a Banach space X and $S: K_{1} \cup K_{2} \rightarrow K_{1} \cup K_{2}$ be a noncyclic mapping on $K_{1} \cup K_{2}$. We say that a convex pair $\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ has weak proximal normal structure (WPNS) if for each nonempty, weakly compact and convex proximal pair $\left(S\left(H_{1}\right), S\left(H_{2}\right)\right) \subseteq\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ for which
$\operatorname{dist}\left(S\left(H_{1}\right), S\left(H_{2}\right)\right)=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right), \quad \delta\left(S\left(H_{1}\right), S\left(H_{2}\right)\right)>\operatorname{dist}\left(S\left(H_{1}\right), S\left(H_{2}\right)\right)$,
there exists $(x, y) \in H_{1} \times H_{2}$ such that

$$
\delta\left(S x, S\left(H_{2}\right)\right)<\delta\left(S\left(H_{1}\right), S\left(H_{2}\right)\right), \quad \delta\left(S y, S\left(H_{1}\right)\right)<\delta\left(S\left(H_{1}\right), S\left(H_{2}\right)\right)
$$

In this article, we intend to generalize some results of [8] and [11]. Our results have the following advantages: First, we introduce the class of the pointwise cyclic-noncyclic and noncyclic-noncyclic relatively nonexpansive pairs involving orbits, that in particular, includes the class of pointwise cyclic-noncyclic and noncyclic-noncyclic relatively nonexpansive mappings involving orbits. Second, we consider a pair of mappings while the previous articles are concerned with one single mapping, and finally, we study the coincidence quasi-best proximity point problem, which in particular, includes the best proximity point problem as a special case.

2. CYCLIC-NONCYCLIC PAIRS

We begin this section by introducing the new concept of a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits.

Definition 2.1. Assume that (A, B) is a nonempty pair of subsets of a Banach space X and $T, S: A \cup B \rightarrow A \cup B$ are two mappings. A pair $(T ; S)$ is said to be a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits if $(T ; S)$ is a cyclic-noncyclic pair and for any $(x, y) \in A \times B$, if $\|x-y\|=$ $\operatorname{dist}(S(A), S(B))$, then

$$
\|T x-T y\|=\operatorname{dist}(S(A), S(B)), \quad\|S x-S y\|=\operatorname{dist}(S(A), S(B))
$$

and otherwise, there exists a function $\alpha: A \times B \rightarrow[0,1]$ such that

$$
\|T x-T y\| \leq \alpha(x, y)\|S x-S y\|+(1-\alpha(x, y)) \max \left\{\delta_{x}\left[\mathcal{O}^{2}(y ; \infty)\right], \delta_{y}\left[\mathcal{O}^{2}(x ; \infty)\right]\right\}
$$

where, for any $(x, y) \in A \times B$

$$
\delta_{x}\left[\mathcal{O}^{2}(y ; \infty)\right]=\sup _{n \in \mathbb{N}}\left\|x-T^{2 n} y\right\|, \quad \delta_{y}\left[\mathcal{O}^{2}(x ; \infty)\right]=\sup _{n \in \mathbb{N}}\left\|T^{2 n} x-y\right\|
$$

We note that if $S=I$, then the class of pointwise cyclic-noncyclic relatively nonexpansive pairs involving orbits reduces to the class of pointwise cyclic relatively nonexpansive mappings involving orbits introduced in [11].

Definition 2.2 ([20]). We say that a Banach space X has the property (C) if every bounded decreasing sequence of nonempty, closed and convex subsets of X have a nonempty intersection.

For $C \subseteq X$, we denote the diameter of C by $\delta(C)$. A point $x \in C$ is a diametral point of C provided that $\sup \{\|x-y\|: y \in C\}=\delta(C)$. A convex set $K \subseteq X$ is said to have normal structure if for each bounded convex subset H of K which contains at least two points, there is some point $x \in H$ which is not a diametral point of H.

Lemma 2.3 ([20]). Assume that X is a Banach space with the property (C), then F_{c} is nonempty, closed and convex.

Lemma 2.4 ([20]). Assume that F is a closed and convex subset of a Banach space X which contains at least two points. If F has normal structure, then $\delta\left(F_{c}\right)<\delta(F)$.

Theorem 2.5. Assume that K is a nonempty, bounded, closed and convex subset of a Banach space X with property (C). Suppose that K has normal structure. Let (T, S) be a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits on K. Then there exists a point $p \in K$ such that $\|T p-S p\|=0$.

Proof. Suppose Γ denotes the collection of all nonempty, closed and convex subsets of K such that (T, S) is a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits on K. By Zorn's Lemma, Γ has a minimal member, say F. We complete the proof by verifying that F consists of a single point. Assume that $x \in F_{c}$. In this case, for any $y \in F_{c}$ we have

$$
\begin{aligned}
\|S x-y\| & \leq \sup \{\|z-y\|: z \in F\} \\
& =r_{y}(F)=r(F)
\end{aligned}
$$

therefore,

$$
\sup \left\{\|S x-y\|: x \in F_{c}\right\} \leq r(F)
$$

Then,

$$
\begin{aligned}
r_{S x}(F) & =\sup \{\|S x-y\|: y \in F\} \\
& \leq \sup \left\{\|S x-y\|: x \in F_{c}, y \in F\right\} \\
& \leq \sup \{r(F), y \in F\} \\
& =r(F)
\end{aligned}
$$

Then, for any $x \in F_{c}$ we have $r_{S x}(F)=r(F)$; that is, $S: F_{c} \rightarrow F_{c}$. Moreover, for any $x, y \in F_{c}$ we have $\|S x-S y\| \leq r(F)$. On other hand, for any $x, y \in F_{c}$,

$$
\begin{aligned}
\delta_{x}\left[\mathcal{O}^{2}(y ; \infty)\right] & =\sup _{n \in \mathbb{N}}\left\|x-T^{2 n} y\right\| \\
& \leq \sup \{\|x-z\|: z \in F\} \\
& =r_{x}(F)=r(F) .
\end{aligned}
$$

Similarly, for any $x, y \in F_{c}$ we have $\delta_{y}\left[\mathcal{O}^{2}(x ; \infty)\right] \leq r(F)$. In particular, for each $x, y \in F_{c}$,

$$
\begin{aligned}
\|T x-T y\| & \leq \alpha(x, y)\|S x-S y\|+(1-\alpha(x, y)) \max \left\{\delta_{x}\left[\mathcal{O}^{2}(y ; \infty)\right], \delta_{y}\left[\mathcal{O}^{2}(x ; \infty)\right]\right\} \\
& \leq \alpha(x, y) r(F)+(1-\alpha(x, y)) r(F) \\
& =r(F)
\end{aligned}
$$

that is, $r_{T x}(F)=r(F)$. Then, $T: F_{c} \rightarrow F_{c}$. By Lemma 2.3, we have $F_{c} \in \Gamma$. If $\delta(F)>0$, then by Lemma $2.4, F_{c}$ is properly contained in F which contradicts the minimality of F. Hence $\delta(F)=0$ and F consists of a single point; this is, there exists a point $p \in K$ such that $T p=p$ and $S p=p$. So, there exists a $p \in K$ such that $\|T p-p\|=0$.

Theorem 2.6. Assume that (A, B) is a nonempty pair of subsets in a Banach space X with $P N S$. Let $T, S: A \cup B \rightarrow A \cup B$ be a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits, and such that $T(A) \subseteq S(B)$ and $T(B) \subseteq S(A)$. Suppose that $(S(A), S(B))$ is a weakly compact and convex pair of subsets in X. Then there exists $(x, y) \in A \times B$ such that for $p \in\{x, y\}$ we have

$$
\|T p-S p\|=\operatorname{dist}(S(A), S(B))
$$

Proof. The result follows from Theorem 2.5 if $\operatorname{dist}(S(A), S(B))=0$, so we assume that $\operatorname{dist}(S(A), S(B))>0$. Let $\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)$ be the associated proximal pair of $(S(A), S(B))$. We have already observed that $S\left(A_{0}^{s}\right)$ and $S\left(B_{0}^{s}\right)$ are nonempty, weakly compact and convex, moreover

$$
\operatorname{dist}\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)=\operatorname{dist}(S(A), S(B))
$$

Assume that $x \in A_{0}^{s}$, then there exists $y \in B_{0}^{s}$ such that $\|S x-S y\|=$ $\operatorname{dist}(S(A), S(B))$. On other hand, $(T ; S)$ is a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits. Thus,
$\|T(S x)-T(S y)\|=\operatorname{dist}(S(A), S(B)), \quad\|S(S x)-S(S y)\|=\operatorname{dist}(S(A), S(B))$.
This implies that

$$
\|S(S x)-S(S y)\|=\operatorname{dist}\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)
$$

and

$$
\|T(S x)-T(S y)\|=\operatorname{dist}\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)
$$

Therefore, we have

$$
T(S x) \in S\left(B_{0}^{s}\right), \quad T(S y) \in S\left(A_{0}^{s}\right)
$$

that is,

$$
T\left(S\left(A_{0}^{s}\right)\right) \subseteq S\left(B_{0}^{s}\right), \quad T\left(S\left(B_{0}^{s}\right)\right) \subseteq S\left(A_{0}^{s}\right)
$$

Similarly,

$$
S\left(S\left(A_{0}^{s}\right)\right) \subseteq S\left(A_{0}^{s}\right), \quad S\left(S\left(B_{0}^{s}\right)\right) \subseteq S\left(B_{0}^{s}\right)
$$

So, for each $x \in A_{0}^{s}$ and $y \in B_{0}^{s}$ we have

$$
\|T(S x)-T(S y)\|=\operatorname{dist}\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)
$$

and

$$
\|S(S x)-S(S y)\|=\operatorname{dist}\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)
$$

Clearly $\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)$ also has proximal normal structure. Now, assume that Ω denotes the collection of all nonempty subsets $S(F)$ of $S\left(A_{0}^{s}\right) \cup S\left(B_{0}^{s}\right)$ for which $S(F) \cap S\left(A_{0}^{s}\right)$ and $S(F) \cap S\left(B_{0}^{s}\right)$ are nonempty, closed, convex, and such that

$$
T\left(S(F) \cap S\left(A_{0}^{s}\right)\right) \subseteq S(F) \cap S\left(B_{0}^{s}\right), \quad T\left(S(F) \cap S\left(B_{0}^{s}\right)\right) \subseteq S(F) \cap S\left(A_{0}^{s}\right)
$$

and

$$
S\left(S(F) \cap S\left(A_{0}^{s}\right)\right) \subseteq S(F) \cap S\left(A_{0}^{s}\right), \quad S\left(S(F) \cap S\left(B_{0}^{s}\right)\right) \subseteq S(F) \cap S\left(B_{0}^{s}\right)
$$

and so

$$
\operatorname{dist}\left(S(F) \cap S\left(A_{0}^{s}\right), S(F) \cap S\left(B_{0}^{s}\right)\right)=\operatorname{dist}(S(A), S(B))
$$

Since, $S\left(A_{0}^{s}\right) \cup S\left(B_{0}^{s}\right) \in \Omega$ and Ω is nonempty, we may assume that $\left\{S\left(F_{\alpha}\right)\right\}_{\alpha \in \Omega}$ is a decreasing chain in Ω such that $S\left(F_{0}\right)=\cap_{\alpha \in \Omega} S\left(F_{\alpha}\right)$. Then $S\left(F_{0}\right) \cap$ $S\left(A_{0}^{s}\right)=\cap_{\alpha \in \Omega}\left(S\left(F_{\alpha}\right) \cap S\left(A_{0}^{s}\right)\right)$, so $S\left(F_{0}\right) \cap S\left(A_{0}^{s}\right)$ is nonempty, closed and convex. Similarly, $S\left(F_{0}\right) \cap S\left(B_{0}^{s}\right)$ is nonempty, closed and convex. Also,

$$
T\left(S\left(F_{0}\right) \cap S\left(A_{0}^{s}\right)\right) \subseteq S\left(F_{0}\right) \cap S\left(B_{0}^{s}\right), \quad T\left(S\left(F_{0}\right) \cap S\left(B_{0}^{s}\right)\right) \subseteq S\left(F_{0}\right) \cap S\left(A_{0}^{s}\right)
$$

and

$$
S\left(S\left(F_{0}\right) \cap S\left(A_{0}^{s}\right)\right) \subseteq S\left(F_{0}\right) \cap S\left(A_{0}^{s}\right), \quad S\left(S\left(F_{0}\right) \cap S\left(B_{0}^{s}\right)\right) \subseteq S\left(F_{0}\right) \cap S\left(B_{0}^{s}\right)
$$

To show that $S\left(F_{0}\right) \in \Omega$ we only need to verify that

$$
\operatorname{dist}\left(S\left(F_{0}\right) \cap S\left(A_{0}^{s}\right), S\left(F_{0}\right) \cap S\left(B_{0}^{s}\right)\right)=\operatorname{dist}(S(A), S(B))
$$

Note that for each $\alpha \in J$ it is possible to select

$$
S x_{\alpha} \in S\left(F_{\alpha}\right) \cap S\left(A_{0}^{s}\right), \quad S y_{\alpha} \in S\left(F_{\alpha}\right) \cap S\left(B_{0}^{s}\right)
$$

such that

$$
\left\|S x_{\alpha}-S y_{\alpha}\right\|=\operatorname{dist}(S(A), S(B))
$$

It is also possible to choose convergent subnets $\left\{S x_{\alpha^{\prime}}\right\}$ and $\left\{S y_{\alpha^{\prime}}\right\}$ (with the same indices), say

$$
\lim _{\alpha^{\prime}} S x_{\alpha^{\prime}}=S x, \quad \lim _{\alpha^{\prime}} S y_{\alpha^{\prime}}=S y .
$$

Then clearly $S x \in S\left(F_{0}\right) \cap S\left(A_{0}^{s}\right)$ and $S y \in S\left(F_{0}\right) \cap S\left(B_{0}^{s}\right)$. By weak lower semicontinuity of the norm, we have $\|S x-S y\| \leq \operatorname{dist}(S(A), S(B))$; hence,
$\operatorname{dist}(S(A), S(B)) \leq \operatorname{dist}\left(S\left(F_{0}\right) \cap S\left(A_{0}^{s}\right), S\left(F_{0}\right) \cap S\left(B_{0}^{s}\right)\right) \leq\|S x-S y\| \leq \operatorname{dist}(S(A), S(B))$.
Therefore,

$$
\operatorname{dist}\left(S\left(F_{0}\right) \cap S\left(A_{0}^{s}\right), S\left(F_{0}\right) \cap S\left(B_{0}^{s}\right)\right)=\operatorname{dist}(S(A), S(B))
$$

Since, every chain in Ω is bounded below by a member of Ω, Zorn's Lemma implies that Ω has a minimal element, say $S(K)$. Assume that $S\left(K_{1}\right)=S(K) \cap$ $S\left(A_{0}^{s}\right)$ and $S\left(K_{2}\right)=S(K) \cap S\left(B_{0}^{s}\right)$. Observe that if

$$
\delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

then for any $x \in S\left(K_{1}\right)$, we have

$$
\|T x-S x\|=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)=\operatorname{dist}(S(A), S(B))
$$

Similarly, for any $y \in S\left(K_{2}\right)$, we have

$$
\|T y-S y\|=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)=\operatorname{dist}(S(A), S(B))
$$

Now, we assume that

$$
\delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)>\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

We complete the proof by showing that this leads to a contradiction. Since $S(K)$ is minimal, it follows that $\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ is a proximal pair in $\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)$. By the $P N S$ property of X, there exist $\left(x_{1}, y_{1}\right) \in K_{1} \times K_{2}$ and $\beta \in(0,1)$ such that
$\delta\left(S x_{1}, S\left(K_{2}\right)\right) \leq \beta \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right) \quad$ and $\quad \delta\left(S y_{1}, S\left(K_{1}\right)\right) \leq \beta \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$.
Since, $\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ is a proximal pair, there exists $\left(x_{2}, y_{2}\right) \in K_{1} \times K_{2}$ such that for each distinct $i, j \in\{1,2\}$, we have

$$
\left\|S x_{i}-S y_{j}\right\|=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

So, for each $u \in S\left(K_{2}\right)$ we have

$$
\begin{aligned}
\left\|\frac{S x_{1}+S x_{2}}{2}-u\right\| & \leq\left\|\frac{S x_{1}-u}{2}\right\|+\left\|\frac{S x_{2}-u}{2}\right\| \\
& \leq \frac{\beta \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)}{2}+\frac{\delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)}{2} \\
& =\alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
\end{aligned}
$$

where $\alpha=\frac{1+\beta}{2} \in(0,1)$. Assume that $S w_{1}=\frac{\left(S x_{1}+S x_{2}\right)}{2}$ and $S w_{2}=\frac{\left(S y_{1}+S y_{2}\right)}{2}$. Then
$\delta\left(S w_{1}, S\left(K_{2}\right)\right) \leq \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right) \quad$ and $\quad \delta\left(S w_{2}, S\left(K_{1}\right)\right) \leq \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$.

Since,

$$
\begin{aligned}
\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right) & \leq\left\|S w_{1}-S w_{2}\right\| \\
& =\left\|\frac{\left(S x_{1}+S x_{2}\right)}{2}-\frac{\left(S y_{1}+S y_{2}\right)}{2}\right\| \\
& \leq \frac{1}{2}\left[\left\|S x_{1}-S y_{2}\right\|+\left\|S x_{2}-S y_{1}\right\|\right] \\
& =\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right),
\end{aligned}
$$

we have $\left\|S w_{1}-S w_{2}\right\|=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$. Put

$$
\begin{aligned}
& S\left(L_{1}\right)=\left\{S x \in S\left(K_{1}\right): \delta\left(S x, S\left(K_{2}\right)\right) \leq \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right\}, \\
& S\left(L_{2}\right)=\left\{S y \in S\left(K_{2}\right): \delta\left(S y, S\left(K_{1}\right)\right) \leq \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right\} .
\end{aligned}
$$

Then for each $i=1,2, S\left(L_{i}\right)$ is a nonempty, closed and convex subset of $S\left(K_{i}\right)$ and since $S w_{1} \in S\left(L_{1}\right)$ and $S w_{2} \in S\left(L_{2}\right)$, we have

$$
\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right) \leq \operatorname{dist}\left(S\left(L_{1}\right), S\left(L_{2}\right)\right) \leq\left\|S w_{1}-S w_{2}\right\|=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

Therefore,

$$
\operatorname{dist}\left(S\left(L_{1}\right), S\left(L_{2}\right)\right)=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)=\operatorname{dist}(S(A), S(B))
$$

Now, assume that $S x \in S\left(L_{1}\right)$ and $S y \in S\left(K_{2}\right)$. Then $S x \in S\left(A_{0}^{s}\right)$ and $S y \in S\left(B_{0}^{s}\right)$; that is, $x \in A_{0}^{s}$ and $y \in B_{0}^{s}$. Thus,

$$
\|T(S x)-T(S y)\|=\operatorname{dist}(S(A), S(B)) \leq \delta\left(S x, S\left(K_{2}\right)\right) \leq \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right) .
$$

So, $T(S y) \in B\left(T(S x) ; \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right) \cap S\left(K_{1}\right)$; that is,

$$
T\left(S\left(K_{2}\right)\right) \subseteq B\left(T(S x) ; \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right) \cap S\left(K_{1}\right):=S\left(K_{1}^{\prime}\right) .
$$

Clearly $S\left(K_{1}^{\prime}\right)$ is closed and convex. Also, if $S y \in S\left(K_{2}\right)$ satisfies $\|S x-S y\|=$ $\operatorname{dist}(S(A), S(B))$, then

$$
\|T(S x)-T(S y)\|=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right) .
$$

Since, $T(S y) \in S\left(K_{1}^{\prime}\right)$, we conclude that $\operatorname{dist}\left(S\left(K_{1}^{\prime}\right), S\left(K_{2}\right)\right)=\operatorname{dist}(S(A), S(B))$. Therefore, $S\left(K_{1}^{\prime}\right) \cup S\left(K_{2}\right) \in \Omega$ and by the minimality of $S(K)$ we must have $S\left(K_{1}^{\prime}\right)=S\left(K_{1}\right)$. Hence,

$$
S\left(K_{1}\right) \subseteq B\left(T(S x) ; \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right) ;
$$

that is, $\delta\left(T(S x), S\left(K_{1}\right)\right) \leq \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ and since $S x \in S\left(L_{1}\right)$ was arbitrary, we obtain $T\left(S\left(L_{1}\right)\right) \subseteq S\left(L_{2}\right)$. Similarly, $T\left(S\left(L_{2}\right)\right) \subseteq S\left(L_{1}\right), S\left(S\left(L_{1}\right)\right) \subseteq$ $S\left(L_{1}\right)$ and $S\left(S\left(L_{2}\right)\right) \subseteq S\left(L_{2}\right)$. Thus, $S\left(L_{1}\right) \cup S\left(L_{2}\right) \in \Omega$, but $\delta\left(S\left(L_{1}\right), S\left(L_{2}\right)\right) \leq$ $\alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$, contradicting the minimality of $S(K)$.

Corollary 2.7. Assume that (A, B) is a nonempty pair of subsets in a uniformly convex Banach space X. Let $T, S: A \cup B \rightarrow A \cup B$ be a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits, and such that $T(A) \subseteq S(B)$ and $T(B) \subseteq S(A)$. Suppose that $(S(A), S(B))$ is a bounded,
closed and convex pair of subsets in X. Then there exists $(x, y) \in A \times B$ such that for $p \in\{x, y\}$ we have

$$
\|T p-S p\|=\operatorname{dist}(S(A), S(B))
$$

3. NONCYCLIC-NONCYCLIC PAIRS

In this section we study the case in which both mappings are noncyclic. Indeed, we first introduce a pointwise noncyclic-noncyclic relatively nonexpansive pair involving orbits, and proceed to study its best proximity points.

Definition 3.1. Assume that (A, B) is a nonempty pair of subsets of a Banach space X and $T, S: A \cup B \rightarrow A \cup B$ are two mappings. A pair $(T ; S)$ is said to be a pointwise noncyclic-noncyclic relatively nonexpansive pair involving orbits if $(T ; S)$ is a noncyclic-noncyclic pair and for any $(x, y) \in A \times B$, if $\|x-y\|=\operatorname{dist}(S(A), S(B))$, then

$$
\|T x-T y\|=\operatorname{dist}(S(A), S(B)), \quad\|S x-S y\|=\operatorname{dist}(S(A), S(B))
$$

and otherwise, there exists a function $\alpha: A \times B \rightarrow[0,1]$ such that
$\|T x-T y\| \leq \alpha(x, y)\|S x-S y\|+(1-\alpha(x, y)) \max \left\{\delta_{x}[\mathcal{O}(y ; \infty)], \delta_{y}[\mathcal{O}(x ; \infty)]\right\}$,
where, for any $(x, y) \in A \times B$

$$
\delta_{x}[\mathcal{O}(y ; \infty)]=\sup _{n \in \mathbb{N}}\left\|x-T^{n} y\right\|, \quad \delta_{y}[\mathcal{O}(x ; \infty)]=\sup _{n \in \mathbb{N}}\left\|T^{n} x-y\right\|
$$

Theorem 3.2. Assume that (A, B) is a nonempty pair of subsets in a strictly convex Banach space X with $P N S$, and $T, S: A \cup B \rightarrow A \cup B$ is a pointwise noncyclic-noncyclic relatively nonexpansive pair involving orbits such that $T(A) \subseteq S(A)$ and $T(B) \subseteq S(B)$. Suppose that $(S(A), S(B)$) is a weakly compact and convex pair of subsets in X. Then, there exists $x_{0} \in A$ and $y_{0} \in B$ such that

$$
T x_{0}=x_{0}, \quad T y_{0}=y_{0}
$$

and

$$
\left\|x_{0}-y_{0}\right\|=\operatorname{dist}(S(A), S(B))
$$

Proof. Suppose that $\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)$ is the associated proximal pair of $(S(A), S(B))$, and choose $x \in A_{0}^{s}$. Then there exists $y \in B_{0}^{s}$ such that $\|S x-S y\|=$ $\operatorname{dist}(S(A), S(B))$, and furthermore

$$
\|T(S x)-T(S y)\|=\operatorname{dist}(S(A), S(B))=\operatorname{dist}\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)
$$

Thus, $T: S\left(A_{0}^{s}\right) \rightarrow S\left(A_{0}^{s}\right)$ and similarly, $T: S\left(B_{0}^{s}\right) \rightarrow S\left(B_{0}^{s}\right)$. Now let Ω denote the collection of nonempty subsets $S(F)$ of $S\left(A_{0}^{s}\right) \cup S\left(B_{0}^{s}\right)$ for which $S(F) \cap S\left(A_{0}^{s}\right)$ and $S(F) \cap S\left(B_{0}^{s}\right)$ are nonempty, closed and convex,

$$
\begin{array}{ll}
T\left(S(F) \cap S\left(A_{0}^{s}\right)\right) \subseteq S(F) \cap S\left(A_{0}^{s}\right), & T\left(S(F) \cap S\left(B_{0}^{s}\right)\right) \subseteq S(F) \cap S\left(B_{0}^{s}\right) \\
S\left(S(F) \cap S\left(A_{0}^{s}\right)\right) \subseteq S(F) \cap S\left(A_{0}^{s}\right), & S\left(S(F) \cap S\left(B_{0}^{s}\right)\right) \subseteq S(F) \cap S\left(B_{0}^{s}\right)
\end{array}
$$

and

$$
\operatorname{dist}\left(S(F) \cap S\left(A_{0}^{s}\right), S(F) \cap S\left(B_{0}^{s}\right)\right)=\operatorname{dist}(S(A), S(B))
$$

Since, $S\left(A_{0}^{s}\right) \cup S\left(B_{0}^{s}\right) \in \Omega, \Omega$ is nonempty. We proceed as in the proof of Theorem 2.6 to show that Ω has a minimal element $S(K)$. Assume that $S\left(K_{1}\right)=S(K) \cap S\left(A_{0}^{s}\right)$, and $S\left(K_{2}\right)=S(K) \cap S\left(B_{0}^{s}\right)$. First, assume that one of the sets is a singleton, say $S\left(K_{1}\right)=\{x\}$. Then $T x=x$ and if y is the unique point of $S\left(K_{2}\right)$ for which $\|x-y\|=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$, it must be the case that $T y=y$. Since, $\|y-x\|=\operatorname{dist}(S(A), S(B))$, we are finished. So, we may assume that $S\left(K_{1}\right)$ and $S\left(K_{2}\right)$ have positive diameter and because the space is strictly convex, this in turn implies that

$$
\delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)>\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

We shall see that this leads to a contradiction. Since $\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right)$ has proximal normal structure, we may define $S\left(L_{1}\right)$ and $S\left(L_{2}\right)$ as in the proof of Theorem 2.6. Choose $S x \in S\left(L_{1}\right)$. For any $S y \in S\left(K_{2}\right)$, we have $S x \in S\left(A_{0}^{s}\right)$ and $S y \in S\left(B_{0}^{s}\right)$; that is, $x \in A_{0}^{s}$ and $y \in B_{0}^{s}$. Thus, $\|S x-S y\|=\operatorname{dist}(S(A), S(B))$ and so,

$$
\|T(S x)-T(S y)\|=\operatorname{dist}(S(A), S(B)) \leq \delta\left(S x, S\left(K_{2}\right)\right) \leq \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

This implies that

$$
T(S y) \in B\left(T(S x) ; \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right) \cap S\left(K_{2}\right)
$$

thus,

$$
T\left(S\left(K_{2}\right)\right) \subseteq B\left(T(S x) ; \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right) \cap S\left(K_{2}\right)
$$

It follows from the minimality of $S(K)$ that $S\left(K_{2}\right) \subseteq B\left(T(S x) ; \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right)$ and this in turn implies that

$$
\delta\left(T(S x), S\left(K_{2}\right)\right) \leq \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

Therefore, $T(S x) \in S\left(L_{1}\right)$; in fact $T\left(S\left(L_{1}\right)\right) \subseteq S\left(L_{1}\right)$. Similarly, $T\left(S\left(L_{2}\right)\right) \subseteq$ $S\left(L_{2}\right), S\left(S\left(L_{1}\right)\right) \subseteq S\left(L_{1}\right)$ and $S\left(S\left(L_{2}\right)\right) \subseteq S\left(L_{2}\right)$. Since, $S\left(L_{1}\right)$ and $S\left(L_{2}\right)$ are, respectively, nonempty, closed and convex subsets of $S\left(K_{1}\right)$ and $S\left(K_{2}\right)$ and since for $\alpha<1$ we have

$$
\delta\left(S\left(L_{1}\right), S\left(L_{2}\right)\right) \leq \alpha \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

which contradicts the minimality of $S(K)$.
Corollary 3.3. Assume that (A, B) is a nonempty pair of subsets in a uniformly convex Banach space X and $T, S: A \cup B \rightarrow A \cup B$ is a pointwise noncyclic-noncyclic relatively nonexpansive pair involving orbits such that $T(A) \subseteq$ $S(A)$ and $T(B) \subseteq S(B)$. Suppose that $(S(A), S(B))$ is a bounded, closed and convex pair of subsets in X. Then, there exists $x_{0} \in A$ and $y_{0} \in B$ such that

$$
T x_{0}=x_{0}, \quad T y_{0}=y_{0}
$$

and

$$
\left\|x_{0}-y_{0}\right\|=\operatorname{dist}(S(A), S(B))
$$

4. WPNS AND CYCLIC-NONCYCLIC PAIRS

In this section, and under weak proximal normal structure, we discuss the coincidence quasi-best proximity point problem for pointwise cyclic-noncyclic relatively nonexpansive pairs involving orbits.

Lemma 4.1. Assume that (A, B) is a nonempty pair of subsets in a Banach space X, and $T, S: A \cup B \rightarrow A \cup B$ is a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits such that $T(A) \subseteq S(B)$ and $T(B) \subseteq S(A)$. Suppose that $(S(A), S(B))$ is a weakly compact and convex pair of subsets in X. Then, there exists $\left(S\left(K_{1}\right), S\left(K_{2}\right)\right) \subseteq\left(S\left(A_{0}^{s}\right), S\left(B_{0}^{s}\right)\right) \subseteq(S(A), S(B))$ which is minimal with respect to being nonempty, closed, convex and T and S-invariant pair of subsets of $(S(A), S(B))$, such that

$$
\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)=\operatorname{dist}(S(A), S(B))
$$

Moreover, the pair $\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ is proximal.

Proof. The proof essentially goes in the same lines as in the proof of Theorem 2.6. We omit the details.

Theorem 4.2. Assume that (A, B) is a nonempty pair of subsets in a $B a$ nach space X with $W P N S$, and $T, S: A \cup B \rightarrow A \cup B$ is a pointwise cyclicnoncyclic relatively nonexpansive pair involving orbits such that $T(A) \subseteq S(B)$ and $T(B) \subseteq S(A)$. Suppose that $(S(A), S(B))$ is a weakly compact and convex pair of subsets in X. Then $(T ; S)$ has a coincidence quasi-best proximity point.

Proof. By Lemma 4.1, assume that $\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ is a minimal, weakly compact, convex and proximal pair which is T and S-invariant, and such that $\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)=\operatorname{dist}(S(A), S(B))$. Notice that

$$
\overline{\operatorname{con}}\left(T\left(S\left(K_{1}\right)\right)\right) \subseteq S\left(K_{2}\right)
$$

and so,

$$
T\left(\overline{\operatorname{con}}\left(T\left(S\left(K_{1}\right)\right)\right)\right) \subseteq T\left(S\left(K_{2}\right)\right) \subseteq \overline{\operatorname{con}}\left(T\left(S\left(K_{2}\right)\right)\right)
$$

Similarly,

$$
T\left(\overline{\operatorname{con}}\left(T\left(S\left(K_{2}\right)\right)\right)\right) \subseteq \overline{c o n}\left(T\left(S\left(K_{1}\right)\right)\right)
$$

that is, T is cyclic on $\overline{c o n}\left(T\left(S\left(K_{1}\right)\right)\right) \cup \overline{c o n}\left(T\left(S\left(K_{2}\right)\right)\right)$.
On other hand, S is noncyclic on $\overline{c o n}\left(S\left(S\left(K_{1}\right)\right)\right) \cup \overline{c o n}\left(S\left(S\left(K_{2}\right)\right)\right)$. The minimality of $\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ implies that

$$
\overline{\operatorname{con}}\left(T\left(S\left(K_{1}\right)\right)\right)=S\left(K_{2}\right) \quad \text { and } \quad \overline{c o n}\left(T\left(S\left(K_{2}\right)\right)\right)=S\left(K_{1}\right)
$$

Besides,

$$
\overline{\operatorname{con}}\left(S\left(S\left(K_{1}\right)\right)\right)=S\left(K_{1}\right) \quad \text { and } \quad \overline{c o n}\left(S\left(S\left(K_{2}\right)\right)\right)=S\left(K_{2}\right)
$$

We note that if $\delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)=\operatorname{dist}(S(A), S(B))$, then every point of $S\left(K_{1}\right) \cup S\left(K_{2}\right)$ is a coincidence quasi-best proximity point
of $(T ; S)$ and we are finished. Otherwise, since $(S(A), S(B))$ has WPNS, there exists a point $\left(x_{1}, y_{1}\right) \in K_{1} \times K_{2}$ and $c \in(0,1)$, so that

$$
\delta\left(S x_{1}, S\left(K_{2}\right)\right) \leq c \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right), \quad \delta\left(S y_{1}, S\left(K_{1}\right)\right) \leq c \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

Since $\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$ is a proximal pair, there exists $\left(x_{2}, y_{2}\right) \in K_{1} \times K_{2}$ such that

$$
\left\|S x_{1}-S y_{2}\right\|=\left\|S x_{2}-S y_{1}\right\|=\operatorname{dist}(S(A), S(B))
$$

Put $S u:=\frac{S x_{1}+S x_{2}}{2}$ and $S v:=\frac{S y_{1}+S y_{2}}{2}$. Then, $(S u, S v) \in S\left(K_{1}\right) \times S\left(K_{2}\right)$ and

$$
\|S u-S v\|=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

Moreover, for each $z \in K_{2}$, we have

$$
\begin{aligned}
\|S u-S z\| & =\left\|\frac{S x_{1}+S x_{2}}{2}-S z\right\| \\
& \leq \frac{1}{2}\left[\left\|S x_{1}-S z\right\|+\left\|S x_{2}-S z\right\|\right] \\
& \leq \frac{c+1}{2} \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
\end{aligned}
$$

Now, if $r:=\frac{c+1}{2}$, then $r \in(0,1)$ and $\delta\left(S u,\left(S\left(K_{2}\right)\right) \leq r \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right.$. Similarly, we can see that $\delta\left(S v,\left(S\left(K_{1}\right)\right) \leq r \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right.$. Assume that

$$
\begin{aligned}
& S\left(L_{1}\right)=\left\{S x \in S\left(K_{1}\right): \delta\left(S x, S\left(K_{2}\right)\right) \leq r \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right\} \\
& S\left(L_{2}\right)=\left\{S y \in S\left(K_{2}\right): \delta\left(S y, S\left(K_{1}\right)\right) \leq r \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right\}
\end{aligned}
$$

Thus, $(S u, S v) \in S\left(L_{1}\right) \times S\left(L_{2}\right)$ and so, $\operatorname{dist}\left(S\left(L_{1}\right), S\left(L_{2}\right)\right)=\operatorname{dist}\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$. Moreover, $\left(S\left(L_{1}\right), S\left(L_{2}\right)\right)$ is a weakly compact and convex pair in X. We show that T is cyclic on $S\left(L_{1}\right) \cup S\left(L_{2}\right)$. Suppose $S x \in S\left(L_{1}\right)$ and $S y \in S\left(K_{2}\right)$. Then, similar to proof of Theorem 2.6, $S x \in S\left(A_{0}^{s}\right)$ and $S y \in S\left(B_{0}^{s}\right)$; that is, $x \in A_{0}^{s}$ and $y \in B_{0}^{s}$. Thus,

$$
\|T(S x)-T(S y)\|=\operatorname{dist}(S(A), S(B)) \leq \delta\left(S x, S\left(K_{2}\right)\right) \leq r \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

So, $T(S y) \in B\left(T(S x) ; r \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right)$; that is,

$$
T\left(S\left(K_{2}\right)\right) \subseteq B\left(T(S x) ; r \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right)
$$

and

$$
S\left(K_{1}\right)=\overline{\operatorname{con}} T\left(S\left(K_{2}\right)\right) \subseteq B\left(T(S x) ; r \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)\right)
$$

Therefore, $\delta\left(T(S x), S\left(K_{1}\right)\right) \leq r \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)$; that is, $T(S x) \in S\left(L_{2}\right)$. Thus, $T\left(S\left(L_{1}\right)\right) \subseteq S\left(L_{2}\right)$. Similarly, $T\left(S\left(L_{2}\right)\right) \subseteq S\left(L_{1}\right), S\left(S\left(L_{1}\right)\right) \subseteq S\left(L_{1}\right)$ and $S\left(S\left(L_{2}\right)\right) \subseteq S\left(L_{2}\right)$. Hence, T is cyclic and S is noncyclic on $S\left(L_{1}\right) \cup S\left(L_{2}\right)$. The minimality of ($S\left(K_{1}\right), S\left(K_{2}\right)$) now implies that

$$
S\left(L_{1}\right)=S\left(K_{1}\right) \quad \text { and } \quad S\left(L_{2}\right)=S\left(K_{2}\right)
$$

Now, we have

$$
\delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)=\sup _{x \in K_{1}} \delta\left(S x, S\left(K_{2}\right)\right) \leq r \delta\left(S\left(K_{1}\right), S\left(K_{2}\right)\right)
$$

which is a contradiction.

5. Examples

We clarify the above results with some examples.
Example 5.1. Let $A=[-4,0]$ and $B=[0,4]$ be subsets of the uniformly convex Banach space $(\mathbb{R},|\cdot|)$. For any $x \in A \cup B$ we define

$$
T x=-\frac{1}{4} x, \quad S x=\frac{1}{2} x .
$$

Then,

$$
T(A)=[0,1] \subseteq[0,2]=S(B), \quad T(B)=[-1,0] \subseteq[-2,0]=S(A)
$$

Moreover, for any $(x, y) \in A \times B$, we define

$$
\alpha(x, y)=\left\{\begin{array}{lll}
0, & \text { if } & x=y \\
1, & \text { if } & x \neq y
\end{array}\right.
$$

If $(x, y) \in A \times B$ such that $\|x-y\|=\operatorname{dist}(S(A), S(B))=0$, then $x=y$ and

$$
\|T x-T y\|=\operatorname{dist}(S(A), S(B)), \quad\|S x-S y\|=\operatorname{dist}(S(A), S(B))
$$

Otherwise,

$$
\begin{aligned}
\|T x-T y\| & =\left\|\frac{1}{4} y-\frac{1}{4} x\right\|=\frac{1}{2}\left\|\frac{1}{2} y-\frac{1}{2} x\right\| \\
& =\frac{1}{2}\|S y-S x\|=\frac{1}{2}\|S x-S y\| \\
& \leq\|S x-S y\| \\
& =\alpha(x, y)\|S x-S y\|+(1-\alpha(x, y)) \max \left\{\delta_{x}\left[\mathcal{O}^{2}(y ; \infty)\right], \delta_{y}\left[\mathcal{O}^{2}(x ; \infty)\right]\right\} .
\end{aligned}
$$

Thus, $(T ; S)$ is a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits, and by Corollary 2.7 , there exists $(x, y) \in A \times B$ such that

$$
\|T x-S x\|=\operatorname{dist}(S(A), S(B)), \quad\|T y-S y\|=\operatorname{dist}(S(A), S(B))
$$

Example 5.2. Let $A=[-4,-1]$ and $B=[1,4]$ be subsets in $(\mathbb{R},|\cdot|)$. Let $K_{1}=[-4,-2], K_{2}=[2,4]$ and

$$
S x= \begin{cases}-\sqrt{-x}-2, & \text { if } \quad x \in A \backslash K_{1} \\ \sqrt{x}+2, & \text { if } \quad x \in B \backslash K_{2} \\ -3, & \text { if } \quad x \in K_{1} \\ 3, & \text { if } \quad x \in K_{2}\end{cases}
$$

Therefore, S is a noncyclic mapping. Moreover,

$$
S(A)=[-4,-3] \subseteq A, \quad S(B)=[3,4] \subseteq B
$$

So, $(S(A), S(B))$ is a closed, convex and bounded pair and we have

$$
\operatorname{dist}(S(A), S(B))=6
$$

Suppose that

$$
T x=\left\{\begin{array}{lc}
\sqrt{-x}+2, & \text { if } \quad x \in A \backslash K_{1} \\
-\sqrt{x}-2, & \text { if } \quad x \in B \backslash K_{2} \\
3, & \text { if } \quad x \in K_{1} \\
-3, & \text { if } \quad x \in K_{2}
\end{array}\right.
$$

Therefore, T is a cyclic mapping. Besides,

$$
T(A)=[3,4]=S(B) \subseteq B, \quad T(B)=[-4,-3]=S(A) \subseteq A
$$

Moreover, we suppose that for any $(x, y) \in A \times B$,

$$
\alpha(x, y)= \begin{cases}1, & \text { if }(x, y) \in\left(A \backslash K_{1}\right) \times\left(B \backslash K_{2}\right) \\ 0, & \text { otherwise }\end{cases}
$$

If $\|x-y\|=\operatorname{dist}(S(A), S(B))$, then $(x, y) \in K_{1} \times K_{2}$ and we have

$$
\|S x-S y\|=\|-3-3\|=6=\operatorname{dist}(S(A), S(B))
$$

and

$$
\|T x-T y\|=\|3-(-3)\|=6=\operatorname{dist}(S(A), S(B))
$$

Onherwise, for any $(x, y) \in\left(A \backslash K_{1}\right) \times\left(B \backslash K_{2}\right)$, we have

$$
\begin{aligned}
\|T x-T y\| & =\|\sqrt{-x}+2-(-\sqrt{y}-2)\| \\
& =\|\sqrt{-x}+\sqrt{y}+4\|=\|\sqrt{y}+2-(-\sqrt{-x}-2)\| \\
& =\|S y-S x\|=\|S x-S y\| \\
& \leq \alpha(x, y)\|S x-S y\|+(1-\alpha(x, y)) \max \left\{\delta_{x}[\mathcal{O}(y ; \infty)], \delta_{y}[\mathcal{O}(x ; \infty)]\right\}
\end{aligned}
$$

Thus, $(T ; S)$ is a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits, and by Corollary 2.7, there exists $(x, y) \in A \times B$ such that

$$
\|T x-S x\|=\operatorname{dist}(S(A), S(B)), \quad\|T y-S y\|=\operatorname{dist}(S(A), S(B))
$$

In fact, for any $(x, y) \in K_{1} \times K_{2}$, we have

$$
\|T x-S x\|=6=\operatorname{dist}(S(A), S(B)), \quad\|T y-S y\|=6=\operatorname{dist}(S(A), S(B))
$$

We clarify the above result with an example.
Example 5.3. Assume that $A=[-4,0]$ and $B=[0,4]$ are subsets of $(\mathbb{R},||$.$) .$
For any $x \in A \cup B$, we set

$$
T x=\frac{1}{4} x, \quad S x=\frac{1}{2} x .
$$

Then,

$$
T(A)=[-1,0] \subseteq[-2,0]=S(A), \quad T(B)=[0,1] \subseteq[0,2]=S(B)
$$

Moreover, we suppose that for any $(x, y) \in A \times B$,

$$
\alpha(x, y)= \begin{cases}0, & \text { if } \quad x=y \\ 1, & \text { if } \quad x \neq y\end{cases}
$$

If $(x, y) \in A \times B$ such that $\|x-y\|=\operatorname{dist}(S(A), S(B))=0$, then $x=y$ and

$$
\|T x-T y\|=\operatorname{dist}(S(A), S(B)), \quad\|S x-S y\|=\operatorname{dist}(S(A), S(B))
$$

Otherwise,

$$
\begin{aligned}
\|T x-T y\| & =\left\|\frac{1}{4} x-\frac{1}{4} y\right\|=\frac{1}{2}\left\|\frac{1}{2} x-\frac{1}{2} y\right\| \\
& =\frac{1}{2}\|S x-S y\| \\
& \leq\|S x-S y\| \\
& =\alpha(x, y)\|S x-S y\|+(1-\alpha(x, y)) \max \left\{\delta_{x}[\mathcal{O}(y ; \infty)], \delta_{y}[\mathcal{O}(x ; \infty)]\right\}
\end{aligned}
$$

Thus, $(T ; S)$ is a pointwise noncyclic-noncyclic relatively nonexpansive pair involving orbits, and by Corollary 3.3, there exists $\left(x_{0}, y_{0}\right) \in A \times B$ such that

$$
\left\|x_{0}-y_{0}\right\|=\operatorname{dist}(S(A), S(B))
$$

In fact, for $x_{0}=0$ and $y_{0}=0$, we have $T x_{0}=x_{0}, T y_{0}=y_{0}$ and

$$
\left\|x_{0}-y_{0}\right\|=\operatorname{dist}(S(A), S(B))
$$

Acknowledgements. The authors express their gratitude to colleagues at China Medical University for their sincere hospitality during the visit of China Medical University, Taichung, Taiwan.

References

[1] A. Abkar and M. Gabeleh, Best proximity points for cyclic mappings in ordered metric spaces, J. Optim. Theorey. Appl. 150 (2011), 188-193.
[2] A.Abkar and M. Norouzian, Coincidence quasi-best proximity points for quasi-cyclicnoncyclic mappings in convex metric spaces, Iranian Journal of Mathematical Sciences and Informatics, to appear.
[3] M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. 70 (2009), 3665-3671.
[4] M. S. Brodskii and D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk USSR 59 (1948), 837-840 (in Russian).
[5] M. De la Sen, Some results on fixed and best proximity points of multivalued cyclic self mappings with a partial order, Abst. Appl. Anal. 2013 (2013), Article ID 968492, 11 pages.
[6] M. De la Sen and R. P. Agarwal, Some fixed point-type results for a class of extended cyclic self mappings with a more general contractive condition, Fixed Point Theory Appl. 59 (2011), 14 pages.
[7] C. Di Bari, T. Suzuki and C. Verto, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal. 69 (2008), 3790-3794.
[8] A. A. Eldred, W. A. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math. 171 (2005), 283-293.
[9] R. Espinola, M. Gabeleh and P. Veeramani, On the structure of minimal sets of relatively nonexpansive mappings, Numer. Funct. Anal. Optim. 34 (2013), 845-860.
[10] A. F. Leon and M. Gabeleh, Best proximity pair theorems for noncyclic mappings in Banach and metric spaces, Fixed Point Theory 17 (2016), 63-84.
[11] M. Gabeleh, A characterization of proximal normal structure via proximal diametral sequences, J. Fixed Point Theory Appl. 19 (2017), 2909-2925.
[12] M. Gabeleh, O. Olela Otafudu and N. Shahzad, Coincidence best proximity points in convex metric spaces, Filomat 32 (2018), 1-12.
[13] M. Gabeleh, H. Lakzian and N.Shahzad, Best proximity points for asymptotic pointwise contractions, J. Nonlinear Convex Anal. 16 (2015), 83-93.
[14] E. Karapinar, Best proximity points of Kannan type cyclic weak ϕ-contractions in ordered metric spaces, An. St. Univ. Ovidius Constanta. 20 (2012), 51-64.
[15] H. Aydi, E. Karapinar, I. M. Erhan and P. Salimi, Best proximity points of generalized almost $-\psi$ Geraghty contractive non-self mappings, Fixed Point Theory Appl. 2014:32 (2014).
[16] N. Bilgili, E. Karapinar and K. Sadarangani, A generalization for the best proximity point of Geraghty-contractions, J. Ineqaul. Appl. 2013:286 (2013).
[17] E. Karapinar and I. M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci. 3, no. 3 (2011), 342-353.
[18] E. Karapinar, Fixed point theory for cyclic weak ϕ-contraction, Appl. Math. Lett. 24, no. 6 (2011), 822-825.
[19] E. Karapinar, G. Petrusel and K. Tas, Best proximity point theorems for KT-types cyclic orbital contraction mappings, Fixed Point Theory 13, no. 2 (2012), 537-546.
[20] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.
[21] W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), 851-862.
[22] U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 (2005), 89-128.
[23] V. Pragadeeswarar and M. Marudai, Best proximity points: approximation and optimization in partially ordered metric spaces, Optim. Lett. 7 (2013), 1883-1892.
[24] T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topological Methods in Nonlin. Anal. 8 (1996), 197-203.
[25] T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with to property UC, Nonlinear Anal. 71 (2009), 2918-2926.

