
Universitat Politècnica de València
Departamento de Sistemas Informáticos y Computación

Improving Urban Mobility with Game
Theory Techniques

MASTER’S DEGREE FINAL WORK

Master’s Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

Author: Martí Gimeno, Pasqual

Tutor: Julián Inglada, Vicente Javier
Jordán Prunera, Jaume Magí

Course 2019-2020

Resum
La millora del trànsit urbà cobra cada vegada més rellevància a mesura que la

població de les ciutats augmenta. Al nostre treball fem ús de SimFleet, un simu-
lador multiagent de flotes urbanes, per a estudiar l’optimització del trànsit urbà.
Per a trobar solucions pràctiques a aquest problema, utilitzem agents racionals
autointeressats que aconsegueixen simulacions més realistes. Per a la coordina-
ció dels agents, dissenyem i implementem un mètode basat en teoria de jocs que
obté un equilibri; una solució de la qual cap agent està incentivat a desviar-se. A
més, ampliem les funcionalitats de SimFleet implementant diversos mòduls que
faciliten la creació d’escenaris de simulació complexos i introdueixen un nou ti-
pus de flota urbana, fent-lo així un simulador més complet.

Paraules clau: Mobilitat urbana, Teoria de Jocs, Sistema multiagent, Planificació,
Simulació, SimFleet

Resumen
La mejora del tráfico urbano cobra cada vez más relevancia a medida que la

población de las ciudades aumenta. En nuestro trabajo hacemos uso de SimFleet,
un simulador multiagente de flotas urbanas, para estudiar la optimización del
tráfico urbano. Para encontrar soluciones prácticas a dicho problema, utilizamos
agentes racionales autointeresados que consiguen simulaciones más realistas. Pa-
ra la coordinación de los agentes, diseñamos e implementamos un método basa-
do en teoría de juegos que obtiene un equilibrio; una solución de la que ningún
agente está incentivado a desviarse. Además, ampliamos las funcionalidades de
SimFleet implementando diversos módulos que facilitan la creación de escenarios
de simulación complejos e introducen un nuevo tipo de flota urbana, haciéndolo
así un simulador más completo.

Palabras clave: Movilidad urbana, Teoría de Juegos, Sistema multiagente, Plani-
ficación, Simulación, SimFleet

Abstract
The improvement of urban traffic is increasingly relevant as the population in

cities increases. In our work we use SimFleet, a multi-agent urban fleet simulator,
to study the optimization of urban traffic. Aiming to find practical solutions to
this problem, we introduce rational self-interested agents which achieve more re-
alistic simulations. For the coordination of the agents, we design and implement a
method based on game theory that obtains an equilibrium; a solution from which
no agent is incentivized to deviate. Besides, we broaden SimFleet’s functionalities
by implementing several modules which ease the creation of complex simulation
scenarios and introduce a new type of urban fleet, making it a more complete
simulator.

Key words: Urban mobility, Game Theory, Multiagent system, Planning, Simu-
lation, SimFleet

iii

Contents

Contents v
List of Figures vii
List of Tables vii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Document structure . 4

2 State of the Art 7
2.1 Preliminaries . 7

2.1.1 Intelligent Agents and Multi-Agent Systems 7
2.1.2 Multi-Agent Simulation . 8
2.1.3 SimFleet . 9

2.2 Related work . 10
2.2.1 Classical Single-Agent Planning 10
2.2.2 Multi-Agent Planning . 11
2.2.3 Game-theoretic Planning proposals 11

3 Proposal 15
3.1 Load Generators . 16
3.2 Free-floating Carsharing System . 16
3.3 Best-Response Planning Strategy . 17
3.4 Overview . 18

4 Load Generators 21
4.1 Charging stations generator . 22

4.1.1 Random distribution . 22
4.1.2 Uniform distribution . 22
4.1.3 Radial distribution . 23
4.1.4 Charging poles allocation . 24

4.2 Load generator of movements in a city 25
4.2.1 Random movement generator 25
4.2.2 Informed movement generator 25

4.3 Simulation example . 27
4.4 Chapter remarks . 28

5 Free-floating Carsharing System 29
5.1 System description . 30

5.1.1 Agents . 31
5.2 Design of intelligent strategies . 32
5.3 Experimentation . 34
5.4 Chapter remarks . 36

v

vi CONTENTS

6 SimFleet Planner 37
6.1 Urban Mobility domain . 38

6.1.1 Transport agent’s utility . 38
6.1.2 Sources of conflict . 39

6.2 Actions . 40
6.2.1 Elements of an action . 40
6.2.2 Action precalculation . 42

6.3 Plans . 43
6.4 Planning process . 43

6.4.1 Planner elements . 45
6.4.2 Plan evaluation . 46
6.4.3 Partial plan search tree . 47

6.5 Search tree pruning . 51
6.5.1 Best Solution prune . 51
6.5.2 Storage of Partial Solutions . 52
6.5.3 Previous Plan Utility bound . 52

6.6 Planning in large scenarios . 52
6.6.1 Goal Limitation . 53
6.6.2 Initial Feasible Joint Plan . 53

6.7 Plan building example . 54
6.8 Chapter remarks . 62

7 Best-Response Planning Strategy 63
7.1 BRPS process . 63
7.2 BRPS in the Urban Mobility domain . 64
7.3 Integration with SimFleet . 73
7.4 BRPS convergence with open goals . 74

7.4.1 Blackboard, an amplified Table of Goals 75
7.4.2 Goal fixing BRPS algorithm . 75

7.5 Chapter remarks . 78
8 Experimentation 79

8.1 Planner performance . 79
8.1.1 Effect of the pruning methods 80
8.1.2 Size of the scenario . 81

8.2 BRPS convergence . 82
8.3 SimFleet vs BRPS: solution comparison 83
8.4 Evaluation remarks . 85

9 Conclusions 87
9.1 Assessment . 87
9.2 Future work . 88
9.3 Research activities . 88

9.3.1 Publications . 89
9.3.2 Projects . 89

9.4 Connection with the taken studies . 89
Bibliography 91

List of Figures

3.1 Proposal architecture . 19

4.1 Uniform distribution of stations process 23
4.2 Radial city map division . 24
4.3 Number of available points according to map division granularity . 26
4.4 100 routes example . 27
4.5 Experiment shown in SimFleet . 28

5.1 Transport Strategy Behaviour as a FSM 33
5.2 Customer Strategy Behaviour as a FSM 33
5.3 Turin city area considered for the simulations 35

6.1 Construction of a complete plan . 51
6.2 Small planning scenario . 54
6.3 Initialization . 55
6.4 Plan building iteration 1 . 55
6.5 Plan building iteration 2 . 56
6.6 Plan building iteration 3 . 56
6.7 Plan building iteration 4 . 56
6.8 Plan building iteration 5 . 57
6.9 Plan building iteration 6 . 57
6.10 Plan building iteration 7 . 58
6.11 Plan building iteration 8 . 58
6.12 Plan building iteration 9 . 59
6.13 Plan building iteration 10 . 59
6.14 Plan building iteration 11 . 60
6.15 Plan building iteration 12 . 60
6.16 Plan building iteration 13 . 61

7.1 Small multi-agent planning scenario . 65

8.1 Planner performance plot . 82

List of Tables

2.1 Battle of the Sexes game in normal-form 12

vii

viii LIST OF TABLES

5.1 Customer walking distance comparison 35

6.1 Visual representation of a plan . 44
6.2 Visual representation of a Table of Goals 46
6.3 Legend for the plan building example 55
6.4 Agent A’s plan . 61

7.1 Initial plans . 67
7.2 Joint plan after the initialization . 68
7.3 Individual plans of iteration 1 . 70
7.4 Joint plan after iteration 1 . 70
7.5 Individual plans of iteration 2 . 72
7.6 Joint plan after iteration 2 . 72
7.7 Agent utility after convergence . 73

8.1 Problem instances with different size 80
8.2 Planner computational consumption according to pruning and speedup

methods . 80
8.3 Planner computational consumption according to problem size . . . 82
8.4 BRPS convergence time . 83
8.5 SimFleet vs BRPS: Customer satisfaction 84
8.6 SimFleet vs BRPS: Transport agent utility 84

CHAPTER 1

Introduction

With more than half of the world’s population living in cities, the list of chal-
lenges for keeping them sustainable has grown. "A smart sustainable city is an
innovative city that uses ICTs (Information and Communication Technologies) to
improve quality of life, the efficiency of urban operations and services and com-
petitiveness while ensuring that it meets the needs of present and future genera-
tions concerning economic, social, environmental and cultural aspects"1.

The population in cities has diversified and people from all kinds of back-
grounds may have to live in a city if they want to have certain services that today
we consider essential, such as the internet access. This has awakened new con-
cerns among citizens and, consequently, city councils. On the one hand, they
want to reduce air pollution by promoting the use of bicycles, public transport
and even electric vehicles instead of the conventional gasoline-powered car. On
the other hand, the existence of green areas throughout the city is valued; areas
that beautify the appearance of the city and are related to a better quality of life.
All of this seems to have influenced urban traffic, making it evolve to focus on the
people rather than the vehicles. For instance, many municipalities are restricting
the traffic inside their town’s center, increasing the space pedestrians have to walk
as well as the air quality.

The urban traffic system, which was already complex, is becoming more en-
tangled as citizens needs and concerns evolve. With the popularization of cab
companies and take-out applications, we have nowadays more chauffeur-driven
rental and delivery vehicles constantly traveling around cities than ever before.
All these traffic interactions are not trivially sorted out which causes experts to
be constantly researching for new ways of optimizing the traffic flow in urban
settlements. However, this increase in complexity has been accompanied by a
technological revolution, the so-called "smart" devices. Today, almost every elec-
tronic device has its smart version, which connects it to the Internet and uses all
the data it provides to improve its user experience. Similarly, cities are evolving
into smart cities that control parameters such as traffic status, the influx of people
in different areas or on public transport and even the quality of their air, in real
time.

1This definition was provided by the International Telecommunication Union (ITU) and
United Nations Economic Commission for Europe (UNECE) in 2015

1

2 Introduction

Therefore, as more city services become intelligent, we have more and more
data that we can use both to better characterize the urban traffic problems and
to advance in their resolution. Through the use of artificial intelligence, we can
give more potential to such data by using it in a more problem-oriented way.
In line with this, what areas of artificial intelligence would be most useful for
working on urban mobility? How can we make efficient use of data to arrive at
solutions? Is it possible to reproduce systems as complex as cities virtually to test
improvements on them? Our work explores these research questions with the
intention of finding practical improvements to the challenges of urban mobility.

1.1 Motivation

This work is motivated by SimFleet and its high potential as an urban traffic sim-
ulator.

The urban traffic problem becomes more complex as the population in cities
increases and the needs of citizens evolve. However, we have access to more data
trough the intelligent city services which may aid in the improvement of urban
mobility if used adequately.

While the handling of such data can lead to solutions, the changes these im-
ply cannot be applied without considering the impact they may have on the city’s
inhabitants. In addition, the variety of scenarios urban traffic offers is massive,
since the urban domain counts with many different users. From fleets of taxis
to privately owned vehicles, all elements must be taken into account when re-
searching urban traffic optimization. Through the use of simulators we manage
to reproduce a small part of the real world in a virtual way, which allows us to
modify it as we wish. We can test all kinds of changes or improvements without
the need to implement them or the risk of causing negative effects on people’s
lives. This offers a perfect working area for exploring solutions to the problem of
urban traffic, as these are often expensive and costly to implement.

For an accurate simulation, however, the interactions between the elements
of the system to replicate must be accurately reproduced. In the case of sim-
ple systems, this can be achieved by the simulator alone. In contrast, for more
complex scenarios (such as the urban traffic one) it is better to decentralize the
simulation load. For this, a multi-agent system seems to be the obvious choice.
Agents are pieces of software that are inspired by human reasoning: capturing
signals from their environment and reacting appropriately, communicating with
other agents, making their own decisions, etc. This makes the agents more than
suitable for modeling the different users of a city. Pedestrians, private vehicles,
taxis, public transport, delivery vehicles, etc; all types of users can be represented
by an agent that adapts its actions and its way of interacting, both with the envi-
ronment and with other users, accordingly. In addition, there is a great amount
of research on communication, coordination, negotiation and conflict resolution
between agents. All these areas can be applied to improve urban traffic.

SimFleet combines the possibilities offered by simulators with the flexibility of
multi-agent systems, offering an ideal framework for the development and test-
ing of solutions for improving urban traffic. However, SimFleet has a lot of room

1.2 Objectives 3

for improvement, as it is still in an early stage of development. Motivated by this,
we design and implement different modules that improve SimFleet, enriching its
functionalities.

While some of the improvements are focused on facilitating the use of the
software and broadening its range of systems available for simulation, there is an-
other one that explores making the simulations more realistic by basing them on
rational human behavior. For this, we make use of self-interested agents; agents
with their own objectives that make their decisions accordingly to complete them.
This "selfish" behavior can be a more realistic approach for representing certain
types of users of an urban traffic system, such as taxis. Taxis (or other types of
chauffeur-driven rental vehicles) are interested in serving the maximum number
of customers possible, as they report a certain benefit. These vehicles usually be-
long to a fleet which, in turn, may belong to a company. However, generally, taxi
drivers will give more importance to their own benefit rather than the overall
benefit of their fleet, thus adopting a self-interested behavior.

Another example for the use of self-interested agents would be the model-
ing of electric autonomous vehicles (EAVs). In the smart city of the future, EAVs
could provide citizens and visitors with the possibility of making private trips
without having to use their own vehicle or contribute to the emission of green-
house gases, as well as avoiding having to adapt to the public transport’s routes.
These EAVs would look for the best routes in the city to take their users to their
destination, coordinating, in turn, with all the other EAVs to optimize traffic glob-
ally.

1.2 Objectives

Our work is motivated by the challenges posed by the problem of urban traffic.
In this line, the objectives of the work are focused both on the improvement of
SimFleet, the simulation software that we use to explore improvements to urban
traffic as well as the research of new methods of coordination of autonomous
agents. The coordination of self-interested agents is a relevant topic in the present
to make simulations more realistic and, in addition, it has potential to be useful
in the near future where autonomous vehicles may be an everyday occurrence.

Following, we present a concrete list of objectives:

• Enhance SimFleet to make it a better simulator.

– Automatize the creation of simulation configurations.

– Provide means to create different distribution of agents in a simulation
easily.

– Add new types of urban fleets and adapt the software for their simu-
lation.

• Achieve more realistic simulations.

– Position of elements of the simulation scenario based on real-world
data.

4 Introduction

– Generation of simulation load (agent movement in the simulation) that
matches real-world citizen and traffic movement in a city.

• Introduce self-interested agents to SimFleet’s simulations.

– Research the coordination of self-interested agents as a potential future
solution to urban traffic.

– Design and implement a system which solves SimFleet simulation sce-
narios considering the private interest’s of the agents.

* Allow agents to plan their own execution according to their goals.

* Coordinate the agents to avoid execution conflicts.

* Ensure the completion of the simulation.

1.3 Document structure

The document is structured as follows:

Chapter I: Introduction
Introduction of our work, discussion the motivation behind it as well as its objec-
tives.

Chapter II: State of the Art
Description of theoretical concepts and technologies in which our work is based,
including some relevant works that research and/or employ them.

Chapter III: Proposal
Overview of our proposal, introducing the different contributions of the thesis
and giving them context within the global objectives.

Chapter IV: Load Generators
Introduction of the Load Generators for the automatic creation of simulation con-
figurations for SimFleet.

Chapter V: Free-floating Carsharing System
Introduction of the Free-floating carsharing systems and their implementation in
SimFleet which enables it to simulate this type of systems.

Chapter VI: SimFleet Planner
Detailed description of our ad-hoc planner, designed and implemented to return
optimal plans which take into account the actions of other agents in the scenario.

Chapter VII: Best-Response Planning Strategy
Presentation of the Best-Response Planning Strategy, a game-theoretic approach
to the coordination of self-interested agents in which we base our work. We char-
acterize it both from a general point of view and a concrete one based on our

1.3 Document structure 5

urban traffic domain.

Chapter VII: Experimentation
Evaluation of the ad-hoc planner and the Best-Response Planning Strategy pro-
cess against simulation scenarios of various sizes with an analysis of the results
in terms of time and memory consumption as well as solution quality.

Chapter IX: Conclusions
Conclusions to this work and presentation of future work with which it could be
expanded. We also specify the list of scientific publications associated with this
work, the research projects in which this master’s thesis is included, and the con-
nection with the taken studies.

Bibliography
Previous works related to the researched area which are referenced by our project.

CHAPTER 2

State of the Art

Before getting into the specifics of the project, we must comment on the different
areas of artificial intelligence that are related to and researched by our thesis. In
this chapter we briefly describe them, providing the knowledge for a complete
understanding of our work.

The chapter is organized as follows: Firstly, we present the preliminaries, with
key theoretical concepts in which our work is based. Secondly, we introduce
related works which research and/or use the technologies we employed during
the development of our thesis.

2.1 Preliminaries

In this section we present some theoretical concepts which are key to have a
lower-level understanding of the technologies employed in our work. Particu-
larly, we will describe what an intelligent agent is in the scope of our work, as
well as give a basic notion of multi-agent systems and multi-agent based sim-
ulations. In addition, we introduce SimFleet, the multi-agent based simulation
software which links all our work.

2.1.1. Intelligent Agents and Multi-Agent Systems

During the years, there has been a wide discussion about how to properly define
software agents. In contrast with procedures or routines, agents are persistent
programs whose execution can vary according to their goals and the characteris-
tics of their environment.

In general, the notion of agent refers to a computer system or software with
the following properties, presented in [1]:

• Autonomy: Agents function without human intervention, having control
over their actions and internal state.

• Social skills: Agents have the ability to communicate with other agents or
humans through a preset language.

7

8 State of the Art

• Reactivity: Agents perceive their environment and are able to act accord-
ingly, making decisions in real time.

• Pro-activeness: Agents, besides reacting to their environment, take the ini-
tiative to perform actions aimed at achieving a concrete goal.

In the artificial intelligence field, the definition of agent is broadened by includ-
ing a human factor. Agents are seen as computer systems that present the afore-
mentioned properties but are also implemented using concepts which are usually
applied to humans. For instance, an agent knowledge system can be described
with beliefs, desires and intentions, which are notions that refer to the human mind.

This basic definition of intelligent agents can be extended and/or significantly
modified depending on the concrete field of science from which the agent is
viewed. For a further discussion in what constitutes an agent, we encourage the
reader to check [2].

Having described an agent, we can introduce the concept of Multi-agent sys-
tems. A multi-agent system is defined by a set of two or more agents that interact
with each other. In general, agents will represent a user with different objectives
and motivations. For a successful interaction, agents will need to cooperate, co-
ordinate and negotiate among them as if they were human beings.

2.1.2. Multi-Agent Simulation

Simulation refers to the experimentation performed over a system that models a
real-world system. Simulations are necessary when the real-world system that
wants to be examined is not accessible or simply does not exist yet. On the other
hand, the real system might be existent but the experimentation on it non-viable.
For instance, if we want to study the effect that different configurations of roads
will have on the traffic of a certain city, generally, we will not have the resources
to implement every alternative and observe the traffic flow. Also, the impact of
that on the life of the citizens would most likely be high, and so the changes
should not be implemented until proven useful. Therefore, such problem can be
addressed from a simulation perspective, creating a scaled reproduction of the
real system, implementing the interactions that take place in it and running the
different experiments in this controlled environment. Simulations are appropri-
ate tools to understand systems and make predictions over them.

When trying to reproduce systems with plenty of individuals that interact
among them, modeling a multi-agent simulation is usual. A multi-agent based
simulation model consists of a set of agents that encapsulate the behavior of many
individuals. The execution of the model (and therefore all of its agents) replicates
the behavior of the global system. This distributed approach is sometimes closer
to the real world, since agents can be implemented preserving their self-interest
and individuality. As we mentioned above, agents in a multi-agent system need
to include coordination and conflict-solving mechanisms in their behaviors which
ensure a correct simulation. In [3], authors present a multi-agent simulator for
urban segregation, which allows them explore the impacts of different contextual
mechanisms on the emergence of segregation patterns.

2.1 Preliminaries 9

One of the many software that implement multi-agent based simulations is
SimFleet [4], which is focused in the simulation of urban fleets. This software is
the essential to our thesis, since most of the work presented in this document is
either meant to improve it or inspired by it.

2.1.3. SimFleet

SimFleet [4] is an agent-based urban fleet simulator built on the SPADE platform
[5]. This fleet simulator was built to allow complex simulations over cities where
a large number of agents interact to perform fleet coordination and management
algorithms. SimFleet uses the multi-agent systems paradigm to allow the user to
get access to autonomous, pro-active, intelligent, communicative entities. SPADE
is a multi-agent systems platform that provides these features using a simple but
powerful interface, which is why it was chosen for the development of SimFleet.

SPADE allows the creation of autonomous agents that communicate using the
open XMPP instant messaging protocol [6]. This protocol is the standard proto-
col of the IETF and W3C for instant messaging communication and it (or some
variant of it) is used in such important communication platforms as WhatsApp,
Facebook or Google Talk. SPADE agents have also a web-based interface to cre-
ate custom app frontends for agents, which is also used by SimFleet to show how
every agent is moving through the city in a map that represents all routes made
by agents. For the movement of such agents, SimFleet makes use of OSRM1, a
routing engine for finding shortest paths in road networks. Querying an OSRM
server specifying the service route and passing origin and destination points re-
turns the shortest route between those two points.

Finally, SimFleet is based on the Strategy design pattern, which allows the user
to introduce new behaviors to the SimFleet agents without the need of modifying
the simulator. This design pattern is used to introduce new algorithms that follow
a common interface. In this case, introducing new coordination algorithms to
an agent is as simple as building a StrategyBehaviour and loading it at SimFleet
startup.

SimFleet also provides some common agent classes that can be used (or inherit
from them) to create a simulation. These agents represent the entities involved
in a fleet simulator: fleet managers, transports, customers, and service directory.
Next, we shortly describe these agent classes and how they interact during the
simulation.

Fleet manager agents. SimFleet simulates an environment where there can
be different kinds of fleets that provide services in a city. Each fleet has a fleet
manager who takes care of the fleet, allows transports to be accepted in the fleet
and puts customers and carriers in touch with each other to provide a service.
An example of a fleet manager is a taxi company call center or a goods transport
operator with trucks.

Transport agents. These agents represent the vehicles that are moving through
the city providing services. SimFleet supports any kind of city transport such as
cars, trucks, taxis, electric cars, skateboards or even drones. However, the user

1http://project-osrm.org/

http://project-osrm.org/

10 State of the Art

can customize the kind of transport for its simulations. Transport may or may
not belong to a fleet, but belonging to a fleet brings them some benefits like being
found more easily and having a coordinator for its operations. Transport agents
receive transport requests from customers and, if free, they will pick the customer
up (or the package) and drive to its destination. However, before attending a re-
quest, a transport agent will make sure it has enough autonomy to do the whole
trip. If not, the agent drops the request and goes to recharge its batteries or re-
fuel to the nearest station. After serving one request, the agent awaits for more
requests until the simulation is finished.

Directory agent. SimFleet has a place where services provided during the sim-
ulation may be registered to be found later. This is done by the directory agent,
which offers this subscription and search service. Usually, fleets are registered in
this directory to be found by customers and to allow new transports to find them
and sign up for the fleet.

Customer agents. Customers are the entities that want to perform an op-
eration: calling a taxi to move from one place to another, send a package to a
destination, etc. This entity is represented by the customer agent. In SimFleet cus-
tomers do not have the ability to move. They call a transport service which goes
to the customer’s position, picks up the package (or customer in case of a taxi,
a bus, etc.), and transports the goods to a destination. Customer agents depend
completely on the transport agents. To get a transport service the customer looks
for an appropriate fleet in the directory and contacts to its fleet manager to get
a transport service for the customer. The fleet manager broadcasts the requests
to some or all of their registered transports (depending on its strategy) and any
transport interested in attending it will send a proposal to the customer, who has
to accept or refuse it (depending on the customer’s strategy too). The customer
waits until the transport agent picks it up and, once they arrive at the destination,
it stops its execution.

2.2 Related work

In this section, we describe the topics we have researched and the technologies we
have applied during the development of this thesis, as well as some of the most
relevant works that discuss them. This include notions about Planning, specifi-
cally Multi-Agent Planning (MAP) as well as Game-theoretic planning proposals.
Finally, we will present Non-Cooperative MAP and how do we approach it for
the design and implementation of our work.

2.2.1. Classical Single-Agent Planning

In the classical planning paradigm [7], the world is described through a finite
set of fully observable states, which means that the planning agent has complete
knowledge of the state’s characteristics. The world is static and deterministic; it
is not modified until an action is applied and, once it is, it changes to a single
other state. During the planning process, external changes of the world are not

2.2 Related work 11

considered. Lastly, the goals that have to be achieved are explicitly defined and
immutable.

A state of the world is described by a finite set of literals. Literals are atoms
composed of a predicate and a set of finite parameters, which can be empty, that
represent objects of the world. For the world to change among states, actions must
be applied. An action is composed by a set of preconditions (literals), which must
be satisfied in the world state for the action to be applicable, and a set of effects
that modify the world by deleting and/or adding literals.

The complete planning process can therefore be described as a search for an
ordered set of actions which modify the world from its initial state to a state where
all goals are achieved.

2.2.2. Multi-Agent Planning

In contrast with single-agent planning, where the world is only modified by the
actions of one planning entity, Multi-Agent Planning (MAP) [8] takes place in
domains in which many agents plan and carry out actions together in a shared
world. The agents usually cooperate to achieve common global goals, which de-
scribes a cooperative MAP. However, if the agents are rational and self-interested,
they will take into account both the global objectives and their own private inter-
ests when planning. In the latter case, the aim is to find a joint plan that completes
all common goals while satisfying the agent’s own concerns. We are then speak-
ing about non-cooperative MAP.

Cooperative MAP is used to solve tasks that either cannot be solved by a
single agent or would be better solved by many of them cooperating [9]. Such
tasks tend to involve spatially and/or functionally distributed (different abilities)
agents, which need from one another to solve the planning task [10]. Research in
cooperative MAP has also been conducted from the Multi-Agent Systems (MAS)
field, being mainly motivated by the distributed aspect of their tasks and sys-
tems, focusing on the design of planning coordination strategies for decentralized
agents. Nevertheless, decentralized planning is essentially fixated with coordinat-
ing agent plans obtained from independent planning, so agents do not explicitly
cooperate to solve their tasks. Neither cooperative MAP nor decentralized plan-
ning are able to solve tasks in scenarios where the self-interest of the agents must
be taken into account.

2.2.3. Game-theoretic Planning proposals

Game theory is the mathematical study of the interaction between rational self-
interested agents. [11, 12, 13]. A rational self interested agent presents its own
description of states of the world that it likes, being its actions motivated by such
description [14]. The preservation of the individuals’ self-interests is crucial in
game theory. We can differentiate between two types of game theory: Coalitional
or Cooperative Game Theory (CGT), devoted to the study of agents interactions
when forming coalitions [15]; and Non-Cooperative Game Theory (NCGT), fo-
cused on strategic equilibrium and the maximization of the utility of individual
agents against the actions of other players.

12 State of the Art

Inside NCGT, we can categorize games as strictly competitive and non-strictly
competitive. Strictly competitive games face agents with completely opposite in-
terests. Therefore, an agent achieving its objective implies the defeat of all the
other participants. These games are called zero-sum games [11], and the most
direct example of them are two-player board games, such as Chess, in which the
outcome is a win-loss situation. On the other hand, in non-strictly competitive
games, agents do not explicitly aim to defeat or hurt other players. Instead, they
have personal interest that may be in concordance or opposition to other agent’s
interests. These games are referred to as non-zero-sum games, also known as
general-sum games, in which win-win situations can arise [16, 14].

From a planning perspective, we differentiate among coalitional MAP for CGT,
adversarial MAP for strictly competitive agents and, finally, non-cooperative MAP
for non-strictly competitive planning agents. Our work falls within the latter
category. Following, we explain more details about non-cooperative MAP and
how it is adapted to the objectives of this thesis.

Non-cooperative MAP

In non-cooperative MAP tasks, agents do not intend to harm each other, neither
seek each other for help. Instead, as they have parallel and opposite interests,
their goal is to seek an outcome that satisfies all participants through collabora-
tive strategies and conflict resolution techniques. In this subsection, we illustrate
the type of problem we aim to solve with a general-sum game example [12]. In
addition, we show the matching between agents’ strategies in a game and agents’
plans in a planning task. Finally, we comment some non-cooperative MAP appli-
cations.

The Battle of the Sexes is a popular coordination game. We have defined the
following instance, presented in the payoff matrix of Table 2.1 [14]. There are two
players: the row and the column player. The first number of each cell represents
the utility reported to the row player whereas the second is the utility reported
to the column player. In our example, the players have to decide which genre
of movie to watch; a Sci-fi movie or a Comedy movie. Each player has its own
genre preference, being Sci-fi for the row player and Comedy for the column
player. Nevertheless, both of them would rather watch a movie together than
by their own, which is shown in the utilities of Table 2.1 that are 0 when each
player chooses a different genre and above 0 when they select the same. This
represents a general-sum game in which the self-interested agents will coordinate
their strategies to obtain as much utility as possible.

Sci-fi Comedy

Sci-fi 2, 1 0, 0

Comedy 0, 0 1, 2

Table 2.1: Battle of the Sexes game in normal-form

If we compare the players’ strategies to plans, we understand that a conflict
exists when the players watch different movies, having both a utility of 0. In

2.2 Related work 13

contrast, when the players agree on the same genre and one of them obtains less
utility, we assume that it is because its plan is more expensive to execute. There
are two unique Nash Equilibria (NE) [17] that can be derived from this game; the
pair of strategies Sci-fi, Sci-fi, reporting a utility of (2,1) and the pair of strategies
Comedy, Comedy, reporting a utility of (1,2). These are the only stable solutions
from which the agents would not deviate, since any other solution would imply
a loss of utility.

Non-cooperative MAP has been used for goal allocation [18]. In these set-
tings, agents look for the optimal solution of a MAP task, which is their common
goal, while contenting their own incentives. The aim is to divide the goals of the
MAP task among the agents in a way that guarantees an optimal solution which
maximizes the sum of the agent’s utilities, a concept known as utilitarian social
welfare.

Another use for MAP with self-interested agents is the coordination for prob-
lems in which many agents interact. In this line, there have been works which
apply a pre-planning coordination, giving agents sub-taks derived from the de-
composition of a common global task, so that they solve them individually [19].
In [20] a carsharing application is presented. This technique is used to find routes
that travelers can share to save costs.

The works in [21] and [22] use a two-game approach to synthesize a stable
joint plan that solves the MAP task in which the agents have a limited set of
precomputed plans that solve their goals. Although these systems provide and
guarantee certain properties like Nash equilibrium, Pareto optimal and fair solu-
tions, there is a significant limitation to compute solutions in large problems.

Best-Response Planning (BRP) [23] is a proposal particularly devoted to solv-
ing congestion games [24]. Congestion games feature resources which, if used by
simultaneous agents create a congestion; i.e: an increase in the agent’s costs. BRP
works as follows: First, an initial conflict-free joint plan is computed. Then, the
so-called best-response dynamics take place; an iterative process in which agents
propose, in turns, their best plan taking into account other agents plans, improv-
ing the initial solution. Non-cooperative MAP can therefore be seen as the coor-
dination of agents’ plans to achieve an executable joint plan. However, because
of their private interests, such joint plan must be an equilibrium, a stable solution
from which no agent is incentivized to deviate.

In [25], authors introduce the Better-Response Planning Strategy (BRPS), a
modification of the BRP [23] which considers congestions and planning conflicts
as a part of the agents’ utility function, achieving a more realistic approach. In
their model, the need for an initial conflic-free joint plan is avoided, since it gen-
erates synergies between agents that do not make sense in a non-cooperative en-
vironment. Finally, they study under which conditions the convergence to an
equilibrium is guaranteed. Our work is highly inspired by the BRPS model and
its authors’ research, since we apply their principles to a real-world urban traffic
domain.

As mentioned above, non-cooperative MAP problems can be mirrored by an
equivalent non-cooperative game, in which the strategies that players follow are
plans. This, however, makes the computation of equilibrium solutions harder,
since planning is a computationally hard task. In our work, we develop this idea

14 State of the Art

to redefine multi-agent simulations as multi-agent planning tasks performed by
self-interested agents. To deal with the planning’s computational hardness, we
designed our own ad-hoc planner, which obtains optimal plans rapidly making
use of the domain knowledge to reduce time and memory consumption. The
plans it obtains are then used as strategies in a BRPS-like [25] process that obtains
a stable solution (joint plan) for the simulation.

CHAPTER 3

Proposal

Our work revolves around SimFleet and its potential to aid in the improvement
of urban traffic, providing accurate simulations of urban fleets which can be used
both for research and testing. However, the current version of SimFleet has some
limitations which we encountered while working on it. During the development
of this thesis we have enhanced SimFleet by designing and implementing dif-
ferent modules which expand its functionalities. Besides that, we also explored
the introduction of rational, self-interested agents to SimFleet’s simulations. In
this way, the private interests of transport agents could be taken into account,
achieving more realistic simulations of taxi agents or electric autonomous vehi-
cles (EAVs). For this, we developed a game-theory-based planning system used
to decide the actions of every transport agent in accordance to their interests
while, at the same time, guaranteeing the simulation execution by avoiding any
conflict between them.

In contrast to other modules, the aforementioned system poses a major re-
search problem, which we tackled from a scientific perspective. However, after
the theoretical research we have also implemented the system, designing it for its
integration with SimFleet. For this, we consider it the main contribution of this
thesis, being, without a doubt, the most interesting and complex module among
the developed ones.

In this chapter, we present all of the modules, describing their motivation and
how they contribute to the improvement of SimFleet. We first describe the mod-
ules individually, giving later an overview of the whole system.

The topic of research of our thesis as well as the work we describe is framed
in a research project promoted by the Ministry of Economic Affairs and Digital
Transformation of Spain1 which focuses on intelligent and sustainable mobility
supported by multi-agent systems.

Following, we introduce each one of the developed modules, which are later
explained in detail:

• Load Generators: Automatic simulation generators which aid in the cre-
ation of more complex and realistic simulation scenarios.

1Ministerio de Asuntos Económicos y Transformación Digital: https://www.mineco.gob.es/
portal/site/mineco/

15

https://www.mineco.gob.es/portal/site/mineco/
https://www.mineco.gob.es/portal/site/mineco/

16 Proposal

• Free-floating Carsharing system: Enhancement of SimFleet with the possi-
bility of simulating a free-floating carsharing system, which required a new
design of SimFleet’s agents as well as their behaviors and interactions.

• Best-Response Planning Strategy: Simulation solver with rational, self-
interested transport agents based on game-theory principles. Simulations
are redefined as a Multi-Agent Planning task which is solved by a game,
achieving stable solutions which preserve the agent’s private interests.

3.1 Load Generators

One of SimFleet’s main disadvantage arises when defining a simulation. A simu-
lation is described in SimFleet by a JSON configuration file, which has to be man-
ually written, including all agents and their attributes. This becomes specially
troubling when trying to define big simulations, with a great number of agents.

To solve such issue, we developed two so-called generators [26], programs
which, given a series of parameters, fill or create a new SimFleet configuration file,
leaving it ready for execution. Besides that, the generators create more realistic
simulations and agent distributions, being able to use cadastral information to
obtain more accurate scenarios.

Firstly, we developed the Charging station generator, which locates the specified
number of charging stations in the urban area where the simulation takes place.
With it, various distributions of charging stations can be tested, seeing which ones
achieve better traffic flow in the city.

Secondly, we created a Load generator of movements in the city. It locates cus-
tomer and/or transport agents in the urban area and creates routes for them; i.e:
defines their spawning and destination points (destination only for customers).
The movement of agents it creates can be random or informed by real-city data
(extracted from open data portals) which make the routes of customer agents
more realistic by choosing origin and destination points according to population
density, traffic information and twitter activity. The influence of each of these pa-
rameters is pondered by weights that are assigned to them.

3.2 Free-floating Carsharing System

Another of SimFleet’s limitation was the way in which it defines urban fleets. Al-
though SimFleet can model fleets of different types, the interaction between trans-
port and customer always follows the same paradigm. Whether it is a taxi fleet
picking up customers or a delivery fleet picking up and dropping packages, the
customer agent is always the passive entity and the transport the active, perform-
ing all movement within the urban area. This was a problem when we started re-
searching not so conventional urban traffic solutions, such as carsharing systems.

Being every time more concerned about environmental issues, some cities are
restricting the traffic around their city centers to electric and low-emission vehi-
cles only. To palliate this issue while still providing citizens with the ability to

3.3 Best-Response Planning Strategy 17

do private trips, carsharing systems can be used. This type of system presents a
fleet of vehicles, which are parked in certain locations of the urban area and can
be booked for their use by system users.

Wanting to do simulations of carsharing fleets, we developed a modified ver-
sion of SimFleet that implemented a Free-floating carsharing system [27], which has
the particularity that vehicles can be parked anywhere inside a predefined urban
area. For that, we redefined from scratch the behavior of SimFleet agents. Cus-
tomer agents were given the active role through the ability to book vehicles and
walk to them. Transport agents were implemented to accept or deny bookings
as well as driving customers to their desired locations. Finally, the FleetManager
agent acted as the application through which system users could check available
vehicles and their positions, and issue the booking.

The flow of the simulation execution was also changed, defining new situa-
tions in which the simulation would be considered finished. Typically, a simu-
lation would only finish once every customer has reached their destination. In
free-floating carsharing systems, however, it may happen that a certain customer
does not find a close-enough vehicle available for booking, thus not being able to
reach their destination. To define which vehicles are withing the walking reach
from the customer, we introduced a new attribute, the maximum walking distance,
which indicates how many meters a customer is willing to walk to reach their
destination. This stops customers from booking vehicles which are so far away
that it does not make sense for them to use. If a customer is unable to book a
vehicle, the system will take that into account and stop the simulation indicating
that it is uncompleted. This system allowed us to test vehicle and customer dis-
tributions (with the aid of the generators) to determine adequate locations and
amounts of cars in carsharing fleets for different cities.

3.3 Best-Response Planning Strategy

Ultimately, the last SimFleet module and main contribution of our work is moti-
vated, not by a limitation, but by the desire to explore self-interested agent co-
ordination by means of game theory techniques rather than global scheduling or
planning. In this way, we aim to obtain a simulation execution which preserves
the individuality of the agents, not imposing any action, but allowing them to
determine their actions by themselves and, at the same time, avoid conflicts with
the rest of the agents of the scenario. For this, a completely new approach for car-
rying out the simulations is used, redefining SimFleet’s multi-agent system and
its agents interactions as a Multi-Agent Planning (MAP) [8] task.

Currently, coordination among SimFleet agent’s depends on their own strate-
gies as well as the interaction between them, usually performed by message pass-
ing. When designing such strategies, the user must take into account all sources
for possible conflict and manage them properly to ensure a correct simulation ex-
ecution. According to how the agents interactions are played out, the obtained so-
lution (understanding solution as a correctly executed simulation process) may or
may not preserve agent’s individuality and self-interest. For instance, the Fleet-
Manager agent can be seen as a global scheduler which decides how to distribute

18 Proposal

travel requests among the transport agents of its fleet. However, depending on its
strategy, it can also function simply as a travel request broadcaster, allowing the
transport and customer agents to negotiate, reach agreements and avoid conflicts
by themselves. The default transport agents of SimFleet have no other goal than
serving customer requests. They feature no private interest, always accepting to
serve a request without taking into account customer location.

Aiming to introduce the concept of rational, self-interested agents to SimFleet,
we propose an extension which given a simulation scenario, redefines it as a non-
cooperative MAP task, whose final goal is to solve the simulation by serving the
travel requests of every customer in the scenario. In order to do that, an equiv-
alent congestion game [24] is created. SimFleet’s transport agents act as players
whose strategies are plans. The plans are obtained by our own ad-hoc planner
(Chapter 6) which is able to plan the agent’s individual actions according to their
interests while also taking into account the plans of every other agent, obtaining
always a plan that is a best response to all other agents’ strategies. The game
is developed by a Best-Response Planning Strategy (BRPS) process (Chapter 7),
in which the agents propose different strategies (plans), always in best response,
improving their initial plans to avoid conflicts with other agents maximizing at
the same time their utility. The process converges to an executable solution (joint
plan) which is a Pure Nash Equilibrium [17], guaranteeing that no agent will de-
viate from it (change its strategy). In this way, the BRPS obtains a solution which
indirectly achieves the global goals of the simulation (all customer travel requests
are served) by capitalizing on the agents’ own incentive to maximize its benefits,
which the agent does by serving as many customers as possible. As the global
goals are satisfied, the obtained joint plan is also a solution for the simulation,
and can be executed as such.

3.4 Overview

As we have discussed on this chapter, SimFleet is a powerful simulation tool
which has, however, a wide margin for improvements. Our work aims to en-
hance it to make it an even more useful tool that allows its users to experiment
over more complex and complete scenarios.

During our research, we identified the need of a system for the automatic
generation of simulation scenarios, which also allowed the user to test different
distributions of charging stations on a city, locate vehicles and people who are in
the city with particular goals depending on the problem and create their associ-
ated traffic flow. With it, new opportunities arise to simulate different types of
configurations, which can be very useful for the research community and even
public organisms like city halls that want to test the efficacy of charging stations
(or any other of SimFleet’s elements) in their towns.

Although the original version of SimFleet contemplates the possibility of ve-
hicles carrying people or packages, other scenarios such as carsharing systems,
which are very popular in recent years, are not taken into account. It could be
extremely useful to have a tool in which to simulate different scenarios, being

3.4 Overview 19

able to manage the quantity and distributions of the vehicles in any city. All this,
making use of the aforementioned simulations generator too.

Finally, we had a need to simulate fleets of vehicles in which each of the indi-
vidual vehicle has its own interest, such as taxis picking up clients, in realistic en-
vironments. For that, game-theory presented an adequate way to respect agent’s
self-interests. On the other hand, as agents need to know what to do and which
are their best options, we had to introduce planning to consider every possible al-
ternative. All of this made us came to the realization that a game-theoretic system
with planning was needed, which is the main contribution of this thesis. Best-
response dynamics, an iterative process in which agents propose their strategies
always as a best response to all other agent’s strategies; was used for its ability to
obtain equilibria, together with an ad-hoc planner, designed exclusively for our
domain, which exploits the seach space in a reasonable time given the restrictions
of our modeling and other agents’ contexts, which reduce the seach space up to a
point where we can obtain optimal plans.

An overview of the final system can be seen in the graph of Figure 3.1, where
every module is connected to other modules with which it interacts. As it can
be seen, the generators’ module and the Best-Response Planning Strategy (BRPS)
and plannner modules are completely external to SimFleet and can run simply
from a SimFleet configuration file. The free-floating carsharing module, on the
other hand, is integrated in SimFleet’s architecture. Altogether, we have achieved
a system which is prepared to simulate many different types of urban traffic fleets
with different agents and features. Coming up next, we describe in detail each of
the modules. Specifically, we present the Load Generators on Chapter 4, the Free-
floating carsharing system on Chapter 5 and the game-theoretic system, with the
planner and the Best-Response Planning Strategy, on Chapters 6 and 7, respec-
tively.

Figure 3.1: Proposal architecture

CHAPTER 4

Load Generators

For the development of our thesis we use SimFleet simulator, which is able to
place different varieties of agents with custom behaviors over real-world cities
to develop and test any type of strategies. Nevertheless, there is an important
flaw in SimFleet to prepare simulations with a significant number of agents, and
also to have an appropriate representation of the traffic of a city. Therefore, in
this chapter, we propose a significant improvement for SimFleet: the inclusion of
two generators at different levels. On the one hand, a charging stations generator
to create several distributions of these infrastructures, and to be able to make
comparisons and simulations with well-informed charging stations emplacing
systems such as the ones in [28] and [29], that use several data sources to feed a
genetic algorithm that obtains solutions. On the other hand, a load generator of
agents on the move in a city such as urban fleets of taxis, private vehicles, delivery
transports, buses, etc.; and customers of taxis or packages. Furthermore, this
load generator can consider real data of the city, which implies a more informed
approach to generate the real traffic of a city to be used in dynamic simulations.

A simulation on SimFleet is defined by its configuration file, which has to be
manually written. Therefore, to include a large number of agents requires the
manual definition of all of their parameters. These generators will allow SimFleet
users to create realistic scenarios easily without having to write long configura-
tion files, and more importantly, to generate load representing real traffic of the
specific city by using available data such as population, traffic, and tweets, from
open data portals1, or gathered with other tools such as [30].

To automatically create experiments means to generate new configuration
files or fill a previous one with data according to some parameters. For this,
all generators include the option to get as input a configuration file and they are
prepared to leave the present objects of such file unchanged while including the
ones generated. Besides that, each generator works with a GeoJSON2 file that de-
fines the area of the real world where our simulation will take place and thus they
have to populate. We will call this file the city map, since, usually, simulations
are performed within the borders of a city. Since it represents a real-world loca-
tion, all geometries defined in the city map are indicated with latitude-longitude
points; to manipulate them we use the Python Shapely library3.

1http://gobiernoabierto.valencia.es/en/data/
2https://geojson.org/
3https://pypi.org/project/Shapely/

21

http://gobiernoabierto.valencia.es/en/data/
https://geojson.org/
https://pypi.org/project/Shapely/

22 Load Generators

4.1 Charging stations generator

The charging stations generator is used in order to test different distributions of
charging (or petrol) stations of any kind over an area. The generator has many
parameters; we will only present the relevant ones: n charging stations to dis-
tribute; p charging poles of the distribution; and distribution type, {rndom,
nƒorm, rd}, that affects how stations are positioned inside the area.

Each station may have several charging poles. The allocation of charging
poles between stations will be discussed further on. The generator outputs a file
in GeoJSON format which indicates the type and position of each station. Such
a position, however, can not be any point inside the city map but rather a valid
point: a point belonging to a street or road. For obtaining valid positions, we
make use of the function getValidPoint, which given a point returns the nearest
valid point to it. This function uses the service nearest of OSRM, which returns
the nearest point belonging to a street or road with respect to the specified coor-
dinates.

4.1.1. Random distribution

In this type of distribution, n valid points are generated within the city map.
Each of the points indicates the position of a charging station. For the generation
of points, the bounds of the polygon that defines the city map are used: mn,
ymn, m, ym. Using these values, random and y coordinates are generated
for each point. Then, the corresponding valid point is obtained. If the point
is contained in the city map, it is stored as a station location; otherwise, it is
discarded. This process is repeated until there are as many stored points as the
number of stations.

A random distribution is interesting from the experimentation perspective to
compare other more informed distributions against it.

4.1.2. Uniform distribution

This distribution divides uniformly4 the city map (see Figure 4.1a) into equal size
cells, generally with rectangular shape. To do so, it creates a wider working area,
the grid (Figure 4.1b), defined from the bounds of the polygon representing the
city map. If such bounds are mn, ymn, m, ym, the grid is the four ver-
tex polygon defined by the points {(mn,ymn), (mn,ym), (m,ym),
(m,ymn)}.

The number of rows and columns of the grid is determined by the number of
stations (n) and its width and height, following the criteria shown in Equation
(4.1.1). If the number of stations is a perfect square, i.e., its square root is a posi-
tive integer, the grid will have the same amount of rows and columns, obtaining
exactly n cells. However, in general, the number of rows and columns will de-

4The name “Uniform distribution" does not refer to a probability distribution but to how sta-
tions are divided in the city map.

4.1 Charging stations generator 23

pend on whether the grid is wider or higher, having one more column than the
number of rows (or vice versa) accordingly.

ros = cos =
p
n n is perfect square

ros = b
p
nc , cos = d

p
ne heght < dth

ros = d
p
ne , cos = b

p
nc otherse

(4.1.1)

Once the grid is split, we trim each of the cells against the city map, which
causes cells outside of it to disappear and those laying over its borders to get
an irregular shape (see Figure 4.1c). These final cells are stored in a list of valid
polygons where stations can be placed.

Next, an iterative process begins to allocate every station. The list of valid
polygons is traversed and a station is placed in the closest valid point (using the
getValidPoint function) to the centroid of the polygon. This process finishes once
every polygon has one station in it or all stations have been allocated. After this, if
there were still stations to allocate, the rest are positioned in a random valid point
of a randomly chosen valid polygon (Figure 4.1d shows a possible outcome).

Besides this, we also implemented a random version of this distribution in
which the city map is divided in the same way emplacing, however, each station
in a random valid point within a randomly selected cell.

(a) City map (b) Working area or
Grid

(c) Grid trimmed
against city map

(d) Cells populated
with stations

Figure 4.1: Uniform distribution of stations process

4.1.3. Radial distribution

This distribution was inspired by the radial distribution of activity within certain
cities, which presents a higher rate towards its core and decreases as it gets closer
to the peripheries. It requires an additional parameter c, which indicates the
number of circles that will be used to divide the city map. The division process
begins by defining two copies of a wider working area, created as described for
the uniform distribution. One of those copies will be divided into a series of
triangles, 8 by default as can be seen in Figure 4.2a, by joining every vertex and
sides’ middle point with the centroid of the original city map. As for the other,
it will be divided by c concentric circles with an initial radius r calculated taking
into account the map dimensions. To avoid circle overlap, each circle is trimmed
against the one created before it, starting by the last (and biggest) created. This
obtains an area with a middle circle and many rings around it, as can be seen in

24 Load Generators

Figure 4.2b. Take into account that from now on when we mention circles we will
also be referring to the rings. Next, the two aforementioned areas are intersected
with each other, dividing each circle into 8 polygons, and trimmed against the
city map, obtaining a division of it as shown in Figure 4.2c.

(a) Triangle division of
working area

(b) 5 circle division of
working area

(c) Final city map divi-
sion

(d) 20 stations between
5 circles

Figure 4.2: Radial city map division

Each station is then allocated in the closest valid point to the centroid of one
of the polygons. The number of stations per circle (n/c), as well as the amount
of polygons a circle has, is taken into account to allocate the stations as uniformly
as possible within the city map and each circle. The algorithm populates each
triangle starting from the inner circle and moving towards the outer. Once all
polygons of a triangle have a station assigned, the algorithm will select the next
triangle according to the number of stations and the total number of polygons to
divide the stations uniformly within a circle. The final distribution can be seen in
Figure 4.2d.

The number of stations may be greater than the number of polygons since
the number of circles is determined by the user. The algorithm described above
places only one station in each polygon. In this case, the rest of the stations are
assigned a random position by randomly choosing a polygon and a valid point
within it.

We also implemented a fully random version of this distribution that divides
the city map in the same way, takes into account the number of stations per circle,
but chooses randomly the polygons within a circle as well as a valid point within
them.

4.1.4. Charging poles allocation

The amount of charging poles (spots for a vehicle to charge) we want in our con-
figuration is one of the parameters of the station generator. There must be at least
one charging pole in each station. After this, if there are more charging poles to
be distributed they will be allocated according to one of the following methods:

The first one distributes the points evenly by traversing the list of stations,
adding one point to each until all points have been allocated. Then, the list of
stations is shuffled, so as not to benefit stations that are traversed first. In this
way, the stations will have either p/n or p/n− 1 charging poles.

The alternative is a pseudo-random distribution of the remaining points that
works choosing a random amount of points and a random station to which assign

4.2 Load generator of movements in a city 25

them. To avoid a too uneven distribution of poles, such a random amount can
be limited by a parameter that indicates the maximum percentage of the total
charging poles that a single station can have. For instance, using a maximum
percentage of 30%, we ensure that no station will have more than 0.3 ·p charging
poles.

4.2 Load generator of movements in a city

The load generator is used to create either a random or informed load on the sim-
ulation. Such load can be adapted to any of the agent types that SimFleet offers:
electric vehicles, taxi fleets, customers for taxis, delivery vehicles, packages, etc.
The relevant parameters of this generator are: agent type t; amount of agents n;
minimum distance mn_dst in meters; starting delay d in seconds; amount of
agents per batch gents_per_btch.

The generator aims to create a movement of at least mn_dst meters of n
agents of t type within the borders of a given city map. The delay parameter d
determines at what time of the simulation the generated agents will start running;
by default, it is 0. The amount of agents per batch is introduced to give different
delays to sets of gents_per_btch agents, which will begin its execution at
the same time. This may be useful when generating a large number of agents. If
indicated, the first batch of agents will have a delay of d; the second, a delay of
2d, and so on.

As we mentioned above, all generators are prepared to receive an existing
SimFleet configuration file as input and fill it with agent data. This enables the
use of the load generator to introduce, in the same simulation, different types
of agents in various amounts, with different delays and batch sizes, to create a
complex system.

4.2.1. Random movement generator

The random load is created by choosing a random route (random origin and des-
tination points) for the agent to perform. Both random origin and destination
points must be valid points of the area, and they must be at least mn_dst apart
from one another. This process is repeated to create n agents of type t. The origin
point will determine where in the area the agent will spawn, whereas the destina-
tion point indicates where it will finish its execution. If the agent type is customer
or package, the movement is performed by the corresponding transport vehicle
that carries it after it gets picked up.

4.2.2. Informed movement generator

The informed version of the load generator aims to reproduce more realistic
movements around the city map. For this, it is necessary to provide the generator
with relevant data from which to ground the routes of the agents. This data can
be obtained from diverse sources; often open data platforms that the government

26 Load Generators

of a city or country makes accessible for its citizens. For our generator, we used
the following data:

• Population information: It shows the amount of people that live in dif-
ferent zones of a city. The population information (P) is defined as: P =
{(C1,p1), (C2,p2), . . . , (Cn,pn)}, whereC is a closed polygon represent-
ing a zone in the city together with its population p.

• Traffic information: It shows the number of vehicles moving around a cer-
tain area. The traffic information (T) is defined as: T = {(R1, t1), (R2, t2),
. . . , (Rn, tn)}, where R is a polyline that follows a street or road indicating
the volume of traffic t.

• Twitter activity: Information about the amount of geo-located tweets, from
the social network Twitter, tweeted from a certain location. This informa-
tion can be used to determine where a representative percentage of the
population is spending their time. The Twitter activity (A) is defined as:
A = {(Q1,1), (Q2,2), . . . , (Qn,n)}, where Q is a point represented
as a latitude-longitude tuple and the number of tweets in such coordi-
nates.

The information is used to create a probability distribution among the avail-
able points of the area. The selection of the origin and destination points will
be performed according to such distribution. For this, we begin by creating a
set of available points. The city map (M) is divided as if it was a grid simi-
larly as explained in Section 4.1.2 for the uniform distribution, obtaining M =
{(G1,O1), (G2,O2), . . . , (Gn,On)}; where G is a closed polygon and O the
nearest valid point to the centroid of G. The number of rows and columns of
the grid is a configurable parameter and it determines the granularity of the sys-
tem. A higher amount implies more cells in the grid which directly translates into
more available points, as it can be seen in Figure 4.3. The more points, the more
distributed will be the probability.

(a) 10 rows and cols (b) 20 rows and cols (c) 30 rows and cols

Figure 4.3: Number of available points according to map division granularity

By merging the city data with M, we join, for every polygon G, the pop-
ulation, traffic and Twitter activity amounts that take place within its area: M =
{(G1,O1,{p1, t1,1}), (G2,O2,{p2, t2,2}), . . . , (Gn,On,{pn, tn,n})} and

4.3 Simulation example 27

calculate the probability associated to each point O as in Equation (4.2.1):

prob(O) =p ·
p
∑N
j=1

pj
+t ·

t
∑N
j=1

tj
+ ·

∑N
j=1

j
; with p+t+ = 1

(4.2.1)

where p, t and are weights that control the influence of each of the fac-
tors over the probability. Finally, the generator takes into account the set of
available points (S) and their corresponding probability: S = {(O1,p(O1)),
(O2,p(O2)), . . . , (On,p(On))} to generate the routes.

(a) 10x10 map (b) 30x30 map

Figure 4.4: 100 routes example

Once every point in S has its probability assigned, a process to create the n
routes begins (see examples of Figure 4.4). This process is very similar to the
one used in the random load generator, but this time the origin and destination
points are chosen from S according to the probability distribution and ensuring
the mn_dst between both points

4.3 Simulation example

In this section we show an example of a complex simulation scenario set up with
the aid of both the charging station generator and the load generator.

The simulation defined takes place over the main area of the city of Valencia,
Spain. We generated 20 electric charging stations distributed uniformly in the
area. As for the load (agent movement in the city), we used the informed load
generator to create a fleet of 30 electric taxis and 30 customers, with a granularity
of 30. Taxis were created with random values for their autonomy so that some
of the taxis would eventually need to charge in one of the stations. As for the
customers, the weights of Equation (4.2.1) were p = 5/12, t = 1/4, =
1/3, increasing the impact of population and Twitter activity. The routes of the
customers were defined by points that were at least 700 meters apart. For the
taxis creation, the weights of Equation (4.2.1) were p = 1/3, t = 5/12,
 = 1/4, giving more importance to traffic and population. Figure 4.5 shows
the described scenario as presented in SimFleet.

28 Load Generators

(a) Experiment setup (b) Experiment running

Figure 4.5: Experiment shown in SimFleet

As it can be seen, the generators allow us to define more complex and in-
teresting simulation scenarios fairly easy. In cases like the described in this sec-
tion, where we have open data of the city where the simulation takes place, we
can also achieve more realistic modelings by basing transport allocation and cus-
tomer movement on real data.

4.4 Chapter remarks

In this chapter we have identified the need for enhancing SimFleet simulation po-
tential and presented two tools to do so: the charging stations generator and the
load generator. Knowing that one of SimFleet’s purposes is the implementation
and comparison of agent strategies, the generators are effective to help in the re-
search of solutions for traffic congestion or any other type of challenge derived
from city sustainability. Provided we have access to city data, with the use of
the informed load generator, we can test different driver behaviors over realistic
settings to identify problem sources and look for appropriate solutions.

As for the electrical vehicle (EV) charging stations infrastructure, thanks to
both generators we can simulate different distributions over a city and, using its
real city data, recreate movement within it to analyze the performance of each
distribution. This information can be of use for municipalities or other entities in
charge of infrastructure creation.

The placement of a charging station should take into account current traffic
trends but one must keep in mind that it may as well have an impact on traffic
once the station is working. In future work, we aim to develop coordination
strategies among transport and station agents in order to find ways of optimizing
traffic and achieving a maximum global utility. Such strategies may be the basis
for autonomous EV in the smart cities of the future.

CHAPTER 5

Free-floating Carsharing System

The use of privately owned vehicles in cities is becoming every time more incon-
venient for the citizens. As the concerns about carbon dioxide emissions increase,
cities adapt by creating more green areas, penalizing or completely banning the
use of private vehicles in their city center, and encouraging both public transport
and electric vehicles. Besides that, there are problems that are inherent for vehi-
cle owners like the lack of parking space, which implies on many occasions the
need for paying for a private space. To such disbursement, one must add fuel or
electricity expenses as well as vehicle maintenance.

Considering all of these inconveniences, a good amount of the people that
live in cities opt by not buying a vehicle. For such users, public transport usually
fulfils their displacement needs. However, there are cities in which, because of
their structures or simply by the lack of resources, the public transport services
are not enough to comply with the needs of citizens. Besides that, there might
be some specific trips which entail needs that can not be provided by the public
transport system.

Aiming to solve all of the previously mentioned issues, carsharing systems
were proposed [31]. In these systems, private vehicles are owned by an enter-
prise, which rents them temporarily to their customers. In general, the vehicles
are parked in specific locations and must be either returned to the original loca-
tion or parked in a different predetermined location. Also, carsharing companies
are transitioning to the use of electric vehicles, since they offer great performance
moving inside urban areas. According to [32], Europe accounts for about 50% of
the global carsharing market and is expected to grow further to 15 million users
by 2020.

Taking this into account, the system we will describe in this chapter is a mod-
ification over the original carsharing system: a free-floating carsharing system
[33]. These systems are much more flexible for the users since their vehicles can
be picked up and parked anywhere within a specified urban area. Customers,
that have access to vehicle locations, book a vehicle for a determined amount of
time. The company takes care of vehicle relocation and recharge if necessary. For
a monthly fee, these companies provide the benefits of owning a private vehicle
without its drawbacks.

Free-floating carsharing systems need to be tested and improved to provide
better service. While testing on real cities might be expensive and sometimes

29

30 Free-floating Carsharing System

completely impossible, the use of simulators can be of help. Our proposal is to
design and implement a free-floating carsharing system for the simulation soft-
ware SimFleet, hoping that it provides a platform to test a carsharing system over
real city infrastructures.

5.1 System description

A free-floating carsharing system has a set of customers who will use a set of trans-
ports to travel. Transports will be located anywhere within the borders of a certain
city or urban area. Customers know the location of available transports at any
time and can issue a booking using, for example, a website or an application. Af-
ter making a booking request, customers wait for confirmation. If their booking
has been accepted, they move to the vehicle (transport) and can access it to travel
anywhere. Once the customer has finished using the vehicle, they must leave it
properly parked within the mentioned urban area.

There are some problems inherent to free-floating carsharing systems. Since
vehicles can be parked anywhere, it may happen that at any given time some
users find all the vehicles parked too far away to be able to use them. In an ex-
treme case, the available vehicles may be even further away than their destination
and therefore it would not make sense for them to use the service. A system of
such flexibility requires careful attention to detect and resolve such situations. In
real life, carsharing companies relocate their vehicles from time to time to ensure
proper distribution.

Another problem is the recharging or refueling of the vehicle. Ideally, a cus-
tomer should find the transport fully charged (refueled) or at least with enough
energy (or fuel) to complete his journey. We understand that carsharing compa-
nies are aware of their vehicles charging and periodically charge (or refuel) those
who need it, driving them to charging (or petrol) stations or simply charging (or
refueling) them on-site with a generator (or deposit).

To address these issues, the authors in [34] present a “staff” agent who deals
with the recharging of vehicles. In addition, customers only book vehicles that
will be available within 30 minutes of the booking being issued. The aim of Sim-
Fleet, however, is the development and comparison of the agents’ strategies. That
is why we decided to give the above-mentioned problems very simple solutions
that a future user can improve them to what he or she considers best.

On the one hand, a maximum walking distance for customers has been intro-
duced which indicates how many meters they are willing to walk to get a vehicle.
This parameter can be manually defined for each customer in the simulation or
not specified to ignore the restriction. A customer with this defined value will
not book or use transports that are further away than what the value indicates.
This may result in some customers not making their journey if they do not have
a vehicle within reach at any time, and hence, the simulation would end with
some customers not having reached their destination. In this way, a SimFleet user
can also evaluate if his or her initial vehicle distribution is suitable for a certain
customer distribution, or even, it could be considered to make relocation of the
vehicles in these cases. We must note that the check of the distance between a cus-

5.1 System description 31

tomer and the available vehicles is done by calculating the straight line distance
between them. As it would be expected, the distance that the customer ends up
covering is usually greater than this estimate, so, in some cases, customers will
exceed maximum walking distance restriction, since the actual route from its ori-
gin to the vehicle is usually longer than the straight line distance. We use an
optimistic estimate of the distance to avoid calculating the actual route to every
available transport, which would overload the routing server in simulations with
many agents and increase the simulation time.

On the other hand, to simplify the experiments performed in this work, we
assume that the vehicles are recharged on site each time they finish a trip, i.e., it
is assumed that the vehicle has its full autonomy for each new customer.

5.1.1. Agents

Fleet Manager. It acts as the “application” by which customers check available
vehicles and their positions. For that, it maintains the updated information about
the location and state of every transport in their fleet and sends this information
to any customer that requests it.

Transports. These agents act as the vehicles of the system of any type; e-cars
by default. Transports are registered to a fleet and managed by their Fleet Man-
ager, whom they will periodically inform about their location and status. Once
a booking request of any customer arrives to a transport, it must reply accepting
or rejecting it depending on their state. Although ideally customers would only
send requests to available transports, in a multi-agent system it may happen that
a booking request arrives to the transport when it has already been booked by
another customer, or even when it is being used. In such cases, the transport will
reject the request. If the transport accepts the request it will change its status to
“booked” and wait for its assigned customer to arrive. When the customer ar-
rives, the transport allows him to enter and drives him to its desired location.
Upon arriving at the trip destination, the customer finishes using the transport,
making it available again.

Customers. Customer agents act as the carsharing system users. Every cus-
tomer is in its origin position and it has a destination that must reach. For doing
so, upon spawning, the customer asks for the available transports to the Fleet
Manager. If there are no available transports, the customer would wait for a de-
termined amount of time before asking the Fleet Manager again. Once the cus-
tomer receives the transports information, it can make a booking request to the
vehicle of his choice. If the request gets accepted, the customer will walk to the
location of his booked vehicle and, once accessed to it, drive it to his destination.
After completing the trip, the customer has achieved his goal and so it stops its
execution. As we mentioned earlier, if the customer has a maximum walking
distance defined, it will only book transports located within his reach.

The simulation will finish once all Customer agents have reached their desti-
nation or if the remaining Customer agents can not book any of the available cars,

32 Free-floating Carsharing System

in which case the impossibility of completion of the simulation will be indicated
in the output of the execution.

5.2 Design of intelligent strategies

SimFleet is coded in Python 3 and, as commented above, makes use of SPADE as a
base for the implementation of its agents. A SPADE agent can have one or many
behaviors that, upon execution, will define the actions of the agent. Besides that,
a series of agent-specific methods can be defined for the agent and called by the
behavior execution.

Agents in SimFleet’s carsharing system have a strategy behavior that imple-
ments their way of interacting with the system and each other during the simula-
tion. These strategies model how agents behave in a carsharing system by means
of a finite-state machine that represents the states through which the agent travels
and which implement the negotiation and decision-making algorithms to book a
vehicle and use it.

The agent strategy behavior defines its interaction with the system and the
other agents. Generally, they are derived from the SPADE class CyclicBehaviour,
which is a behavior that keeps executing itself until its goal has been completed.
To determine the actions of the agents, an attribute representing their state is used.
Depending on its state, the agent will pay attention to certain interactions (mes-
sages) or simply ignore them. This state is usually changed by the strategy be-
havior upon receiving a certain interaction, but it can also be changed internally
by the agent itself. Therefore, it is very important to manage the value of the state
attribute carefully or the agent behavior may become unpredictable.

The agents’ strategies are implemented as SPADE’s FSMBehaviour, a behavior
composed of a Finite-State Machine (FSM). In this way, we designed the strategies
as a FSM and match every possible value of the agent’s state attribute with a
different state of its Strategy Behavior. Also, states for Transport and Customer
agents were introduced to reflect their status in the carsharing system.

Next, we describe the Strategy Behavior of the three involved agents, focusing
on the actions that take place in each state and the transitions.

Fleet Manager Strategy Behavior. The Fleet Manager agent is in an endless
state awaiting for messages. It can receive two types of message: a Transport
agent informing about its state (available or booked), or a Customer agent ask-
ing for the list of available transports. Every time a message from a transport
arrives, the Fleet Manager updates its internal list of available transports. When
a customer asks for it, the Fleet Manager replies only with the transports whose
current state is free.

Transport Strategy Behavior. A Transport agent is initially waiting for booking
requests. When it is booked, it waits for the customer to arrive at the vehicle and
finally moves to the destination. A Transport agent can be in one of the following
states: (1) waiting to be booked, (2) waiting for the customer to arrive, or (3)

5.2 Design of intelligent strategies 33

driving to the customer’s destination. Transitions between states are shown in
Figure 5.1.

1 2 3strt

tng ƒor bookng reqests

ccept bookng

cstomer cnces

cstomer rred to trnsport

rred to destnton

tng ƒor messges

Figure 5.1: Transport Strategy Behaviour as a FSM

Customer Strategy Behaviour. A Customer agent can be in one of the follow-
ing states: (1) making a booking, (2) waiting for the booking to be accepted, (3)
walking to the booked transport’s position, (4) inside the transport driving to his
destination, or (5) in his destination. Transitions between states are shown in
Figure 5.2.

1 2

3

4 5

strt

no be trnsport

send bookng reqest

reqest reƒsed

reqest ccepted

cstomer n trnsport pce

rred to destnton

Figure 5.2: Customer Strategy Behaviour as a FSM

Besides the agents and their strategies, some other components of SimFleet
were modified in order to be able to launch the application using our own agents
and executing simulations. One of such modifications was the addition of Cus-
tomer agent movement in the web application that acts as a User Interface for the
visualization of the simulation.

34 Free-floating Carsharing System

5.3 Experimentation

In this section, we show the flexibility of our SimFleet extension by creating and
executing different simulations. For that, we make use of the simulation gen-
erators, presented in Chapter 4, which enable SimFleet users to easily generate
scenarios based on real-world data, achieving more realistic simulations. As for
the evaluation of the simulations, SimFleet includes many metrics like the time a
customer is waiting to be picked up or the delivery time for delivery vehicles. For
our system, we use the customer walking distance, in meters; i.e., the distance the
customer agent moves from its origin point to their booked vehicle’s position.

To run experiments as close to reality as possible, we based the location of the
customer agents in a dataset containing origin and destination points of carshar-
ing trips in the city of Turin, Italy, compiled over a period of two months [35].
The origin and destination points of the customer agents matched the ones in
the dataset. Then, a certain number of transport agents were placed among the
city area following different types of distributions: a random distribution, which
simply locates vehicles at valid points inside the city area; a uniform distribution,
which divides the city area as a grid and places a vehicle centered inside each
cell; and finally, a radial distribution, which places more vehicles in the center of
the city and reduces the number of them in the outer parts. Finally, concerning
customer behavior, we assume that customers always book the closest available
transport.

A graphic representation of the city area considered for the simulation can be
seen in Figure 5.3a. The gray polygon encloses all of the points of the dataset,
except the ones corresponding to the airport, which we did not consider as it is
outside of the city. The points represent the origin positions of 250 customers
(origin of carsharing trips in the dataset). In 5.3b, 5.3c and 5.3d random, uniform
and radial distributions of 125 vehicles are presented, respectively.

We executed simulations with 250 customers, 125 or 250 transports distributed
in one of the three aforementioned ways with maximum walking distances of
2000, 1500 and 1000 meters, and compared the mean customer walking distance
and its standard deviation. The results can be seen in Table 5.1. Since the max-
imum walking distance restriction is checked over an optimistically computed
distance, there are cases in which the real distance that the customer walks is
considerably higher than the defined maximum. We considered these cases out-
liers and we do not show them since we understand that real customers would
not walk such distances.

These experiments show how our proposal can be of use to free-floating car-
sharing managers to estimate, for instance, the most appropriate number of ve-
hicles for their fleets, and how to distribute them through the city to improve
customer experience by locating vehicles as close to them as possible. In this par-
ticular instance, the alternative vehicle distributions do not present any signifi-
cant differences in terms of customer walking distance. Of course, system users
can define and analyze any other metric they consider relevant.

5.3 Experimentation 35

(a) Customer origin points (b) Random distribution of vehicles

(c) Uniform distribution of vehi-
cles

(d) Radial distribution of vehicles

Figure 5.3: Turin city area considered for the simulations

Distribution # customers # transports Max. w.d. (m) Mean w.d. (m) σ (m)

random

250

125

2000
1019.70 715.37

uniform 1046.86 727.02
radial 1058.79 752.05
random

1500
953.58 639.12

uniform 928.30 631.50
radial 997.76 636.06
random

1000
799.37 494.27

uniform 830.46 537.28
radial 798 492.99
random

250

2000
967.82 728.07

uniform 944.21 718.36
radial 965.36 754.59
random

1500
886.08 608.45

uniform 886.65 706.79
radial 893.07 662.45
random

1000
759.97 519.40

uniform 769.65 506.39
radial 705.17 549.52

Table 5.1: Customer walking distance (w.d.) comparison with different simulation con-
figurations

36 Free-floating Carsharing System

5.4 Chapter remarks

In this chapter, we have designed and implemented a free-floating carsharing
system based on SimFleet, a multi-agent urban fleet simulator. With the presented
system now integrated, SimFleet offers a large number of configuration options to
simulate complex scenarios that reflect real-life fleet operations, giving it more
potential to aid in solving urban traffic problems. The system can support fleets
of many different types in the same simulation. For instance, we could simulate
a taxi fleet together with a carsharing one in the same city. Consequently, the
simulator is a great tool for evaluating transport and people distributions over
actual cities and analyzing the effect of different agent strategies.

In future work, we will extend the system implementing other types of car-
sharing as well as different types of carsharing trips. Besides, we want to explore
negotiation and coordination strategies among agents for a better resolution of
complex simulation scenarios. Finally, we also consider improving the current
system by adding the option of vehicle relocation during the simulation, used
when customers have no access to any free vehicle because of their location

CHAPTER 6

SimFleet Planner

The work described in this chapter and the following Chapter 7 is motivated by
the research on rational, self-interested agents. An agent with those features has
its own private objectives which, in practice, translates to its unique utility func-
tion. Our goal was to introduce such agents to SimFleet’s simulations to turn
transport agents into electric autonomous vehicles (EAV). Such vehicles may be-
long to a taxi fleet thus having the interest of serving customers’ travel requests,
getting compensated by it. By introducing EAVs from different taxi companies,
for instance, we create a competitive scenario where agents compete to serve as
many customers as possible. However, since the aim of SimFleet is to simulate,
we had to ensure that the aforementioned scenario was solvable, avoiding the
conflicts that generally arise between agents in this type of context. For that, we
model the simulation as a multi-agent planning task (MAP), specifically a non-
cooperative MAP task; one in which agents do not create alliances to solve the
global goal of the task but rather the task is solved by coordinating the way in
which agents solve their own private goals.

With this modeling, the global goal would be to serve all customer agents,
thus finishing the simulation. On the other hand, the agents will aim to maximize
their utility, serving as many customers as possible. To avoid conflicts, the actions
of each agent are decided by a game-theoretic process: A Best-Response Planning
Strategy (BRPS) process, explained in Chapter 7. With it, transport agents play a
game in which their strategies are plans; i.e: the list of actions they aspire to do in
the scenario. During the development of the process, the agents propose plans,
in turns, making sure they always are in best response to any other agent’s plan.
In other words, they ensure their actions are the ones that report them a higher
utility with respect to all actions of other agents in the scenario. After a series
of game iterations, the process converges to a stable solution or equilibrium; a
solution from which no agent is incentivized to deviate. In this way, we achieve
a joint plan (union of agent plans) which solves the global goals while preserving
the agent’s self-interests.

In this chapter we tackle the creation of individual agent plans. For that, we
developed a planning algorithm which given a simulation scenario, defined by
a SimFleet configuration file, and a transport agent in that scenario, builds the
optimal plan for such agent, taking into account both the characteristics of the
scenario as well every other transport agents plans, if any.

37

38 SimFleet Planner

The planner is designed to be integrated in a BRPS process, being used by
the agents to propose their best strategy in every iteration. Because of that, it ex-
pects certain elements upon its initialization which it uses to take into account the
strategies of other participant agents. Nevertheless, it can work independently,
although only for scenarios defined following the constrains of our urban traffic
domain, which we also introduce in this chapter.

Following, we describe our urban mobility domain together with the trans-
port agent’s utility function and the conflict sources of a scenario that follows the
domain constraints. Then, we introduce the actions that are doable in our do-
main and show the structure of the plans our algorithm obtains. After that, we
describe in detail the planning procedure, how our planner searches for the op-
timal plan among all alternatives. For that, we present the different elements of
the planner explaining their function in the planning. In addition, we comment
on the planner performance and the techniques we used to enhance it. Finally,
we develop a trace of the obtention of a plan in a small planning scenario which
serves as example to illustrate the functioning of our algorithm.

6.1 Urban Mobility domain

Our urban mobility scenarios model a real-world smart-city urban area. Within
the urban area there can be charging stations in determined locations and cus-
tomers, which have an initial position and a travel request assigned to them.
Additionally, there are EAV, to which we will refer as transport agents or sim-
ply transports, who also have an initial position and a current autonomy level,
among other parameters.

This scenario will be solved once the travel request of every customer has
been served. For that, a Transport Agent must serve the request by picking the
customer up at their initial location and dropping them off at their desired desti-
nation. At the same time, the movement of transports entails an expense of their
autonomy. At some point, the Transport agents will need to recharge their batter-
ies to keep serving customer requests. This will be done by driving to a charging
station, start charging and wait until their autonomy is full again.

For the movement around the urban area, a routing service is used to calculate
the fastest route between two points.

6.1.1. Transport agent’s utility

To encourage Transport agents to solve the simulation scenario, we assigned to
every customer travel request a benefit that will be reported upon completion.
Besides the benefits, we defined also different costs that are associated with trans-
port movement and charging fees. Our aim was to create costs and benefits de-
rived from a realistic urban mobility scenario. For doing so, we defined the fol-
lowing values:

• Benefits: The benefits are modeled as monetary value obtained from serv-
ing customer agents. There is a STARTING_FARE price, which is a constant

6.1 Urban Mobility domain 39

value added to the benefits once the customer is picked up. After that, the
agent will obtain a fixed value PRICE_PER_KM every kilometer traveled
during the service. These benefits modeling imitates the pricing model of a
taxi service.

• Costs: There are two different costs defined. First, a PRICE_PER_KWh,
which represents the price of charging one kilowatt in a charging station.
Therefore, the cost derived from charging is proportional to the amount of
kilowatts needed for a full charge. Second, we defined a travel PENALTY,
that indicates what percentage of the transport agent’s movement (in kilo-
meters) must be penalized. This adds to the costs a numeric value equal to
the penalty times the kilometers of any agent’s movement. The PENALTY
is usually a low value, 0.1 (10%) by default.

With this modeling, we achieve transport agents that are interested in serving
customers with long trips, since they report more benefits, and, at the same time,
picking up first the customers which are closer to them, since they entail less
travel penalty. In this way, when planning, we are explicitly optimizing utility
for the transport agents while implicitly reducing the waiting time of customers,
since they will most likely be picked up by the transport which is closer to them.

Beneƒ ts = STARTNG_FARE+ PRCE_PER_KM · trp_km (6.1.1)

Costs = TRAVEL_COSTS+CHARGNG_COSTS
= PENALTY · treed_km+ PRCE_PER_KWh ·KWh_to_chrge

(6.1.2)

6.1.2. Sources of conflict

The self-interest of the agents together with their utility function leads to a do-
main in which conflicts between agents easily arise. A conflict is a situation that
invalidates the execution of the plans of two or more agents, which have actions
that use the same resources and are thus incompatible inside the joint plan. A
congestion, on the other hand, represents an interaction between the plans of
two or more agent that causes the costs of the involved agent’s plan to increase,
causing an unpleasant situation which could be avoided modifying the agent’s
plan. During the BRPS process, these interactions are identified and dealt with,
achieving a final feasible joint plan.

Customer conflicts

A customer conflict occurs when two or more agents aim to serve the same cus-
tomer in their plans. In our simulations, once the travel request of a customer
is served, the customer has completed its interaction with the system. Conse-
quently, customers are only served once.

To solve this type of conflict, the planning process takes into account which
transport agent is serving which customer at all times. A transport agent may

40 SimFleet Planner

plan to serve a customer which has not been served yet or a customer that is being
served already by a different transport, only if they pick up the customer before their
currently assigned transport. The factor that determines which agent will serve
which customer is thus the pick up time, which is strongly related to the distance
between the transport agent and the customer. This generally causes that cus-
tomers are served by the transport which is closest to them, which is beneficial
for them. The detailed process for conflict identification and management will be
described in Section 6.4.

6.2 Actions

SimFleet’s transport agents have two basic actions: attend a customer service,
which involves moving to their location, picking them up and driving to their
destination; and recharge their vehicle by driving to a charging station. All the
different steps of each of the actions are encapsulated in SimFleet as a single atom.
However, when it comes to planning, we must consider every step as an individ-
ual action with its own duration, even though the steps that belong to the same
SimFleet action will always be executed consecutively. Besides that, taking into
account the subsequent best-response algorithm, there is certain data relative to
each of the steps of the whole action which is necessary for the process. For in-
stance, the pick-up time of a customer, which is defined in the first step of a cus-
tomer service, is used to check which agent is able to serve the customer before.
Consequently, our system considers the following four actions:

1. PICK-UP: Move to a customer position and pick them up.

2. MOVE-TO-DEST: Move to a customer destination and drop them off.

3. MOVE-TO-STATION: Move to a charging station and wait for charge.

4. CHARGE: Begin charging until the vehicle is fully charged.

Actions 1 and 2 constitute a ‘customer service’ while actions 3 and 4 constitute
a ‘charging service’. During the construction of the individual plan of a transport
agent, actions 2 or 4 will be only appear right after an action 1 or 3, respectively.
In the same way, after actions 1 or 3 there can only appear actions 2 or 4.

6.2.1. Elements of an action

An action is defined in our system as a set of four elements: performing agent ,
action type t, action attributes D and action statistics S.

〈, t,D,S〉

In this section we describe each element, focusing on the action’s attributes and
statistics.

• agent (): Name or ID of the agent performing such action.

6.2 Actions 41

• type (t): Indicates the type of the action. There are three action types: CUS-
TOMER, CHARGE and RELOCATE.

• attributes (D): Dictionary with different attributes of the action. The specific
attributes of an action, which generally represent domain objects (agents,
locations), are determined by the action type.

• statistics (S): Dictionary with numerical data pertinent to the action. The
statistics are also determined by the action type.

Attributes of an action

Action attributes represent its parameters; the set of objects to which the action
makes reference. According to their type, actions have different attributes, which
are explained below.

• PICK-UP action:

– customer_id: ID of the customer agent that will be served in the action.

– customer_origin: Origin position of the customer from which it will
be picked up.

• MOVE-TO-DEST action:

– customer_id: ID of the customer agent that will be served in the action.

– customer_destination: Destination position of the customer in which
it will be dropped off.

• MOVE-TO-STATION action:

– station_id: ID of the station agent where the transport will charge.

– station_position: Position of the station to which the transport will
have to move.

• CHARGE action:

– station_id: ID of the station agent where the transport will charge.

Statistics of an action

The statistics of an action include numerical data used for the evaluation of the
plans and in the best-response procedure. In general, it has the time and distance
values corresponding to the movement performed by the transport agent in such
action. The statistics are different for each action type; for instance, in CHARGE
actions, the charging time is also considered as a statistic. The specific statistics
for each action type are presented below:

• PICK-UP action:

– time: Time to move from the transport agent’s position to the customer
origin position.

42 SimFleet Planner

– dist: Distance traveled from the transport agent’s position to the cus-
tomer origin position.

• MOVE-TO-DEST action:

– time: Time to move from the customer origin position to its destina-
tion.

– dist: Distance traveled from the customer origin position to its desti-
nation.

• MOVE-TO-STATION action:

– time: Time to move from the transport agent’s position to the station’s
position.

– dist: Distance traveled from the transport agent’s position to the sta-
tion’s position.

• CHARGE action:

– time: Time to fully charge the transport agent.

– need: Amount of petrol/energy needed to fully charge the transport
agent.

6.2.2. Action precalculation

With the information provided by the SimFleet configuration file, we are able to
foresee the different actions that may take place during the execution or, from the
planning perspective, that may be used in a transport agent’s plan. To speed up
the planning process, those actions are precalculated and stored in dictionaries.

To precalculate an action means to instantiate its elements with the adequate
data, this process is equivalent to grounding as it is commonly named in planning
contexts. Our precalculation process goes as follows: for each transport agent, we
create:

• A PICK-UP and a MOVE-TO-DEST type action for every customer.

• A MOVE-TO-STATION and a CHARGE type action for every charging sta-
tion.

These actions have values for their attributes but not for their statistics, since
the latter are calculated according to the transport agent’s position and/or auton-
omy at the time of executing the action. Consequently, the statistics of an action
will be computed and assigned during the planning process.

In a similar way, we can also foresee which routes will the transport agents
use during their execution. Transport agents can not plan to move freely within
the urban area. Instead, every movement they do is determined by an action,
whether is recharging or serving a customer travel request. Because of that,
we consider only a finite set of positions, represented by pairs of coordinates,
in which the transports and customers will be located. Those positions are the

6.3 Plans 43

initial and destination positions of customer agents, initial positions of transport
agents and charging station locations. Before the execution of the planner, the
routes between each pair of points are requested to the routing service (explained
in Chapter 2, subsection 2.1.3) and stored, saving again planning time.

Specifically, we precalculate:

• Routes from every transport’s initial position to every charging station location,
that will be used in case the first action of a transport agent is to recharge.

• Routes from every transport’s initial position to every customer’s initial posi-
tion, that will be used in case the first action of a transport is to serve a
customer request.

• Routes from every charging station location to every customer’s initial position,
that will be used in when a transport agent serves a customer request after
charging.

• Routes from every customer’s initial position to every customer’s destination
position, that will be used when a transport serves a customer travel request.

• Routes from every customer’s destination position to every customer’s initial
position, that will be used when a transport serves a customer request right
after finishing one.

• Routes from every customer’s destination position to every charging station lo-
cations ’s destination position, that will be used when the transport needs to
recharge after serving a customer request.

By storing all these routes, we have covered every possible movement of trans-
port agents in our domain.

6.3 Plans

A Plan is constituted by a list of actions ordered in ascending order according
to their starting time. Every plan entry presents the corresponding action with
its elements and initial and end time in seconds. An example of a plan in our
domain can be seen in Table 6.1.

When it comes to our proposal, we must differentiate between two types of
plans: individual and joint plans. Individual plans are the ones executed by a sin-
gle agent; all its actions have the same agent as performer. A joint plan, however,
is the union of every individual plan. The joint plan may contain conflicts among
its actions, since the different plans that compose it where searched individually.
For a joint plan to be executable, all the conflicts must be avoided.

6.4 Planning process

Our planner is designed to obtain feasible individual plans, taking into account
both the simulation scenario and the current joint plan. The joint plan, as a union

44 SimFleet Planner

init time actions end time

0,00 (Agent_A, PICK-UP, customer2) 4,62
0,00 (Agent_B, PICK-UP, customer1) 9,81
4,62 (Agent_A, MOVE-TO-DEST, customer2) 9,97
8,52 (Agent_C, PICK-UP, customer3) 17,51
9,81 (Agent_B, MOVE-TO-DEST, customer1) 16,07

17,51 (Agent_C, MOVE-TO-DEST, customer3) 25,41

Table 6.1: Visual representation of a plan. On the left column, the initial time instant of
the action is presented in seconds. On the middle one, the action with all its elements.
On the right column, the time instant in which the action finishes is indicated, also in

seconds.

of individual plans, may present many conflicts. Such conflicts are taken into
account by the Planner, which will avoid them when constructing a new indi-
vidual plan. Therefore, every game round, agents will run the planner in their
turn, obtaining their individual plan, which will be added to the joint plan. The
best-response process will not finish while the joint plan presents any conflicts.
Once the game converges, the joint plan is guaranteed to be conflictless and thus,
executable.

In contrast to classical planning, described in Chapter 2.2.1, our modeling of
the world state does not use literals, our actions are not exactly defined by pre-
conditions and effects, and the goals of the plan are not explicitly defined nor
known at the beginning of the process. Our domain is very limited, and the plan-
ning process is completely guided by the transport agent’s self-interest. Trans-
port agents aspire to obtain as much benefit from its execution as possible. This
is equivalent to search for the plan with highest utility value. Since the benefits
of the plan are given by completing customer actions, to achieve the greatest util-
ity value the planner considers every reachable customer agent as an open goal. A
customer is reachable if 1) no other transport agent is picking the customer up be-
fore the current agent and 2) the current agent has enough autonomy to complete
the customer service.

A transport agent is interested in serving as many customers as possible. Con-
sequently, the main type of action the planning process will generally consider
is serving customer requests; picking a customer up and driving them to their
destination. Only when the autonomy of the agent is not full, the actions that
constitute a charging service will be considered.

The current world state is then represented by the transport agent’s current
position and autonomy as well as the current reachable open goals. These two are
the only elements which matter to the transport agent (and therefore to the plan-
ning process). The attributes regarding other agents in the scenario are not taken
into account; the customers that have been already served and are not reachable
are ignored by the planning transport agent. When actions are applied, the state
is modified by updating the transport agent’s location, autonomy and/or the list
of open goals.

6.4 Planning process 45

In contrast to the approach of [25], our planner does not look for a better plan1

but for the best one, thus performing optimal planning, which is reasonable be-
cause of how restricted our domain is. The individual plan returned from the
planning process must be a best response to the individual plan of every other
transport agent. Consequently, when planning, we are not just looking for a fea-
sible plan, but for the best possible plan given the current state of the scenario.

As for the plan-searching process, the planner obtains the optimal plan by
building a search tree whose nodes are partial plans. The open nodes (nodes that
have not been expanded yet) are evaluated and stored in a priority queue, so
that nodes with better value are explored first. Expanded nodes that generate no
children are considered solutions, and the plans they contain as complete plans.
Solution nodes are evaluated as such and stored in a list. The search finishes
when the queue of open nodes gets emptied. Then, the best solution found is
returned.

In this section we describe, in depth, the elements of our planner and the
components of its search tree, as well as the procedure used to build and explore
it.

6.4.1. Planner elements

Every instance of our planner has certain elements which are necessary for the
plan-searching process. These elements are passed by the BRPS procedure (Chap-
ter 7) upon creation of the planner instance and may be consulted and/or up-
dated during the planning process. Following, we introduce each of those ele-
ments, describing their use.

Firstly, the planner has access to the dictionary of precalculated actions and
routes (Section 6.2.2). When building the search tree, the precalculated actions
are checked, and the tree is expanded creating new ramifications that include the
feasible ones. On the other hand, once an action is selected to include it in a plan,
its statistics (Section 6.2.1) must be filled, which is done by using the transport
agent’s current location and autonomy. All actions include a statistic that indi-
cates the time it takes to be completed. For the actions that indicate a movement,
this time is calculated as the traveled distance divided by the transport agent’s
speed. Such distance is given by the route, precalculated in the aforementioned
dictionary.

The planner includes also a dictionary which stores the transport agent’s at-
tributes, extracted from the simulation configuration file during the initialization
of the planner. This includes the agent’s ID, its initial position, initial autonomy,
maximum autonomy, and speed. The initial position and autonomy are used for
the creation of the first planning search-tree nodes. The maximum autonomy
indicates the autonomy the transport agent will have after a charging service.
Finally, the speed is used to calculate the time in any action that includes a move-
ment.

1Better plan refers to a plan which reports higher utility than the plan the agent had found on
the previous iteration of the BRPS process.

46 SimFleet Planner

Finally, each planning instance has its own Table of Goals, which follows the
structure presented in Table 6.2. The Table of Goals keeps updated information
about the current reachability of customers in the scenario. It indicates, for every
customer, if a transport agent is serving its travel request. If so, it will show
the serving transport agent’s ID and the customer pick-up time. The Table of
Goals is consulted every time a customer service action is considered for adding
to a search-tree node. If the current transport agent can not pick the customer
up before the time indicated in the Table of Goals, such customer is considered
non reachable and the action to pick it up is therefore discarded. The Table of
Goals is then used by every transport agent to determine the open goals of their
individual plan.

goal agent pick-up time

customer 1 Agent C 2,26
customer 2 Agent A 4,62
customer 3 Agent B 3,95

Table 6.2: Visual representation of a Table of Goals. Each row presents a customer, its
serving agent and pick-up time, in seconds

When an agent proposes a plan, the joint plan is updated and a new Table
of Goals is computed. Every entry from the joint plan that contains a PICK-UP
action is stored, grouping them by served customer ID. Then, the action with
earliest pick-up time for every customer is chosen. The customer gets assigned
the transport agent and pick-up time that such action indicates.

6.4.2. Plan evaluation

The value of a plan is tied to the utility it reports to the transport agent that ex-
ecutes it. Only individual plans are evaluated, since joint plans are not better or
worse, they are simple feasible or non feasible. A plan can be evaluated in three
different situations:

1. As a partial plan in a search tree node.

2. As a complete plan in a leaf (solution) node.

3. As a part of a joint plan.

This subsection discusses plan evaluation in the second and third cases, whereas
the first is explained in Section 6.4.3, where the evaluation of tree nodes (partial
plans) is explained in detail.

During the planning process, every expanded node which generated no chil-
dren (leaf node) is considered as a complete plan or solution. The evaluation of
a complete plan is performed following the equations in Section 6.1.1. The plan
reports benefits for every customer service, which are reduced by the costs of
charging the vehicle and the traveling penalty. In this case, the evaluation of the
plan is equal to the utility that the agent gains by executing it. When the queue of

6.4 Planning process 47

open nodes is exhausted, the plan search process finishes and the complete plan
with highest utility is returned to the BRPS process (Chapter 7), which integrates
it in the joint plan.

The utility of plan π will remain unchanged as long as the customers its per-
forming agent is serving are not served by any other agent. Since the returned
plans are in best response, π reports the maximum utility its performing agent
can achieve at the moment of its planning. Nevertheless, as soon as another agent
proposes another plan, π may have stopped being in best response, having its
utility reduced.

When a plan is evaluated as part of a joint plan, it may present conflicts. If
the plan does not bring any conflicts, its utility will be the same it had when
returned. However, when a plan has any conflict, its cost is usually increased,
which encourages its performing agent to avoid conflicts. A conflict arises when
an agent which planned to serve a certain customer gets its goal stolen by another
participant agent, which plans after it, and serves the same customer earlier (Sec-
tion 6.1.2). In our design, when a plan presents customer conflicts, the benefits
that would be reported by serving the customer in conflict are not considered;
only the costs are. This reduces drastically the utility of plans in conflict, since
customers are the only source of benefits. Therefore, it stimulates our transport
agents to look for other customers to attend in the subsequent planning instances
of the next iterations of the BRPS process.

6.4.3. Partial plan search tree

Our planner searches for the optimal plan by building and expanding a search-
tree of partial plans. The nodes of the tree contain partial plans. Nodes expand
and generate children, which inherit their plan and add new actions. Therefore,
partial plans are built incrementally by adding customer or charging services to
them, one step at a time.

Nodes

A node of the search tree represents a partial plan. For that, each node presents
a list with the actions that its partial plan contains. In addition, it also contains
the transport agent’s position and autonomy at the end of the execution of the
partial plan, together with the time instant in which the last action of the partial
plan is completed (node end time). Finally, nodes contain also a list of completed
goals. In case their partial plan includes actions that serve a customer request,
such customer will be indicated as a completed goal.

This representation is not the common one in classical planning or Partial Or-
der Planning, in which each node represents an action. However, our representa-
tion of partial plans (that include several actions) in nodes of a tree allows us to
have a reduced branching factor when compared with other planning represen-
tations. This is possible in our case because our planner is ad-hoc to the domain,
and hence, we can take profit of the characteristics and restrictions of the domain.

48 SimFleet Planner

As with any kind of tree, nodes have one connection to their parent node and
one connection per children node, if any. Every time an open node is expanded
its children are spawned. Those children inherit the partial plan defined by the
parent and update it by adding new actions. If a node is expanded but returns no
children, it is considered a leaf node or solution and its partial plan a complete
plan.

Nodes can be of two types: customer or charge nodes. A customer node is
one that adds to its parent’s partial plan the necessary actions to serve a customer
request. In contrast, a charge node adds the actions of moving to a station and
charging, which constitutes a charging service.

When a node is expanded, the planner creates all its possible customer-node
children. If during this process one (or more) of the customer-node children is dis-
carded because the agent’s autonomy does not allow it to complete its customer
service, the process returns a flag which indicates that charge-node children must
be created too. Therefore, charge-node children will only be created if at least one
customer can not be served because of the agent’s low autonomy. The planner
spawns one charge-node children per charging station in the scenario. As it can
be deduced from above, the branching factor of the search tree will be mostly
affected by the amount of customers and charging stations in the simulation con-
figuration.

After their creation, nodes are evaluated by an A*-like evaluation function.
The value of a node is the sum of the utility reported by its current partial plan
and an heuristic estimate of the utility that could be achieved once the plan is
complete. Leaf nodes, however, are evaluated as complete plans, following the
procedure described in Section 6.4.2. The value of each node is used to define
expansion priorities during the plan search process.

Customer nodes creation

The creation of customer nodes is encapsulated in a function which can receive
a parent node selected to expand or nothing. In the latter case, a new node will
be created from scratch. In general, the function creates one children node per
reachable customer, serving their travel request. As we mentioned above, a cus-
tomer is reachable if (1) no other transport agent is picking the customer up before
the current agent and (2) the current agent has enough autonomy to complete the
customer’s service. To check these conditions, the parent node’s end time is taken
into account as well as its list of completed goals and the Table of Goals. After
checking (1), the autonomy consumption of the customer trip is computed and
compared towards the parent node’s current autonomy. If (2) does not hold, the
function will return a flag, indicating that at least one customer was unreachable
because of not having enough autonomy.

Analyzing at plan level, each children node updates the partial plan of its
parent by adding a PICK-UP and a MOVE-TO-DEST action that make reference
to a unique, reachable customer.

6.4 Planning process 49

Charge nodes creation

Charge nodes will be created whenever the autonomy of the agent is not maxed
out in a parent node. With this, we avoid ramifications of the search tree where
charging actions are applied senselessly, thus reducing the tree’s branching factor.
These tree branches would eventually be discarded naturally by the planning
algorithm, since the action of charging entails no benefits, only costs. Therefore,
as the utility is optimized, the amount of charging actions is reduced.

The creation of charging nodes is also encapsulated in a function. In general, it
creates one children per charging station in the simulation scenario, updating its
parent’s partial plan with the corresponding MOVE-TO-STATION and CHARGE
actions.

Node evaluation

When building the search three, the order in which nodes are expanded can
greatly affect the time and memory consumption of the process. Aiming to ef-
ficiently manage the computational power needs of our planner, we decided to
use an A* algorithm to decide which node to expand at every moment. Every
generated node is evaluated and enqueued in a heap of open nodes. Their prior-
ity in the queue is directly proportional to their evaluation score; i.e: their f-value.
To evaluate the nodes we make use of the classical equation, presented in Equa-
tion 6.4.1, where g is the utility of the partial plan the node represents and h is
an optimistic calculus of the expected benefits that completing every reachable
non-completed goal would yield.

ƒ () = g(h) + h(), h() ≤ h∗() ∀ (6.4.1)

The heuristic function is a relaxation of the problem constraints. It neglects the
time taken to pick up the reachable customers and dismisses the costs that entail
serving their requests, considering only the benefit that their trip would return.
The h value of a node is therefore the addition of the benefits derived from serving
all customers that have not been served by the node’s end time. In other words,
the transport agent assumes that it can serve every available customer by itself.
This heuristic is substantially optimistic, since even in the best case scenario the
costs would be added to the real utility.

Search space exploration algorithm

The planning process begins by creating the initial nodes. According to the Table
of Goals (extracted from the previous round’s joint plan) and the own agent’s
initial autonomy, the planner will create:

1. One customer node per reachable customer.

2. One charge node per charging station iff the autonomy of the transport
agent is not at its maximum value.

50 SimFleet Planner

These nodes will be evaluated and added to a priority queue that stores open
nodes giving priority to the ones with higher value.

Following, the algorithm’s main loop begins. While there are open nodes in
the queue, a node is selected for expanding. Its customer-type children are cre-
ated and, if necessary, its charge-type children are as well. Every child is evalu-
ated and stored in the queue only if its value is higher than the value of the best
solution found so far (if any). Meanwhile, the parent node gets discarded.

If the children creation processes return no children, the expanded node is
a solution node and it is therefore reevaluated as a solution (without heuristic
value) and stored in the list of solution nodes. The value of the solution is com-
pared against the best solution found, which will be replaced if it is surpassed.

Once the open node queue becomes empty, the plan in the best solution node
is extracted and returned as solution.

By creating customer and charge-type children, we are building different plans
by adding, in each step, two actions to the previous partial plan. These two ac-
tions can be either a PICK-UP, MOVE-TO-DEST couple, completing a customer
request or a MOVE-TO-STATION, CHARGE couple, completing a recharge of
the transport agent’s autonomy. We decided to build plans in this way because
of two reasons.

First, even though our domain has 4 actions, those can not be ordered freely
inside a plan. After picking a customer up, a transport agent can only drive them
to their destination. It can not move to a station or charge while the customer is
boarded. In a similar way, if the transport agent needs to charge and moves to a
station, its next action must be to charge. This causes that actions appear always
in the aforementioned couples.

Second, by using this method we only consider the addition of necessary and
feasible actions every time. Consequently, we are avoiding tree ramifications that
would eventually be discarded either because of conflicts or because of a low
utility value.

These two features of our domain drastically reduce the branching factor of
the search tree. A visual representation of a tree branch can be seen in Figure 6.1,
where the construction of a complete plan from an empty plan is presented.

6.5 Search tree pruning 51

Figure 6.1: Partial-plan tree branch. Rounded shapes represent nodes with partial plans,
which can be of customer or charge type, according to the actions they add to their
parent’s plan. Arrows represent a kinship relation. The leaf node (lower right corner)

presents a complete plan.

6.5 Search tree pruning

Planning is a computationally hard task. Our planner reduces the computational
cost by building plans exclusively for our domain, taking advantage of its charac-
teristics to avoid useless plans which would end up discarded, and it also reduces
computation due to the representation of partial plans in the nodes of the search
tree instead of the classical representation of actions. Nevertheless, we included
some features which aid to speed up the plan search process as well as lower
memory consumption. In general, during the generation of the search tree, there
are nodes which can be safely discarded, and thus never expanded, since its prop-
erties indicate that either it will not build a valid plan or the plan it produces will
not be better than the best plan found so far.

6.5.1. Best Solution prune

Once the first leaf node is found, its plan is extracted, evaluated and its utility
saved as the best solution value found so far.

Whenever the process finds another solution, the utility of its plan will be
compared to the best solution value, updating the latter if it overcomes it.

Each time a node is extracted from the priority queue to be expanded, if its
f-value is lower than the best solution value, it is instead discarded. This can be
done safely because the f-value of an open node is the sum of the node’s par-
tial plan utility and the best expected utility that a plan deriving from that node
could achieve. Such expected utility is returned by an optimistic heuristic func-
tion (Section 6.4.3). The partial plan of an open node with an f-value below the

52 SimFleet Planner

best solution value has no potential to evolve into a better solution, and so the
planner can avoid wasting time expanding it.

6.5.2. Storage of Partial Solutions

All leaf nodes in our search tree are customer-type nodes. This is because it would
make no sense for the agents to plan to charge if, after charging, they can not
serve any customer, since charging entails costs. Because of that, every generated
customer node can be a potential solution.

In general, solutions or complete plans are detected when, upon expanding
a node, it returns no children. However, we decided to store partial solutions. A
partial solution is an open customer node which is evaluated as a solution and
saved in the list of solutions. Therefore, every spawned customer-node children
is both saved as a partial plan in the queue of open nodes and as a partial solution
in the list of solutions.

In this way, our planning algorithm has available solutions to perform the best
solution prune (Section 6.5.1) almost from the beginning of the planning process,
avoiding the need to detect a complete plan to start pruning. Since partial solu-
tions are partial plans evaluated as complete plans (without heuristic value), their
utility will always be lower than the utility obtained by a complete plan, which
makes it safe to store them as solutions.

6.5.3. Previous Plan Utility bound

When an instance of the planner is created, a previous plan of the invoking agent
can be passed. If there is a previous plan and the utility it reports is higher than
0, the utility will be used to define a lower bound value for the planning process.
When a node is evaluated, if its value is below the lower bound, it will be dis-
carded. In this way, leaf nodes which contain solutions that are worse than the
previously obtained one are not considered, speeding the process up consider-
ably.

6.6 Planning in large scenarios

The complexity of our planning scenarios is proportional to the number of cus-
tomers and charging stations that it includes. Since node expansion generally cre-
ates one customer-child node per reachable customer and one charge-child node
per station, it can easily be deduced that great amounts of them will increase the
search tree branches.

For small and medium domains, this does not suppose a problem, since we
have many measures to save computational power during our planning pro-
cess. However, we found that for big problems (20+ nodes per expansion) some
method was needed for obtaining initial plans.

Initial plans are created at the start of the BRPS process when there is no pre-
vious plan the utility of which can be used as lower bound for the search. Besides

6.6 Planning in large scenarios 53

that, the agent which plans in the first place does not have information on the
Table of Goals that limits its possibilities, thus facing a large number of feasible
plans. Once the agents have a previous plan and the Table of Goals contains
information, the planning process is drastically speed up, even for big scenarios.

Consequently, to palliate this issue we developed two independent methods
which can be applied in the planner instance of each agent during the first itera-
tion of the BRPS to reduce the time needed to propose the initial plans.

6.6.1. Goal Limitation

A way in which we can avoid too prolonged planning processes is to limit the
amount of open goals that the agent aims to complete. In general, an agent will
plan to achieve as many goals as possible; in other words, to serve as many cus-
tomers as possible. We implemented a method that limits the goals to a percent-
age of the total. Every time a customer node is spawned, the number of goals
in its list of completed goals is checked. If it has served such percentage of cus-
tomers, the node is considered a solution and thus not included in the queue of
open nodes.

This limitation makes sense since no transport agent would be able to serve all
customers in any scenario considering there are other transport agents competing
for those customers.

6.6.2. Initial Feasible Joint Plan

The planning during the first iteration of the BRPS process is considerable slower
because of the absence of previous individual plans. For that, we implemented
a method that creates initial plans for every agent, making sure there are no con-
flicts among them.

The creation of the initial plan is performed as follows: First, the amount of
customers is divided by the amount of transport agents, obtaining the number
of goals () each agent will initially complete. Then, different customers are
assigned to each agent randomly. If the division is not exact, some transports will
have +1 or − 1 customers assigned instead. Then, a greedy algorithm is used
by each agent to plan how to serve their customers. The algorithm makes sure
that the agent serves the closest customer at every time, charging in the closest
station whenever necessary. Therefore, in every iteration of the greedy planning,
the process checks if the agent has enough autonomy to pick up its currently
closest customer. If so, the agent will pick it up and repeat this. If not, the agent
will charge in its closest charging station, then pick up the closest customer. Once
the customers are served, the process returns the plan.

With this, we obtain a feasible joint plan which is used to fill the Table of Goals,
providing the planner with the necessary tools to speed up the search.

The goal limitation and the creation of an initial, feasible joint plan have proved
to be very effective, reducing the amount of generated nodes during the initial
planning process greatly. However, they have an influence on the BRPS pro-

54 SimFleet Planner

cess, as they guide it towards certain equilibria, avoiding others which can not be
reached with the limitations the methods impose.

6.7 Plan building example

In this section we illustrate the plan building process by showing how a com-
plete plan is developed in a small scenario, presented in Figure 6.2, which con-
tains three customers and one charging station. In this case, we will show the
construction of the initial plan for Agent A, who proposes its plan before any
other agent. From the planning perspective, this means that the Table of Goals
is completely empty and there is no previous plan whose utility defines a lower
bound.

Figure 6.2: Small planning scenario based on the city of Valencia, Spain

Hereunder we show many graphs, each representing an iteration of the search
process. Take into account that the nodes present written in them only the instruc-
tions they add to their parent’s partial plan. Therefore, to know the partial plan
that a node represents, one only has to join the instructions of every previous
node related to it. Also, for the sake of simplicity, we have considered that charge
nodes are only generated whenever the agent can not reach a customer because
of not having enough autonomy. In contrast with this, as explained in Section
6.4.3, charge nodes are generally created when the agent’s autonomy is not full.
To understand every element of the search tree, please refer to the legend in Table
6.3.

The process begins with one empty node, which acts as the tree root. It gets
expanded, generating one children node per reachable customer which, in this
case, makes a total of three nodes (see Figure 6.3). The numbers in the lower

6.7 Plan building example 55

Partial plan node

Complete plan node

Expanding node

Returned solution node

Parent - child relation

Expansion with no children

Table 6.3: Legend for the plan building example

right corner indicate the f-value of each node. A higher value implies a higher
expansion priority.

Figure 6.3: Initialization

Following the order established by their priorities, the nodes are expanded.
In Figure 6.4, the expanded node generates two customer nodes, which indicates
that the agent has enough autonomy to serve any customer after serving cus-
tomer 2. However, in Figures 6.5 and 6.6, the expanded nodes generate a single
charge node, since the agent is not able to serve any customer after serving cus-
tomer 1 or 3 without charging first.

Figure 6.4: Iteration 1

56 SimFleet Planner

Figure 6.5: Iteration 2

Figure 6.6: Iteration 3

As it can be seen in Figures 6.7 and 6.8, after serving two customers, the agent
is obligated to charge to serve the third one. We can already intuit that the left-
most branch of the tree will contain the best solution, since through its plans,
the agent manages to serve two customers without the need of charging, which
indicates a better customer serving order.

Figure 6.7: Iteration 4

6.7 Plan building example 57

Figure 6.8: Iteration 5

Following, in Figure 6.9 we can see how in the middle branch, after charging,
the agent is able to pick up any of the remaining customers.

Figure 6.9: Iteration 6

Then, Figure 6.10 shows how the leftmost branch expands with a single cus-
tomer node that constitutes the first complete plan of the tree, since there are no
more customers to serve. Nevertheless, the node is stored as an open node; it will
be identified as a solution once the algorithm tries to expand it. It is important
to mention that the pruning techniques (Section 6.5) have been active since the
start of the process and therefore, thanks to the storage of partial solutions (Sec-
tion 6.5.2), every customer node that has been generated was also evaluated as a
complete solution and stored as such. This is important because, even though the
lastly generated node is not a considered solution yet, a copy of it has been stored
as such, with an utility value of 12.19. Because of that, from now on, once a node
is expanded, any children with f-value lower than 12.19 will be discarded.

58 SimFleet Planner

Figure 6.10: Iteration 7

In Figure 6.11, we can see the effect of the aforementioned pruning method.
Although the agent has just charged, it has generated a single child only picking
up one customer. We have avoided the generation of a customer node with no
potential to overpass the already found partial plans.

Figure 6.11: Iteration 8

In the following iterations, presented in Figures 6.12, 6.13, 6.14 and 6.15, it is
shown how none of the expanded nodes generate any children, therefore turning
into leaf nodes. Even though their partial plans still have open goals (at least one
customer to pick up), their children were discarded because none of them could
surpass the 12.19 utility of the previously found partial plan.

6.7 Plan building example 59

Figure 6.12: Iteration 9

Figure 6.13: Iteration 10

60 SimFleet Planner

Figure 6.14: Iteration 11

Figure 6.15: Iteration 12

Finally in Figure 6.16, the last open node is expanded and, since its plan has
achieved all goals, it is stored as a solution. As there are no more open nodes, the
search process is finished and the best solution is returned.

6.7 Plan building example 61

Figure 6.16: Iteration 13

A total of 13 planning iterations were needed to find the optimal plan (Table
6.4), generating and expanding 13 nodes. The number of nodes has been reduced
thanks to the storage of partial plans, which allowed the planner to use the utility
of a solution as lower bound to discard certain nodes from the very beginning of
the search process. Without this mechanism, the planner would not have been
able to apply any pruning until the first complete solution was found and stored
as such.

init time actions end time

0,00 (Agent_A, PICK-UP, customer2) 4,62
4,62 (Agent_A, MOVE-TO-DEST, customer2) 9,97
9,97 (Agent_A, PICK-UP, customer1) 15,40

15,40 (Agent_A, MOVE-TO-DEST, customer1) 21,67
21,67 (Agent_A, MOVE-TO-STATION, station1) 25,26
25,26 (Agent_A, CHARGE, station1) 30,66
30,66 (Agent_A, PICK-UP, customer3) 37,35
37,35 (Agent_A, MOVE-TO-DEST, customer3) 45,26

Table 6.4: Plan obtained by Agent A at the end of the search process. It reports an utility
of 12.19.

62 SimFleet Planner

6.8 Chapter remarks

In this chapter we have described the SimFleet Planner, an ad-hoc planner de-
signed to obtain optimal plans for problems set in our urban traffic domain ex-
clusively.

The design of the planner takes into account the domain’s features to perform
a computationally cheap search process even in large problems. Also, it includes
many techniques that are used to guide the search and prune the search tree,
eliminating branches that do not have the potential to improve previously found
solutions.

The most relevant attributes of our planner are:

• Use of open goals, that allows transport agents to choose the customers they
want to serve according to their interests.

• Table of Goals to avoid conflicts among the agents of the scenario.

• Implementation of a search tree with partial plans in nodes in contrast to
plans built action by action. This reduces the branching factor and the ex-
pansion in the planning process.

• Storage of partial solutions whenever a goal is solved. The plans that solve
more than one goal are incrementally built when it is possible.

• Heuristic search that guides the expansion of nodes of the search tree ac-
cording to their prospective utility.

• Best solution storage and the use of its utility for pruning the search tree
from nodes with no potential to improve the solution.

• Use of a previous plan at the initialization of the planning process, which
allows to start from a utility bound to be improved. This makes the planner
much more efficient.

• Goal limitation to restrict the amount of open goals that are considered in
the planing process. This aids in the obtention of plans for complex scenar-
ios.

• Initial feasible joint plan definition that provides the planner with a previ-
ous plan but in the context of the BRPS process.

The planner is intended to be used by the agents of our Best-Response Plan-
ning Strategy (BRPS) module (Chapter 7) to find and propose a strategy (plan)
that is in best response to the strategies of all other agents. For that, it takes into
account what other agents intend to do and plans accordingly to avoid conflicts
and, at the same time, maximize utility.

In Chapter 8 we present an empirical evaluation of our planner which is cen-
tered around its performance.

CHAPTER 7

Best-Response Planning Strategy

Having the planner presented in Chapter 6, we are able to obtain a planned exe-
cution of the transport agents that is guided by their own private interests. How-
ever, this alone does not suffice to integrate such rational, self-interested agents
in SimFleet. For that, we must ensure that the plan of every transport agent in the
simulation scenario is not in conflict with other agents’ plans so that the simula-
tion can be executed without flaws. Therefore, we aim to coordinate the actions
of the different agents to carry out a complete simulation, while at the same time
preserving the self interest of every agent, not enforcing any action on them. For
achieving that, we define the simulation as a non-cooperative Multi-Agent Plan-
ning (MAP) task, in which the agents will not cooperate but instead coordinate
their plans to complete the simulation, serving all customers. The MAP task is
solved by a Best-Response Planning Strategy, following the work in [25].

A Best-Response Planning Strategy (BRPS) is a game-theoretic method for
non-cooperative MAP tasks. With it, we are able to find a joint plan (a union
of plans from different agents) for a group of self-interested agents in domains
with congestions and conflicting situations. BRPS makes each agent adapt their
plans to every other agent’s plans through an iterative process which improves
the agent’s plan utility. The interactions that cause congestions or conflicts among
agents entail an increment of the plan cost (a reduction of utility). Because of that,
agents are encouraged to avoid these situations.

BRPS is a general-purpose non-cooperative MAP method and thus can be ap-
plied to many domains. In our work, we are applying it to a Urban Traffic do-
main in which agents are Electric Autonomous Vehicles (EAV), self-interested taxi
agents in a smart city, aiming to serve the travel request of the different customers
of the simulation scenario, which reports a benefit.

In this chapter we first address the BRPS process from a general point of view,
explaining its functioning. Then, we illustrate how we apply it to our urban mo-
bility domain, presented in Section 6.1, with an execution example.

7.1 BRPS process

The BRPS is a process in which an agent iteratively looks for a plan π which
is in best response to every other plan in the joint plan Π. At the beginning

63

64 Best-Response Planning Strategy

of the process, an empty joint plan Π = ∅ is created and an arbitrary order is
defined among all participant agents. During the process execution, agents must
best respond in each iteration. For that, a planning process is used, which can
return either a new plan, the same plan as previous iteration or nothing. If the
same plan is returned, the agent will preserve it, since it means that it is still in
best response towards every other plan. When no agent modifies its plan in a
complete iteration, the BRPS has converged at a point in which the joint plan is
Pure Nash Equilibrium (PNE).

From an agent’s perspective,the BRPS works as follows:

• An arbitrary order between agents is established. Following such order, an
initial joint plan is built incrementally: Π = 〈∅, . . . ,∅〉, Π = 〈π1,∅, . . . ,∅〉,
Π = 〈π1,π2, . . . ,∅〉, . . . , Π = 〈π1,π2, . . . ,πn〉.

• In one iteration , agent executes these steps:

1. Analyze the utility of its current plan π
−1 in the joint plan, defining a

lower bound for the following search.

2. A planning process begins to search for a new plan, π

which is in
best response to every plan in the joint plan. The planning process is
explained in detail in Chapter 6.

3. If a new plan is returned, the joint plan is updated:

Π = 〈. . . ,π
−1, . . . , 〉 → Π′ = 〈. . . ,π

, . . . , 〉

In case no plan with higher utility than the lower bound can be found,
the agent keeps its previous plan π

−1, since it is in best response.

• When no participant agent changes its plan in a complete iteration, the pro-
cess has converged and the current joint plan is a PNE.

7.2 BRPS in the Urban Mobility domain

In this section we show how the BRPS is applied to a simulation configuration
based on our urban mobility domain. For that, we present a small scenario (Fig-
ure 7.1) with 3 transport agents, 3 customers and a charging station, all located in
the city of Valencia, Spain.

As the image shows, for each customer, there is a desired destination: dest. 1
for customer 1, dest. 2 for customer 2, etc. The initial autonomy of transport agents
B and C is at a 100%; however, agent A has an initial autonomy of a 33% of the
total autonomy. If any agent requires to recharge their batteries at any point, they
can do so at station 1, centrally located in the urban area.

For the completion of the simulation, transport agents will have to attend all
three customers driving them to their destinations. Just by looking at the image,
one can intuit that an optimal solution to the simulation, from the point of view of
the customers, would be to assign one customer to each agent; particularly cus-
tomer 1 to agent C, customer 2 to agent A and customer 3 to agent B, since those

7.2 BRPS in the Urban Mobility domain 65

Figure 7.1: Small planning scenario with multiple agents based on the city of Valencia,
Spain

pairs are attaching each customer to the transport agent closest to them. How-
ever, our system is made to preserve the self-interest of transport agents, so there
is no global scheduler that assigns customers to agents in the aforementioned
way. Instead, the optimal solution will be accomplished as the BRPS process con-
verges and agents decide that the best plan they can do with respect to each other
is to only pick up their closest customer.

Following we present a trace with the execution of the BRPS, depicted in Sec-
tion 7.1, on the configuration explained above, describing in detail every step.

Initialization

Firstly, a random order is defined among agents. For the sake of simplicity, the or-
der is Agent A→Agent B→Agent C. Then, following that order, agents propose
their initial plan, which will be added to the joint plan.

In Table 7.1 all three initial plans are presented, following the structure ex-
plained in Section 6.3. As it can be seen, Agent A, who planned in the first place,
with no previous information about other agent’s plans, has planned to pick up
every customer, starting with the one closest to it, and charging after serving two
of the customers to have enough autonomy to serve the one left. This plan re-
ports Agent A a utility of 12.19. Once Agent A’s plan is added to the joint plan,
the Table of Goals gets updated accordingly:

66 Best-Response Planning Strategy

Table of Goals

goal agent pick-up time

customer 1 : Agent A 15.40
customer 2 : Agent A 4.62
customer 3 : Agent A 37.35

Agent B created its initial plan having information about Agent A’s plan,
which it checks by accessing the Table of Goals. This of course influences its plan.
For instance, it plans to serve only customers 1 and 3, since Agent A is picking
up customer 2 at time 4.62 and Agent B realized that he can not get to customer
2 before that. However, since Agent A is attending customer 2 first and leaving
customers 1 and 3 for later, Agent B can capitalize of that, serving both of them
before Agent A has. This plan reports Agent B a utility of 9.57. Then, once Agent
B’s plan is added to the joint plan, the Table of Goals updates as follows:

Table of Goals

goal agent pick-up time

customer 1 : Agent B 9.81
customer 2 : Agent A 4.62
customer 3 : Agent B 25.06

Finally, Agent C presents its plan as a best response to both Agent A’s and B’s
plans. As it can be seen, it can reach customer 1 before Agent B, which, in turn,
makes him get to customer 3 before them as well. Therefore, at the end of the
initialization, the Table of Goals presents this information:

Table of Goals

goal agent pick-up time

customer 1 : Agent C 2.26
customer 2 : Agent A 4.62
customer 3 : Agent C 17.51

After the first BRPS iteration, the joint plan is as presented in Table 7.2. It can
easily be seen that there are many customer conflicts, which make the plan unfea-
sible. During the BRPS process these conflicts will naturally disappear, achieving
a plan that solves the simulation upon convergence.

7.2 BRPS in the Urban Mobility domain 67

Agent A
init time actions end time

0,00 (Agent_A, PICK-UP, customer2) 4,62
4,62 (Agent_A, MOVE-TO-DEST, customer2) 9,97
9,97 (Agent_A, PICK-UP, customer1) 15,40

15,40 (Agent_A, MOVE-TO-DEST, customer1) 21,67
21,67 (Agent_A, MOVE-TO-STATION, station1) 25,26
25,26 (Agent_A, CHARGE, station1) 30,66
30,66 (Agent_A, PICK-UP, customer3) 37,35
37,35 (Agent_A, MOVE-TO-DEST, customer3) 45,26

Utility: 12,19

Agent B
init time actions end time

0,00 (Agent_B, PICK-UP, customer1) 9,81
9,81 (Agent_B, MOVE-TO-DEST, customer1) 16,07

16,07 (Agent_B, PICK-UP, customer3) 25,06
25,06 (Agent_B, MOVE-TO-DEST, customer3) 32,96

Utility: 9,57

Agent C
init time actions end time

0,00 (Agent_C, PICK-UP, customer1) 2,26
2,26 (Agent_C, MOVE-TO-DEST, customer1) 8,52
8,52 (Agent_C, PICK-UP, customer3) 17,51

17,51 (Agent_C, MOVE-TO-DEST, customer3) 25,41

Utility: 9,99

Table 7.1: Initial plans

68 Best-Response Planning Strategy

Joint Plan

init time actions end time

0,00 (Agent_A, PICK-UP, customer2) 4,62
0,00 (Agent_B, PICK-UP, customer1) 9,81
0,00 (Agent_C, PICK-UP, customer1) 2,26
2,26 (Agent_C, MOVE-TO-DEST, customer1) 8,52
4,62 (Agent_A, MOVE-TO-DEST, customer2) 9,97
8,52 (Agent_C, PICK-UP, customer3) 17,51
9,81 (Agent_B, MOVE-TO-DEST, customer1) 16,07
9,97 (Agent_A, PICK-UP, customer1) 15,40

15,40 (Agent_A, MOVE-TO-DEST, customer1) 21,67
16,07 (Agent_B, PICK-UP, customer3) 25,06
17,51 (Agent_C, MOVE-TO-DEST, customer3) 25,41
21,67 (Agent_A, MOVE-TO-STATION, station1) 25,26
25,06 (Agent_B, MOVE-TO-DEST, customer3) 32,96
25,26 (Agent_A, CHARGE, station1) 30,66
30,66 (Agent_A, PICK-UP, customer3) 37,35
37,35 (Agent_A, MOVE-TO-DEST, customer3) 45,26

Table 7.2: Joint plan after the initialization. Customer conflicts shown in bold

7.2 BRPS in the Urban Mobility domain 69

Process development - Iteration 1

After the initialization, the general BRPS iterations begin. Following the estab-
lished order, each agent will reevaluate their current plan in the actual joint plan
and then search for a new plan which is in best response to every other plan.

Agent A reevaluates his plan. For this, he checks the Table of Goals. The
customers which are not being served by him will not count as completed goals,
consequently reporting no benefits. Because of that, the utility of his plan has
been reduced from 12.19 to 0.78. The latter value, 0.78, is then used as a lower
bound for the following planning process. Agent A will now search for a dif-
ferent plan which is in best response to the other agent’s actions. The planning
is successful and returns a new plan with utility 5.1, presented in Table 7.3. His
plan has drastically changed, since the agent has realized that he can only serve
one customer before the other agents and even though customer 2 is the closest
one to him, apparently serving customer 3 reported a better utility and therefore
it chooses to do so. Also, as he does not plan to serve more than one customer,
his autonomy is no longer a problem and so he avoids an unnecessary charge,
reducing costs.

Agent B has had his plan utility reduced from 9.57 to -1.83. This happened
because all of his served customers where effectively "stolen" by other agents,
rendering his plan only with costs and no benefits. In case the new utility is
below 0, it is not used as lower bound, since we consider that the plan is no
longer feasible. Agent C then finds a new plan, with a utility of 9.14 (see Table
7.3).

Finally Agent C, who had its plan utility reduced from 9.99 to 3.80, finds a new
plan with utility 8.79 (see Table 7.3). After the change of plans of this iteration,
the Table of Goals presents the following information:

Table of Goals

goal agent pick-up time

customer 1 : Agent C 2.26
customer 2 : Agent C 14.06
customer 3 : Agent B 3.95

The joint plan obtained after the first iteration is displayed in table 7.4. It still
presents some customer conflicts.

70 Best-Response Planning Strategy

Agent A

init time actions end time

0,00 (Agent_A, PICK-UP, customer3) 11,87
11,87 (Agent_A, MOVE-TO-DEST, customer3) 19,77

Utility: 5,09

Agent B

init time actions end time

0,00 (Agent_B, PICK-UP, customer3) 3,95
3,95 (Agent_B, MOVE-TO-DEST, customer3) 11,85

11,85 (Agent_B, PICK-UP, customer2) 25,37
25,37 (Agent_B, MOVE-TO-DEST, customer2) 30,72

Utility: 9,14

Agent C

init time actions end time

0,00 (Agent_C, PICK-UP, customer1) 2,26
2,26 (Agent_C, MOVE-TO-DEST, customer1) 8,52
8,52 (Agent_C, PICK-UP, customer2) 14,06

14,06 (Agent_C, MOVE-TO-DEST, customer2) 19,41

Utility: 8,79

Table 7.3: Agent’s individual plans obtained in BRPS iteration 1

Joint Plan

init time actions end time

0,00 (Agent_A, PICK-UP, customer3) 11,87
0,00 (Agent_B, PICK-UP, customer3) 3,95
0,00 (Agent_C, PICK-UP, customer1) 2,26
2,26 (Agent_C, MOVE-TO-DEST, customer1) 8,52
3,95 (Agent_B, MOVE-TO-DEST, customer3) 11,85
8,52 (Agent_C, PICK-UP, customer2) 14,06

11,85 (Agent_B, PICK-UP, customer2) 25,37
11,87 (Agent_A, MOVE-TO-DEST, customer3) 19,77
14,06 (Agent_C, MOVE-TO-DEST, customer2) 19,41
25,37 (Agent_B, MOVE-TO-DEST, customer2) 30,72

Table 7.4: Joint plan after iteration 1. Customer conflicts shown in bold

7.2 BRPS in the Urban Mobility domain 71

Process development - Iteration 2

Agent A, having had its plan utility reduced from 5,09 to -1,09, finds a new plan
in which only serves customer 2, reporting a utility of 4,10. Since every other
agent is serving in first place its closest customer, the only thing Agent A can do
to also serve one is to do the same.

Agent B has had its plan utility reduced from 9,14 to 4,49 because of the change
of plan of Agent A, which makes Agent B unable to serve customer 2. Conse-
quently, its new plan only consists in serving customer 3, which reports him a
utility of 5,53.

Similarly to Agent B, Agent C can no longer serve customer 2 and so its pre-
vious plan now returns a utility of 4,13, in contrast to the 8,79 that it returned
before. Its new plan serves only customer 1 and has a utility of 4,74. The Table of
Goals at the end of iteration 2 is:

Table of Goals

goal agent pick-up time

customer 1 Agent C 2,26
customer 2 Agent A 4,62
customer 3 Agent B 3,95

Individual plans after the second iteration can be seen in Table 7.5, whereas
the joint plan is presented in Table 7.6. At the end of this iteration, the joint plan
presents no conflict, being feasible for the first time. In general, this indicates that
convergence has been reached or will be reached soon.

72 Best-Response Planning Strategy

Agent A

init time actions end time

0,00 (Agent_A, PICK-UP, customer2) 4,62
4,62 (Agent_A, MOVE-TO-DEST, customer2) 9,97

Utility: 4,10

Agent B

init time actions end time

0,00 (Agent_B, PICK-UP, customer3) 3,95
3,95 (Agent_B, MOVE-TO-DEST, customer3) 11,85

Utility: 5,53

Agent C

init time actions end time

0,00 (Agent_C, PICK-UP, customer1) 2,26
2,26 (Agent_C, MOVE-TO-DEST, customer1) 8,52

Utility: 4,74

Table 7.5: Agent’s individual plans obtained in BRPS iteration 2

Joint Plan

init time actions end time

0,00 (Agent_A, PICK-UP, customer2) 4,62
0,00 (Agent_B, PICK-UP, customer3) 3,95
0,00 (Agent_C, PICK-UP, customer1) 2,26
2,26 (Agent_C, MOVE-TO-DEST, customer1) 8,52
3,95 (Agent_B, MOVE-TO-DEST, customer3) 11,85
4,62 (Agent_A, MOVE-TO-DEST, customer2) 9,97

Table 7.6: Joint plan after iteration 2. It presents no conflicts.

7.3 Integration with SimFleet 73

Convergence

During the development of the third iteration, all three agents experiment the
same phenomenon. The utility of their plans has not changed, since no plan has
any conflict with another. Because of that, the lower bound for the search of a new
plan is equal to the original utility of the plan obtained in the previous iteration.
The planning process, however, is unable to find a plan that improves the utility,
so the agents keep their previous plans, since they are in best response already.
As there were no plan changes in a complete iteration, the BRPS process has con-
verged and so it finishes. The joint plan obtained upon convergence (which is
the one obtained in iteration 2, presented in Table 7.6) is a feasible, executable
plan which accomplishes all global goals (serving all customer travel requests),
solving the simulation.

agent utility

Agent A 4,10
Agent B 5,53
Agent C 4,74

Table 7.7: Utility obtained by each agent after convergence

It can be observed how the BRPS process does take into account the private
interests of every transport agent, since they plan to serve as many customers as
possible maximizing their own benefits. Nevertheless, at the end of the process,
the obtained joint plan is a fair solution from the perspective of the customers,
being all of them picked up by their closest transport, consequently arriving to
their destinations before. From the point of view of game theory, the general-sum
game finished in a win-win situation where every agent serves one customer, ob-
taining a utility > 0, presented in Table 7.7. The solution is a Pure Nash Equilib-
rium (PNE), since every agent is doing their best strategy with respect to every
other agent’s strategy. In this particular example, this is the only PNE; the so-
lution that has been presented will always be obtained by the BRPS process no
matter the order in which agents play.

7.3 Integration with SimFleet

The final goal of the proposed BRPS module is to provide SimFleet with the tools
to include rational, self-interested agents on their simulations. Both the planner
(Chapter 6) and the BRPS modules are implemented outside of SimFleet. There-
fore, we need to provide some kind of communication between the output of the
BRPS and SimFleet, so that the results of the former can be used for the simula-
tions in the latter.

On the one hand, the BRPS returns an executable joint plan which defines
the actions every transport agent in the simulation will perform and in which
order. On the other hand, the behavior of SimFleet’s agents in the simulations
is defined by their StrategyBehaviour, as explained in Section 2.1.3, which also
determines their methods of communication with other agents. Our aim is to

74 Best-Response Planning Strategy

have the agents behaving exactly as their own plan indicates. The agents do not
need to communicate anymore, since all coordination has been performed by
the BRPS process. Consequently, we designed and implemented the Extract Plan
StrategyBehaviour for transport agents.

The Extract Plan StrategyBehaviour simplifies the execution of transport agents
making them execute the actions in their plan, one after another. Before that, an
initialization process loads the joint plan outputted by the BRPS, splits it into the
individual plans that compose it, and assigns their plan to every transport agent
that will store it as an attribute. Then, the behavior works as follows:

1. The agent extracts the first two instructions of its plan and identifies the
type of service they define (customer or charge service).

2. Once the service is identified, the agent initializes the mechanisms already
defined in SimFleet for attending a customer travel request or charge in a
determined station. Such mechanisms only require the ID of the customer
or station to which the actions make reference to, an information that is
explicit in the action attributes.

3. After the completion of the service, the agent checks if its plan is empty. If
it is, its execution finishes. If it is not, its behavior returns to step (1).

With this, we successfully communicate the BRPS module with SimFleet sim-
ulations making them develop in a more realistic way that our algorithm deter-
mines; a way that respects the private interests of transport agents.

7.4 BRPS convergence with open goals

When analyzing the convergence of our BRPS process, we ran into an issue. Our
approach defines simulations as a non-cooperative Multi-Agent Planning task.
To give complete freedom to the transport agents to follow their private interests,
we do not assigned them goals but allow them to plan with open goals. Because
of that, the convergence of our best-response like process is not guaranteed.

Other authors use models in which their agents have a previously defined
fixed set of goals to achieve. However, in our domain we do not assign any goal
to any agent; instead, when planning, agents aim to complete as many goals as
possible. In other words, our agents plan to pick up and serve as many customers
as they can. During the development of the BRPS process, this causes agents to
enter in loops, changing the goals they planned to complete in between iterations,
thus never achieving convergence. This turned out to be a challenge, since we
could not find other works where best-response dynamics were used together
with agents with open goals. Therefore, to obtain some results, we developed
two methods that aid the BRPS process in its convergence, losing, however, the
optimality of the obtained solution.

7.4 BRPS convergence with open goals 75

7.4.1. Blackboard, an amplified Table of Goals

We defined a blackboard, a globally accessible table. It contains one row per cus-
tomer in the simulation scenario. In turn, each customer has one entry per trans-
port agent where we store a list with tuples (agent, pick-up time), in a similar
way than in the Table of Goals (explained in Section 6.4.1).

At the end of every BRPS iteration, the entries of the Table of Goals are copied
into the corresponding entry of the Blackboard. For instance, if the Table of Goals
indicates that "customer 1" is picked up by agent "taxi 1" at time "3.5", the tuple
("taxi 1", "3.5") will be appended to the "customer 1" row, "taxi 1" entry of the
Blackboard. Consequently, each BRPS iteration the information in the Blackboard
increases.

The Blackboard is then used during the planning process as another mecha-
nism to check if a customer is reachable, thus restricting the planning alternatives
even more. In contrast with the Table of Goals, that shows which agent serves
which customer in the current joint plan, the Blackboard shows the same informa-
tion but about every previous joint plan of the process. Because of that, the current
planning agent can check if a customer that is reachable at the moment could be
potentially stolen by another agent in future iterations. In other words, if an agent
has previously planned to pick up that very same customer and it was reaching
it before the current agent can, it could plan to pick it up again, effectively steal-
ing it from the current agent. Of course, even though another agent could steal
such customer it does not imply that it will. However, for the sake of achieving
a convergence, if an agent, during its planning process, checks that a customer it
is planning to serve may be stolen by another agent, it will discard such partial
plan.

With the use of the Blackboard, the planning process gets more restricted and
the agents are less encouraged to change their plans and, consequently, their
goals in between BRPS iterations. In this way, we "force" an artificial conver-
gence which, even though it is not optimal, gets an equilibrium solution and,
most importantly, a feasible joint plan that can be executed in SimFleet as a com-
plete simulation.

7.4.2. Goal fixing BRPS algorithm

The BRPS process with the use of the Blackboard (see Section 7.4.1) was useful
to study how much time and iterations the procedure took to converge with dif-
ferent simulation scenarios. However, in terms of solution quality, the joint plan
that it obtained could be improved.

Aiming to obtain better BRPS solutions, we designed and implemented an
algorithm that allows the agents to plan in accordance to their interests but fixes
one goal each BRPS iteration, thus forcing the convergence.

The goal fixing BRPS algorithm is a process in which the agents get certain
goals assigned to them iteratively. Every iteration, each agent can be assigned a
goal from among those completed in their proposed plan. Then, in following iter-

76 Best-Response Planning Strategy

ations, the agent’s proposed plan will always start by completing their assigned
goals and then be completed freely by the agent’s planning process.

The goal assigned to each agent is the first not previously assigned goal that
appears in their proposed plan. We are then assuming that such goal is the one
that arouses the most interest and, therefore, brings the greatest benefit to the
agent. Of course, this is not always true, so, again, this method loses the optimal-
ity of the solution.

The previously described procedure may present a conflict, however, if two
or more agents get the same goal fixed in an iteration. The algorithm takes that
into account and only one of them keeps the goal; specifically, the agent that
achieves the goal before in terms of time (the agent that picks the customer up
earlier). When an agent that was in conflict loses its fixed goal, it plans again
but respecting the goals fixed for every other agent, thus obtaining a new plan in
which the goal to fix does not present any conflicts.

Therefore, each iteration the agents propose a plan and get a goal fixed, if
possible. This process ends when all goals have been assigned; i.e: when all
customers have been distributed between the transport agents. Following, we
describe the Goal fixing algorithm in detail.

Initialization

• Every agent proposes an initial plan from scratch. In contrast to our BRPS
process, the agents do not plan in turns but in parallel, thus not consider-
ing each others’ plans. These plans are obtained with complete freedom
regarding agent self-interest, as there are no fixed goals yet.

• Once the plans have been obtained, the procedure to fix a goal (customer)
for each agent begins. The first goal achieved by each agent is compared:

– If there are no conflicts (no repeated goals), the first goal completed in
each plan is assigned and fixed to its corresponding agent.

– If two or more agents have a repeated first goal, the goal will be as-
signed to the agent that achieves it earlier.

– The agents that were in conflict and are left without a fixed goal enter
the conflict solving phase:

* The Table of Goals is updated with the fixed goals stored in the
respective position.

* Then, the agents with no fixed goal plan again from scratch, but
with the previous information given by the Table of Goals. There-
fore, the obtained plan respects the goals assigned to other agents
and presents no conflicts with them.

* The first goals obtained by the newly proposed plans are fixed to
their respective agents and the Table of Goals is updated.

* Finally, if after this procedure one or more agents were still in con-
flict and had no fixed goal, the process would be repeated until
they did.

• After the initialization, each agent has one goal assigned and fixed. Then
the general iterations of the process begin.

7.4 BRPS convergence with open goals 77

General iteration

• In a general iteration of the process the agents propose a plan which is built
in two steps:

1. Planning process to complete the assigned goals. It does not respect
the agents self-interest since we force them to plan for fixed goals.

2. Planning process which begins from the partial plan obtained in the
previous step. In this case the agent plans freely to complete as many
open goals as it can (like in the BRPS process) respecting, however,
the goals assigned to other agents, which are presented in the Table of
Goals. This process does take into account the private interests of the
agent.

• The agents have computed a plan which has been partially obtained con-
sidering their own self-interest. Following, the goal fixing procedure begins
and any conflicts that arise are solved.

• In a general iteration the goal to fix is not the first goal completed in the pro-
posed plan but the first goal achieved by the plan which is not a previously
fixed goal. The Table of Goals is updated with the fixed goals as explained
in the initialization.

• In the conflict resolution phase one or more agents may not be able to fix a
goal if all the process goals have already been assigned. This will happen
if the number of customers is not evenly divided between the number of
transport agents.

• After a general iteration, the stop condition of the algorithm is checked. If
every goal has been assigned, the process goes on to the finalization. If not,
there will be another general iteration.

Finalization

• When this point is reached every agent has their goals assigned. In addi-
tion, the distribution of the goals is fairly uniform among agents. Then,
to complete the algorithm and return a feasible joint plan, the agents per-
form another planning process in which they only plan to complete their
assigned goals (since every goal is assigned, they would not be able to plan
further either way).

The joint plan obtained from the Goal fixing BRPS algorithm presents no con-
flicts and can therefore be turned into a complete SimFleet simulation. Neverthe-
less, this solution is neither an equilibrium nor optimal. It is, however, a near-
optimal solution which improves the equilibria obtained by the BRPS process
with the Blackboard.

78 Best-Response Planning Strategy

7.5 Chapter remarks

In this chapter we have described the BRPS module, used to introduce rational,
self-interested agents in SimFleet simulations so as to achieve more realistic exe-
cutions. For that, the SimFleet’s simulation is redefined as a Multi-Agent Planning
(MAP) task, in which the global goal is to solve the simulation, which is achieved
by serving the travel requests of every customer. The module is then in charge of
coordinating the actions of the transport agents to complete the global goal ensur-
ing, at the same time, that their interests are preserved. In this case, as transport
agents are modeled as electric autonomous taxis, their interest is to maximize
their profit, which implies serving as many customers as possible.

The coordination of agent’s execution is done by a game-theoretic process that
defines a congestion game in which the agent’s are players. For such game, the
strategies are individual plans, obtained by our ad-hoc planner (Chapter 6). An
individual plan describes the actions that a single agent intends to perform to
maximize its utility while solving part of the MAP task. By uniting every indi-
vidual plan we obtain a joint plan, which is a solution to the MAP task. However,
the joint plan must be executable; it must present no conflicts among the agents
of the simulation. To ensure the obtention of a feasible joint plan, the game is
developed by a best-response process.

The best-response dynamics, an iterative process in which each agent pro-
poses its best plan considering the other agents plans, ensures that conflicts are
avoided by penalizing the agent’s utility when they are present. During the de-
velopment of the game, agents propose their strategies, in turns, always as a best
response to the strategies of all other participant agents. With the aid of the plan-
ner, the strategies of the agents are not only optimal with respect to other agents’
strategies but also avoid conflicts.

Once the best-response process converges, an executable joint plan has been
obtained. This plan is then performed by transport agents in the SimFleet simula-
tion using their Extract Plan StrategyBehaviour, effectively obtaining a simulation
in which the self-interest of the agents is taken into account.

After the implementation of the BRPS module we discovered that the use of
open goals made it harder for the process to converge. Aiming to palliate such be-
havior and to obtain feasible solutions, we designed and implemented the Black-
board and the Goal fixing BRPS algorithm, both methods that aid in the conver-
gence of the BRPS process and obtain near-optimal, executable joint plans.

In the following Chapter 8 we analyze the performance of both the planner
and the whole BRPS process by running some experiments with problems that
vary in complexity.

CHAPTER 8

Experimentation

In this chapter we present some experiments performed with the ad-hoc planner
(Chapter 6) and the Best-Response Planning Strategy (BRPS) process (Chapter
7) aiming to evaluate their efficiency and study how their performance varies
according to the size and complexity of the problem they have to solve.

We first evaluate the planner individually, measuring the effect of the differ-
ent pruning and speedup techniques we have developed. Then, we evaluate the
BRPS process, comparing the solution it obtains to the solutions obtained by Sim-
Fleet.

Regarding the contributions described in Chapters 4 and 5, we present exper-
imentation on them in Sections 4.3 and 5.3, respectively. We decided to focus this
chapter on the Planner-BRPS module as it the main contribution of our thesis.

8.1 Planner performance

To show how the planner behaves with different problem sizes, we defined five
different simulation scenarios which vary in complexity, presented in Table 8.1.
We defined three metrics, which allow us to compare various planner executions.
The metrics are the number of nodes generated in the search process (# Nodes),
the maximum size of the open node priority queue (Max. queue) and the time
(Time (s)) the whole planning process took, in seconds. Comparing the first two
values, we can get an idea of the memory consumption of each planning process.
Regarding the time, although it may vary depending on the machine that exe-
cutes the algorithm, we can still see how the problem size increases the duration
of the search. All the presented results were obtained with a machine running
Windows 10 OS, with an Intel Core i7-9750H 2.60GHz processor and 16GB of
RAM.

79

80 Experimentation

Problem nº Taxi Agents Customers Stations

1 3 3 1
2 3 6 2
3 5 10 3
4 10 30 5
5 20 60 8

Table 8.1: Problem instances defined to test the effect of different scenario sizes over the
computational power of the planner.

8.1.1. Effect of the pruning methods

In this first test, we studied the influence that each of the pruning and planning
search speedup methods have over the time and memory consumption of the
planner. For that, we obtained different plans for the problem instance nº2 (see
Table 8.1), which defines a simulation scenario with 3 electric autonomous taxi
agents, 6 customers and 2 charging stations, alternating the methods that were
active in each execution.

The methods considered for evaluation were the use of an heuristic evaluation
function (Section 6.4.3) (Heuristic) to guide the search process; the storage of par-
tial solutions (Section 6.5.2) and the application of best solution pruning (Section
6.5.1) (Pruning); the existence of a previous plan (Section 6.5.3) (Prev. Plan) which
could also be an initial feasible joint plan (Section 6.6.2) (Feasible J.P.); and finally
the limitation of the amount of customers an agent planned to pick up (Section
6.6.1) (Goal Lim.).

The results of the different executions are presented in Table 8.2. Note that
for the rows where Prev. Plan is "No", the plan is obtained by an agent with no
previous information (empty Table of Goals, no previous plan) thus taking con-
siderably more time to search for the optimal plan. On the other hand, where
Previous Plan is "Yes", the planner is executed after the initial iteration of the
BRPS process, where the agent does have a previous plan and the Table of Goals
contains information. With a Goal Lim. of a 60%, the agent plans to pick up 3
customers. Finally, when an initial feasible joint plan is calculated the agent does
have previous information even in the first planning process.

Heuristic Pruning Prev. Plan Goal Lim. Feasible J.P. # Nodes Max. queue Time (s)

No No No No No 192135 25 69.96
Yes No No No No 40602 25104 12.99
Yes Yes No No No 17016 10155 12.98
Yes Yes No 60% No 8848 4062 2.52
Yes Yes Yes No No 34 19 0.02
Yes Yes Yes No Yes 27 13 0.02

Table 8.2: Comparison of the planning process’ memory and time consumption accord-
ing to the pruning and planning speedup methods applied to the plan search.

The effect of using an heuristic function to guide the plan search can be seen
comparing the first and second rows of Table 8.2. Just by using it, the amount of

8.1 Planner performance 81

generated nodes is reduced almost 5 times. The difference in the maximum size of
the open node queue is striking, although it is simply because the heuristics keep
more nodes open by considering their potential as a future solution. Anyhow,
the time required to find a plan is between 5 and 6 times lower which achieves
a drastic speedup of the process. In addition, if we also include pruning with
storage of partial solutions the number of nodes is reduced even more, reaching
about 11 times less than in the base case (first row). In the fourth row we apply
a goal limitation of a 60%, forcing the agent to plan only to pick up 4 customers.
This method, which may seem exaggerated for problem instance nº2, is necessary
for the calculation of the initial plans in the first round of the BRPS for bigger
problems. Comparing the reduction in both generated nodes and planning time
obtained with this method with respect to using only heuristic and pruning, it can
be seen how more complex scenarios get benefited from it. However, the greatest
improvement comes from the inclusion of previous planning information such as
the Table of Goals or the previous plan’s utility. With that we achieve the fastest
speed at a mere 20 milliseconds, generating just a few tens of nodes. This can be
seen in the fifth and sixth rows of Table 8.2, where having a previous plan or an
initial feasible joint plan has an equivalent effect over the planner efficiency.

Since our planner is designed to be integrated in a BRPS process where agents
propose plans, the most relevant result is the presented in the fifth row of Table
8.2, as it is the general situation in which the planner will be executed. Except
in the first iteration of the game, the agents generally have a previous plan that
limits their search using its utility as a lower bound to improve. In these cases, the
planner obtains the optimal plan with very little time and memory consumption.

8.1.2. Size of the scenario

After seeing the effects of the different speedup methods over the same problem,
we tested the effect of the size of the planning scenario. Because of the planner’s
design, the ramification of its search process is mostly affected by the number of
customers and stations in the scenario. The number of agents does not affect the
planner directly since the planning process is individual for each agent. Instead,
by having more agents the planner can actually be indirectly speeded up because
the Table of Goals presents more restrictions. However, in general, an increase
in transport agents is matched by an increase in customers, which causes the
described effect to fade.

To evaluate each problem instance (Table 8.1), we obtained a plan for solving
them without any previous information (empty Table of Goals, no previous plan).
We limited, however, the amount of goals a customer planned to achieve as the
problem size grew. The results are presented in Table 8.3.

Plotting the results (see Figure 8.1), we can see how the computational power
consumption of the planner increments exponentially with the complexity of the
problems. For the goal limitation, we always try to use values that make each
agent pick up more than #cstomers

#gents customers. This is done for problem in-
stances nº1 to nº3. However, the size of problem instances nº4 and nº5 is such
that we had to limit the goal number to exactly #cstomers

#gents , which in those cases
was 3 customers per transport agent. Even with that, the variability of problem

82 Experimentation

Problem nº Goal Lim. Feasible Joint Plan # Nodes Max. queue Time (s)

1 No No 40 19 0.02
2 60% No 8848 4062 2.52
3 40% No 276799 101232 91.13
4 10% No 876975 405670 449.60
5 5% Yes 345124 226307 1568.04

Table 8.3: Comparison of the planning process’ memory and time consumption accord-
ing to the problem size.

instance nº5 was so high that we needed to include an initial feasible join plan to
obtain another plan in a reasonable time (30 minutes). In the planning process for
problem instance nº5, even though less nodes are generated, the search process
takes almost 3 times longer than for problem instance nº4.

problem

tim
e

(s
ec

s.
)

no

de
s

0,1

1

10

100

1000

100

1000

10000

100000

1 2 3 4 5

nodes time (secs.)

Figure 8.1: Log-scale plot of generated nodes and time according to problem instance.
Data extracted from Table 8.3.

8.2 BRPS convergence

For this first experiment we study the effect of the problem complexity over the
convergence iteration and time of the BRPS process.

Using the BRPS process with the Blackboard (Section 7.4.1) we managed to
perform a comparison of convergence iterations and time according to problem
instance size. For that, we executed the simulation scenarios presented in Table
8.1 with different configurations of the procedure. The results can be seen in Table
8.4.

8.3 SimFleet vs BRPS: solution comparison 83

Problem nº Goal Lim. Initial Joint Plan Convergence it. Time (s)

1 No No 4 0.04
2 No No 5 0.69
3 40% No 6 4.00
4 10% No 8 1108.22
5 5% Yes - -

Table 8.4: BRPS process convergence time according to problem size

The BRPS process time is closely related to the planning duration, since it is
the most long lasting part of the procedure. The convergence iteration (Conver-
gence it. in Table 8.4) has more to do with the complexity of the interactions
between agents’ individual plans. A higher number of conflicts entails a higher
convergence iteration. As for the tested problem instances, the convergence iter-
ation does not vary significantly because of the use of the Blackboard, that stops
most joint plan conflicts from arising. We could not analyze the convergence for
problem instance nº5 because of its high number of alternatives when planning,
which made the process too time consuming for the machines to which we had
access.

8.3 SimFleet vs BRPS: solution comparison

In this experiment we executed two simulations, one using the default SimFleet
and another which follows a solution obtained with our BRPS module. The met-
rics that SimFleet offers to evaluate the simulation are the distance travelled by
the transport agents and the customer waiting and total time, in seconds. The
customer waiting time refers to the time elapsed from the beginning of the simu-
lation until the customer gets picked up. The total time refers to the time elapsed
from the beginning of the simulation until the customer reaches its destination.
In the solutions obtained by our planner, the waiting time is equivalent to the
customer pick-up time, meanwhile the total time is the same as the end time of
MOVE-TO-DEST type actions.

With the Goal fixing BRPS algorithm working (Section 7.4.2), we were able
to obtain a feasible joint plan for problem instance nº2 (see Table 8.1) with our
BRPS module. Then, such plan was followed by SimFleet agents by means of
their Extract Plan StrategyBehaviour (Section 7.3), thus allowing us to obtain the
simulation metrics. On the other hand, we loaded problem instance nº2 on the
default SimFleet simulator and executed a simulation over it.

The simulation metrics were compared from the point of view of both cus-
tomers and transport agents. For the customers, we assume that a shorter wait-
ing time indicates a better outcome. As for transport agents, we assume that
more customer services and less traveled distance indicate a better outcome; i.e:
one that reports more utility. These comparisons can be seen in Tables 8.5 and 8.6.

Table 8.5 shows the waiting and total times for each customer in problem in-
stance nº2 both in the solution obtained by SimFleet and the one obtained by our

84 Experimentation

SimFleet BRPS module

Customer Waiting Time Total Time Waiting Time Total Time

customer 1 14.57 17.99 5.95 13.07
customer 2 24.76 30.87 3.26 15.59
customer 3 25.92 33.47 21.05 35.35
customer 4 44.64 52.27 15.77 30.72
customer 5 10.90 19.79 21.03 38.55
customer 6 9.23 14.08 6.71 17.19

Total 130.02 168.47 73.77 150.47
Avg. 21.67 28.08 12.30 25.08

Table 8.5: Comparison of simulation solutions obtained by default SimFleet and our BRPS
module from the point of view of the customers. All times are indicated in seconds

BRPS module. It can be seen how the average waiting time of the customers is
reduced in 9 seconds, thus obtaining a better result from a global perspective.
Therefore, the customer satisfaction in a system where the BRPS module is used
to schedule the transport agent assignments would be higher.

Simfleet BRPS module

Agent Served customers Utility Served customers Utility

taxi 1 customer1, customer3 7.62 customer2, customer3 8.04
taxi 2 customer2, customer5 7.68 customer1, customer4 8.29
taxi 3 customer4, customer6 6.51 customer6, customer5 7.86

Table 8.6: Comparison of simulation solutions obtained by SimFleet and our BRPS mod-
ule from the point of view of transport agents

Table 8.6 shows the customers that are picked up by each transport agent
using SimFleet and our BRPS module. As it can be seen, the SimFleet solution
achieves a uniform distribution of the customer services as well. However, the
customer assignments are performed more efficiently by our BRPS module, re-
porting more utility to the transport agents.

The simulations that follow joint plans obtained by our BRPS module report,
in general, more benefits to each individual transport agent and reduce the aver-
age waiting time of the customers.

8.4 Evaluation remarks 85

8.4 Evaluation remarks

In this chapter we have shown various metrics that characterize the performance
of our Planner and Best-Response Planning Strategy module.

The ad-hoc planner, designed to obtain plans for problems set in our Urban
Traffic domain, has proved to be a computationally efficient algorithm. Although,
as any other planner, its performance is greatly influenced by the problem’s size,
by combining all pruning techniques and search speedup methods we can obtain
optimal plans in a relatively short time. When the planner is working integrated
with the BRPS process, as it is supposed to be, its time and memory consumption
reach the lowest point thanks to the use of previous process information.

As for the BRPS process, we have managed to improve SimFleet simulations,
making them more realistic as transport agents act following their own self-interest.
Even though some of the more complex problems have trouble to converge, we
developed two mechanisms that, used during the development of the process,
make it obtain a feasible joint plan. That said, we will without a doubt research
further into the convergence of best-response like processes when working with
open goals as well as develop new methods that allow us to obtain better equi-
libria in the final joint plans.

The Planner and BRPS module has enhanced SimFleet’s potential, offering a
new way of simulation which can be used as a tool to further research into the
optimization of the urban traffic.

CHAPTER 9

Conclusions

In this chapter we first asses the work set out in this thesis. Then, we discuss on
various extensions that we intend to complete in the future, continuing the work
that began with the thesis. We also mention different publications made during
the development of the thesis, as well as the research projects that give meaning
to them. Finally, we comment the relationship of the research topics developed
in our work with the subjects studied in our master’s degree.

9.1 Assessment

In this work we have designed and implemented three different modules that
work in accordance to SimFleet simulator to enhance its properties. Following,
we asses the work done, commenting on the strengths and weaknesses of each
contribution.

With the creation of the Load Generators (Chapter 4), we have provided a tool
for SimFleet users that allows them to easily define complex simulation configura-
tions, providing a means to create different distributions of agents in the scenario.
In addition, the use of the generators can make the simulations it prepares more
realistic by giving the agents origin and destination points as well as movement
based on real-world data. Nevertheless, we would like to improve the generators
by studying better ways of distributing the agents and taking into account more
parameters to take more advantage of the real-world data it uses.

The design and inclusion of a system to simulate free-floating carsharing fleets
in SimFleet (Chapter 5) has broadened the functionalities of the simulation soft-
ware, creating a precedent for the future development of more types of fleets.

Finally, we have researched the use of rational, self-interested agents ulti-
mately designing an external module that builds a multi-agent planning task
from a SimFleet configuration file and solves the simulation using transport agents
that follow their private objectives (Chapters 6 and 7). This involved the cre-
ation of an ad-hoc planner that obtains optimal plans for the transport agents
that take into account other agent’s plan to both avoid conflicts and maximize
the utility. For a correct completion of the MAP task we needed to achieve an
equilibrium, a stable solution from which no agent had incentive to deviate. For
that, we designed a Best-Response Planning Strategy, following the work in [25].

87

88 Conclusions

The solutions obtained by this process were later integrated in SimFleet thanks to
the implementation of an agent behavior specifically designed to follow the ac-
tions indicated by a plan. In this way, we achieved the inclusion of self-interested
agents in SimFleet simulations which accomplishes the goal of making the simu-
lation more realistic for the use of taxi or electric autonomous agents.

It is important to mention, however, that the used approach did not work ex-
actly as we expected for the problems in our domain. By defining MAP tasks
with open and not fixed goals, the convergence of the BRPS process is not guar-
anteed under certain conditions which are more common in complex simulation
scenarios. This led us to make adjustments (Blackboard, Goal fixing BRPS algo-
rithm) that palliate the issue in exchange of losing the optimality of the solutions.
Nevertheless, given the investigative nature of our work, we do not consider this
a failure, but rather a learning experience. In the future we plan to analyze this
problem in a theoretical way to better understand the conditions that guarantee
convergence in best-response dynamics.

All in all, the objectives set for this thesis have been accomplish. We must
note, however, that the challenges that brings mobility and in particular urban
mobility, are far from being solved and that we intend to keep researching and
working towards finding solutions.

9.2 Future work

SimFleet has been greatly enhanced with our work. Nevertheless, there is always
room for improvement and we intend to keep working on it, broadening its func-
tionalities to obtain a more competent and user-friendly simulation software.

More specifically, we would like to adapt the Planner and Best-Response Plan-
ning Strategy module to other types of urban fleets such as carsharing systems.
In addition, we would like to improve such system and add new ones so as to be
able to build very complete simulation scenarios with different types of systems
in place.

Finally, we would like to point out that the work presented in this thesis is
a small part of a bigger project focused on intelligent and sustainable mobility.
The compilation of a thesis is, after all, a finite process and at some point we
had to consider it finished. However, our intentions are to continue researching
game theory, negotiation, coordination and planning techniques for multi-agent
systems, aiming to improve mobility or any other areas where our work could be
applied.

9.3 Research activities

During the development of this thesis, we have also dedicated ourselves to dif-
ferent research activities, which have resulted in a couple of publications. These
publications are part of two research projects that focus on improving urban mo-
bility through the use of artificial intelligence. The activities previously men-
tioned are presented below.

9.4 Connection with the taken studies 89

9.3.1. Publications

• Pasqual Martí, Jaume Jordán, Javier Palanca, and Vicente Julian. Load gen-
erators for automatic simulation of urban fleets. In Highlights in Practical
Applications of Agents, Multi-Agent Systems, and Trust-worthiness. The PAAMS
Collection, pages 394–405, Cham, 2020. Springer International Publishing.

• Pasqual Martí, Jaume Jordán, Javier Palanca, and Vicente Julian. Free-floating
carsharing in SimFleet. Accepted for IDEAL’2020 Main Track. 21st Interna-
tional Conference on Intelligent Data Engineering and Automated Learning, 2020.

9.3.2. Projects

• MINECO/FEDER RTI2018-095390-B-C31 "Hacia una mobilidad inteligente
y sostenible soportada por sistemas multi-agentes y edge computing".

• UPV PAID-06-18 (SP20180184) project "Técnicas inteligentes para optimización
de la localización de estaciones de recarga de vehículos eléctricos y mejora
de la movilidad en ciudades".

9.4 Connection with the taken studies

During the coursing of the master’s degree in which this thesis was developed
there were many subjects that focused on related topics:

• In Intelligent Planning we revisited the basis of automated planning and
learned the techniques applied on planner software to solve such compu-
tationally complex tasks in a reasonable time, obtaining near-optimal solu-
tions.

• In Multi-agent Systems the basis about intelligent agents and their interac-
tions were introduced. We developed the skills to program environments
in which many agents interact, taking into account the necessary coordina-
tion.

• In Tools and Applications of Artificial Intelligence multi-agent systems applied
to real-world commercial processes were presented. Also, multi-agent sim-
ulators and some of their applications were commented.

• In Automated Negotiation we learned about game-theory basics, a topic we
then researched thoroughly for our work. In addition, we studied tech-
niques used by negotiation agents to reach mutually beneficial agreements.

Bibliography

[1] Michael J Wooldridge and Nicholas R Jennings. Intelligent agents: Theory
and practice. The knowledge engineering review, 10(2):115–152, 1995.

[2] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A tax-
onomy for autonomous agents. In International Workshop on Agent Theories,
Architectures, and Languages, pages 21–35. Springer, 1996.

[3] Flávia F Feitosa, Quang Bao Le, and Paul LG Vlek. Multi-agent simulator
for urban segregation (masus): A tool to explore alternatives for promoting
inclusive cities. Computers, Environment and Urban Systems, 35(2):104–115,
2011.

[4] Javier Palanca, Andrés Terrasa, Carlos Carrascosa, and Vicente Julián. Sim-
fleet: A new transport fleet simulator based on mas. In International Confer-
ence on Practical Applications of Agents and Multi-Agent Systems, pages 257–
264. Springer, 2019.

[5] Miguel Escrivà, Javier Palanca, and Gustavo Aranda. A jabber-based multi-
agent system platform. In Proceedings of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’06, page 1282–1284,
New York, NY, USA, 2006. Association for Computing Machinery.

[6] P. Saint-Andre. Extensible messaging and presence protocol (xmpp): Core.
RFC 6120, RFC Editor, March 2011.

[7] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory
& Practice. Elsevier, 2004.

[8] Mathijs De Weerdt and Brad Clement. Introduction to planning in multia-
gent systems. Multiagent Grid Systems, 5(4):345–355, 12 2009.

[9] Edmund H. Durfee. Distributed Problem Solving and Planning, pages 118–149.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[10] Alejandro Torreño, Eva Onaindia, and Óscar Sapena. Fmap: Distributed
cooperative multi-agent planning. Applied Intelligence, 41(2):606–626, 9 2014.

[11] John Von Neumann and Oskar Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 2007.

[12] Roger B Myerson. Game Theory. Harvard University Press, 2013.

91

92 BIBLIOGRAPHY

[13] Martin J Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press,
1994.

[14] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press, 2009.

[15] Adam Brandenburger. Cooperative game theory. Teaching Materials at New
York University, 2007.

[16] Donald B Gillies. Solutions to general non-zero-sum games. Contributions to
the Theory of Games, 4(40):47–85, 1959.

[17] John Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295,
1951.

[18] Raz Nissim and Ronen I. Brafman. Cost-optimal planning by self-interested
agents. In Proceedings of the 27th AAAI Conference on Artificial Intelligence,
pages 732–738, 2013.

[19] Pieter Buzing, Adriaan Ter Mors, Jeroen Valk, and Cees Witteveen. Coordi-
nating self-interested planning agents. Autonomous Agents and Multi-Agent
Systems, 12(2):199–218, 2006.

[20] Jan Hrnčíř, Michael Rovatsos, and Michal Jakob. Ridesharing on timetabled
transport services: A multiagent planning approach. Journal of Intelligent
Transportation Systems, 19(1):89–105, 2015.

[21] Jaume Jordán and Eva Onaindía. Game-theoretic Approach for Non-
Cooperative Planning. In Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI), pages 1357–1363, 2015.

[22] Jaume Jordán, Alejandro Torreño, Mathijs De Weerdt, and Eva Onaindia.
A non-cooperative game-theoretic approach for conflict resolution in multi-
agent planning. Group Decision and Negotiation, 2020.

[23] Anders Jonsson and Michael Rovatsos. Scaling up multiagent planning: A
best-response approach. In Proceedings of the 21st International Conference on
Automated Planning and Scheduling (ICAPS), 2011.

[24] Robert W. Rosenthal. A class of games possessing pure-strategy nash equi-
libria. International Journal of Game Theory, 2(1):65–67, 1973.

[25] Jaume Jordán, Alejandro Torreno, Mathijs De Weerdt, and Eva Onaindia. A
better-response strategy for self-interested planning agents. Applied Intelli-
gence, 48(4):1020–1040, 2018.

[26] Pasqual Martí, Jaume Jordán, Javier Palanca, and Vicente Julian. Load gen-
erators for automatic simulation of urban fleets. In Highlights in Practical
Applications of Agents, Multi-Agent Systems, and Trust-worthiness. The PAAMS
Collection, pages 394–405, Cham, 2020. Springer International Publishing.

BIBLIOGRAPHY 93

[27] Pasqual Martí, Jaume Jordán, Javier Palanca, and Vicente Julian. Free-
floating carsharing in simfleet. Accepted for IDEAL’2020 Main Track. 21st
International Conference on Intelligent Data Engineering and Automated
Learning, 2020.

[28] Jaume Jordán, Javier Palanca, Elena Del Val, Vicente Julian, and Vicente
Botti. A multi-agent system for the dynamic emplacement of electric vehicle
charging stations. Applied Sciences, 8(2):313, 2018.

[29] Javier Palanca, Jaume Jordán, Javier Bajo, and Vicent Botti. An energy-aware
algorithm for electric vehicle infrastructures in smart cities. Future Generation
Computer Systems, 108:454 – 466, 2020.

[30] Elena del Val, Javier Palanca, and Miguel Rebollo. U-tool: A urban-toolkit
for enhancing city maps through citizens’ activity. In International Conference
on Practical Applications of Agents and Multi-Agent Systems, pages 243–246.
Springer, 2016.

[31] Richard Katzev. Car sharing: A new approach to urban transportation prob-
lems. Analyses of Social Issues and Public Policy, 3(1):65–86, 2003.

[32] Monitor Deloitte. Car sharing in europe–business models, national
variations, and upcoming disruptions. Dosegljivo: https://www2. deloitte.
com/content/dam/Deloitte/de/Documents/consumer-industrial-products/CIP-
Automotive-Car-Sharing-in-Europe. pdf, 2017.

[33] Jörg Firnkorn and Martin Müller. What will be the environmental effects of
new free-floating car-sharing systems? the case of car2go in ulm. Ecological
economics, 70(8):1519–1528, 2011.

[34] Ngone Arame Niang, Martin Trépanier, and Jean-Marc Frayret. A multi-
agent simulation approach to modelling a free-floating carsharing network.
2020.

[35] Vassio, Luca; Giordano, Danilo; Mellia, Marco; Cocca, Michele . “Data
for: “Free Floating Electric Car Sharing Design: Data Driven Optimisation".
Anonymized datasaset of 2 months of trips of car sharing users in the city
of Turin, Mendeley Data, v1. http://dx.doi.org/10.17632/drtn5499j2.1,
2019.

http://dx.doi.org/10.17632/drtn5499j2.1

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Document structure

	State of the Art
	Preliminaries
	Intelligent Agents and Multi-Agent Systems
	Multi-Agent Simulation
	SimFleet

	Related work
	Classical Single-Agent Planning
	Multi-Agent Planning
	Game-theoretic Planning proposals

	Proposal
	Load Generators
	Free-floating Carsharing System
	Best-Response Planning Strategy
	Overview

	Load Generators
	Charging stations generator
	Random distribution
	Uniform distribution
	Radial distribution
	Charging poles allocation

	Load generator of movements in a city
	Random movement generator
	Informed movement generator

	Simulation example
	Chapter remarks

	Free-floating Carsharing System
	System description
	Agents

	Design of intelligent strategies
	Experimentation
	Chapter remarks

	SimFleet Planner
	Urban Mobility domain
	Transport agent's utility
	Sources of conflict

	Actions
	Elements of an action
	Action precalculation

	Plans
	Planning process
	Planner elements
	Plan evaluation
	Partial plan search tree

	Search tree pruning
	Best Solution prune
	Storage of Partial Solutions
	Previous Plan Utility bound

	Planning in large scenarios
	Goal Limitation
	Initial Feasible Joint Plan

	Plan building example
	Chapter remarks

	Best-Response Planning Strategy
	BRPS process
	BRPS in the Urban Mobility domain
	Integration with SimFleet
	BRPS convergence with open goals
	Blackboard, an amplified Table of Goals
	Goal fixing BRPS algorithm

	Chapter remarks

	Experimentation
	Planner performance
	Effect of the pruning methods
	Size of the scenario

	BRPS convergence
	SimFleet vs BRPS: solution comparison
	Evaluation remarks

	Conclusions
	Assessment
	Future work
	Research activities
	Publications
	Projects

	Connection with the taken studies

	Bibliography

