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Abstract

We investigate closed subsets (subsemigroups, resp.) of compact-like
topological spaces (semigroups, resp.). We show that each Hausdorff
topological space is a closed subspace of some Hausdorff ω-bounded
pracompact topological space and describe open dense subspaces of
countably pracompact topological spaces. We construct a pseudocom-
pact topological semigroup which contains the bicyclic monoid as a
closed subsemigroup. This example provides an affirmative answer to a
question posed by Banakh, Dimitrova, and Gutik in [4]. Also, we show
that the semigroup of ω×ω-matrix units cannot be embedded into a
Hausdorff topological semigroup whose space is weakly H-closed.
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1. Preliminaries

In this paper all topological spaces are assumed to be Hausdorff. By ω we
denote the first infinite cardinal. For ordinals α,β put α ≤ β, (α < β, resp.)
iff α ⊂ β (α ⊂ β and α ∕= β , resp.). By [α,β] ([α,β), (α,β], (α,β), resp.) we
denote the set of all ordinals γ such that α ≤ γ ≤ β (α ≤ γ < β, α < γ ≤ β,
α < γ < β, resp.). The cardinality of a set X is denoted by |X|.
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For a subset A of a topological space X by A we denote the closure of the
set A in X.

A family F of subsets of a set X is called a filter if it satisfies the following
conditions:

(1) ∅ /∈ F ;
(2) If A ∈ F and A ⊂ B then B ∈ F ;
(3) If A,B ∈ F then A ∩B ∈ F .

A family B is called a base of a filter F if for each element A ∈ F there exists
an element B ∈ B such that B ⊂ A. A filter on a topological space X is called
an ω-filter if it has a countable base. A filter F is called free if

!
F = ∅. A

filter on a topological space X is called open if it has a base which consists of
open subsets. A point x is called an accumulation point (θ-accumulation point,
resp.) of a filter F if for each open neighborhood U of x and for each F ∈ F
the set U ∩F (U ∩F , resp.) is non-empty. A topological space X is said to be

• compact, if each filter has an accumulation point;
• sequentially compact, if each sequence {xn}n∈ω of points of X has a
convergent subsequence;

• ω-bounded, if each countable subset of X has compact closure;
• totally countably compact, if each sequence of X contains a subsequence
with compact closure;

• countably compact, if each infinite subset A ⊆ X has an accumulation
point;

• ω-bounded pracompact, if there exists a dense subset D of X such that
each countable subset of the set D has compact closure in X;

• totally countably pracompact, if there exists a dense subset D of X
such that each sequence of points of the set D has a subsequence with
compact closure in X;

• countably pracompact, if there exists a dense subset D of X such that
every infinite subset A ⊆ D has an accumulation point in X;

• pseudocompact, if X is Tychonoff and each real-valued function on X
is bounded;

• H-closed, if each filter on X has a θ-accumulation point;
• feebly ω-bounded, if for each sequence {Un}n∈ω of non-empty open sub-
sets of X there is a compact subset K of X such that K ∩ Un ∕= ∅ for
each n ∈ ω;

• totally feebly compact, if for each sequence {Un}n∈ω of non-empty open
subsets of X there is a compact subset K of X such that K ∩ Un ∕= ∅
for infinitely many n ∈ ω;

• selectively feebly compact, if for each sequence {Un}n∈ω of non-empty
open subsets of X, for each n ∈ ω we can choose a point xn ∈ Un such
that the sequence {xn : n ∈ ω} has an accumulation point.

• feebly compact, if each open ω-filter on X has an accumulation point.

The interplay between some of the above properties is shown in the diagram
at page 3 in [13].
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Remark 1.1. H-closed topological spaces have few different equivalent defini-
tions. For a topological space X the following conditions are equivalent:

• X is H-closed;
• if X is a subspace of a Hausdorff topological space Y , then X is closed
in Y ;

• each open filter on X has an accumulation point;
• for each open cover F = {Fα}α∈A of X there exists a finite subset
B ⊂ A such that ∪α∈BFα = X.

H-closed topological spaces in terms of θ-accumulation points were investigated
in [7, 16, 17, 19, 21, 22, 28, 29]. Also observe that each H-closed space is feebly
compact.

In this paper we investigate closed subsets (subsemigroups, resp.) of compact-
like topological spaces (semigroups, resp.). We prove that each topological
space can be embedded as a closed subspace into an H-closed topological space.
However, the semigroup of ω×ω-matrix units cannot be embedded into a topo-
logical semigroup which is a weakly H-closed topological space. We show that
each topological space is a closed subspace of some ω-bounded pracompact
topological space and describe open dense subspaces of countably pracompact
topological spaces. Also, we construct a pseudocompact topological semigroup
which contains the bicyclic monoid as a closed subsemigroup, providing a pos-
itive solution of [4, Problem 7.2].

2. Closed subspaces of compact-like topological spaces

The productivity of compact-like properties is a known topic in general topol-
ogy. According to Tychonoff’s theorem, a (Tychonoff) product of a family of
compact spaces is compact, On the other hand, there are two countably com-
pact spaces whose product is not feebly compact (see [10], the paragraph before
Theorem 3.10.16). The product of a countable family of sequentially compact
spaces is sequentially compact [10, Theorem 3.10.35]. But already the Cantor
cube Dc is not sequentially compact (see [10], the paragraph after Example
3.10.38). On the other hand some compact-like properties are also preserved
by products, see [27, § 3-4] (especially Theorem 3.3, Proposition 3,4, Example
3.15, Theorem 4.7, and Example 4.15), [26, § 5], and [13, Sec. 2.3].

Proposition 2.1. A product of any family of feebly ω-bounded spaces is feebly
ω-bounded.

Proof. Let X =
"
{Xα : α ∈ A} be a product of a family of feebly ω-bounded

spaces and let {Un}n∈ω be a family of non-empty open subsets of the space
X. For each n ∈ ω let Vn be a basic open set in X which is contained in
Un. For each n ∈ ω and α ∈ A let Vn,α = πα(Vn) where by πα we denote the
projection on Xα. For each α ∈ A there exists a compact subset Kα of Xα,
intersecting each Vn,α. Then the set K =

"
{Kα : α ∈ A} is a compact subset

of X intersecting each Vn ⊂ Un. □
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A non-productive compact-like properties still can be preserved by products
with more strong compact-like spaces. For instance, a product of a countably
compact space and a countably compact k-space or a sequentially compact
space is countably compact, and a product of a pseudocompact space and a
pseudocompact k-space or a sequentially compact Tychonoff space is pseudo-
compact (see [10, Sec. 3.10]).

Proposition 2.2. A product X × Y of a countably pracompact space X and a
totally countably pracompact space Y is countably pracompact.

Proof. Let D be a dense subset of X such that each infinite subset of D has an
accumulation point in X and F be a dense subset of Y such that each sequence
of points of the set F has a subsequence contained in a compact set. Then
D×F is a dense subset of X×Y . So to prove that the space X×Y is countably
pracompact it suffices to show that each sequence {(xn, yn)}n∈ω of points of
D×F has an accumulation point. Taking a subsequence, if needed, we can
assume that a sequence {yn}n∈ω is contained in a compact set K. Let x ∈ X
be an accumulation point of a sequence {xn}n∈ω and B(x) be the family of

neighborhoods of the point x. For each U ∈ B(x) put YU = {yn | xn ∈ U}.
Then {YU | U ∈ B(x)} is a centered family of closed subsets of a compact
space K, so there exists a point y ∈

!
{YU | U ∈ B(x)}. Clearly, (x, y) is an

accumulation point of the sequence {(xn, yn)}n∈ω. □

Proposition 2.3. A product X × Y of a selectively feebly compact space X
and a totally feebly compact space Y is selectively feebly compact.

Proof. Let {Un}n∈ω be a sequence of open subsets of X×Y . For each n ∈ ω
pick a non-empty open subsets U1

n of X and U2
n of Y such that U1

n×U2
n ⊂ Un.

Taking a subsequence, if needed, we can assume that that there exists a compact
subset K of the space Y intersecting each set U2

n, n ∈ ω. Since X is selectively
feebly compact, for each n ∈ ω we can choose a point xn ∈ U1

n such that a
sequence {xn}n∈ω has an accumulation point x ∈ X. For each n ∈ ω pick a
point yn ∈ U2

n ∩K. Then (xn, yn) ∈ U1
n×U2

n ⊂ Un. Let B(x) be the family of

neighborhoods of the point x in X. For each U ∈ B(x) put YU = {yn | xn ∈ U}.
Then {YU | U ∈ B(x)} is a centered family of closed subsets of the compact
space K, so there exists a point y ∈

!
{YU | U ∈ B(x)}. Clearly, (x, y) is an

accumulation point of the sequence {(xn, yn)}n∈ω. □

An extension of a space X is a Hausdorff space Y containing X as a dense
subspace. Extensions of topological spaces were investigated in [8, 18, 23, 24,
25]. A class C of spaces is called extension closed provided each extension
of each space of C belongs to C. If Y is a space, a class C of spaces is Y -
productive provided X×Y ∈ C for each space X ∈ C. It is well-known or
easy to check that each of the following classes of spaces is extension closed:
countably pracompact, ω-bounded pracompact, totally countably pracompact,
feebly compact, selectively feebly compact, and feebly ω-bounded. Since [0,ω1)
endowed with the order topology is ω-bounded and sequentially compact, each
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of these classes is [0,ω1)-productive by Proposition 2.2, [13, Proposition 3],
[13, Proposition 2], [9, Lemma 4.2], Proposition 2.3, and Proposition 2.1,
respectively.

Next we introduce a construction which helps us to construct a pseudo-
compact topological semigroup which contains the bicyclic monoid as a closed
subsemigroup providing a positive answer to [4, Problem 7.2].

Let X and Y be topological spaces such that there exists a continuous in-

jection f : X → Y . Then by Ef
Y (X) we denote the subset [0,ω1]×Y \ {(ω1, y) |

y ∈ Y \ f(X)} of a product [0,ω1]×Y endowed with a topology τ which is
defined as follows. A subset U ⊂ EY (X) is open if it satisfies the following
conditions:

• for each α < ω1, if (α, y) ∈ U then there exist β < α and an open
neighborhood Vy of y in Y such that (β,α]×Vy ⊂ U ;

• if (ω1, f(x)) ∈ U then there exist α < ω1, an open neighborhood Vf(x)

of f(x) in Y and an open neighborhood Wx of x in X, such that
f(Wx) ⊂ Vf(x) and (α,ω1)×Vf(x) ∪ {ω1}×f(Wx) ⊂ U .

Remark that {ω1}×f(X) is a closed subset of Ef
Y (X) homeomorphic to X.

Proposition 2.4. Let X be a topological space which admits a continuous
injection f into a space Y and C be any extension closed, [0,ω1)-productive

class of spaces. If Y ∈ C then Ef
Y (X) ∈ C.

Proof. Let Y ∈ C. Since C is [0,ω1)-productive, [0,ω1) × Y ∈ C. A space

Ef
Y (X) is an extension of the space [0,ω1)× Y providing that Ef

Y (X) ∈ C. □

If a space X is a subspace of a topological space Y and id is the identity
embedding of X into Y , then by EY (X) we denote the space Eid

Y (X). It is easy
to see that EY (X) is a subspace of a product [0,ω1]×Y which implies that if
Y is Tychonoff then so is EY (X).

Proposition 2.5. Let X be a subspace of a pseudocompact space Y . Then
EY (X) is pseudocompact and contains a closed copy of X.

Proof. The argument above implies that EY (X) is Tychonoff. Fix any con-
tinuous real valued function f on EY (X). Observe that the dense subspace
[0,ω1)×Y of EY (X) is pseudocompact. Then the restriction of f on the subset
[0,ω1)×Y is bounded, i.e., there exist reals a, b such that f([0,ω1)×Y ) ⊂ [a, b].
Then f−1[a, b] is closed in EY (X) and contains the dense subset [0,ω1) × Y
witnessing that f−1[a, b] = EY (X). Hence the space EY (X) is pseudocom-
pact. □

Embeddings into countable compact and ω-bounded topological spaces were
investigated in [2, 3].

A family A of countable subsets of a set X is called almost disjoint if for
each A,B ∈ A the set A ∩ B is finite. Given a property P , an almost disjoint
family A is called P -maximal if each element of A has the property P and for
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each countable subset F ⊂ X which has the property P there exists A ∈ A
such that the set A ∩ F is infinite.

Let F be a family of closed subsets of a topological space X. The topological
space X is called

• F-regular, if for any set F ∈ F and point x ∈ X \F there exist disjoint
open sets U, V ⊂ X such that F ⊂ U and x ∈ V ;

• F-normal, if for any disjoint sets A,B ∈ F there exist disjoint open
sets U, V ⊂ X such that A ⊂ U and B ⊂ V .

Given a topological space X, by Dω we denote the family of countable closed
discrete subsets of X. We say that a subset A of X satisfies a property Dω iff
A ∈ Dω.

Theorem 2.6. Each Dω-regular topological space X can be embedded as an
open dense subset into a Hausdorff countably pracompact topological space.

Proof. By Zorn’s Lemma, there exists a Dω-maximal almost disjoint family A
in X. Let Y = X ∪A. We endow Y with the topology τ defined as follows. A
subset U ⊂ Y belongs to τ iff it satisfies the following conditions:

• if x ∈ U ∩X, then there exists an open neighborhood V of x in X such
that V ⊂ U ;

• if A ∈ U ∩ A, then there exists a cofinite subset A
′ ⊂ A and an open

set V in X such that A
′ ⊂ V ⊂ U .

Observe that X is an open dense subset of Y and A is a discrete and closed
subspace of Y . Since X is Dω-regular for each distinct points x ∈ X and y ∈ Y
there exist disjoint open neighborhoods Ux and Uy in Y . By Proposition 2.1
from [2], each Dω-regular topological space is Dω-normal. Fix any distinct

A,B ∈ A. Put A
′
= A \ (A ∩B) and B

′
= B \ (A ∩B). By the Dω-normality

of X, there exist disjoint open neighborhoods UA′ and UB′ of A
′
and B

′
,

respectively. Then the sets UA = {A} ∪ UA′ and UB = {B} ∪ UB′ are disjoint
open neighborhoods of A and B, respectively, in Y . Hence the space Y is
Hausdorff.

Observe that the maximality of the family A implies that there exists no
countable discrete subset D ⊂ X which is closed in Y . Hence each infinite
subset A in X has an accumulation point in Y , that is, Y is countably pracom-
pact. □

However, there exists a Hausdorff topological space which cannot be embed-
ded as a dense open subset into any Hausdorff countably pracompact topolog-
ical space.

Example 2.7. Let τ be the usual topology on the real line R and C = {A ⊂
R : |R\A| ≤ ω}. By τ∗ we denote the topology on R which is generated by the
subbase τ ∪ C. Obviously, the space R∗ = (R, τ∗) is Hausdorff. We claim that
R∗ cannot be embedded as a dense open subset into any Hausdorff countably
pracompact topological space. Assuming the contrary, let X be a Hausdorff
countably pracompact topological space which contains R∗ as a dense open
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subspace. Since X is countably pracompact there exists a dense subset Y of
X such that each infinite subset of Y has an accumulation point in X. Since
R∗ is open and dense in X the set Z = R∗ ∩ Y is dense in X. Moreover, it is
dense in (R, τ). Fix any point z ∈ Z and a sequence {zn}n∈ω of distinct points
of Z \ {z} converging to z in (R, τ). Since Z is dense in (R, τ) such a sequence
exists. Observe that {zn}n∈ω is closed and discrete in R∗. So, its accumulation
point x belongs to X \ R∗. Note that for each open neighborhood U of z in
R∗ all but finitely many zn belongs to the closure of U . Hence x ∈ U for each
open neighborhood U of z which contradicts to the Hausdorffness of X.

Theorem 2.8. Each topological space can be embedded as a closed subset into
a Hausdorff ω-bounded pracompact topological space.

Proof. Let X be a topological space. By Xd we denote the set X endowed
with a discrete topology. Let X∗ be the one point compactification of the
space Xd. The unique non-isolated point of X∗ is denoted by ∞. Put Y =
[0,ω1]×X∗ \ {(ω1,∞)}. We endow Y with a topology τ defined as follows. A
subset U is open in (Y, τ) if it satisfies the following conditions:

• if (α,∞) ∈ U , then there exist β < α and a cofinite subset A of X∗

which contains ∞ such that (β,α]×A ⊂ U ;
• if (ω1, x) ∈ U , then there exist α < ω1 and an open (in X) neighbor-
hood V of x such that (α,ω1]×V ⊂ U .

It is easy to check that the space (Y, τ) is Hausdorff. Observe that the subset
[0,ω1)×X∗ ⊂ Y is open, dense and ω-bounded. Hence Y is ω-bounded pracom-
pact. Finally, note that the subset {ω1}×X ⊂ Y is closed and homeomorphic
to X. □

Next we introduce a construction which helps us to prove that any space
can be embedded as a closed subspace into an H-closed topological space.

Denote the subspace {1 − 1/n | n ∈ N} ∪ {1} of the real line by J . Let
X be a dense open subset of a topological space Y . By Z we denote the set
(J×Y )\{(t, y) | y ∈ Y \X and t > 0}. By HY (X) we denote the set Z endowed
with a topology defined as follows. A subset U ⊂ Z is open in HY (X) if it
satisfies the following conditions:

• for each x ∈ X if (t, x) ∈ U , then there exist open neighborhoods Vt of
t in J and Vx of x in X such that Vt×Vx ⊂ U ;

• for each y ∈ Y \X if (0, y) ∈ U , then there exists an open neighborhood
Vy of y in Y such that {0}×(Vy \X) ∪ (J \ {1})×(Vy ∩X) ⊂ U .

Obviously, the space HY (X) is Hausdorff and the subset {(1, x) | x ∈ X} ⊂
HY (X) is closed and homeomorphic to X.

Proposition 2.9. If Y is an H-closed topological space, then HY (X) is H-
closed.

Proof. Fix an arbitrary filter F on HY (X). One of the following three cases
holds:
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(1) there exists t ∈ J \ {1} such that for each F ∈ F there exists y ∈ Y
such that (t, y) ∈ F ;

(2) for each F ∈ F there exists x ∈ X such that (1, x) ∈ F ;
(3) for every t ∈ J there exists F ∈ F such that (t, y) /∈ F for each y ∈ Y .

Consider case (1). For each F ∈ F put Ft = F ∩ ({t}×X ∪ {0}×(Y \X)).
Clearly, a family Ft = {Ft | F ∈ F} is a filter on {t}×X∪{0}×(Y \X). Observe
that for each t ∈ J \ {1} the subspace {t}×X ∪ {0}×(Y \X) is homeomorphic
to Y and hence is H-closed. Then there exists a θ-accumulation point z ∈
{t}×X ∪ {0}×(Y \X) of the filter Ft. Obviously, z is a θ-accumulation point
of the filter F .

Consider case (2). For each F ∈ F put F0 = {(0, x) | (1, x) ∈ F}. Clearly,
the family F0 = {F0 | F ∈ F} is a filter on the H-closed space {0}×Y . Hence
there exists y ∈ Y such that (0, y) is a θ-accumulation point of the filter F0. If
y ∈ X, then (1, y) is a θ-accumulation point of the filter F . If y ∈ Y \X, then we
claim that (0, y) is a θ-accumulation point of the filter F . Indeed, let U be any
open neighborhood of the point (y, 0). There exists an open neighborhood Vy of
y in Y such that V = {0}×(Vy\X)∪(J \{1})×(Vy∩X) ⊂ U . Since (0, y) is a θ-

accumulation point of the filter F0, V ∩F0 ∕= ∅ for each F0 ∈ F0. Fix any F ∈ F
and (0, z) ∈ V ∩F0. The definition of the topology onHY (X) yields that the set

{(t, z) | t ∈ J \ {1}} is contained in V . Then (1, z) ∈ {(t, z) | t ∈ J \ {1}} ⊂ V .
Hence for each F ∈ F the set U ∩ F is non-empty providing that (0, y) is a
θ-accumulation point of the filter F .

Consider case (3). For each F ∈ F denote

F ∗ = {(0, x) | there exists t ∈ I such that (t, x) ∈ F}.
Let (0, y) be a θ-accumulation point of the filter F∗ = {F ∗ | F ∈ F}.

If y ∈ X, then we claim that (1, y) is a θ-accumulation point of the filter
F . Indeed fix any F ∈ F and an open neighborhood V of (1, y). Then there
exist a positive integer n and an open neighborhood U of y in X such that
{t ∈ J | t > 1−1/n}×U ⊂ V . By the assumption, there exist sets F0, . . . , Fn ∈
F such that Fi ∩ {(1 − 1/i, x) | x ∈ Y } = ∅ for every i ≤ n. Then the set
H = ∩i≤nFi ∩ F belongs to F and for each (t, x) ∈ H, t > 1 − 1/n. Since

(0, y) is a θ-accumulation point of the filter F∗ the set {0}× U ∩ H∗ is non-

empty. Fix any (0, x) ∈ {0}× U ∩ H∗. Then there exists k > n such that
(1 − 1/k, x) ∈ H ⊂ F . The definition of the topology of HY (X) implies that
(1 − 1/k, x) ∈ V ∩ H ⊂ V ∩ F which implies that (1, y) is a θ-accumulation
point of the filter F .

If y ∈ Y \ X, then even more simple arguments show that (0, y) is a θ-
accumulation point of the filter F .

Hence the space HY (X) is H-closed. □
Theorem 2.10. For any Hausdorff topological space X there exists an H-closed
space Z which contains X as a closed subspace.

Proof. For each Hausdorff topological space X there exists an H-closed space
Y which contains X as a dense open subspace (see [10, Problem 3.12.6]). By
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Proposition 2.9, the space HY (X) is H-closed. It remains to note that the set
{(1, x) | x ∈ X} ⊂ HY (X) is closed and homeomorphic to X. □

3. Applications for topological semigroups

A set endowed with an associative binary operation is called a semigroup.
A semigroup S is called an inverse semigroup, if for each element a ∈ S there
exists a unique element a−1 ∈ S such that aa−1a = a and a−1aa−1 = a−1.
The map which associates every element of an inverse semigroup to its inverse
is called an inversion.

A topological (inverse) semigroup is a Hausdorff topological space endowed
with a continuous semigroup operation (and a continuous inversion, resp.). In
this case the topology of the space is called (inverse, resp.) semigroup topology.
A semitopological semigroup is a Hausdorff topological space endowed with a
separately continuous semigroup operation. It this case the topology of the
space is called shift-continuous.

Let X be a non-empty set. By BX we denote the set X×X ∪ {0} where
0 /∈ X×X endowed with the following semigroup operation:

(a, b) · (c, d) =
#

(a, d), if b = c;
0, if b ∕= c,

and (a, b) · 0 = 0 · (a, b) = 0 · 0 = 0, for each a, b, c, d ∈ X.

The semigroup BX is called the semigroup of X×X-matrix units. Observe that
semigroups BX and BY are isomorphic iff |X| = |Y |.

If a set X is infinite then the semigroup of X×X-matrix units cannot be
embedded into a compact topological semigroup (see [11, Theorem 3]). In
[12, Theorem 5] this result was generalized for countably compact topological
semigroups. Moreover, in [6, Theorem 4.4] it was shown that for an infinite
set X the semigroup BX cannot be embedded densely into a feebly compact
topological semigroup.

A bicyclic monoid C(p, q) is the semigroup with the identity 1 generated by
two elements p and q subject to the condition pq = 1. The bicyclic monoid is
isomorphic to the set ω×ω endowed with the following semigroup operation:

(a, b) · (c, d) =
#

(a+ c− b, d), if b ≤ c;
(a, d+ b− c), if b > c.

Neither stable nor Γ-compact topological semigroups can contain a copy
of the bicyclic monoid (see [1, 15]). In [14] it was proved that the bicyclic
monoid does not embed into a countably compact topological inverse semi-
group. Also, a topological semigroup with a feebly compact square cannot
contain the bicyclic monoid [4]. On the other hand, in [4, Theorem 6.1] it was
proved that there exists a Tychonoff countably pracompact topological semi-
group S densely containing the bicyclic monoid. Moreover, under Martin’s Ax-
iom the semigroup S is countably compact (see [4, Theorem 6.6 and Corollary
6.7]). However, it is still unknown whether there exists under ZFC a countably
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compact topological semigroup containing the bicyclic monoid (see [4, Problem
7.1]). Also, in [4] the following problem was posed:

Problem 3.1 ([4, Problem 7.2]). Is there a pseudocompact topological semi-
group S that contains a closed copy of the bicyclic monoid?

Embeddings of semigroups which are generalizations of the bicyclic monoid
into compact-like topological semigroups were investigated in [5, 6]. Namely,
in [6] it was proved that for each cardinal λ > 1 a polycyclic monoid Pλ does not
embed as a dense subsemigroup into a feebly compact topological semigroup.
In [5] embeddings of graph inverse semigroups into CLP-compact topological
semigroups were described.

Observe that the space [0,ω1] endowed with a semigroup operation of taking
minimum becomes a topological semilattice and therefore a topological inverse
semigroup.

Lemma 3.2. Let X and Y be semitopological (topological, topological inverse,
resp.) semigroups such that there exists a continuous injective homomorphism

f : X → Y . Then Ef
Y (X) is a semitopological (topological, topological inverse,

resp.) semigroup with respect to the semigroup operation inherited from a direct
product of semigroups (ω1,min) and Y .

Proof. We prove this lemma for the case of topological semigroups X and Y .

Proofs in other cases are similar. Fix any elements (α, x), (β, y) of Ef
Y (X).

Also, assume that β ≤ α. In the other case the proof will be similar. Fix
any open neighborhood U of (β, xy) = (α, x) · (β, y). There are three cases to
consider:

(1) β ≤ α < ω1;
(2) β < α = ω1;
(3) α = β = ω1.

In case (1) there exist γ < β and an open neighborhood Vxy of xy in Y such
that (γ,β]×Vxy ⊂ U . Since Y is a topological semigroup there exist open
neighborhoods Vx and Vy of x and y, respectively, such that Vx ·Vy ⊂ Vxy. Put
U(α,x) = (γ,α]×Vx and U(β,y) = (γ,β]×Vy. It is easy to check that U(α,x) ·
U(β,y) ⊂ (γ,β]×Vxy ⊂ U .

Consider case (2). Similarly as in case (1) there exist an ordinal γ < β
and open neighborhoods Vx, Vy and Vxy of x, y and xy, respectively, such that
(γ,β]×Vxy ⊂ U and Vx · Vy ⊂ Vxy. Since the map f is continuous there exists
an open neighborhood Vf−1(x) of f

−1(x) in X such that f(Vf−1(x)) ⊂ Vx. Put
U(ω1,x) = (β,ω1)×Vx ∪ {ω1}×f(Vf−1(x)) and U(β,y) = (γ,β]×Vy. It is easy to
check that U(ω1,x) · U(β,y) ⊂ (γ,β]×Vxy ⊂ U .

Consider case (3). There exist ordinal γ < ω1, an open neighborhood Vxy

of xy in Y and an open neighborhood Wf−1(xy) of f−1(xy) in X such that
(γ,ω1)×Vxy ∪ {ω1}×f(Wf−1(xy)) ⊂ U.

Since Y is a topological semigroup there exist open (in Y ) neighborhoods
Vx and Vy of x and y, respectively, such that Vx · Vy ⊂ Vxy. Since the map
f is continuous and X is a topological semigroup there exist open (in X)
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neighborhoods Wf−1(x) and Wf−1(y) of f−1(x) and f−1(y), respectively, such
that Wf−1(x) · Wf−1(y) ⊂ Wf−1(xy), f(Wf−1(x)) ⊂ Vx and f(Wf−1(y)) ⊂ Vy.
Put U(ω1,x) = (γ,ω1)×Vx ∪ {ω1}×f(Wf−1(x)) and U(ω1,y) = (γ,ω1)×Vy ∪
{ω1}×f(Wf−1(y)). It is easy to check that U(ω1,x) · U(ω1,y) ⊂ U .

Hence the semigroup operation in Ef
Y (X, τX) is continuous. □

Remark 3.3. The subsemigroup {(ω1, f(x)) | x ∈ X} ⊂ Ef
Y (X) is closed and

topologically isomorphic to X.

Proposition 2.4, Lemma 3.2 and Remark 3.3 imply the following:

Proposition 3.4. Let X be a (semi)topological semigroup which admits a con-
tinuous injective homomorphism f into a (semi)topological semigroup Y and
C be any [0,ω1)-productive, extension closed class of spaces. If Y ∈ C then

the (semi)topological semigroup Ef
Y (X) ∈ C and contains a closed copy of a

(semi)topological semigroup X.

Proposition 2.5, Lemma 3.2 and Remark 3.3 imply the following:

Proposition 3.5. Let X be a subsemigroup of a pseudocompact (semi)topologi-
cal semigroup Y . Then the (semi)topological semigroup EY (X) is pseudocom-
pact and contains a closed copy of the (semi)topological semigroup X.

By [4, Theorem 6.1], there exists a Tychonoff countably pracompact (and
hence pseudocompact) topological semigroup S containing densely the bicyclic
monoid. Hence Proposition 3.5 implies the following corollary which gives an
affirmative answer to Problem 3.1.

Corollary 3.6. There exists a pseudocompact topological semigroup which con-
tains a closed copy of the bicyclic monoid.

Further we will need the following definitions. A subset A of a topological
space is called θ-closed if for each element x ∈ X \ A there exists an open
neighborhood U of x such that U ∩A = ∅. Observe that if a topological space
X is regular then each closed subset A of X is θ-closed. A topological space
X is called weakly H-closed if each ω-filter F has a θ-accumulation point in
X. Generalizations of H-closed spaces were investigated by Osipov in [19, 20].
Obviously, for a topological space X the following implications hold: X is H-
closed ⇒ X is weakly H-closed ⇒ X is feebly compact. Neither of the above
implications can be inverted. Indeed, an arbitrary pseudocompact but not
countably compact space will be an example of feebly compact space which is
not weakly H-closed. The space [0,ω1) with an order topology is an example
of weakly H-closed but not H-closed space.

The following theorem shows that Theorem 2.10 cannot be generalized for
topological semigroups.

Theorem 3.7. The semigroup Bω of ω×ω-matrix units does not embed into a
weakly H-closed topological semigroup.

c© AGT, UPV, 2020 Appl. Gen. Topol. 21, no. 2 211



S. Bardyla and A. Ravsky

Proof. Suppose to the contrary that Bω is a subsemigroup of a weakly H-closed
topological semigroup S. By E(Bω) we denote the semilattice of idempotents
of Bω. Observe that E(Bω) = {(n, n) | n ∈ ω} ∪ {0} and a · b = 0 for each
distinct elements a, b ∈ E(Bω). Let F be an arbitrary free ω-filter on the set
{(n, n) | n ∈ ω}. Since S is weakly H-closed, there exists a θ-accumulation
point s ∈ S of the filter F . Fix any open neighborhood Up of the point
p = s · s. The continuity of the semigroup operation in S yields an open
neighborhood Vs of s such that Vs · Vs ⊂ Up. Since s is a θ-accumulation point

of the filter F there exist distinct elements (n, n), (m,m) ∈ Vs ∩E(Bω). Hence
0 = (n, n) · (m,m) ∈ Vs · Vs ⊂ Up which implies that 0 ∈ Up for each open
neighborhood Up of p witnessing that p = 0.

We claim that 0 is a θ-accumulation point of the filter F . Indeed, fix any
open neighborhood U of 0. Since s · s = 0 and S is a topological semigroup
there exists an open neighborhood Vs of s such that Vs · Vs ⊂ U . Observe
that (n, n) = (n, n) · (n, n) ∈ Vs · Vs ⊂ U for each (n, n) ∈ Vs. Hence 0 is a
θ-accumulation point of the filter F . Since the filter F was selected arbitrarily
we have that 0 is a θ-accumulation point of any free ω-filter on the set {(n, n) |
n ∈ ω}.

Thus for each open neighborhood U of 0 the set AU = {(n | (n, n) /∈ U} is
finite, because if there exists an open neighborhood U of 0 such that the set
AU is infinite, then 0 is not a θ-accumulation point of the ω-filter F which has
a base consisting of cofinite subsets of AU .

Let F be an arbitrary free ω-filter on the set {(1, n) | n ∈ ω}. Since S is
weakly H-closed there exists a θ-accumulation point s ∈ S of the filter F .

We claim that s · 0 = 0. Indeed, fix any open neighborhood W of s · 0. The
continuity of the semigroup operation in S yields open neighborhoods Vs of s
and V0 of 0 such that Vs ·V0 ⊂ W . Since the set AV0

= {(n | (n, n) /∈ V0} is finite
and s is a θ-accumulation point of the filter F there exist distinct n,m ∈ ω
such that (1, n) ∈ Vs and (m,m) ∈ V0. Then 0 = (1, n) · (m,m) ∈ Vs · V0 ⊂ W .
Hence 0 ∈ W for each open neighborhood W of s · 0 witnessing that s · 0 = 0.

Fix an arbitrary open neighborhood U of 0. Since s · 0 = 0 and S is a
topological semigroup, there exist open neighborhoods Vs of s and V0 of 0
such that Vs · V0 ⊂ U . Recall that the set {n | (n, n) /∈ V0} is finite. Then
(1, n) = (1, n)·(n, n) ∈ Vs ·V0 ⊂ U for all but finitely many elements (1, n) ∈ Vs.
Hence 0 is a θ-accumulation point of the ω-filter F . Since the filter F was
selected arbitrarily, 0 is a θ-accumulation point of any free ω-filter on the set
{(1, n) | n ∈ ω}. As a consequence, for each open neighborhood U of 0 the set
BU = {n | (1, n) /∈ U} is finite.

Similarly it can be shown that for each open neighborhood U of 0 the set
CU = {n | (n, 1) /∈ U} is finite.

Fix an open neighborhood U of 0 such that (1, 1) /∈ U . Since 0 = 0 · 0
the continuity of the semigroup operation implies that there exists an open
neighborhood V of 0 such that V · V ⊂ U . The finiteness of the sets BV

c© AGT, UPV, 2020 Appl. Gen. Topol. 21, no. 2 212



Closed subsets of compact-like topological spaces

and CV implies that there exists n ∈ ω such that {(1, n), (n, 1)} ⊂ V . Hence
(1, 1) = (1, n) · (n, 1) ∈ V · V ⊂ U , which contradicts to the choice of U . □

Corollary 3.8. The semigroup of ω×ω-matrix units does not embed into a
topological semigroup S whose space is H-closed.

However, we have the following questions:

Problem 3.9. Does there exist a feebly compact topological semigroup S which
contains the semigroup of ω×ω-matrix units?

Problem 3.10. Does there exist a topological semigroup S which cannot be
embedded into a feebly compact topological semigroup T?

We remark that these questions were posed at the Lviv Topological Algebra
Seminar a few years ago.
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