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ABSTRACT

Model-based Predictive Control (MPC) is widely used in Industry due to its

ability to handle multivariate systems subject to input and output constraints.

Two phases can be distinguished in an MPC implementation: identification

and control. The purpose of this thesis is twofold: make contributions in

identification for MPC, and propose a new MPC control methodology.

Closed-loop performance in an MPC implementation relies heavily on pre-

dictive performance of the model, then model identification is a crucial point

in MPC and the part that often demands most of the time of the project.

This thesis deals first with identification for MPC. Model identification aims

at approximating a process, and models are often fit for purpose. Provided

the purpose of the model in MPC is to perform multi-step ahead predictions,

the identification strategy needs take multi-step ahead prediction errors into

account. This identification strategy is often denoted MRI (Model Predictive

Control Relevant Identification). In this thesis, identification for MPC cov-

ers three main topics. First, MRI and different approaches to it are defined.

Second, fitting a multiple input multiple output model is compared to fitting
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several multiple input single output models in terms of MRI concluding the

approach to obtain a single multiple input multiple output model is preferable

in MRI for a sufficiently large prediction horizon. Finally a PLS-based (Partial

Least Squares) line search numerical optimization approach denoted PLS-PH

that deals with parametric MRI in the case of collinearity in the identification

data set is proposed. An example shows PLS-PH can outperform conventional

MRI parametric approaches if there is collinearity in the identification data

set.

Once the model to perform multi-step ahead predictions is ready, the con-

troller can be formulated. A model-based predictive control methodology in

the space of the latent variables for continuous processes is proposed in this

thesis and denoted LV-MPC. LV-MPC takes the dynamic matrix approach

for MRI and uses PLS to obtain the latent variable space in which the deci-

sions of the controller are made. Implementing identification and control in

the latent variable space: eases identification in the case of correlation in the

identification data set, acts as a prefilter reducing the effect of noisy data,

reduces computational complexity, and provides tools that ensure the pre-

dictor is used in the region in which it has been identified, hence improving

closed-loop performance. Several examples show how LV-MPC can outper-

form traditional MPC in terms of computational complexity and closed-loop

performance whilst it is easy to tune. LV-MPC for continuous processes is a

novel approach that combines the best of two methodologies widely used in

Industry: MPC and latent variable methods. This thesis describes LV-MPC

and tackles with many of the challenges in MPC, however, there is room to

add more functionalities to the methodology, then LV-MPC starts what can

become a new trend in MPC.
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RESUMEN

Control predictivo basado en modelos (MPC) es una metodoloǵıa de control

ampliamente utilizada en la industria por su habilidad para controlar procesos

multivariable con restricciones en sus entradas y sus salidas. Se distinguen dos

fases en la implementación de MPC: identificación y control. El propósito de

esta tesis es doble: realizar contribuciones en la identificación para MPC y

proponer una nueva metodoloǵıa de control MPC.

La respuesta en bucle cerrado de una implementación de MPC depende, en

gran medida, de la capacidad de predicción del modelo; luego la identificación

del modelo es un punto crucial en MPC y la parte que a menudo exige la

mayor parte del tiempo del proyecto. El primer objetivo que cubre la tesis es

la identificación para MPC. Puesto que un modelo es una aproximación del

comportamiento de un proceso, dicha aproximación se puede hacer teniendo

en cuenta el fin que se le va a dar al modelo. En MPC, el modelo se utiliza

para realizar predicciones dentro de una ventana futura, luego la identificación

para MPC (MRI) tiene en cuenta dicho uso del modelo y considera los errores

de predicción dentro de dicha ventana para el ajuste de los parámetros del
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modelo. En esta tesis, se cubren tres temas dentro de MRI. Primero se define

MRI y las distintas formas de abordarlo. Luego se compara en términos de

MRI el ajuste de un modelo con múltiples entradas y múltiples salidas con el

ajuste de varios modelos con múltiples entradas y una salida concluyendo que

el ajuste de un único modelo con múltiples entradas y múltiples salidas pro-

porciona mejores resultados en términos de MRI para horizontes de predicción

lo suficientemente grandes. Por último, se propone el algoritmo PLS-PH para

implementar MRI con modelos paramétricos en el caso de correlación en los

datos de identificación. PLS-PH es un método de optimización numérica por

búsqueda lineal basado en PLS (mı́nimos cuadrados parciales). Se muestra

en un ejemplo como PLS-PH es capaz de proporcionar mejores modelos que

las técnicas convencionales de MRI en modelos paramétricos en el caso de

correlación en los datos de identificación.

Una vez obtenido el modelo se puede formular el controlador predictivo.

En esta tesis se propone LV-MPC, un controlador predictivo para procesos

continuos que implementa la optimización en el espacio de las componentes

principales. En LV-MPC se obtienen las matrices dinámicas del modelo di-

rectamente desde los datos de identificación mediante PLS. Las matrices de

transformación del espacio obtenidas en PLS se utilizan posteriormente en el

controlador para implementar la optimización en dicho espacio reducido. Im-

plementar identificación y control en el espacio de las componentes principales:

facilita la identificación en el caso de existencia de correlación en el conjunto

de datos de identificación, actúa como filtro reduciendo los efectos de datos

con ruido, reduce la carga computacional del algoritmo de control y asegura la

utilización del modelo en la región en la que ha sido identificado mejorando la

respuesta en bucle cerrado. Varios ejemplos muestran como LV-MPC puede

mejorar la implementación tradicional de MPC en términos de carga computa-

cional, respuesta en bucle cerrado y siendo una metodoloǵıa fácil de ajustar.

LV-MPC es una nueva metodoloǵıa que combina lo mejor de dos herramien-

tas ampliamente utilizadas en la industria: control predictivo y técnicas de

reducción de variables. En esta tesis se describe LV-MPC y se abordan varios

de los retos en la implementación de control predictivo, no obstante quedan

ĺıneas abiertas para futuros trabajos.
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RESUM

Control predictiu basat en models (MPC) és una metodologia de control

àmpliament utilitzada en la indústria per la seva habilitat per controlar pro-

cessos multivariable amb restriccions en les seves entrades i les seves sortides.

Es distingeixen dues fases en la implementació de MPC: identificació i control.

El propòsit d’aquesta tesi és doble: realitzar contribucions en la identificació

per a MPC i proposar una nova metodologia de control MPC.

La resposta en bucle tancat d’una implementació de MPC depèn en gran

mesura de la capacitat de predicció del model, doncs la identificació del model

és un punt crucial en MPC i la part que sovint exigeix la major part del temps

del projecte. El primer objectiu que cobreix la tesi és la identificació per a

MPC. Com que un model és una aproximació del comportament d’un procés,

aquesta aproximació es pot fer tenint en compte la finalitat que se li donarà

al model. En MPC, el model s’utilitza per a realitzar prediccions dins d’una

finestra, doncs la identificació per a MPC (MRI) té en compte aquest ús del

model i considera els errors de predicció dins d’aquesta finestra per a l’ajust

dels paràmetres del model. En aquesta tesi, es cobreixen tres temes dins de
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MRI. Primer es defineix MRI i les diferents formes d’abordar-lo. Després

es compara en termes de MRI l’ajust d’un model amb múltiples entrades i

múltiples sortides amb l’ajust de diversos models amb múltiples entrades i

una sortida concloent que l’ajust d’un únic model amb múltiples entrades

i múltiples sortides proporciona millors resultats en termes de MRI per a

horitzons de predicció suficientment grans. Finalment, es proposa l’algorisme

PLS-PH per implementar MRI amb models paramètrics en el cas de correlació

en les dades d’identificació. PLS-PH és un mètode d’optimització numèrica

per recerca lineal basat en PLS (mı́nims quadrats parcials). Es mostra en

un exemple com PLS-PH és capaç de proporcionar millors models que les

tècniques convencionals de MRI en models paramètrics en el cas de correlació

en les dades d’identificació.

Una vegada obtingut el model es pot formular el controlador predictiu. En

aquesta tesi es proposa LV-MPC, un controlador predictiu per a processos

continus que implementa l’optimització en l’espai de les components princi-

pals. En LV-MPC s’obtenen les matrius dinàmiques del model directament

des de les dades d’identificació mitjançant PLS. Les matrius de transformació

de l’espai obtingudes en PLS s’utilitzen posteriorment al controlador per im-

plementar l’optimització en aquest espai redüıt. Implementar identificació i

control en l’espai de les components principals: facilita la identificació en el

cas d’existència de correlació en el conjunt de dades d’identificació, actua com

a filtre reduint els efectes de dades amb soroll, redueix la càrrega computa-

cional de l’algorisme de control i assegura la utilització del model en la regió

en què ha estat identificat millorant la resposta en bucle tancat. Diversos

exemples mostren com LV-MPC pot millorar la implementació tradicional de

MPC en termes de càrrega computacional, resposta en bucle tancat i sent una

metodologia fàcil d’ajustar. LV-MPC és una nova metodologia que combina el

millor de dues eines àmpliament utilitzades en la indústria: control predictiu

i tècniques de reducció de variables. En aquesta tesi es descriu LV-MPC i

s’aborden alguns dels reptes en la implementació de control predictiu, però

queden ĺınies obertes per a futurs treballs.
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ACRONYMS

ARX Autoregressive Exogenous

ARMAX Autoregressive Moving Average Exogenous

BJ Box-Jenkins

CRI Control Relevant Identification

CVs Controlled Variables

DM Dynamic Matrix

LMOCV Leave-Many-Out Cross Validation

LTI Linear Time Invariant

LS Least Squares

LS-PH Least Squares Prediction Horizon

LTI Linear Time Invariant

LVMs Latent Variable Methods

LV-MPC Latent Variable Model Predictive Control

MPC Model-based Predictive Control

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

MVs Manipulated variables

MSEP Mean Square Error of Prediction
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NIPALS Nonlinear Iterative Partial Least Squares

PEMFC Proton Exchange Membrane Fuel Cell

PEMs Prediction Error Methods

PLS Partial Least Squares

PLS-PH Partial Least Squares Prediction Horizon

QP Quadratic programming

SEP Squared Error of Prediction

SIMs Subspace Identification Methods

SISO Single Input Single Output

SNR Signal to noise ratio

SSEP Sum of Squared Error of Prediction
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NOMENCLATURE

E input residuals

F Output residuals

N Number of rows in the regression matrix

na Number of lagged outputs in the model

nb Number of lagged inputs in the model

ne Number of error terms used to fit the parameters of the model

ni Number of inputs in the process

nf Prediction horizon

nlv Number of latent variables

no Number of outputs in the process

np Number of parameters in the model

nu Cotrol horizon

nx Number of columns in the regression matrix

ny Number of columns in the matrix of outputs for linear regression

P Input loadings

Q Output loadings

T Input scores

Ts Sampling period
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U Output scores

uk Row vector of inputs at instant k

ui(k) Input i at instant k

Wu Relative Weight for control moves in MPC

Wy Relative Weight for predicted deviations in MPC

X Regression matrix

Y Output space

yk Row vector of outputs at instant k

yi(k) Output i at instant k

λu Absolute weight for control moves in MPC
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CHAPTER 1

MOTIVATION AND AIM

Model-based Predictive Control (MPC) is widely used in Industry due to its

ability to handle multivariate systems subject to input and output constraints

[Camacho 04, Jämsä-Jounela 07, Thwaites 07]. The most common challenges

that appear when implementing MPC are

Figure 1.1: Challenges in MPC
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Among the challenges of the implementation of MPC in Industry, two of

them form the basis of the present thesis: (A) Obtain reliable multi-step

ahead predictions, and (B) Reduce computational complexity. Challenge (A)

can be split into two parts:

(A) Obtain reliable multi-step ahead predictions

(A.1) Obtain a reliable multi-step ahead predictor

(A.2) Use the predictor in a region in which it is valid

(B) Reduce computational complexity.

Model development is by far the most critical and time-consuming step

in implementing a model predictive controller [Morari 99, Zhu 02, Bars 06].

Control Relevant Identification (CRI) is intended to create synergy between

the identification and control algorithms; thus providing a model that is com-

mensurate with the control cost function. The acronym MRI (MPC Relevant

Identification) refers to CRI in the case of an MPC controller, and tackles

challenge (A.1).

As depicted in Figure 1.2, MRI can be attained in two different ways: the

parametric model approach, and the dynamic matrix approach. The para-

metric model approach takes into account the further use of the model to

perform predictions in a given prediction window, i.e., it is MRI. The para-

metric model is then used in MPC to obtain the dynamic matrices used to

perform multi-step ahead predictions. There are three ways to obtain MRI

parametric models: pre-filter the identification data set [Shook 92], minimize

a multi-step ahead prediction error cost function [Lauŕı 10a], and use subspace

identification methods (SIMs) [Huang 08]. In the dynamic matrix approach,

the dynamic matrices used in MPC are obtained directly from process data

[Rossiter 01, Kadali 03], and either a singlemodel to perform predictions in the

prediction horizon can be obtained, or as many models as the length of the

prediction horizon in the multimodel approach. The advantage of the multi-

4



1. Motivation and aim

model approach is it ensures causality of the overall model in that predictions

in the near horizon cannot depend on inputs in the far horizon.

Figure 1.2: Challenge (A): Obtain reliable multi-step ahead predictions.

Lets assume the model has been identified using MRI and multi-step ahead

predictions are close enough to the real outputs of the process. Nevertheless,

the MPC controller under tight control specifications may use the predictor in

a region far from the identification region in which it is not valid1, then poor

multi-step predictions are obtained and consequently poor closed-loop perfor-

mance. This forms the second branch (A.2) under the challenge to obtain

reliable multi-step ahead predictions. The approach to tackle this challenge is

to consider an indicator of validity of predictions in the on-line optimization

of the controller.

In large processes, processes with fast dynamics, or in case a large control

window is desired, the MPC problem has many degrees of freedom (d.o.f.).

The d.o.f. are the dominating factor for computational complexity, challenge

(B). It is common practice to reduce the d.o.f. to deal with computational

complexity. One approach to reduce computational complexity is PFC (Pre-

1Note MPC based on linear models is often used, and all processes are non-linear, then

there is model-process mismatch.
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dictive Functional Control) [Camacho 04]. In PFC a subset of points in the

prediction horizon is computed to simplify calculation, and the control signal is

parametrized using a subset of polynomial basis functions. Another approach

is to parametrize the control signal using Laguerre functions [Wang 09]. Move

blocking strategies reduce the d.o.f. by fixing the input or its derivatives to

be constant over several time-steps, a survey of various move blocking strate-

gies is presented in [Cagienard 07]. Another solution is to implement explicit

MPC by means of multi-parametric programming [Kvasnica 04]. In multi-

parametric programming, the MPC quadratic optimization problem is solved

off-line. The associated solution takes the form of a PWA state feedback law.

In particular, the state-space is partitioned into polyhedral sets and for each

of those sets the optimal control law is given as one affine function of the state.

In the on-line implementation of the explicit MPC controller, computation of

the controller action reduces to a set-membership test. Another solution to

reduce computational complexity is SVD-GPC [Sanchis 02]. In SVD-GPC,

singular value decomposition is used to reduce the dimensional space of the

matrices of the controller, which reduces computational burden.

Another solution to reduce complexity is to use LVMs in the identification

stage and perform the minimization in the space of the latent variables: in

[Flores-Cerrillo 05, MacGregor 09] LV-MPC for batch processes is presented;

and in [Song 02] a neural network PLS model is obtained and control is imple-

mented in the space of the latent variables. The MPC based control method-

ology proposed in Part III of this thesis deals with challenge (B) by imple-

menting the on-line optimization in the reduced latent variable space.

Figure 1.3: Challenge (B): Reduce computational complexity.
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Figure 1.4 contains the mindmap of the challenges and possible solutions in

MPC. This thesis focuses on challenges (A) and (B), but some solutions to the

other challenges are depicted in the figure and commented below, note this list

of solutions is not intended to be complete nor exhaustive. As shown in the

figure, the control solution proposed in Part III of this thesis, and denoted

LV-MPC, accounts for challenge (A) in that it uses the single model under the

dynamic matrix approach and ensures its validity; and challenge (B) in that

the optimization is implemented in the reduced space of the latent variables.

• Non-linear process: how to cope with a non-linearity depends on

the nature of the non-linearity. If the non-linearity is caused by sat-

uration of the actuators, one solution is to add constraints to the op-

timization problem in MPC. If there are static non-linearities one can

consider adding Hammerstein/Wiener static compensators. For dynamic

non-linearities one can use gain-scheduling which interpolates linear con-

trollers [Albertos 04], or use the non-linear model and implement non-

linear MPC [Blet 02]. Note using a non-linear model transforms the

convex optimization problem to be solved on-line (normally a QP) into

a non-convex optimization problem, and this considerably increases com-

putational burden. Hence, although most Industrial processes are non-

linear, most implemented control solutions are based on linear models

[Qin 03], either one model if the process operates in a region in which

it is almost linear, or a set of models for the different operating points

in gain-scheduling. LV-MPC accounts for constraints then deals with

saturation of the actuators, can be combined with the use of static com-

pensators for static non-linearities, and can be extended to switch among

different models if gain-scheduling is to be implemented. Thus, although

LV-MPC is presented as a linear control methodology, some adjusts can

be made to tackle processes with a strong non-linear behaviour.

• Time-varying process: Processes may change their dynamic response

over time due to changes in the process, wear of some parts, or per-

sistent unmeasured disturbances that force the plant to a different op-

erating point. Such changes lead to performance degradation provided

7
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Figure 1.4: Mindmap of challenges and solutions in MPC
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1. Motivation and aim

multi-step ahead predictions differ from real plant behaviour. The most

common approach to cope with time-varying processes is model re-

identification [Sotomayor 09], which can be applied to LV-MPC if needed.

• Robustness: A control system is robust if stability is maintained and

performance specifications are met for a specified range of model varia-

tions and a class of noise signals [Bemporad 99]. One way to increase ro-

bustness is to include uncertainties to the model and consider them in the

design of the controller. Two typical descriptions of uncertainty exten-

sively considered in the field of robust model predictive control are: state

space polytope, and bounded unstructured uncertainty [Veselý 10]. Two

drawbacks derive from considering uncertainties: solving the problem is

computationally much more demanding, and the control action may be

excessively conservative. Robustness can also be increased without mod-

elling uncertainties, for instance using large values for the weighting of

the control actions in MPC [Veselý 10], i.e., relax control specifications;

or using a T-filter [Rossiter 03]. LV-MPC presented in this thesis does

not model uncertainties, but implements the optimization in the latent

variable space which can reduce the effect of uncertainties (e.g. noise in

the controlled variables) in the optimization, and forces the model to be

used in the region in which it has been identified ensuring model validity.

• Fault detection and isolation: A failure in one actuator or one sen-

sor can lead a process to instability specially in multivariable processes

controlled in a multivariable control structure. A condition monitoring

tool can be used by control room operators to detect abnormalities and

deal with them as soon as possible. Latent variable techniques and the

statistic indicators associated, Hotelling’s T 2 and squared error of pro-

jection, are often used in process monitoring [AlGhazzawi 09]. LV-MPC

uses these two indicators to ensure model validity, then it is straight

forward to implement fault detection and isolation in LV-MPC.

• Stability guarantee: A priori stability guarantee of an MPC control

law is established if the MPC cost function is a Lyapunov cost function

which implies: it is positive-definite, and its time-derivative is negative

semidefinite, which is attained if a infinite horizon is used. However, the

9
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use of infinite horizons make MPC intractable in the case of constraints.

One solution is to implement dual mode MPC. In the first mode of dual

mode MPC, there is a finite control horizon and constrained on-line

optimization is implemented. In the second mode, feedback is given by

an explicit control law. At the end of the first mode the process must lay

in a terminal set to ensure constraints hold in the second mode. Stability

proof of LV-MPC under some assumptions is based on dual model MPC

as explained in Part III.

• Control structure: When controlling multivariate plants, the control

structure is an important decision to make. One can use a decentralised

control structure with several layers, in the lower layers there are con-

trollers which control parts of the plant, and multivariate controllers are

placed in the upper layers. Alternatively, one can use one single layer and

implement multivariate control. Whereas decentralised control is easer

to tune and commission, centralised control can achieve better results.

LV-MPC applies in any of the two structures.

10



CHAPTER 2

STRUCTURE OF THE THESIS

The thesis consists of four parts and each of them has been divided into chap-

ters to ease reading:

Part I : Introduction

Part II : MRI: Model predictive control Relevant Identification

Part III : LV-MPC: Latent Variable Model Predictive Control

Part IV : Concluding remarks

Part I is the introduction which is divided into four chapters. In the first

chapter the motivation of the thesis is provided along with the aim of the

thesis. This second chapter outlines the structure of the thesis. The third and

fourth chapters briefly describe two tools widely used in industry which form

11
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the basis for the present work: Model Predictive Control (MPC), and Latent

Variable Methods (LVMs).

Part II deals with model predictive control relevant identification (MRI)

and is enclosed in green in Figure 1.4. This part is also divided into four

chapters. In Chapter 5 the concept MRI and the different ways to implement

it are introduced along with the model and predictor used in this thesis. Once

defined MRI, the MIMO and the multiple MISO identification approaches are

compared in Chapter 6; this chapter concludes that MIMO identification is

preferable in MRI for a sufficiently large prediction horizon. An identifica-

tion algorithm to perform parametric MRI in the event of correlated data is

presented in Chapter 7. A wrap up for this part is presented in Chapter 8.

Part III introduces the proposed model predictive control methodology

implemented in the space of the latent variables (LV-MPC) and is enclosed in

blue in Figure 1.4. This part is also divided into three chapters. In Chapter 9

first the basic LV-MPC methodology is defined and then LV-MPC is enhanced

with some additional features. For ease of reading despite all the mathematical

formulation needed in this part, results are provided at the beginning of each

section and the formal proof is given in propositions at the end of each sec-

tion. Chapter 10 introduces some examples that compare LV-MPC to existing

control methodologies proving LV-MPC can reduce computational complexity

and provide better closed-loop time response, specially in the event of measure-

ment error, or in the presence of uncertainties such as additive perturbations.

Chapter 11 provides the conclusions of this third part of the thesis.

Finally, Part IV wraps up the thesis outlining the main conclusions, high-

lighting the contributions of this thesis and defining further works that either

are being or can be done.
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CHAPTER 3

MODEL PREDICTIVE CONTROL

3.1. MPC philosophy

MPC is a control philosophy rather than a specific controller. MPC is widely

used in Industry because it is based in very intuitive ideas [Camacho 04], and

it can handle multivariate systems subject to input and output constraints

[Jämsä-Jounela 07, Thwaites 07]. The three basic premises in an MPC con-

troller are:

• A model of the process is used to perform predictions on the behaviour

of the process within a prediction window:1

ŷk+i ∀i ∈ [1, 2, . . . , nf ]

1Syntax ŷ(k+ i|k) is often used in MPC and reads predicted outputs at instant k+ i with

information available up to instant k. In this work however, the more compact notation ŷk+i

is used.

13
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where: ŷk+i ∈ R
1×no , predictions at k + i with information available

up to instant k; no, the number of outputs; nf , the prediction horizon.

Predictions are expressed in terms of known input and output past data

(there is information available up to instant k), and a future control

sequence, which is actually the degree of freedom in the MPC problem.

• The control sequence comes from the minimization of a cost function.

The basic cost function weights: output deviations from a desired tra-

jectory and the control effort. Should the cost function be quadratic,

the model linear, and in the absence of inequality constraints, there is

an analytic expression for the MPC controller. Otherwise, numerical op-

timization can be used to tackle the minimization of the cost function.

• A control sequence is obtained at each instant, but only the first control

action is eventually applied to the process. This feature of MPC is

defined as receding horizon. The reasoning for the receding horizon

policy is at instant k + 1 there will be more information of the outputs

available which was not available at instant k, thus, error in predictions

can be accounted for.

The three basic components in an MPC are:

• The predictor which is used to estimate the dynamic behaviour of the

process within a prediction window.

• The cost function from which the control action is obtained.

• The optimization method which is used to minimize the cost function.

3.2. Predictor

The predictor is the basic component in an MPC project provided the deci-

sion of the control action is based on predictions for the CVs. The better the

14



3. Model predictive control

Figure 3.1: Model predictive control

predictions are, the better control performance can be achieved; thus, obtain-

ing a reliable predictor is of importance in MPC. A general form of future

predictions can be expressed as a function of input and output past data, and

a future control sequence, which is actually the degree of freedom in the MPC

problem (see Fig. 3.1).

ŷf(k) = f(up(k),yp(k),uf(k),udof(k)) (3.1)

where all the row vectors are defined

ŷf(k) = [ŷk+1 . . . ŷk+nf ] → Predicted outputs

up(k) = [uk−1 . . . uk−nb+1]
}

→ Past known data
yp(k) = [yk−1 . . . yk−na ]

uf(k) = [uk+nf−1 . . . uk+nu ]
}

→ Future control sequence
udof(k) = [uk+nu−1 . . . uk]

being nb, past horizon for inputs; na, past horizon for outputs; and nu,

control horizon. The details on how to obtain f(.) depend on the identification

strategy and/or model used. The following subsection explains how to obtain

a linear model to be used as the predictor.
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3.2.1. Obtaining a linear predictor

Assuming a linear structure, the predictor in Equation (3.1) yields:

ŷf(k) = [up(k) yp(k) uf(k) udof(k)]
︸ ︷︷ ︸

x(k)

θ (3.2)

where θ is the matrix containing the parameters of the linear predictor, and

x(k) is the regression row vector at instant k.

For an identification data set, the following matrices can be formed:

Y =






yf(1)
...

yf(N)




 ; X =






x(1)
...

x(N)






where each of the row vectors is obtained as follows

yf(k) = [yk+1 . . . yk+nf ]

x(k) = [uk−1 . . . uk−nb+1
︸ ︷︷ ︸

up(k)

,yk−1 . . . yk−na
︸ ︷︷ ︸

yp(k)

,uk+nf−1 . . . uk+nu
︸ ︷︷ ︸

uf(k)

,uk+nu−1 . . . uk
︸ ︷︷ ︸

udof(k)

]

∀k ∈ [1 . . . N ]. Note yf(k) is a row vector with ny , nonf columns, and x(k)

is a row vector with nx , ni(nb−1)+nona+ninf columns. Then Y ∈ R
N×ny ,

and X ∈ R
N×nx .

Assuming there is process-model mismatch:

Y = Xθ
︸︷︷︸

,Ŷ

+ F

where F contains the differences between predicted and real outputs in the

prediction horizon, and Ŷ is the matrix of predictions. Given the matrices X

and Y, the simplest identification approach is to use LS (least squares) to fit

the model:

θ = (XTX)−1XTY.
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3. Model predictive control

Summing up, from an identification data set, one can form matrices X and

Y and obtain the matrix of parameters θ of the linear predictor in Equation

(3.2).

3.3. Cost function

A general expression for the performance index (cost function) at a given

instant is

JC = g(rf(k), ŷf(k),udof(k)) (3.3)

where rf(k) is the set point and is defined accordingly to ŷf(k).

Provided linear models are often used [Blet 02, Qin 03], and the minimiza-

tion of a quadratic function with constraints is mathematically tractable, the

typical cost function in MPC is:

JC = ||[rf(k)− ŷf(k)]Wy||
2
F + λu||∆udof(k)Wu||

2
F (3.4)

being Wy and Wu positive definite diagonal matrices of appropriate dimen-

sions to weight predicted deviations from the set point and control actions

respectively. Whereas Wu weights the different control actions relatively to

other control actions, the scalar λu is the overall weight for all the control

actions in the cost function, then trades tracking error for control effort. In-

crements of the control action are often used instead of the control action

itself to attain offset-free tracking [Rossiter 03]. The cost function JC has two

terms:

• Sum of squared predicted tracking errors in the prediction horizon nf

• Sum of squared increments of the control action in the control horizon

nu.
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JC however, does not consider descriptive parameters of the dynamic evolution

of the CVs such as settling time or overshoot. A straight approach to consider

the dynamic evolution of the CVs whilst minimizing JC, is to prefilter the

reference. rf(k) in Equation (3.4) may be replaced by

wf(k) = F (z)rf(k)

The dynamic behaviour of the filtered reference, wf , is set as the desired

dynamic behaviour of the CVs.

3.4. Optimizer

The minimization of the cost function in Eq. (3.3) subject to inequality con-

straints for either the MVs or the CVs can be expressed:

min
∆udof (k)

JC(k) s.t. constraints (3.5)

In the general case an optimizer need be used on-line to solve the minimization

problem and obtain the control sequence udof(k). This minimization problem

can be solved using QP (Quadratic Programming) if the model is linear, and

the cost function in Eq. (3.4) is used. Provided a QP can be solved with

a reasonable computational complexity, linear models and the quadratic cost

function are normally used in Industry for MPC implementations.

If constraints are not needed, the model is linear, and the cost function

in Eq. (3.4) is to be minimized; then, an analytical expression to obtain

udof(k) can be computed off-line. This can be a solution for systems with fast

dynamics in which constraints are not crucial. In general however, constraints

are very important and a QP is often solved on-line.

18



CHAPTER 4

LATENT VARIABLE METHODS

4.1. Introduction

In large-scale manufacturing processes such as chemical, food, or steel making

processes, there are a large number of CVs (Controlled Variables) and MVs

(Manipulated Variables). Due to the multivariate nature of the data, variables

are highly correlated, and the effective dimension of the space in which they

move is very small. Consequently, problems appear when fitting mathematical

models to a size-limited identification data set.

In the event of correlation in the identification data set, LVMs (Latent Vari-

able Methods) are often used [Kiers 07]. LVMs transform noisy and correlated

data into a smaller informative set in which identification can be successfully

performed. Additionally to identification in the case of correlation in the data

set, LVMs are successfully used to:
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• Control batch processes [Flores-Cerrillo 05]

• Perform process control without on-line measurement of quality variables

[Chen 98, McAvoy 02]

• Create soft-sensors [Kano 09]

• Detect process faults and abnormalities [Kourti 05]

• Perform DDQI (Data-Driven Quality Improvement) [Kano 08]

• Deal with missing values in the data set [Nelson 96]

• Monitor the condition of an industrial MPC system based on data col-

lected from an industrial process [AlGhazzawi 09]

This chapter provides a brief understanding of LVMs as a tool for model

identification, and introduces PLS as a LVM that determines the latent vari-

ables by maximizing the correlation between the input and output scores.

4.2. Identification in the space of the latent variables

As shown in Subection 3.2.1, least squares can be used to obtain the matrix

of parameters θ in

Y = Xθ
︸︷︷︸

,Ŷ

+ F

as

θ = (XTX)−1XTY

However, in the event of correlation in the identification data set, matrix

(XTX) is ill-conditioned, hence fitting θ by means of LS is not successful

causing a large variance error. This section explains how the predictor can be

obtained performing the regression in the latent variable space.
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4. Latent variable methods

Given Y and X, variable reduction can be performed as follows:

Y = UQT + F (4.1)

X = TPT +E (4.2)

whereY ∈ R
(N×ny), output space; U ∈ R

(N×nlv), output scores; Q ∈ R
(ny×nlv),

output loadings; F ∈ R
(N×ny), output residuals; X ∈ R

(N×nx), input space;

T ∈ R
(N×nlv), input scores; P ∈ R

(nx×nlv), input loadings; E ∈ R
(N×nx), input

residuals; and nlv, number of latent variables.

Figure 4.1: LVMs: projection onto the latent variable space.

As shown in Figure 4.1, the first step in latent variable methods is to project

the original space onto the reduced latent variable space. Note the regression

matrix in the outer space has nx columns whereas it has nlv columns in the

latent variable space. nlv is a design choice and is normally set below nx

assuming there is collinearity in the identification data set.
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The latent variable space is defined by scores T and U. The model in the

inner space can be obtained

U = TB
︸︷︷︸

,Û

+ residues
LS
=⇒ B = (TTT)−1TTU. (4.3)

Note that if identification is performed in the outer space, θ is fit using

Y and X; then, correlation among column vectors in X affects the fitting.

However, if identification is performed in the inner space, B is fit using U and

T; and column vectors in T are orthogonal; thus, fitting B is not affected

by correlation among column vectors in X thanks to the projection onto the

inner space.

Performing the identification in the latent variable space can additionally

improve the MSEP (Mean Squared Error of Prediction)

MSEP =
1

N

N∑

k=1

||yf(k)− ŷf(k)||
2
F

Given a data set and a predictor, one can calculate MSEP. To validate a

predictor by means of MSEP, a validation data set different to that used for

identification is often used. Alternatively, one can use the identification data

set and perform crossed-validation [Tropsha 03].

According to [Höskuldsson 88], MSEP can be split into the sum of squared

bias error and residual variance error. Bias and variance errors are related to

both the number of parameters in the model, and the size of the identification

data set. For a given identification data set, the number of parameters in the

model determines the solution in the bias-variance trade-off. From Figure 4.1,

the size of θ is nx×ny, and the size of B is nlv×nlv, then setting nlv provides

a mean to improve the MSEP. However, P and Q should also be considered

as they are also fitted to the identification data set, and this affects in the

reduction of the number of parameters to fit.
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4. Latent variable methods

In order to set nlv, MSEP is evaluated for each value of nlv. For small

values of nlv and as it increases, MSEP decreases. nlv is often chosen as the

minimum value which provides a significant drop in MSEP.

Summing up, if identification is performed in the space of the latent vari-

ables: Y and X are projected onto a reduced nlv-space, and the model is fit

in that inner space. There are different approaches to define the projection:

PLS, PCR, RRR, PCovR, and Power Regression [Kiers 07]. According to the

comparison of the various methods in [Kiers 07], PLS and PCR are partic-

ularly indicated in cases with much collinearity, whereas in other cases it is

better to use ordinary regression. In this thesis X has many columns, specially

for multivariate processes and large control horizons, then collinearity appears

and use of PLS or PCR is of interest.

In PLS the projection is performed so that the correlation between the input

and output scores is maximized, whilst PCR aims at maximizing the explained

variance of X. Although, PCR could have been used in this thesis, PLS has

been used provided it performs the projection taking into consideration both

the input and the output space. The PLS approach is introduced in the

following section.

4.3. PLS

The different approaches to determine P and Q in Equations (4.2) and (4.1)

give name to the different LVMs. In PLS, latent variable i is obtained such

that correlation between input scores ti and output scores ui is maximized.

Note ti is column i in T, and ui column i in U.

The PLS algorithm is thoroughly introduced in [Höskuldsson 88, Geladi 86],

in which an additional matrix W is used in place of P in the modified NI-

PALS algorithm to obtain T with orthogonal column vectors. As explained
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in [Martens 01], T can be obtained from X:

T = XW(P TW)−1

︸ ︷︷ ︸

,Z

. (4.4)

From Equations (4.2) (4.1) (4.3) (4.4), the model in the outer space θ can

be obtained using PLS as:

Ŷ = ÛQT = TBQT = XZBQT

︸ ︷︷ ︸

,θ

(4.5)

θ = ZBQT (4.6)

The PLS model is finally defined by:

• Model in the outer space: θ

• Projection matrices: P, W, and Q

• Model in the inner space: B

which matrices to use depends on what task the model is to be used for. If

the task is only to perform predictions, just the model in the outer space, θ,

is needed. In the control methodology proposed in Part III, all the matrices

are used since predictions and optimization are performed in the inner space.
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MRI: Model predictive
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MPC: Relevant Identification, and Control in the LV Space

Figure 4.2: Location of PartII in the general mindmap in Figure 1.4.
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CHAPTER 5

MODEL PREDICTIVE CONTROL RELEVANT

IDENTIFICATION

5.1. Introduction

Model development is by far the most critical and time-consuming step in im-

plementing a model predictive controller [Morari 99, Zhu 02, Bars 06]. There

are different model structures to approximate a process, which one to choose

is determined by the nature of the process and the purpose of its use. A

precise model of a process may be used for simulating its behaviour. If the

target is to design a controller however, a simplified model is often preferable

provided it simplifies the process of designing the controller and the resulting

implementation of the control strategy. In this thesis, the models used are LTI

(linear time invariant):
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Linear All industrial processes are known to be non-linear, however, around a

working point they can often be approximated by a linear model. Local

linear models are used in this thesis, thus the subsequent control can

only be applied whenever the process is around the working point for

which the model has been identified. Start-up, shut-down and alarm

strategies are also needed for a real implementation of control in an

industrial process. This thesis however, focuses on operation around a

working point.

Time invariant Most industrial processes change with time. The expression

to update model parameters with time is not often known, then process

re-identification is often implemented. Either periodically as in adap-

tive control or when the model performance deteriorates. In this thesis

processes are assumed to be time invariant and in the event of changes

tuning of the model is assumed to be implemented.

Apart from the structure of the model, it is important to decide how to fit

the parameters of the model. Traditional system identification aims at min-

imizing the bias and variance errors to fit the model. CRI (Control relevant

Identification) however, aims at obtaining a model that suits the control prob-

lem at hand [Rivera 92]; so creating synergy between the identification and

control algorithms. The acronym MRI (Model predictive control Relevant

Identification) refers to CRI in the case of an MPC controller. Two branches

to implement MRI can be distinguished Figure 4.2:

• The parametric model approach: A one-step ahead model is fit

taking into account the further use of the model to perform predictions

in a given prediction window. The parametric model is then used in

MPC to obtain the dynamic matrix needed to perform multi-step ahead

predictions

• The dynamic matrix approach: The dynamic matrix to perform

multi-step ahead predictions are obtained directly from process data.
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5. Model predictive control relevant identification

As shown in Figure 4.2, there are three ways to attain MRI in the para-

metric branch:

• Minimize a multi-step ahead prediction error cost function

• Pre-filter the identification data set

• Use subspace identification methods (SIMs)

In traditional identification, a one-step ahead prediction error cost function

is minimized. In MPC, the model needs to perform predictions not only one-

step ahead, but in a prediction window. A straight approach for MRI is then

to minimize a multi-step ahead prediction error cost function to fit the model

to the identification data set. In [Gopaluni 02a, Gopaluni 04], the multi-step

ahead prediction error cost function is minimized, and the properties of MRI

are analysed demonstrating the potential value of the multi-step ahead predic-

tion error cost function when there is model-plant structural mismatch, which

is normal in the process Industry. One disadvantage of this approach is the

identification cost function is non-linear in its parameters, and the minimiza-

tion problem is non-convex in general; thus, non-convex optimization is needed

to obtain the model. However, computational complexity in non-convex op-

timization may not be a problem provided model identification is performed

off-line or on-line in adaptive control, but with a slower sampling rate than

the controller.

As proven in [Gopaluni 04, Shook 92], minimizing the multi-step ahead cost

function is equivalent to using an approach based on prefiltering in which the

noise model is assumed to be a known LTI (Linear Time Invariant) model. In

a real application however, the noise model is unknown and may not be LTI.

Besides, although Shook et al. state their conclusions also apply to the MIMO

case, the algorithm in [Shook 91] can only deal with the SISO (Single Input

Single Output) case.
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In subspace identification, the dynamic matrix to perform multi-step ahead

predictions is first fitted to the identification data set; and then the paramet-

ric model is fitted to the dynamic matrix [Huang 08]. In MPC, the model is

expanded to obtain the dynamic matrix to perform multi-step ahead predic-

tions. Although SIMs are a parametric MRI approach, the intermediate step

is based in the dynamic matrix approach.

As shown in Fig. 4.2, there are two ways to attain MRI in the dynamic

matrix branch:

• Multimodel: As many models as the length of the prediction hori-

zon are obtained [Rossiter 01]. Although each of the models is obtained

using the one-step ahead approach, the global prediction model is com-

mensurate with the control cost function for it minimizes the multi-step

ahead identification error.

• Singlemodel: The whole dynamic matrix is directly fitted to the iden-

tification data set in one step. This approach is used in the control

methodology proposed in part III in this thesis, and is also used in the

data-driven subspace approach in [Huang 08].

Figure 5.1 helps understand the different MRI approaches by comparing

them in a common framework. The aim is to obtain the dynamic matrix

(DM) of the predictor in the upper-right part of the figure. Note the model is

LTI, then the predictor is a matrix which multiplies a vector of known data

to provide predictions.

The two approaches on the left side represent parametric MRI. In para-

metric MRI the one-step ahead model, θ, is obtained and then expanded to

obtain the dynamic matrix of the predictor (DM). In the upper-left part the

data set is filtered and used to form the matrices, Y in green and X in yel-

low, that serve to fit the parameters of the model. In the lower-left part the

minimization of the multi-step ahead cost function is depicted.
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5. Model predictive control relevant identification

Figure 5.1: Model predictive control relevant identification.
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To depict the multi-step ahead minimization procedure nf blocks of samples

are used. The first green block contains predictions at k + 1, and the latter

green block contains predictions at k + nf . Note predictions at k + nf depend

on predictions at k + i, ∀i ∈ [1, nf − 1], then green blocks appear also on

X, which themselves depend on θ, hence this structure is non-linear in θ.

Comparing the two parametric approaches on the left side, one can see the

prefilter option has identification matrices with N samples, whereas the multi-

step ahead minimization approach has nfN samples1.

The two approaches on the right side represent the dynamic matrix ap-

proach, then the dynamic matrix is obtained directly from identification data.

In the middle-right part the dynamic approach using LS on Y and X is de-

picted. In the lower-right part the projection is performed, the dynamic ma-

trix is fitted in the space of its latent variables B, and then the DM matrix is

obtained.

This Chapter is structured in two sections: 5.2 describes the parametric

model approach for MRI, and 5.3 the dynamic matrix approach. In each

section firstly the structure of the model is defined and secondly a fitting

procedure.

5.2. MRI: parametric approach

In this section first the model structure is defined, then the predictor is ob-

tained, and the multistep-ahead function is defined and minimized.

1The number of samples is actually
∑nf−1

i=0 N − i, but assuming nf << N , the previous

expression can be approximated by nfN .
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5.2.1. Model

Let us start from the SISO Box–Jenkins model as the general expression for

an LTI (Linear Time Invariant) model in the transfer function form:

y(k) =
B(z−1)

A(z−1)
u(k) +

C(z−1)

D(z−1)
ξ(k)

Where: y(k), process output; u(k), process input; and ξ(k), white noise.

Since the estimation of C(z−1) is frequently unsuccessful [Shook 91], and

the disturbance characteristics change very frequently [Qin 06], it is common

practice in MPC to use the CARIMA model [Rossiter 03]:

C(z−1) = T(z−1) ; D(z−1) = A(z−1)(1− z−1) (5.1)

Where T(z−1) is considered as a design choice by the control engineer. The

SISO model can be transformed into the ARX form:

y(k) =
B(z−1)

A(z−1)
u(k) +

T(z−1)

A(z−1)(1− z−1)
ξ(k)

(1− z−1)

T(z−1)
y(k) =

B(z−1)

A(z−1)

(1− z−1)

T(z−1)
u(k) +

1

A(z−1)
ξ(k)

yf(k) =
B(z−1)

A(z−1)
uf(k) +

1

A(z−1)
ξ(k).

Providing the identification data is previously filtered, an ARX structure

can be assumed.

yf(k) =
1− z−1

T(z−1)
y(k) ; uf(k) =

1− z−1

T(z−1)
u(k)

In the sequel, the ARX structure is used, being u(k) the process input and

y(k) the process output; or a filtered version if the CARIMA model is consid-

ered. Appendix A shows the equivalence between the ARX structure and the

following expression for the MIMO case:

yk = xk−1θ + ξk (5.2)
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Where:

• yk = [y1(k) . . . yno(k)]

• xk−1 = [uk−1 . . .uk−nb , yk−1 . . .yk−na ], is the regression vector where:

– uk = [u1(k) . . . uni(k)]

– nb: number of lagged inputs in the model

– na: number of lagged outputs in the model

• θ is the matrix of parameters that defines the model. Its size is nx × no

(being nx the number of columns in xk, nx = ninb + nona)

• ξk = [ξ1(k) . . . ξno(k)]

5.2.2. Predictor

One-step ahead predictor

If the estimated model is defined by θ, then prediction of the outputs at instant

k + 1 with information available up to instant k is obtained as:

ŷk+1 = xkθ (5.3)

Where:

xk = [uk . . .uk+1−nb ,yk . . .yk+1−na ]

Should there be model-plant mismatch, ξ(k) in Equation (5.2) is no longer

white noise, and the real process outputs are stated as:

yk+1 = ŷk+1 + ek+1

Being ek+1 the identification error at instant k+1 with output data available

up to instant k.
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Multi-step ahead predictor

Turning to the expression in Equation (5.3), the multi-step ahead prediction

model with outputs available up to instant k, and inputs up to instant k+ nf

can be formulated as:

ŷk+j = xk+j−1θ, ∀j ∈ [1, 2, . . . , nf ] (5.4)

Where:

xk+j−1 = [uk+j−1 . . .uk+j−nb , ȳk+j−1 . . . ȳk+j−na ] (5.5)

ȳα =

{

ŷα for α > k

yα for α ≤ k

ŷk+nf can be obtained recursively starting at ŷk+1, and using Equation (5.4).

The real outputs can be expressed as:

yk+j = ŷk+j + ek+j (5.6)

Being ek+j the identification error at instant k+ j with output data available

up to instant k.

5.2.3. Minimize the multi-step ahead cost function

The MRI parametric approach by minimizing the multi-step ahead cost func-

tion is explained in detail in this subsection.

Lets take the basic cost function normally used in MPC from Equation

(3.4):

JC = ||[rf(k)− ŷf(k)]Wy||
2
F + λu||∆udof(k)Wu||

2
F

In order to simplify the analysis lets assume all outputs are given the same

weight, then Wy = I; and lets assume the overall weight for control actions is

taken to be zero, λu = 0. The previous equation yields

JC = ||rf(k)− ŷf(k)||
2
F
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which can be reformulated as

JC =

nf∑

j=1

||rk+j − ŷk+j
︸ ︷︷ ︸

,ck+j

||2F (5.7)

In this case MPC minimizes the difference between predictions and their ref-

erence.

Assuming there is model-process mismatch, instead of minimizing the de-

viation of predictions from their reference, one can think to minimize the

deviation of the actual values of the outputs from their references:

J̃C ,
nf∑

j=1

||rk+j − yk+j||
2
F

Substituting in from Equation (5.6), the cost function can be expressed as a

function of the control and identification errors:

J̃C =

nf∑

j=1

||rk+j − (ŷk+j + ek+j)||
2
F (5.8)

=

nf∑

j=1

||rk+j − ŷk+j
︸ ︷︷ ︸

ck+j

− ek+j||
2
F (5.9)

=

nf∑

j=1

||ck+j − ek+j||
2
F (5.10)

which can be rewritten as:2

J̃C =

nf∑

j=1

tr(cTk+jck+j) (5.11a)

+

nf∑

j=1

tr(eTk+jek+j) (5.11b)

−

nf∑

j=1

tr(cTk+jek+j + eTk+jck+j) (5.11c)

2 The Frobenius norm can be expressed using the trace operator: ||A||2F = tr(ATA).
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Term (5.11a) is equal to the cost function minimized in MPC obtained in

Equation (5.7). Term (5.11c) represents the cross correlation between identi-

fication and control errors, and according to [Gevers 02] this can be handled

using iterative tuning. This is, however, outside the scope this thesis.

Term (5.11b) is the most relevant part of J̃C for this section as it depends

on the identification error, and it will now be referred to as the Long Range

Prediction Identification cost index (Jlrpi). The One Step Ahead Prediction

Identification cost index (Josapi), normally used in PEMs (Prediction Error

Methods) such as LS (Least Squares), is obtained by setting nf = 1.

Jlrpi(k) =

nf∑

j=1

||ek+j||
2
F (5.12)

Josapi(k) = ||ek+1||
2
F (5.13)

It can be seen that the former cost function contains the latter plus some

additional terms, and so Josapi is an incomplete cost index if the model is to

be used in an MPC framework. MRI was thoroughly studied for the SISO

case in [Gopaluni 04] and it was shown that a better control performance

can be obtained if Jlrpi instead of Josapi is minimized in the estimation of the

parameters of the model. According to [Shook 91], the model fitted minimizing

Jlrpi is better than that fitted minimizing Josapi. This is true providing there

are unmodelled dynamics, and/or the identification data set is not sufficiently

exciting — which is normal in an Industrial application. It is also proven in

[Gopaluni 02b] that any experiment that is informative enough for the one-step

ahead approach, is also informative enough for the multi-step ahead approach.

Hence, if the model is to be used for MPC, the index to minimize in the

identification stage is Jlrpi.

The index can be evaluated for a complete data set:

JLRPI =
N∑

k=1

Jlrpi(k) =
N∑

k=1

nf∑

j=1

||ek+j||
2
F (5.14)
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Where:

ek+j = yk+j − xk+j−1θ. (5.15)

From Equation (5.5) xk+j−1 contains ŷk+j−β, ∀β ∈ [1, 2, . . . , j − 1], which

itself depends on θ; thus, this problem is non-linear in θ. There is no closed-

form solution as in the one-step ahead approach.3 The Levenberg-Marquardt

algorithm implemented in Matlabr can be used to minimize JLRPI.

Summing up, given an identification data set, the matrix of parameters θ is

fitted minimizing JLRPI in Equation (5.14). To calculate JLRPI, the expression

for the error in Equation (5.15) and the multi-step ahead predictor in Equation

(5.4) are needed. The implemented Matlabr code to obtain θ that minimizes

JLRPI can be downloaded at Matlabr central,4 after searching for file: MIMO

MRI.

5.3. MRI: dynamic matrix approach

In this section first the predictor is defined, and then the procedure to obtain

the dynamic matrix of the predictor by means of latent variable methods is

explained.

5.3.1. Predictor

Assuming the same linear structure for the model assumed in Section 5.2, the

multi-step ahead predictor to be used in the dynamic matrix approach can be

3The one-step ahead approach is linear in θ because only xk+1 is needed, and it is inde-

pendent of θ.
4http://www.mathworks.com/matlabcentral/fileexchange/24274
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written:

ŷf(k) = [

x(k)
︷ ︸︸ ︷

up(k) yp(k)
︸ ︷︷ ︸

,xp(k)

xf(k) xdof(k)]θ (5.16)

where θ is the dynamic matrix with appropriate dimensions, and

ŷf(k) = [yk+1 . . . yk+nf ] (5.17)

up(k) = [uk−1 uk−nb+1] (5.18)

yp(k) = [yk−1 yk−na ] (5.19)

xf(k) = [uk+nf−1 . . . uk+nu ] (5.20)

xdof(k) = [uk+nu−1 . . . uk] (5.21)

where: nf , prediction horizon; nb, past horizon for inputs; na, past horizon

for outputs; and nu, control horizon. Note yp(k) starts at yk−1 instead of

yk, the reason is computing time of the control action is considered to be

approximately one sample time, then if the controller is to decide the control

action to apply at k, the output at k is still not available.

5.3.2. Identification in the space of the latent variables

It is common knowledge that if the MVs (Manipulated Variables) are not

exciting enough for the structure of the model to fit, correlation among vari-

ables in the identification data set appears and the identification cannot be

done successfully. In industrial processes, it is not normally possible to ex-

cite the MVs as much as desired and thus, the identification procedure needs

to account for correlation among variables. Additionally, from [Ljung 99] the

asymptotic parameter variance is proportional to the ratio between the num-

ber of parameters to estimate and the data length. In the dynamic matrix

approach there are more parameters to fit than in the parametric approach,

especially in the case of large prediction horizon, compare the size of matrices

θ and DM in Figure 5.1. A large number of parameters to fit can lead to

estimated parameters with poor statistical properties.
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LVMs cope with collinearity in the data set and perform identification in

the reduced latent variable space, then reduce the number of parameters to fit

improving statistical properties of the model. In the lower-right side of Figure

5.1 the matrices of data are projected to the latent variable space and matrix

B is fitted. Note the size of matrix B is smaller than matrix DM if variable

reduction is performed, what improves statistical properties of of the fitted

model. Additionally, if the identification is performed in the latent variable

space, a much more modest identification data set can be used to successfully

fit the model [Flores-Cerrillo 05]. More information on identification in the

latent variable space can be found in Section 4.2.

Identification data matrices can be obtained from Equation (5.16) for k ∈

[1 . . . N ].

Y = Xθ
︸︷︷︸

Ŷ

+ F (5.22)

where F contains the identification error, and

Y =






yf(1)
...

yf(N)






Ŷ =






ŷf(1)
...

ŷf(N)






X =






x(1)
...

x(N)




 .

Identification of θ is performed in this section by means of PLS introduced

in Section 4.3 and the dynamic matrix of the predictor, θ, can be expressed

Ŷ = XZBQT

︸ ︷︷ ︸

θ

. (5.23)
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In the receding horizon policy predictions in the near horizon are more

important than those far away provided only the first control action in the

sequence of control actions is eventually applied to the process. Also, in the

parametric MRI approach that minimizes the multi-step ahead function in

Section 5.2, predictions at k+ i depend on predictions at k+ j, for j < i, then

predictions in the near horizon are given more importance. This feature can be

added to the dynamic matrix approach by giving more weight to predictions

in the near horizon for identification. To do so a weighting matrix can be used

to transform Y

Y̌ = YΛ (5.24)

Λ ∈ R
ny×ny is assumed to be a definite positive matrix. Λ can be a diago-

nal matrix with decreasing values so that predictions in the near horizon are

weighted more than predictions in the far horizon. If Y̌ is used instead of Y

in PLS, Equation (4.1) yields

YΛ
︸︷︷︸

Y̌

= U QTΛ
︸ ︷︷ ︸

Q̌T

+ FΛ

Then matrix Q of the model is obtained from Q̌

Q = Λ−1Q̌

Finally, the PLS model is defined by: P, Q, W, and B.
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CHAPTER 6

MIMO VERSUS MULTIPLE MISO IN PARAMETRIC

MRI

6.1. Introduction

When identifying a multiple input multiple output process, two approaches

can be distinguished in terms of the structure of the model:

• (I): One MIMO (Multiple Input Multiple Output) model

• (II): As many MISO (Multiple Input Single Output) models as there

are outputs in the process.

The purpose of this chapter is to compare both approaches, (I) and (II), in

traditional one-step ahead identification and in MRI (Model predictive control

Relevant Identification) [Lauŕı 10c].
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This chapter is organized as follows: Section 6.2, compares the MIMO and

MISO approaches in one-step ahead identification. Section 6.3, compares the

MIMO and MISO approaches in multi-step ahead identification (MRI). In

Section 6.4, the identification of a 2 × 3 MIMO PEMFC (Proton Exchange

Membrane Fuel Cell) is used to compare the performance of the MIMO and

MISO identification approaches. Finally conclusions for this chapter are drawn

in Section 6.5.

6.2. MIMO vs MISO in one-step ahead identification

Traditional PEMs (Prediction Error Methods) minimize the squared one-step

ahead prediction error, denoted as Josapi in this thesis, Equation (5.13)

Josapi(k) = ||ek+1||
2
F

For an N-sample identification data set, the identification cost index can be

expressed as the sum overN of the squared errors of one-step ahead predictions

JOSAPI =
N∑

k=1

||ek+1||
2
F = SSEP (6.1)

The identification cost index JOSAPI is often denoted as SSEP (Sum of Squared

Error of Prediction).

The MSEP (Mean Squared Error of Prediction) evaluated for a validation

data set can be used to evaluate the performance of the model in one-step

ahead predictions. MSEP can be obtained from SSEP :

MSEP =
1

N

N∑

k=1

||ek+1||
2
F =

SSEP

N
.

MSEP can also be expressed as the sum of squared bias and residual variance

errors [Höskuldsson 88]. The discrimination between bias and variance errors
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is commonly used in system identification to quantify the error in the estimated

model [Hjalmarsson 06]. The bias error is due to the model structure being

restricted when compared to the system being estimated; and the variance

error is due to noise and disturbances in the observed input-output data. Bias

and variance errors are related to both the number of parameters in the model

np, and the number of error terms used to fit the parameters of the model ne:

• ↓ np →↑ Bias: Models with too few parameters are inaccurate because

of a large bias error, they do not have enough flexibility.

• ↑ np →↑ Variance: Models with too many parameters are inaccurate

because of a large variance error, they are overfitted to the identification

data set. There has been some controversy in the literature about quan-

tifying the variance error for finite model order [Ninness 04]. According

to the most recent work [Mårtensson 09], the variance of minimum phase

zeros and stable poles is very sensitive and grows exponentially with the

model order. Moreover, the asymptotic variance of nonminimum phase

zeros and unstable poles is only slightly affected by the model order.

• ↑ ne →↓ Variance: The larger the number of prediction errors in the iden-

tification cost index ne, the smaller the variance error [Hjalmarsson 06].

Figure 6.1 helps understand the above statements. The identification error

is composed of Variance and Bias errors. Variance error can be reduced by

decreasing np and/or increasing ne. Bias error can be reduced increasing np.

Then np needs be large to reduce Bias error, and ne needs be large as well to

reduce Variance error. However, ne is limited by the number of samples in the

identification data set N .

In one-step ahead identification, ne equals the size of the identification data

set N , see sum in Equation (6.1). Thus, for a given identification data set,

np is the only design choice to act upon the bias variance trade-off. In the

case of MIMO, the number of parameters can be reduced by taking a multiple
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Figure 6.1: Effect of np and ne on prediction error.

MISO approach. In a multiple MISO approach, unlike in the MIMO approach,

instead of estimating one model with no×nx parameters, no MISO models are

obtained, and each MISO model has nx parameters. Then no identifications

of nx parameters each are performed instead of one identification of no × nx

parameters, which reduces the number of parameters in each identification

and consequently reduces the Variance error.

The MISO model for output s is defined as column s of θ, θs. Two cases

of MISO identification are considered:

• Multiple MISO-I: Output interaction is considered. All the parameters

in θs are fitted to the identification data set; thus, each MISO model has

nx parameters.
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• Multiple MISO1: Output interaction is neglected. Only the parameters

of θs associated with process output s and the inputs are fitted to the

identification data set. Parameters associated to other outputs are set

to zero, then na(no − 1) parameters are set to zero. Provided nx =

ninb+nona, the number of parameters to fit in each model is ninb+na.

Figure 6.2 helps compare the three identification approaches. The parame-

ters of the linear model of a MIMO process are contained in θ. In the MIMO

approach, θ is fitted to the identification data set. In the multiple MISO-I

approach, each column of θ is obtained separately and then all the columns

are bounded together forming the multiple input multiple output model θ.

Note the number of parameters of the final model in these two approaches

is the same. In the multiple MISO approach, each column of θ is obtained

separately, but output s cannot depend on any other output but s, then some

zeros are forced, and thus the resulting structure has less parameters to fit

than the previous two approaches.

Table 6.1 contains the number of error terms in the cost index ne, and

the number of parameters np for a comparison of the three identification

approaches. The remainder of this section is divided into two subsections:

firstly, the MIMO approach is compared with the multiple MISO-I approach;

secondly, the MIMO approach is compared with the multiple MISO approach.

ne np

MIMO N (ninb + nona)
︸ ︷︷ ︸

nx

no

MISO-I N (ninb + nona)
︸ ︷︷ ︸

nx

no

MISO N (ninb + na)no

Table 6.1: one-step ahead identification

1Note the multiple MISO approach is considered in Appendix A in which matrices Aβ

are diagonal.
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Figure 6.2: The three identification strategies for the linear MIMO model.
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6.2.1. MIMO vs multiple MISO-I in one-step ahead identifica-

tion

In the one-step ahead identification approach there is no difference between

the MIMO identification approach and the multiple MISO-I identification ap-

proach. To prove this, JOSAPI in Equation (6.1) can be expressed as:

JOSAPI =

N∑

k=1

no∑

s=1

es(k + 1)2

where es(k + 1) is column s of ek+1. According to Equations (5.6) and (5.4),

es(k + 1) can be expressed:

es(k + 1) = ys(k + 1)− xkθs
︸︷︷︸

ŷs(k+1)

thus, JOSAPI can be expressed:

JOSAPI =
N∑

k=1

no∑

s=1

(ys(k + 1)− xk+1θs)
2. (6.2)

Element in row o and column i in θ, θo,i, is obtained from the minimization

of JOSAPI:

min
θo,i

JOSAPI

Such a minimum is attained when

∂JOSAPI

∂θo,i
= 0.

From (6.2), it can be seen that the only terms in ∂JOSAPI

∂θo,i
that depend on θo,i

are those for which s = o. Hence, only column o of θ has an influence in

obtaining θo,i. Thus, each column of θ can be estimated separately.

It can be concluded from the above that MIMO identification is equivalent

to multiple MISO-I identification in one-step ahead identification.
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6.2.2. MIMO vs multiple MISO in one-step ahead identification

From Table 6.1, it can be seen that the multiple MISO model has

(ninb + nona)no
︸ ︷︷ ︸

MIMO

− (ninb + na)no
︸ ︷︷ ︸

MISO

nonano − nano

(nona − 1)no

parameters fewer than the MIMO model. Thus, the multiple MISO approach

presents a larger bias error, but a smaller variance error than the MIMO

approach.

According to [Mårtensson 09], if the model structure is flexible enough to

describe the true underlying dynamics, the variance error is the dominating

part. Therefore, if the multiple MISO structure can describe the dynamics of

the process, then the variance error is the dominating part in MSEP. If the

variance error is the dominating part, the multiple MISO approach presents

a smaller identification error than the MIMO approach due to a reduction in

the variance error. Provided this is often the case, then traditional one-step

ahead identification often resorts to multiple MISO identification.

An example in which the variance error is the dominating part is provided

in Section 6.4. In the example, three models of different orders for the same

process are obtained. The multiple MISO approach is shown to outperform the

MIMO approach in one-step ahead identification for the three model orders.
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6.3. MIMO vs MISO in multi-step ahead identifica-

tion

It is argued in this section that, unlike in the one-step ahead identification ap-

proach, the MIMO identification approach is preferable to the multiple MISO

approach in MRI if the prediction horizon nf is sufficiently large. In this sec-

tion: firstly, ne for multi-step ahead identification is obtained; secondly, the

MIMO approach is compared with the multiple MISO-I approach in multi-

step ahead identification; and finally, the MIMO approach is compared with

the multiple MISO in multi-step ahead identification.

The number of error terms in JLRPI in Equation (5.14) can be expressed as

ne =
N∑

k=1

nf∑

j=1

1 = Nnf .

The number of parameters to be estimated in each approach is the same

in the multi-step ahead and one-step ahead approaches. Table 6.2 shows the

number of error terms in the identification cost index ne, and the number of

parameters np in each approach.

ne np

MIMO Nnf (ninb + nona)
︸ ︷︷ ︸

nx

no

MISO-I Nnf (ninb + nona)
︸ ︷︷ ︸

nx

no

MISO Nnf (ninb + na)no

Table 6.2: Multi-step ahead identification
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6.3.1. MIMO vs multiple MISO-I in multi-step ahead identifi-

cation

The multiple MISO-I approach has as many degrees of freedom as the MIMO

approach. In the multiple MISO-I approach, no MISO identifications are per-

formed; thus, no minimization problems, with nx parameters each, are solved.

However, in the MIMO approach one minimization problem with no × nx pa-

rameters is solved. The effect of approximating the minimization problem by

no minimizations is studied by comparing Jlrpi in the MIMO case to Jlrpi in

the multiple MISO-I case, Jlrpi
−

. The following (2× 2) MIMO example is used

to compare both cost indices:

[ŷ1(k + 1) ŷ2(k + 1)] = [u1(k) u2(k) y1(k) y2(k)]








b11 b12
b21 b22
a11 a12
a21 a22







. (6.3)

The cost index in Equation (5.12) is particularized2 for the above example

with nf = 2:

Jlrpi(k) = e1(k + 1)2 + e2(k + 1)2 + e1(k + 2)2 + e2(k + 2)2 (6.4)

The minimization index in the multiple MISO-I approach is defined as:

Jlrpi
−

(k) = e1
−

(k + 1)2 + e2
−

(k + 1)2 + e1
−

(k + 2)2 + e2
−

(k + 2)2

The four error terms can be obtained as follows:

ei
−

(k + l)2 = [yi(k + l)− ŷi
−

(k + l)]2; ∀i ∈ [1, 2], l ∈ [1, 2]

2es(k + j) is defined as the column s of e(k + j|k).
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The MISO-I predictions are obtained:3

ŷi
−

(k + 1) = ŷi(k + 1); ∀i ∈ [1, 2]

ŷ1
−

(k + 2) = b11u1(k + 1) + b21u2(k + 1) + a11ŷ1
−

(k + 1) + a21y2(k + 1)

= ŷ1(k + 2) + a21e2(k + 1)

ŷ2
−

(k + 2) = b12u1(k + 1) + b22u2(k + 1) + a12y1(k + 1) + a22ŷ2
−

(k + 1)

= ŷ2(k + 2) + a12e1(k + 1)

The four error terms can now be expressed:

ei
−

(k + 1)2 = ei(k + 1)2; ∀i ∈ [1, 2]

e1
−

(k + 2)2 = [e1(k + 2)− a21e2(k + 1)]2

e2
−

(k + 2)2 = [e2(k + 2)− a12e1(k + 1)]2

From Equation (6.4), the MISO-I index can be expressed as:

Jlrpi
−

(k) = Jlrpi(k) + a221e2(k + 1)2 + a212e1(k + 1)2

−2a21e1(k + 2)e2(k + 1)− 2a12e2(k + 2)e1(k + 1). (6.5)

The following conclusions can be drawn from the comparison of Jlrpi
−

(k) and

Jlrpi(k):

• The multiple MISO-I approach is equivalent to the MIMOMRI approach

only if there is no interaction between process outputs. In the given

example this implies a12 = a21 = 0.

• Should there be correlation among process outputs, the multiple MISO-I

approach minimizes a weighted version of Jlrpi that weights more pre-

dictions in the near horizon, and a term that distorts Jlrpi is added. The

3When estimating output s, all outputs except s are assumed to be known if MISO-I

identification is being performed.
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shape of the cost function changes; and although this function may pro-

vide better results than the one-step ahead identification approach, it is

not MRI.

For these reasons, the MIMO approach is preferable to the multiple MISO-

I in MRI. In the example in Section 6.4, the MIMO approach is shown to

outperform the multiple MISO-I approach in multi-step ahead identification.

6.3.2. MIMO vs multiple MISO in multi-step ahead identifica-

tion

In the case of MIMO identification, the cost index has N error terms in one-

step ahead identification (Table 6.1), and Nnf error terms in multi-step ahead

identification (Table 6.2). Provided increasing the number of error terms in

the identification data set reduces the variance error [Hjalmarsson 06], the

variance error in multi-step ahead identification is reduced as nf increases.

As argued in Section 6.2.2, the multiple MISO approach that trades vari-

ance for bias is preferred in one-step ahead identification if the variance error

is the dominating term. However, in multi-step ahead identification as the

variance error is reduced by a ratio of nf , for a sufficiently large nf , the vari-

ance error loses importance and trading variance for bias worsens the overall

identification error.

Consequently, for a sufficiently large nf , the MIMO approach is preferable

to the multiple MISO in MRI. In the example in Section 6.4, the MIMO

approach is shown to outperform the multiple MISO approach in multi-step

ahead identification.4

4Although only results for nf = 10 are shown in the example in Section 6.4, simulations

have been conducted for nf ∈ [1, .., 10], and better models are always obtained in the MIMO

approach. Therefore, the minimum value of nf = 1 is sufficient in the given example for the

MIMO approach to outperform the multiple MISO approach.
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6.4. Identification Examples

The Simulinkr MIMO (2×3) Proton Exchange Membrane Fuel Cell (PEMFC)

described in [Pukrushpan 04] is used as the process to identify.

Figure 6.3: Block diagram of the PEMFC.

The working point around which the nonlinear process is to be approxi-

mated is:

• Inputs

– stack current: Ist= 184± 40 A

– compressor voltage: CM= 155± 23 V

• Outputs

– net power: NP= 37.4± 7.2 kW

– oxygen excess ratio: O2excess= 2.15± 0.45

– stack voltage: Vst= 225± 26 V

Three linear models of orders na = nb = {1, 2, 3} are used to approxi-

mate the process. A prediction horizon of nf = 10 is considered. The open-

loop identification data set is shown in Figure 6.4. The sampling interval is

Ts = 0.05s and the identification data set is mean-centered and scaled prior

55



MPC: Relevant Identification, and Control in the LV Space

to identification. Stack current is generated as a sequence of steps around the

working point. CM is generated to keep the process in a safe operating area

while avoiding linear dependence of inputs. CM is obtained 70% from the

feed-forward controller on Ist designed in [Pukrushpan 04], and 30% using a

step signal around the working point.

(a) Inputs (b) Outputs

Figure 6.4: Identification data set

The various identification approaches to compare are:

• LS: The easiest MIMO approach as it minimizes the JOSAPI index.

• LS-MISO: The multiple MISO LS approach that neglects output in-

teraction. This is often preferred to the MIMO LS approach to reduce

variance error.

• LM-MIMO: The MIMO MRI approach. The Levenberg Marquardt

(LM) algorithm implemented in the Matlabr optimization toolbox is

used to minimize JLRPI.

• LM-MISO: The multiple MISO MRI approach that neglects output

interaction. The Levenberg Marquardt algorithm is used to fit each of

the MISO models.

56



6. MIMO versus multiple MISO in parametric MRI

• LM-MISO-I: The multiple MISO MRI approach that considers output

interaction. The Levenberg Marquardt algorithm is used to fit each of

the MISO models.

Two external validation indicators are used to measure the performance of

each of the models obtained.

• JLRPIEV
is JLRPI evaluated for validation data. JLRPIEV

is used to com-

pare the performance of the models in terms of MRI.

• R2 is a (nf × no) matrix containing the values of the coefficient of de-

termination. R2 shows the evolution of predictive performance for each

output in the prediction horizon. The element located in column s and

row j represents the coefficient of determination for output s when per-

forming predictions at k+j:5

r2s,j = 1−

∑N
k=1(es(k + j))2

∑N
k=1(ys(k + j)− E{ys})2

∀j ∈ [1, nf ], ∀s ∈ [1, no]

These indicators are evaluated for thirty experiments performed in a Monte

Carlo simulation. The mean of the thirty indicators obtained are the external

validation indicators shown in this example. These indicators show the per-

formance of each model, i.e., the solution obtained in the bias and variance

trade-off for each order of the model and identification technique. The valida-

tion indicators — JLRPIEV
and R2

(10×3)— are obtained for each of the model

orders and identification methods. The results for na = nb = 1 are shown in

Figure 6.5(a). The results for na = nb = 2 are shown in Figure 6.5(b). The

results for na = nb = 3 are shown in Figure 6.5(c).

The value of JLRPIEV
is shown in brackets in the legend for each identifi-

cation method. R2
(10×3) is represented in three plots, so R2

s is a ten element

5E{.} is the mean operator.
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(a) na = nb = 1 (b) na = nb = 2 (c) na = nb = 3

Figure 6.5: Mean of the validation indicators obtained for thirty external valida-

tion experiments
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column vector associated with output s. The upper plot in Figure 6.5(a) is

for s = 1 (NP), the middle plot is for s = 2 (O2excess), and the lower plot is

for s = 3 (Vst). The closer to one the R2
s lines are, the better the predictive

performance of the model. According to R2 and JLRPIEV
, for a model of order

na = nb = 1 (Figure 6.5(a)), the model fitted with LM-MIMO presents the

best validation results with JLRPIEV
= 1104, and slightly higher values of R2.

It can be seen that the coefficient of determination for j=1 is almost equal for

all methods; thus, all the models obtained are almost equivalent when perform-

ing predictions at k + 1. Nevertheless, as j increases, predictive performance

of the models obtained with all methods but LM-MIMO decreases.

The following observations can be drawn by comparing LS and LS-MISO

for the three model orders:

• Models fitted with LS-MISO outperform those fitted with LS in terms

of JLRPIEV
for all model orders.

• LS and LS-MISO provide their best model for na = nb = 1.

• Models fitted with LS-MISO outperform those fitted with LS in terms

of R2 for output s = 2; and also for output s = 3 and orders na = nb =

{2, 3}.

Therefore, in the one-step ahead approach with the identification data set

in Figure 6.4, the models with fewer parameters present the better predictive

performance. Provided LS-MISO fits fewer parameters than LS, the model

na = nb = 1 fitted with LS-MISO outperforms that fitted with LS. It can be

seen in Figure 6.5(a) that the model fitted with LS outperforms that fitted

with LS-MISO for output s = 3. Therefore, although in the one-step ahead

approach multiple MISO identification is preferable, it is not better for all

outputs.

The following observations can be drawn by comparing the three LM ap-

proaches for the three model orders:
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• LM-MIMO outperforms both MISO MRI approaches for all outputs and

model orders.

• LM-MISO-I only outperforms LM-MISO for na = nb = 1.

LM-MISO and LM-MISO-I attempt to trade bias for variance to provide

better models. However, LM-MIMO reaches a trade-off solution between bias

and variance without reducing the degrees of freedom, and so obtaining more

predictive models. The MIMO MRI approach is preferable for all model orders

and outputs.

The following observations can be drawn by comparing the five identifica-

tion approaches for the three model orders:

• Models fitted with LM-MIMO present the flattest and closest to one R2

line plots for all outputs and model orders.

• LM-MIMO is the only approach that slightly changes JLRPIEV
with the

order of the model. JLRPIEV
ranges from 1104 in the worst model to 1045

in the best model. This range can be expressed as (1104−1045)/1104 →

5.3%. The range for the other methods is: LS 89.0%, LS-MISO 48.9%,

LM-MISO 48.5%, LM-MISO-I 99.9%.

• The best predictive model is obtained using LM-MIMO and an order of

na = nb = 3 with JLRPIEV
= 1045.

• The worst model fitted with LM-MIMO is better than the best model

fitted with any other identification approach.

Therefore, LM-MIMO provides the best predictive models, not only per-

forming well at k + 1, but within the prediction window. Unlike the one-step

ahead approach, MIMO identification is preferable in MRI as shown by the

indicators in Figure 6.5.
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6.5. Conclusions

The MIMO and MISO identification approaches to model a MIMO plant have

been compared both for traditional one-step ahead identification, and MRI.

It is argued in this chapter that, unlike in one-step ahead identification, the

MIMO approach is preferable to the multiple MISO approach in MRI for a

sufficiently large prediction horizon. As the MIMO identification approach is

preferable in MRI; the minimization of the multi-step ahead cost function,

or the use of subspace identification is preferable to multiple MISO prefilter

based MRI approaches.

A PEMFC example is provided to support the arguments. As shown in the

example, the multiple MISO approach outperforms the MIMO approach in

the case of one-step ahead identification for all the evaluated model orders. In

MRI however, the MIMO approach outperforms the multiple MISO approach

for all the evaluated model orders. When comparing all the models, the best

model for MPC is obtained for MIMO MRI for an order of three.
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CHAPTER 7

PLS-PH: MRI IN THE CASE OF CORRELATION

7.1. Introduction

In industrial multivariate processes with a large number of controllable and

uncontrollable variables, the identification data set is often ill-conditioned due

to collinearity. To cope with collinearity often LVMs (Latent Variable Meth-

ods) such as PLS (Partial Least Squares) are used in the identification stage

[Song 02, Kiers 07].

This chapter proposes a solution for parametric MRI (Model predictive

control Relevant Identification) resorting to LVMs to cope with collinearity.

The PLS-PH (Partial Least Squares Prediction Horizon) approach is proposed

in this chapter as a solution for minimizing the multi-step ahead prediction

error cost function to obtain a parametric MRI model, even in the case of an

ill-conditioned identification data set.
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7.2. Proposed Algorithm: PLS-PH

PLS-PH is an iterative approach to minimize JLRPI that lumps together nu-

merical optimization and PLS [Lauŕı 10a]. Prior to introducing PLS-PH, some

aspects of numerical optimization are reviewed. In the sake of clarity, the PLS-

PH approach is explained in two steps. First, the minimization of JLRPI is

reformulated to use the LS formula; this first algorithm is denoted LS-PH.

Second, LS in LS-PH is replaced with PLS; this second algorithm is denoted

PLS-PH.

7.2.1. Numerical Optimization

Numerical optimization is intended to minimize cost functions that are non-

linear in their parameters:

min
θ

f(θ) (7.1)

The search is based on first or second order Taylor approximations of f(θ)

in the region of θk (θ = θk + p), and moves towards better parameter sets in

terms of f(θk+1). The second order Taylor approximation of f(θ), and the

iterations for θk+1 can be expressed:

f̃k(θk + p) ≈ f(θk) + p
∂f(θk)

∂θ
+

1

2
pT∂

2f(θk)

∂θ2
p

θk+1 = θk + αk pk (7.2)

Two different approaches for the selection of the step length αk and the

search direction pk are considered [Nocedal 99].

• Line search methods initially define pk, then find a suitable αk that

minimizes f(θk+1). Line search methods can be separated into three
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groups according to the definition of the search direction pk:

pk = −H−1
k

∂f(θk)

∂θ
; Hk =







∂2f(θk)
∂θ2 Newton

Bk ≈ ∂2f(θk)
∂θ2 Quasi-Newton

I steepest descendent

The Newton approach presents a fast rate of local convergence —typically

quadratic— when a neighbourhood of the solution is reached, and is in-

sensitive to poor scaling in the data. The main drawback in the Newton

approach is the need for the Hessian; thus, often Quasi-Newton solutions

are used.

• Trust-region methods define a region ∆ around θk within which they

trust f̃k(θk + p) to be an adequate representation of f(θ). And so αk

and pk are chosen such that:

αk pk = min
p

f̃k(θk + p) s.t. ||p|| 5 ∆ (7.3)

If the move does not improve in terms of f(θk+1), θk+1 is not accepted

and the trust region is reduced. Due to the reduction of the trust re-

gion, pk obtained in the new iteration may point in a different direction.

Levenberg Marquardt is considered a trust region method [Nocedal 99].

7.2.2. LS-PH

As stated in section 5.2.3, JLRPI is a quadratic expression of a non-linear func-

tion in θ; thus, non-convex in general, and numerical optimization is to be used

to obtain θ in the minimization in Equation (7.1). LS-PH (Least Squares Pre-

diction Horizon) is presented as a line search numerical optimization approach

which is based on an approximation of JLRPI different to Taylor’s. The ap-

proximation used in this chapter does not need derivatives of JLRPI, which

—provided the problem has many dimensions— are laborious to obtain ex-

plicitly, or computationally demanding to approximate.
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Prior to defining the approximation of JLRPI proposed in this chapter, let

us express Equation (5.14) in matrix notation:

JLRPI(θ) =

nf∑

j=1

N∑

k=1

||ek+j||
2
F = ||Ea||

2
F (7.4)

Where:

Ea =






Ea1
...

Enf




 ; Eaj =






e1+j

...

eN+j




 , ∀j ∈ [1, 2, . . . , nf ]

Eaj are matrices of dimensions N×no, and contain the identification errors

based on predictions at k + j with output information up to k. The one-step

ahead prediction error matrix is obtained for nf = 1, Ea = [Ea1 ] = E. Each

submatrix Eaj is obtained:

Eaj = Yaj −Xajθ (7.5)

Where:

Yaj =






y1+j
...

yN+j




 ; Xaj =






xj
...

x(N−1)+j




 (7.6)

The global identification error matrix Ea ∈ R
N ·nf×no is obtained:

Ea = Ya −Xaθ (7.7)

Being:

Ya =






Ya1
...

Yanf




 ; Xa =






Xa1
...

Xanf




 (7.8)
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The cost index can now be expressed:

JLRPI(θ) = ||Ya −Xaθ||
2
F

Provided submatrices Xaj , in Xa ∀j > 1, depend on θ, the problem is non-

linear in θ. JLRPI can be approximated to an expression linear in θ in the

neighbourhood of θk by defining Xa|k as Xa computed using θk:

J̃LRPI(θk + p) = ||Ya − Xa|k (θk + p)||2F

= tr((Ya − Xa|k (θk + p))T(Ya − Xa|k (θk + p)))

= tr(YT
a Ya)− tr(YT

a Xa|k (θk + p)) . . .

− tr((θk + p)T Xa|
T
k Ya)) + tr((θk + p)T Xa|

T
k Xa|k (θk + p))

(7.9)

As in the Newton approach, the search direction is obtained by setting the

derivative of the approximation of the cost function J̃LRPI to zero:

∂J̃LRPI

∂(θk + p)
=

∂tr(YT
a Ya)

∂(θk + p)
−

∂tr(YT
a Xa|k (θk + p))

∂(θk + p)
−

∂tr((θk + p)T Xa|
T
k Ya)

∂(θk + p)
. . .

+
∂tr((θk + p)T Xa|

T
k Xa|k (θk + p))

∂(θk + p)

= 0− (YT
a Xa|k)

T − Xa|
T
k Ya + (Xa|

T
k Xa|k + (Xa|

T
k Xa|k)

T)(θk + p)

= −2 Xa|
T
k Ya + 2 Xa|

T
k Xa|k (θk + p)

(7.10)

∂J̃LRPI

∂(θk + pk)
= 0 = −2 Xa|

T
k Ya + 2 Xa|

T
k Xa|k (θk + pk)

(θk + pk) = (Xa|
T
k Xa|k)

−1 Xa|
T
k Ya

pk = (Xa|
T
k Xa|k)

−1 Xa|
T
k Ya − θk (7.11)
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It can be seen from the previous equation that pk is equal to the closed

form LS solution of a linear problem with Xa|k and Ya, minus the current

point.

So far pk to be used in Equation (7.2) has been obtained. The next step is

to compute the step length αk:

αk = min
α

JLRPI(θk + α pk)

An exact line search of αk is expensive, and merely requiring a decrease in

JLRPI does not ensure global convergence; hence, the interest of inexact line

search to determine αk. The terminating conditions for the inexact line search

is as a trade-off between attaining a substantial reduction in JLRPI and not

spending too much time in making the choice. When the first derivative of the

cost function is available, there are sets of generally accepted terminating con-

ditions, such as Goldstein, or Wolfe conditions. However, there is no general

agreement to stop the search when the derivative is unavailable [Fletcher 87].

The inexact line search adopted in this chapter is based on quadratic ap-

proximations of JLRPI:

JLRPI(θk + α pk) ≈ a+ bα+ cα2 (7.12)

Note the range of valid values for α is α ∈ [0, 1] as proven in Proposition 7.2.1.

Inexact line search:

1. JLRPI is evaluated for three values of α = [0, 0.5, 1].

2. a, b and c in Equation (7.12) are obtained. The three values of JLRPI

and α obtained in step 1 are used to form a system of three equations.

The system of three equations in three unknowns is solved.

3. The value of α that minimizes Equation (7.12) is obtained. If the new α

is not in the valid range α ∈ [0, 1], it is discarded. In that case α is taken
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as the middle point between two previous values of α if the parabola

moves up; or between a previous value of α and 0 or 1 otherwise. The

reader is referred to the algorithm provided in Appendix B for further

information on special cases in the minimization of Equation (7.12).

4. JLRPI is evaluated for the value of α obtained in step 3.

5. The smallest two values of JLRPI obtained in the previous iteration plus

the one obtained in step 4 are used to estimate a, b and c and start again

the search of α going back to step 3.

The above procedure is repeated while the new values of α obtained provide

considerably different values of JLRPI, which is verified with the following

termination condition:

|JLRPI(θk + αk−1 pk)− JLRPI(θk + αk pk)| > 0.001JLRPI(θk) (7.13)

Using pk obtained in Equation (7.11), and αk obtained in the above line

search procedure, the new value θk+1 is obtained in Equation (7.2). LS-PH

iterates while the following termination condition holds:

(JLRPI(θk)− JLRPI(θk+1)) > 0.001 (7.14)

Fig. 7.1 shows a two variable example. The JLRPI level curves are in

continuous line, and those of J̃LRPI are in dashed dotted line. θk is represented

by a circle and the actual minimum of JLRPI by a cross. The line starting at θk
represents pk, and the thicker part of pk equals αk pk. The square represents

θk+1.

LS-PH approximates JLRPI in the neighbourhood of θk and uses the ap-

proximation to define the search direction and move to the new point θk+1.

Provided the initial guess is close enough to a minimizer of the cost function,

the algorithm converges to the minimizer. LS-PH is a line search numerical
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optimization algorithm which presents the following benefits compared to the

Newton and Quasi-Newton approaches:

• There is no need to explicitly obtain or approximate the derivatives of

JLRPI. This is specially important for MIMO problems in which θ has

many dimensions.

• The search direction —pk— is obtained by solving a linear regression

problem. So far the LS closed form solution has been used, but any other

approach to linear regression problems may be used. In the following

subsection, LS is replaced with PLS bringing the potential of LVMs to

the minimization of JLRPI.

Figure 7.1: Level curves for JLRPI and its approximation
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Proposition 7.2.1 The range of interest for α is α ∈ [0, 1]

Proof

• α is to be greater than zero provided pk is a descendent direction

• Substituting pk form Equation (7.11) in Equation (7.2) and assum-

ing α = 1:

θk+1 = θk + α pk

= θk + α[(Xa|
T
k Xa|k)

−1 Xa|
T
k Ya − θk]

= θk + (Xa|
T
k Xa|k)

−1 Xa|
T
k Ya − θk

= (Xa|
T
k Xa|k)

−1 Xa|
T
k Ya

then for α = 1, θk+1 obtained is the minimum of the approximation

J̃LRPI. Then in the best case scenario, which is assuming J̃LRPI =

JLRPI, the minimum is attained for α = 1. �

7.2.3. PLS-PH

In the case of an ill-conditioned identification data set, line search methods

yet introduced experience problems when inverting the matrix Hk; or in the

case of LS-PH, when inverting (Xa|
T
k Xa|k) in Equation (7.11).
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The solution proposed in this subsection is to replace the LS solution in

Equation (7.11) with the PLS solution in Equations (4.6) and (4.4):

pk = (Xa|
T
k Xa|k)

−1 Xa|
T
k Ya − θk

= ZBQT − θk

= W(PTW)−1

︸ ︷︷ ︸

Z

BQT − θk (7.15)

Where W, P, B and Q are obtained applying PLS to Xa|k and Ya. The

pseudo-code for the algorithm is introduced in Appendix B. The major ad-

vantage of this algorithm is the use of PLS to minimize JLRPI, so parametric

MRI is also possible in the case of ill-conditioned data.

7.3. Identification Examples

The predictive performance of the models obtained using three identification

methods is compared. The three identification methods to compare are:

• LS is the easiest approach as it minimizes the JOSAPI index. LS can

justify the use of more complicated algorithms that minimize JLRPI pro-

vided the model is to be used in an MPC framework.

• LM (Levenberg Marquardt) is regarded a trust region numerical opti-

mization method. In this section the LM algorithm implemented in the

Matlabr optimization toolbox is used to minimize JLRPI.

• PLS-PH is the line search numerical optimization method presented in

this chapter. PLS-PH minimizes JLRPI resorting to PLS; thus, MRI can

be done even in the case of ill-conditioned data.

Two identification examples are considered. First, a well-conditioned pro-

cess is identified to compare LM and PLS-PH. In this example no reduction
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7. PLS-PH: MRI in the case of correlation

in the number of variables is performed, thus, PLS-PH equals LS-PH. In the

second example an ill-conditioned process is identified demonstrating the ad-

vantages of PLS-PH.

Two validation indicators are used to assess predictive performance of each

of the models obtained. The validation indicators shown in this chapter are

the mean of thirty Monte Carlo experiments.

• JLRPIEV
is the value of the JLRPI for external validation data. JLRPIEV

is used to compare the performance of the models in terms of MRI.

• R2 is a (nf ×no) matrix containing the values of the coefficient of deter-

mination for external validation data. Each element in R2 is obtained

by using Equation (7.16). R2 is calculated to visualize the evolution of

the performance within the prediction horizon. R2 has as many columns

as there are process outputs, so R2
s is the column vector associated to

output s.

R2
s (j) = 1−

ET
ajs

Eajs

(Yajs − E{Yajs})
T(Yajs − E{Yajs})

∀j ∈ [1, nf ], ∀s ∈ [1, no]

(7.16)

Being: Eajs , column s of Eaj in Equation (7.5); Yajs , column s of Yaj in

Equation (7.6); and E{.} the mean operator.

7.3.1. Well-Conditioned Example

The process to be approximated is the non-linear Simulinkr model of a PEMFC

described in [Wang 05]. Panode, Pcathode, and Iload are the process inputs.

Vstack is the process output.
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Figure 7.2: Block diagram of the PEMFC.

The non-linear process is excited in a region of the working point:

Panode = 1.5± 0.25 atm ; Pcathode = 1± 0.25 atm ; Iload = 15± 4 A

The generated identification data set is shown in Figure 7.3. The sample time

used is Ts = 0.05s. The identification data set is mean-centered and scaled

prior to being used in the identification algorithms.

Figure 7.3: Identification data set for the PEMFC
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The non-linear process is approximated by three linear models na = nb =

{1, 2, 3}. The prediction horizon is defined nf = 30. The validation indicators,

JLRPIEV
and R2

(30×1), are shown in Fig. 7.4. Left plot is for the model na =

nb = 1, the middle plot is for na = nb = 2, and the right plot is for na = nb =

3. The value of JLRPIEV
for each method is shown in the legend of each plot

in Figure 7.4. R2 for the model obtained with each method is drawn as a line.

The closer to 1 the R2 line is, and the smaller the value of JLRPIEV
, the better

the model, and thus the algorithm used to obtain that model.

Figure 7.4: Validation results for the PEMFC example

As can be seen in Figure 7.4, the models obtained with LM and PLS-PH1

are equivalent. LS provides worse models in terms of MRI as there is model-

plant mismatch. It can be seen that the model obtained with LS performs

much better for small values of j, so as predictions get further from k, the

value of R2 decreases. The models obtained using LM and PLS-PH however,

are almost not affected by the value of j; thus, are good models to perform

predictions inside the prediction window. All the latent variables have been

used, nlv = nx, so PLS-PH equals LS-PH. For na = nb = {2, 3} some latent

variables could have been removed due to collinearity between Iload and Vstack.

This section however is intended to compare the proposed approach to LM

1nlv is shown in the legend in the format PLS-PH(nlv/nx), being nx the number of

columns in the regression matrix, then the maximum number of latent variables possible.
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when variable reduction is not strictly necessary, thus, all the latent variables

have been used.

7.3.2. Ill-Conditioned Example

The methanol/water distillation column model reported by Wood and Berry

[Wood 73], is a typical MIMO plant with strong interaction between the con-

trolled variables. The reflux (u1) and the reboiler (u2) steam flow rates are the

process inputs. The compositions of the top (y1) and bottom (y2) products

are the process outputs. The feed flow (ξ1) and feed (ξ2) composition rates

are the disturbances.

Figure 7.5: Block diagram of the distillation column.

The process delays are approximated by a second order Pade approxima-

tion. The discretized process, Ts = 1 minute, can be expressed:
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[

y1(k)

y2(k)

]

=

[
0.06z−1+0.63z−2+0.072z−3

1−0.93z−1
−0.013z−2

−0.0023z−3
0.033z−1+0.087z−2

−0.58z−3

1−1.57z−1+0.72z−2
−0.13z−3

0.20z−1
−0.63z−2+0.52z−3

1−2.18z−1+1.58z−2
−0.39z−3

0.051z−1+0.12z−2
−0.85z−3

1−1.55z−1+0.71z−2
−0.13z−3

][

u1(k)

u2(k)

]

+

[
0.10z−1

−0.3z−2+0.23z−3

1−2.29z−1+1.74z−2
−0.45z−3

0.0037z−1
−0.011z−2+0.0087z−3

1−2.28z−1+1.72z−2
−0.44z−3

0.003z−1
−0.095z−2+0.25z−3

1−1.65z−1+0.84z−2
−0.16z−3

0.0052z−1
−0.014z−2+0.01z−3

1−2.34z−1+1.83z−2
−0.48z−3

][

ξ1(k)

ξ2(k)

]

(7.17)

The signals to excite the process have been generated using the Matlabr

idinput command with RGS, and BAND=[0, 0.01]. The amplitude of the white

noise is such that the SNR (Signal to Noise Ratio) is approximately 10 DB for

both outputs. The generated identification data set is shown in Fig. 7.6. The

identification data set is mean-centered and scaled prior to being used in the

identification algorithms.

Figure 7.6: Identification data set for the Wood and Berry distillation column
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Three MIMO ARX models, of orders na = nb = {2, 3, 4}, are used to

approximate the process. The prediction horizon is defined nf = 30. The

validation indicators, JLRPIEV
and R2

(30×2), are shown in Fig. 7.7. The left

plots are for the model na = nb = 2, the middle plots are for na = nb = 3, and

the right plots are for na = nb = 4. The graphs above show the vectors R2
1,

and the graphs below show the vectors R2
2. The value of JLRPIEV

is shown in

the legend.

Figure 7.7: Validation results for the Wood and Berry distillation column

As can be seen in Fig. 7.7, a reduction in the number of variables has been

performed in PLS-PH for the three model orders. Since nlv < nx, LS-PH and

PLS-PH provide different models; the results for the models fitted with LS-PH

are also shown in Fig. 7.7. Predictive performance of the PLS-PH model is
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equivalent to the performance of the LM model for na = nb = 2. PLS-PH

clearly outperforms LM for na = nb = {3, 4}. The number of latent variables

used in PLS-PH differs more from nx as the order of the model increases. For

na = nb = 4, nx = 16, nlv = 8, hence as the order of the model increases, there

is more collinearity in the identification data set, and it is more important to

reduce the number of variables.

For the three orders and identification algorithms compared, the best model

in terms of JLRPIEV
is na = nb = 4, fitted using PLS-PH with nlv = 8. LS is

outperformed by all MRI methods, but it is included to see how the simplest

method performs compared to the MRI approaches. It can be seen that PLS-

PH is the only method that provides better models as the order of the model

increases. The downwards trend in JLRPIEV
for PLS-PH for increasing orders

of the model is expected to change for higher orders.

This example shows the importance of reducing the number of variables in

the minimization of JLRPI provided the identification data set is ill-conditioned.

PLS-PH is presented as a minimization algorithm for JLRPI when dealing with

ill-conditioned identification data sets.
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CHAPTER 8

CONCLUSIONS

This Part II of the thesis focuses on describing the ways to attain Model

predictive control Relevant Identification (MRI). As explained at the beginning

of this part, MRI can be implemented either with a parametric or a dynamic

matrix approach. There are three main approaches for attaining parametric

MRI: prefilter the identification data set; minimize a multi-step ahead cost

function; or use subspace identification. This part provides the following two

contributions for the parametric MRI approach:

• [Lauŕı 10c]: The MIMO and MISO identification approaches to model

a MIMO plant have been compared both for traditional one-step ahead

identification, and MRI. It is argued in this part of the thesis that, unlike

in one-step ahead identification, the MIMO approach is preferable to

the multiple MISO approach in MRI for a sufficiently large prediction

horizon.

81



MPC: Relevant Identification, and Control in the LV Space

• [Lauŕı 10a]: A PLS line search numerical optimization approach to deal

with parametric MRI has been proposed. The PLS-PH algorithm finds θ

which minimizes the multi-step ahead prediction error cost function even

in the case of an ill-conditioned identification data set. PLS-PH is sim-

pler than traditional numerical optimization methods provided deriva-

tives of the non-linear cost function are not required. The PLS-PH

approach outperforms LS in an MPC framework and also outperforms

LM when the data is ill-conditioned, being equivalent to it otherwise.

Then, PLS-PH is to be considered when identifying MIMO ARX models

which are to be used to perform multi-step ahead predictions.

Summing-up, if a model to be used in MPC is needed: MIMO identification

is preferable assuming the prediction horizon is large; and if excitation in the

identification data set is limited either PLS-PH or the dynamic matrix ap-

proach fitted in the space of the latent variables are to be used. The following

part of this thesis defines an MPC approach which uses MIMO identification

and the dynamic matrix approach fitted with PLS.
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MPC: Relevant Identification, and Control in the LV Space

Figure 8.1: Location of PartIII in the general mindmap in Figure 1.4.
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CHAPTER 9

LV-MPC METHODOLOGY

9.1. Introduction

This part introduces data-driven LV-MPC (Latent Variable Model Predictive

Control) for continuous processes; in the sequel LV-MPC [Lauŕı 10b]. In LV-

MPC the dynamic matrix used to perform multi-step ahead predictions is

directly identified from the identification data set by means of PLS (Partial

Least Squares), then the identification approach is MRI (Model predictive con-

trol Relevant Identification). The further predictive control is implemented in

the reduced space of the latent variables. The features that motivate imple-

menting the minimization in the space of the latent variables are:

• Computational complexity can be reduced provided decisions are taken

in a reduced dimensional space.
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• Indicators can be included in the controller to ensure validity of predic-

tions, hence improving closed-loop performance.

• It can be more robust than traditional MPC provided projecting input

data onto the latent variable space reduces the effect of noise.

This chapter is divided into 7 sections. In Section 9.2 the basic LV-MPC

methodology is defined, this basic methodology is based on [Flores-Cerrillo 05]

but deals with continuous processes instead of batch processes, and considers

control and prediction horizons can be different. Sections 9.3 to 9.7 are devoted

to add functionalities to the basic methodology yielding an enhanced LV-MPC

control methodology. Finally, stability analysis is performed in Section 9.8.

9.2. Basic methodology

The PLS dynamic matrix predictor defined in Section 5.3 is to be used in the

LV-MPC controller:

ŷf(k) = [

x(k)
︷ ︸︸ ︷

up(k) yp(k)
︸ ︷︷ ︸

,xp(k)

xf(k) xdof(k)]W(PTW)−1

︸ ︷︷ ︸

Z

BQT

︸ ︷︷ ︸

θ

where θ is the dynamic matrix with appropriate dimensions; P, W, Q, and

B are the matrices that define the PLS model, and

ŷf(k) = [yk+1 . . . yk+nf ]

up(k) = [uk−1 uk−nb+1]

yp(k) = [yk−1 yk−na ]

xf(k) = [uk+nf−1 . . . uk+nu ]

xdof(k) = [uk+nu−1 . . . uk]
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9. LV-MPC methodology

The LV-MPC cost function JC in Equation (3.4) can be transformed to

implement the minimization in the space of the latent variables:

JC = ||[rf(k)− ŷf(k)]Wy||
2
F + λu||∆udof(k)Wu||

2
F

⇓

JC(td) = ||[rf(k)− ŷf(k)]Wy||
2
F + λu||xdof(k)Wu||

2
F (9.1)

where td is the decision variable in the LV-space, and xdof contains the control

sequence.

To perform the minimization of JC(td); ŷf(k) and xdof(k) are expressed in

terms of td as shown in propositions 9.2.2 and 9.2.1:[Hereafter the argument

k is omitted for the sake of clarity.]

xdof = tdMdof

ŷf = xpSp + tdSd

In the absence of constraints, the minimization of JC(td) yields the following

analytic expression obtained in proposition 9.2.3:

td = −fTH−1

where

H = SdWyW
T
y S

T
d + λuMdofWuW

T
uM

T
dof

fT = (xpSp − rf)WyW
T
y Sd

From td, xdof can be obtained as shown in proposition 9.2.1. Since the receding

horizon policy is used, only the last1 ni elements in xdof , uk, are eventually

applied to the process.

1Note from the definition of xdof in Equation (5.21) that the last ni elements in xdof are

uk.
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Proposition 9.2.1 xdof can be expressed as a function of td as

xdof = tdMdof

Proof Equation (4.4) can be expressed at instant k as:

t(k) = x(k)Z. (9.2)

Z can be decomposed accordingly to x(k) in equation (5.16):[Hereafter

the argument k is omitted for the sake of clarity.]

t = [xp xf xdof ]






Zp

Zf

Zdof




 (9.3)

= xpZp
︸ ︷︷ ︸

,tp

+ xfZf
︸︷︷︸

,tf

+ xdofZdof
︸ ︷︷ ︸

,tdof

(9.4)

thus,

t = tp + tf + tdof . (9.5)

Provided uk+i is set to uk+nu−1 for i ∈ [nu, nf − 1], it can be shown

from equations (5.16), (5.21), and (5.20) that

xf = xdof

[

Ini . . . Ini
0(nu−1)ni×(nf−nu)ni

]

︸ ︷︷ ︸

,Γ

(9.6)

From Equation (9.4), tp depends on known past data; and from Equa-

tions (9.4) and (9.6), tf depends on tdof . Hence, the decision vector in

the latent variable space can be set

td , tdof (9.7)
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And Equation (9.5) can be expressed

t = tp + tf + td.

From Equations (9.4) and (9.7)

td = xdofZdof

Clearing xdof yields:

xdof = td(Z
T
dofZdof)

−1ZT
dof

︸ ︷︷ ︸

,Mdof

. (9.8)

One may think xdof could be more easily obtained from the PLS Equation

(4.2) X = TPT + E. It is proven in Appendix C however, that such

formulation is not consistent with using t to perform predictions. �

Proposition 9.2.2 ŷf can be expressed as a function of td as

ŷf = xpSp + tdSd

Proof Equation (4.5) can be expressed at an instant k

ŷf = tBQT = (tp + tf + tdof
︸ ︷︷ ︸

,tfdof

)BQT (9.9)

Substituting in tp from (9.4)

ŷf = (xpZp + tfdof)BQT (9.10)

89



MPC: Relevant Identification, and Control in the LV Space

From equation (9.6) and proposition 9.2.1

xf = xdofΓ ⇒ xf = tdMdof
︸ ︷︷ ︸

xdof

Γ

substituting xf in Equation (9.4)

tf = xfZf ⇒ tf = tdMdofΓ
︸ ︷︷ ︸

xf

Zf

Substituting in the definition of tfdof in Equation (9.9)

tfdof = tf + tdof

= tdMdofΓZf
︸ ︷︷ ︸

tf

+ td

= td(MdofΓZf + Inlv)
︸ ︷︷ ︸

,Mt

. (9.11)

Substituting equation (9.11) in equation (9.10)

ŷf = xpZpBQT

︸ ︷︷ ︸

,Sp

+ tdMtBQT

︸ ︷︷ ︸
. �

,Sd

Proposition 9.2.3 The value of td that minimizes JC(td) is

td = −fTH−1

Proof Substituting ŷf and xdof from propositions 9.2.2 and 9.2.1 in

Equation (9.1) yields:

JC(td) = ||[rf − (xpSp + tdSd)
︸ ︷︷ ︸

ŷf

]Wy||
2
F + λu||tdMdof

︸ ︷︷ ︸

xdof

Wu||
2
F
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which operating yields

JC(td) = tdHtTd + 2fT tTd + C

where

H = SdWyW
T
y S

T
d + λuMdofWuW

T
uM

T
dof (9.12)

fT = (xpSp − rf)WyW
T
y S

T
d (9.13)

C = ||(rf − xpSp)Wy||
2
F

The minimum of JC(td) is attained by equating its first derivative to

zero:(Note the Hessian matrix H is symmetric, then H = HT )

∂JC(td)

∂td
= 0

(H +HT )tTd + 2f = 0

2HtTd + 2f = 0

HtTd + f = 0

tdH + fT = 0

tdH = −fT

td = −fTH−1.� (9.14)

9.3. Improving the Hessian conditioning

The conditioning number of the Hessian matrix H in Equation (9.12) required

to minimise JC(td) of Equation (9.1) is large whenever the matrices Mdof in

proposition 9.2.1 and Mt in Equation (9.11) have a large conditioning number.

The larger the conditioning number of H, the more numerical roundoff errors
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and the slower the convergence of iterative methods2 used to minimise (9.1).

In this section, matrices Mdof and Mt are obtained in a different manner to

improve the Hessian conditioning.

• Mdof is the transformation matrix that projects from the decision vari-

able td to the space of control moves xdof .

• Mt is the transformation matrix that moves from the decision variable

td to the scores of future control moves tfdof = tf + tdof .

To illustrate the proposed solution, lets take an example with 1 variable in

xf , xdof , and t. Two options, A and B, may be considered. In each option xdof

is obtained from td in a different manner. Provided there is only one variable

in xf and xdof , xf can be easily obtained from xdof since xf = xdof . xfdof is

obtained as xfdof = [xf xdof ], and tfdof is obtained projecting xfdof to the

inner space. Different ways to obtain xdof from td provide different matrices

Mdof and Mt which provides different Hessian matrices H.

• Option A is shown in Figure 9.1. xdof can be obtained projecting td to

the outer space3. Provided xf = xdof , xfdof = [xf xdof ]. This can be

graphically seen in Figure 9.1, where xfdof is obtained as the intersection

between the lines y = x and y = xdof . tfdof can be obtained projecting

xfdof onto the latent variable space.

• Option B is shown in Figure 9.2. Given td, xfdof can be obtained as the

intersection between the line y = x, and a line normal to t that passes

through the projection of td to the outer space. xdof can be obtained as

part of xfdof .

2If inequality constraints are added to the problem in Equation (9.1), as seen in Section

9.5, iterative methods need be used to solve it.
3The outer space is defined as the space of future manipulated variables. In this simple

example the outer space is [x, y].

92



9. LV-MPC methodology

x

y

t
d

t

x
dof

x
f

x
fdof

t
fdof eδ t

d

Figure 9.1: Option A

Both options may lead to an ill-conditioned Hessian matrix for a large

number of dimensions; in option A because of δtd, and in option B because

of e. The solution presented in this section settles in-between options A and

B, see Figure 9.3. xfdof can be obtained as the intersection between the line

y = x and a line normal to t. Provided there is an infinite number of lines

normal to t, there is an infinite number of solutions to this problem. The

additional consideration is to minimize the squared 2-norm of vectors e and

δtd.

A more formal presentation of this intuitive concept is given next. For

clarity, first the results are summarised and then the required propositions are

given at the end of the section for completeness.
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x

y t

t
d t

fdof

x
fdof

x
dof

x
f

e

Figure 9.2: Option B

Vector γ in Figure 9.3 can be obtained from the minimisation:

min
γ

α||e||2F + β||δtd||
2
F s.t. xfdofΩ = 0 (9.15)

where: xfdof , δtd, and e are expressed as functions of γ in propositions 9.3.1-

9.3.3, and

Ω =











−Ini 0
. . .

0 −Ini
Ini . . . Ini

0ni(nu−1)×(nf−nu)ni











define the constraints such that Equation (9.6) holds.
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x

y
t

t
d

x
fdof

t
fdof

ex
dof

x
f

γ
δ t

d

Figure 9.3: Option C

The problem in Equation (9.15) is a QP with equality constraints that

can be solved using Lagrange multipliers [Wang 09]. Note the minimization

problem has a unique solution provided γ has nfni elements, and Ω adds (nf−

nu)ni linearly independent constraints. From Proposition 9.3.4 the solution to

the minimization problem is

γ = tdMQP. (9.16)

tfdof equals the decision variable td, plus the modification due to setting

future control actions passed instant k + nu − 1 equal to control actions at

instant k + nu − 1

tfdof = td + δtd (9.17)
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substituting in δtd from propositions 9.3.2 and 9.3.4

δtd = tdMQP
︸ ︷︷ ︸

γ

Zfdof ⇒ tfdof = td(MQPZfdof + I)
︸ ︷︷ ︸

M̄t

. (9.18)

From propositions 9.3.1 and 9.3.4

xfdof = td(MQP + Z−1∗
fdof ) (9.19)

xdof is a part of xfdof that can be expressed

xdof = td(MQP + Z−1∗
fdof )

[

0(nf−nu)ni×nuni

Inuni

]

︸ ︷︷ ︸

,M̄dof

. (9.20)

Summing up, to improve the Hessian conditioning in the basic LV-MPC

methodology; matrices Mdof and Mt in Equations (9.8) and (9.11) need be

replaced by M̄dof and M̄t in Equations (9.20) and (9.18). α and β are tuning

parameters to improve Hessian conditioning. As proven in Appendix D, this

methodology is consistent.

Proposition 9.3.1 xfdof can be expressed as a function of γ as

xfdof = γ + tdZ
−1∗
fdof

Proof Substituting t from equation (9.5) in equation (9.3)

tp + tf + tdof
︸ ︷︷ ︸

tfdof

= [xp xf xdof
︸ ︷︷ ︸

xfdof

]






Zp

Zf

Zdof






}

, Zfdof
(9.21)
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thus, given tfdof ,

tfdof = xfdofZfdof ⇒ xfdof = tfdof(Z
T
fdofZfdof)

−1ZT
fdof

︸ ︷︷ ︸

,Z−1∗
fdof

(9.22)

matrix Zfdof projects from the outer space to the inner space, and matrix

Z−1∗
fdof projects from the inner space to the outer space.

It can be seen from Figure 9.3 that vector xfdof equals the projection

of td to the outer space plus γ

xfdof = γ + tdZ
−1∗
fdof . �

Proposition 9.3.2 δtd can be expressed as a function of γ as

δtd = γZfdof

Proof δtd is obtained projecting γ to the inner space (see Figure 9.3 and

Equation (9.21))

δtd = γZfdof . �

Proposition 9.3.3 e can be expressed as a function of γ as

e = γ(I − ZfdofZ
−1∗
fdof )
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Proof It can be seen from Figure 9.3 that the projection of δtd to the

outer space plus e, equals vector γ

δtdZ
−1∗
fdof + e = γ

e = γ − δtdZ
−1∗
fdof

Substituting in from proposition 9.3.2

e = γ(I − ZfdofZ
−1∗
fdof ). �

Proposition 9.3.4 The QP with equality constraints in Equation (9.15)

yields the following value of γ:

γ = tdMQP

Proof Substituting in from propositions 9.3.3, 9.3.2, 9.3.1, the QP in

Equation (9.15) yields

min
γ

α||e||2F + β||δtd||
2
F s.t. xfdofΩ = 0

min
γ

α||γ(I − ZfdofZ
−1∗
fdof )||

2
F + β||γZfdof ||

2
F s.t. [γ + tdZ

−1∗
fdof ]Ω = 0

which operating yields

min
γ

γLγT s.t. MγT = N

where

L = α(I − ZfdofZ
−1∗
fdof )(I − ZfdofZ

−1∗
fdof )

T + βZfdofZ
T
fdof (9.23)

M = ΩT (9.24)

NT = −tdZ
−1
fdofΩ (9.25)
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Applying Lagrange multipliers, the solution of the problem is [Wang 09]:

γT = L−1MT (ML−1MT )−1N (9.26)

thus

γ = NT (L−1MT (ML−1MT )−1)T

γ = −tdZ
−1
fdofΩ

︸ ︷︷ ︸

NT

(L−1MT (ML−1MT )−1)T

γ = td[−Z−1
fdofΩ(L−1MT (ML−1MT )−1)T ]

︸ ︷︷ ︸

,MQP

. � (9.27)

9.4. Offset-free tracking

One requirement for offset-free tracking in MPC is that the MPC cost func-

tion in Equation (9.1) equals zero if and only if the system is at the correct

steady state [Rossiter 03]. This has a knock on effect that, in steady state,

the predictions of the CVs must be unbiased, and typically one uses ∆xdof

instead of xdof in Equation (9.1) although alternatives do exist for this term.

One means of ensuring unbiased predictions is through the appropriate in-

clusion of an integrated white noise disturbance model. As shown in proposi-

tion 9.4.1, the predictor form proposition 9.2.2 can be replaced by the following

expression to attain unbiased predictions: 4

ŷf = x∗

pS̄p +∆tdS̄d. (9.28)

4Note this predictor is based on a different model that predictor in Proposition 9.2.2, but

the same nomenclature is used in the sake of simplicity of notation.
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The cost function (or implied minimisation) of Equation (9.1) can be mod-

ified as follows to enable offset-free tracking:

min
∆td

JC(∆td) = ||[rf − ŷf ]Wy||
2
F + λu||∆xdofWu||

2
F (9.29)

To minimize JC(∆td), ŷf and ∆xdof are expressed in terms of ∆td in propo-

sition 9.4.1 and Equation (9.31). In the absence of constraints, the minimiza-

tion of JC(∆td) yields the following analytic expression obtained in proposition

9.4.3:

∆td = −fTH−1

where

H = S̄dWyW
T
y S̄

T
d + λuMdofWuW

T
uM

T
dof

fT = (x∗

pS̄p − rf)WyW
T
y S̄

T
d

xdof can be obtained form ∆td as shown in proposition 9.4.2. Provided

the receding horizon policy is used, only the last ni elements in xdof , uk, are

eventually applied to the process. Note from the definition of xdof in Equation

(5.21) that the last ni elements in xdof are uk.

Proposition 9.4.1 The dependence of ŷf on ∆td is given as

ŷf = x∗

pS̄p +∆tdS̄d

Proof From [Huang 08] the model with integrated white noise can be

expressed from the model in Equation (9.9):

ŷf = ∆((tp + tf + tdof)BQT )






Ino . . . Ino
. . .

...

0 Ino






︸ ︷︷ ︸

,Ψy

+ yk[Ino . . . Ino ]
︸ ︷︷ ︸

,Φy
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where ∆ = 1− z−1. Substituting in from Equation (9.4)

ŷf = (∆xpZp +∆xfZf +∆tdof)BQTΨy + ykΦy

since the increments for the control law between k + nu and k + nf are

zero ∆xf = 0, then

ŷf = (∆xpZpBQT

︸ ︷︷ ︸

Sp

+∆tdofBQT )Ψy + ykΦy

Operating and substituting in from Equation (5.16)

ŷf = ykΦy + [∆up ∆yp]

[

Spu

Spy

]

Ψy +∆tdBQTΨy.

It can be shown from Equations (5.18) and (5.19) that

∆up = [up uk−nb ]
︸ ︷︷ ︸

,u∗

p









Ini 0

−Ini
. . .
. . . Ini

0 −Ini









︸ ︷︷ ︸

,Υup

∆yp = [yp yk−na−1]
︸ ︷︷ ︸

,y∗

p









Ino 0

−Ino
. . .
. . . Ino

0 −Ino









︸ ︷︷ ︸

,Υyp

thus

ŷf = ykΦy + u∗

pΥupSpuΨy + y∗

pΥypSpyΨy +∆tdBQTΨy
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Reorganizing terms

ŷf = [u∗

p y∗

p]
︸ ︷︷ ︸

,x∗

p






ΥupSpuΨy[

Ino
0

]

Φy +ΥypSpyΨy






︸ ︷︷ ︸

,S̄p

+∆tdBQTΨy
︸ ︷︷ ︸

,S̄d

. � (9.30)

Proposition 9.4.2 The dependence of xdof on ∆td is given as

xdof = ∆tdMdofΨu + uk−1Φu

Proof Multiplying by the ∆ operator in both sides of proposition 9.2.1

∆xdof = ∆tdMdof . (9.31)

It can be shown that

xdof = ∆xdof






Ini 0
...

. . .

Ini . . . Ini






︸ ︷︷ ︸

,Ψu

+ uk−1[Ini . . . Ini ]
︸ ︷︷ ︸

,Φu

thus

xdof = ∆tdMdof
︸ ︷︷ ︸

∆xdof

Ψu + uk−1Φu. �
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Proposition 9.4.3 The value of ∆td that minimizes JC(∆td) is

∆td = −fTH−1

Proof Substituting ŷf and ∆xdof from proposition 9.4.1 and Equation

(9.31) in Equation (9.29) yields:

JC(∆td) = ||[rf − (x∗

pS̄p +∆tdS̄d)
︸ ︷︷ ︸

ŷf

]Wy||
2
F + λu||∆tdMdof

︸ ︷︷ ︸

∆xdof

Wu||
2
F

which operating yields

JC(∆td) = ∆tdH∆tTd + 2fT∆tTd + C

where

H = S̄dWyW
T
y S̄

T
d + λuMdofWuW

T
uM

T
dof (9.32)

fT = (x∗

pS̄p − rf)WyW
T
y S̄

T
d (9.33)

C = ||(rf − x∗

pS̄p)Wy||
2
F

The minimum of JC(∆td) is attained by equating its first derivative

to zero:(Note the Hessian matrix H is symmetric, then H = HT )

∂JC(∆td)

∂∆td
= 0

(H +HT )∆tTd + 2f = 0

2H∆tTd + 2f = 0

H∆tTd + f = 0

∆tdH + fT = 0

∆tdH = −fT

∆td = −fTH−1.� (9.34)
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9.5. Constraint handling

It is straightforward to add inequality constraints to the minimization problem

in Equation (9.29).

min
∆td

J(∆td) s.t. A∆tTd ≤ b (9.35)

A and b define constraints. Matrices A and b for constraints in the MVs rate

are defined in Section 9.5.1, and for constraints in the MVs in Section 9.5.2.

The problem in Equation (9.35) cannot be solved analytically due to the

inequality constraints. The common approach for this problems is to use QP

(Quadratic programming). Among the many solvers available to solve the QP,

qpas, revised 11 August 2009, from Adrian Wills, University of Newcastle, is

the one used in this thesis.

9.5.1. MVs rate

Take upper and lower limits on ∆xT
dof to be ∆xdof , and ∆xdof :

[

I

−I

]

︸ ︷︷ ︸

,H∆

∆xT
dof ≤

[

∆xdof

−∆xdof

]

︸ ︷︷ ︸

,k∆

from Equation (9.31)

H∆M
T
dof

︸ ︷︷ ︸

,A∆

∆tTd ≤ k∆
︸︷︷︸

,b∆

.
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9.5.2. MVs

Take upper and lower limits on xT
dof to be xdof , and xdof :

[

I

−I

]

︸ ︷︷ ︸

,Hu

xT
dof ≤

[

xdof

−xdof

]

︸ ︷︷ ︸

,ku

from proposition 9.4.2

Hu(Ψ
T
uM

T
dof∆tTd +ΦT

uu
T
k−1) ≤ ku

thus,

HuΨ
T
uM

T
dof

︸ ︷︷ ︸

,Au

∆tTd ≤ ku −HuΦ
T
uu

T
k−1

︸ ︷︷ ︸

,bu

.

9.6. Ensure validity of predictions

Assuming there is model-process mismatch, a model should be used in the

region in which it has been identified. Using a model outside such region

would imply extrapolation which is a bad practice if good predictions are

sought. In this section firstly two indicators on how close the use of the model

is to where it has been identified are defined, and secondly such indicators are

taken into account in the controller by means of two different methodologies.

9.6.1. Validity indicators for predictions

Validity indicators for predictions can be defined in terms of: scores t, and

residuals e. The former yields the Hotelling’s T 2 index:

Jt = tS2−1
a tT (9.36)
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where S2
a is a diagonal matrix such that element i is the variance of the score

ti in the identification data set. Extrapolation happens if Jt is outside the

region spanned by the observations in the identification data set. The latter

can be expressed

Je = ||e||22 = eeT (9.37)

where e are the residuals in the X space at a given instant (from Equation

(4.2)):

X = TPT +E ⇒ e = x − tPT .

Je being outside the region spanned by the observations in the identification

data set implies the error of projections to the latent variable space is larger

than that obtained in the identification stage, then predictions may not be

accurate. These two indices are often also used in control loop monitoring to

detect controller abnormal operation [AlGhazzawi 09].

Figures 9.4 to 9.6 ease interpretation of Jt and Je by means of a two-

dimensional example for the input space and one latent variable. The two-

dimensional input space is projected onto t1, and this one-dimensional space

–t1– is used in the PLS model to predict the output. Lets say x1 := yk−1, and

x2 := uk, then x1 is known provided it belongs to the past, and the controller

is to decide the control action x2. The identification points represented using

plus symbols in Figure 9.4 are used in the identification stage to define the

orientation of the vector5 that contains t1.

The region in blue vertical lines in Figure 9.5 contains the points of the

input space whose projections onto the latent variable space –t1– lay in the

region spanned by the observations in the identification data set. Jt indicates

how much a point belongs to this blue region; large values of Jt compared to

those obtained for the identification data set, indicate the point is outside the

blue region. For a given yk−1, if the controller decides uk such that the star

point is obtained, Jt will be larger than the maximum value of Jt evaluated for

the identification data set provided the star is outside the blue region. In other

5The vector of scores p1 define the orientation of the the first latent variable in the input

space.

106



9. LV-MPC methodology

x1 := yk−1

x2 := uk

t1

Figure 9.4: Ensure validity of the model: Identification data set

words, if the controller sets x2 such that the point lays outside the blue region,

the controller is using the model in extrapolation and predictions may not be

accurate. Extrapolation can be avoided by considering Jt when deciding the

control action, i.e. accounting for Jt in the controller.

Lets assume the controller accounts for Jt and the circle point in Figure 9.5

is obtained. The circle point lays in the blue region, however, the projection

onto the latent variable presents a larger error than all the identification data

points. Figure 9.6 adds a region in red horizontal lines which encloses the

points of the input space whose errors of projection onto the latent variable

space lay in the region spanned by the observations in the identification data
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x1 := yk−1

x2 := uk

t1

Figure 9.5: Ensure validity of the model: Jt

set. Index Je indicates how much a point belongs to this red region; large

values of Je compared to those obtained for identification indicate the point is

outside the red region. If the circle is outside the red region, then predictions

are not reliable. If the controller accounts for Jt and Je the triangle point may

be obtained; provided the triangle point is inside both regions, the predictor

in the controller has been used in the region in which it has been identified.

These indices can be normalized to the identification data set:

J̄t =
1

Jtmax

Jt ; J̄e =
1

Jemax

Je (9.38)
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x1 := yk−1

x2 := uk

t1

Figure 9.6: Ensure validity of the model: Jt and Je

where: Jtmax, is the value of Jt that includes 95% of the observations in the

identification data set; and Jemax is defined accordingly. Given this normal-

ization, a value of J̄t or J̄e below 1 implies the controller uses the model in

the region in which it has been identified. Note J̄t = 1 defines the boundaries

of the blue region in Figure 9.6 and J̄e = 1 defines the boundaries of the red

region.

Two approaches to account for J̄t and J̄e in the minimization of the con-

troller are detailed in the following subsections. In the first approach J̄t and

J̄e are weighted in the quadratic cost function of the controller; the weighting

factor determines how tightly the solution is to be constrained to the region
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of the identification scores and residuals. In the second approach J̄t and J̄e
appear as constraints in the minimization problem.

Both approaches need J̄t and J̄e be expressed in terms of ∆td. The expres-

sion J̄t(∆td) can be derived from its definition in Equations (9.36) and (9.38),

and the expression for t in terms of ∆td provided in proposition 9.6.1

J̄t(∆td) =
1

Jtmax

tS2−1
a tT

=
1

Jtmax

(x∗

pNpZ +∆tdNdZ)
︸ ︷︷ ︸

t

S2−1
a (x∗

pNpZ +∆tdNdZ)
︸ ︷︷ ︸

t

T

= ∆tdHt∆tTd + 2fTt ∆tTd + x∗

p

NpZS
2
a
−1

ZTNT
p

Jtmax

x∗

p
T (9.39)

where

Ht ,
NdZS

2
a
−1

ZTNT
d

Jtmax

(9.40)

fTt ,
x∗

pNpZS
2
a
−1

ZTNT
d

Jtmax

(9.41)

The expression J̄e(∆td) can be derived from its definition in Equations

(9.37) and (9.38), and the expression for e in terms of ∆td provided in propo-

sition 9.6.2

J̄e(∆td) =
1

Jemax

eeT

=
1

Jemax

(x∗

pEp +∆tdEd)
︸ ︷︷ ︸

e

(x∗

pEp +∆tdEd)
︸ ︷︷ ︸

e

T

= ∆tdHe∆tTd + 2fTe ∆tTd + x∗

p

EpE
T
p

Jemax

x∗

p
T (9.42)

where

He ,
EdE

T
d

Jemax

(9.43)

fTe ,
x∗

pEpE
T
d

Jemax

(9.44)
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Proposition 9.6.1 t can be expressed in terms of ∆td as

t = x∗

pNpZ +∆tdNdZ

Proof From Equation (4.4)

t = xZ (9.45)

From Equation (5.16)

x = [xp xf xdof ]

From equation (9.6), and taking matrices 0 and I of appropriate dimen-

sions,

x = xp[I 0 0] + xdof [0 Γ I]

Substituting in xdof from proposition 9.4.2, and considering the definition

of x∗

p in proposition 9.4.1:

x = xp[I 0 0] + (∆tdMdofΨu + uk−1Φu)
︸ ︷︷ ︸

xdof

[0 Γ I]

= xp[I 0 0] + uk−1Φu[0 Γ I] + ∆tdMdofΨu[0 Γ I]

= x∗

pNp +∆tdNd (9.46)

where

Np ,

















[

I(nb−1)ni

0ni×(nb−1)ni

]

0

0

[

Inano
0no×nano

]









0 0









+

[

Φu[0 Γ I]

0

]

Nd , MdofΨu[0 Γ I]

Substituting x in Equation (9.45):

t = x∗

pNp +∆tdNd
︸ ︷︷ ︸

x

Z = x∗

pNpZ +∆tdNdZ. �
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Proposition 9.6.2 e can be expressed in terms of ∆td as

e = x∗

pEp +∆tdEd

Proof From Equation (4.2)

x = tPT + e ⇒ e = x − tPT

Substituting t in from Equation (4.4)

e = x − xZ
︸︷︷︸

t

PT = x(I − ZPT )

Substituting in x from Equation (9.46)

e = x∗

pNp(I − ZPT )
︸ ︷︷ ︸

,Ep

+∆tdNd(I − ZPT )
︸ ︷︷ ︸

,Ed

thus

e = x∗

pEp +∆tdEd. �

9.6.2. Validity indicators for predictions neglecting past data

As defined in the previous subsection, J̄t and J̄e indicate if a model has been

used in the region spanned by the identification data to perform a prediction.

Such indicators may be used in the controller to make decisions that avoid
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using the model outside the identification region. However, J̄t and J̄e not only

depend on the degrees of freedom of the controller, but also on past measured

data.

Past measured data may not lay in the region spanned by the identification

data set probably because of an error in measuring one of the CVs of the

process at a given instant, or simply because the process is steady at a point

not included in the identification data set. If past measured data lays outside

the region spanned by the identification data set: hard constraints on J̄t and J̄e
lead to infeasibility; and soft constraints on J̄t and J̄e alter the decision trying

to force the process to stay inside the region defined in the identification

data set. However, since the decision space of the controller is the future

control sequence, and cannot change the past, these constraints may cause

an undesirable effect and the resulting control may be biased. One mean to

cope with this fact is to neglect past data and define validity indicators only

in terms of the actual degrees of freedom of the controller.

The following two indicators neglect past data and can be defined accord-

ingly to J̄t and J̄e:

J̌t =
1

J̌tmax

ťŠ
2−1

a ťT (9.47)

J̌e =
1

J̌emax

ěěT (9.48)

where: ť represents the projection of the input space to the latent variable

space neglecting past values; ě represents the error of projecting the input

space to the latent variable space neglecting past values; Š
2
a is a diagonal

matrix such that element i is the variance of the score ťi in the identification

data set neglecting past values; J̌tmax is the value of the expression ťŠ
2−1

a ťT

that includes 95% of the observations in the identification data set neglecting

past values; and J̌emax is defined accordingly for the expression ěěT .

To include these indices in the controller, both indices need be expressed

as a function of ∆td. J̌t(∆td) can be derived from its definition in Equation
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(9.47), and the expression for ť in terms of ∆td provided in proposition 9.6.3

J̌t(∆td) = ∆tdȞt∆tTd + 2f̌Tt ∆tTd + x∗

p

ŇpZŠ
2−1

a ZT ŇT
p

J̌tmax

x∗
T

p (9.49)

Ȟt ,
ŇdZŠ

2−1

a ZT ŇT
d

J̌tmax

f̌Tt ,
x∗

pŇpZŠ
2−1

a ZT ŇT
d

J̌tmax

J̌e(∆td) can be derived from its definition in Equation (9.48), and the expres-

sion for ě in terms of ∆td provided in proposition 9.6.4

J̌e(∆td) = ∆tdȞe∆tTd + 2f̌Te ∆tTd + x∗

p

ĚpĚ
T
p

J̌emax

x∗

p
T (9.50)

Ȟe ,
ĚdĚ

T
d

J̌emax

f̌Te ,
x∗

pĚpĚ
T
d

J̌emax

Proposition 9.6.3 ť = x∗

pŇpZ +∆tdŇdZ

Proof From Equations (4.4) and (5.16)

t = [xp xf xdof ]Z

ť is defined forcing past data to be zero

ť , [0 xf xdof ]
︸ ︷︷ ︸

,x̌

Z (9.51)

From equation (9.6), and taking matrices 0 and I of appropriate dimen-

sions,

x̌ = xdof [0 Γ I]
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From the definition of x∗

p in proposition 9.4.1, and the expression for xdof

in proposition 9.4.2:

x̌ = x∗

pŇp +∆tdŇd (9.52)

where

Ňp ,

[

Φu[0 Γ I]

0

]

Ňd , MdofΨu[0 Γ I]

thus,

ť = x∗

pŇpZ +∆tdŇdZ. �

Proposition 9.6.4 ě = x∗

pĚp +∆tdĚd

Proof From Equation (4.2)

ě = x̌ − ťPT

Substituting in from Equation (9.51)

ě = x̌(I − ZPT )

Substituting in from Equation (9.52)

ě = x∗

pŇp(I − ZPT )
︸ ︷︷ ︸

,Ěp

+∆tdŇd(I − ZPT )
︸ ︷︷ ︸

,Ěd

thus

ě = x∗

pĚp +∆tdĚd. �
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9.6.3. Weight validity indicators in the quadratic cost function

The minimization problem in Equation (9.35) can be reformulated to include

the validity indicators by using Lagrange multipliers. The basic idea in La-

grange multipliers is to take the constraints into account by augmenting the

objective function with a weighted sum of the constraint functions [Boyd 04].

In this subsection, the quadratic indicators, J̄t and J̄e, are weighted in the

quadratic cost function in Equation (9.35). Note J̌t and J̌e could be used

instead if past data is to be neglected.

min
∆td

JC(∆td) + λtJ̄t + λeJ̄e s.t. A∆tTd ≤ b (9.53)

where λt ≥ 0 and λe ≥ 0 weight the indices added to the cost function.

Small values of λt and λe let J̄t and J̄e take values above 1, thus the model

is used in extrapolation. Large values of λt and λe bound the decision space to

the identification data set. Hence λt and λe should be tuned to indirectly tune

how much exploration of new areas is allowed. In the example in [Lauŕı 10b],

λt = 10 and λe = 1, provide J̄t and J̄e evaluated in closed loop around 1, then

the model is being used in the region in which it has been identified. Another

contribution that includes J̄t to the cost function is [Flores-Cerrillo 04].

Including these two indices (Equations (9.39) and (9.42)) to the optimiza-

tion problem in Equation (9.35) adds two terms to H in Equation (9.32) and

fT in Equation (9.33):

H̄ = H + λtHt + λeHe (9.54)

f̄T = fT + λtf
T
t + λef

T
e (9.55)

where: Ht and ft are defined in Equations 9.40 and 9.41. He and fe are defined

in Equations 9.43 and 9.44. λt and λe are tuned off-line, hence the resulting

problem is a QP.
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Alternatively one can search for the smallest λt and λe that yield an accept-

able value for J̄t and J̄e (both below one if no extrapolation is to be allowed).

An on-line search for λt and λe ensures, for a feasible problem, acceptable

values of J̄t and J̄e, and minimizes alterations of the cost function J(∆td) to

an increase in computational complexity provided the search for λt and λe

implies solving a sequence of QP problems.

Summing up, to consider the validity indicators by weighting them in the

cost function: H in Equation (9.32) is to be replaced by H̄ in Equation (9.54);

fT in Equation (9.33) is to be replaced by f̄T in Equation (9.55); and λt and

λe need be tuned so that acceptable values of J̄t and J̄e are obtained in closed-

loop. This approach is inexpensive on-line, but tuning of λt and λe to force

validity indicators remain in a given area may alter considerably the shape

of the cost function. An alternative solution is presented in the following

subsection which includes validity indicators as quadratic constraints.

9.6.4. Add constraints on validity indicators to the controller

The minimization problem in Equation (9.35) can be augmented with con-

straints on J̄t and J̄e. Note J̌t and J̌e could be used instead if past data is to

be neglected.6

min
∆td

JC(∆td) s.t.







A∆tTd ≤ b

J̄t ≤ 1

J̄e ≤ 1

(9.56)

Note from Equations (9.39) and (9.42) that J̄t and J̄e depend quadratically on

∆td, then the problem in Equation (9.56) is a quadratic constrained quadratic

programming problem (QCQP).

6At the end of this subsection propositions are provided both for the validity indices used

in this subsection, and also for validity indices neglecting past data.
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In a QCQP we minimize a convex quadratic function over a feasible region

that is the intersection of ellipsoids [Boyd 04]. In a QP however, we minimize

a convex quadratic function over a feasible region that is the intersection of

hyperplanes. A mean to simplify the QCQP is to transform it into a QP

by bounding the ellipsoids by hyperplanes provided quadratic constraints are

convex. Such hyperplanes are obtained by linearising the ellipsoids at some

points of interest. Given the set of hyperplanes At∆tTd ≤ bt that bounds

quadratic constraint J̄t(∆td) ≤ 1, and the set of hyperplanes Ae∆tTd ≤ be

that bounds quadratic constraint J̄e(∆td) ≤ 1, the QCQP in Equation (9.56)

is reformulated:

min
∆td

JC(∆td) s.t.







A∆tTd ≤ b
[

At

Ae

]

∆tTd ≤

[

bt

be

]

(9.57)

At, bt, Ae, and be are needed to solve the problem in Equation (9.57),

however, they are initially unknown. The problem in Equation (9.57) can be

solved by means of the following iterative procedure, where ∆tdi stands for

∆td at iteration i.

1. At, bt, Ae, and be are initialized empty,

2. ∆tdi comes from solving the QP in Equation (9.57)

3. the algorithm finishes if ∆tdi satisfies both quadratic constraints: J̄t(∆tdi) ≤

1 and J̄e(∆tdi) ≤ 1,

4. if J̄t(∆tdi) ≤ 1 does not hold; J̄t(∆td) is linearised, and At, bt are

augmented with the linearised constraint

5. if J̄e(∆tdi) ≤ 1 does not hold; J̄e(∆td) is linearised, and Ae, be are

augmented with the linearised constraint

6. go to step 2
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Linearisation of the quadratic constraints on steps 4 and 5 in the above

procedure are implemented taking the first order Taylor approximation of the

quadratic constraints. Two alternative approaches depending on which point

is used for linearisation are considered:7

• (I) Linearise J̄t(∆td) ≤ 1 at the current solution ∆tdi

• (II) Linearise J̄t(∆td) ≤ 1 at ∆tdti . ∆tdti is defined such that J̄t(∆tdti) =

1, and it is aligned with the current solution ∆tdi and ∆tdt , where ∆tdt
minimizes J̄t. The expression for ∆tdt is derived in proposition 9.6.5

and for ∆tdti in proposition 9.6.7.

The First order Taylor approximation of the quadratic constraint J̄t(∆td) ≤ 1

is derived in proposition 9.6.9

Ati∆tTd ≤ Bti .

In the sake of clarity and to compare both linearisation approaches, the

following two-dimensional example is considered:

JC(∆td) = ∆td

[

0.1 0.1

0.1 0.2

]

∆tTd + 2 [−0.2 0]∆tTd

J̄t(∆td) = ∆td

[

0.1 0

0 0.01

]

∆tTd + 2[0.05 0]∆tTd + 0.8

In Figures 9.7 and 9.8: the contour plot of the cost function J(∆td) is in

grey; the area inside the ellipse satisfies constraint J̄t(∆td) ≤ 1; ∆tdi is the

solution of the QP problem with the current constraints; ∆tdt is the minimum

of J̄t(∆td); and ∆tdti is aligned with ∆tdi and ∆tdt and intersects with the

boundary of the quadratic constraint J̄t(∆td) = 1. Constraint J̄t(∆td) ≤ 1

7Linearisation of the quadratic constraint J̄t(∆td) ≤ 1 is explained, but the same proce-

dure applies to J̄e(∆td) ≤ 1.
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∆tdi

∆tdt
∆tdti

Figure 9.7: Linearise at ∆tdi

is linearised at ∆tdi and represented in thick line in Figure 9.7, whereas in

Figure 9.8 it is linearised at ∆tdti . It can be seen from those figures that

the second approach linearises the constraint at the boundary which is the

area of interest, thus the algorithm converges faster to a solution that satisfies

constraints.
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∆tdi

∆tdt
∆tdti

Figure 9.8: Linearise at ∆tdti

Soften linearised constraints

Recalling the example in Figure 9.6, the quadratic constraints added in this

section represents the blue and red regions, and the intersection is the region

which satisfies both constraints. Note that if the given value of x1 in Figure 9.6

had been more to the left, the intersection between the vertical line defined by

the given x1 and the region that satisfies both constraints would have been null,

then the problem would have been infeasible. In that case both constraints

cannot be satisfied simultaneously because the situation the controller is about

121



MPC: Relevant Identification, and Control in the LV Space

to face is not contained in the identification data set. One possible solution is

to treat both quadratic constraints as soft constraints.

Softening the linearised quadratic constraints in Equation (9.57) by means

of slack variables

min
∆td,γ

JC(∆td) + kγγT
︸ ︷︷ ︸

,J̄C

s.t.







A∆tTd ≤ b
[

At

Ae

]

∆tTd ≤

[

bt

be

]

+ γT

−γT ≤ 0

(9.58)

where: γ the vector of slack variables; k, the weight of the slack variables

which normally takes a large value.

Finally, if soft constraints want to be used instead of hard constraints, step

2 of the algorithm described in this subsection needs to be changed from

2. ∆tdi comes from solving the QP in Equation (9.57)

to

2. ∆tdi comes from solving the QP in Equation (9.58)

It is shown in proposition 9.6.11 that the problem in Equation (9.58) can be

cast into a QP problem of an augmented vector of decisions.

Proposition 9.6.5 ∆tdt which minimizes J̄t is obtained:

∆tdt = −fTt H
−1
t
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Proof The minimum of the quadratic cost function J̄t in Equation (9.39)

can be obtained equating its first derivative with respect to ∆td to 0

∂J̄t
∂∆td

= 2∆tdHt + 2fTt

2∆tdtHt + 2fTt = 0

∆tdt = −fTt H
−1
t . �

Proposition 9.6.6 ∆tde which minimizes J̄e is obtained:

∆tde = −fTe H
−1
e

Proof The minimum of the quadratic cost function J̄e in Equation (9.42)

can be obtained equating its first derivative with respect to ∆td to 0

∂J̄e
∂∆td

= 2∆tdHe + 2fTe

2∆tdeHe + 2fTe = 0

∆tde = −fTe H
−1
e . �

Proposition 9.6.7 ∆tdti such that J̄t(∆tdti) = 1, and it is aligned with

the current solution ∆tdi and ∆tdt is obtained:

∆tdti = ∆tdt + γ̄t(∆tdi −∆tdt)

Proof ∆tdti is a point which satisfies:
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• ∆tdti is aligned with ∆tdi and ∆tdt

• ∆tdti is in-between ∆tdi and ∆tdt

• J̄t(∆tdti) = 1

The first requirement can be expressed:

∆td(γt) = ∆tdt + γt(∆tdi −∆tdt)

where γt ∈ R. For the second requirement to hold γt ∈ [0, 1]. Substituting

∆td in proposition 9.6.1

t(γt) = x∗

pNpZ + (∆tdt + γt(∆tdi −∆tdt))
︸ ︷︷ ︸

∆td

NdZ

which yields

t(γt) = x∗

pNpZ+∆tdtNdZ
︸ ︷︷ ︸

,Mt

+ γt(∆tdi −∆tdt)NdZ
︸ ︷︷ ︸

,Nt

From Equations (9.36) and (9.38)

J̄t =
tS2−1

a tT

Jtmax

Substituting in t(γt) yields

J̄t(γt) =
(Mt + γtNt)S

2−1
a (MT

t + γtN
T
t )

Jtmax

=
NtS

2−1
a NT

t

Jtmax
︸ ︷︷ ︸

,at

γ2t +
2MtS

2−1
a NT

t

Jtmax
︸ ︷︷ ︸

,bt

γt +
MtS

2−1
a MT

t

Jtmax
︸ ︷︷ ︸

,ct

The third requirement can be expressed

J̄t(γ̄t) = 1
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where γ̄t comes from solving the above second order equation

γ̄t =
−bt ±

√

b2t − 4at(ct − 1)

2at
.

Provided J̄t is symmetric to its minimum; and both Jt(γ̄t) are aligned

among them and with the point that minimizes J̄t, the absolute value of

the two solutions in the previous equation are equal. Since we are only

interested in values of γt ∈ [0, 1] we take the positive solution. Note that

in case γt > 1, the current solution ∆tdi already satisfies the constraint

and no linearisation of the quadratic constraint is needed. Consequently

∆tdti need be computed only if γ̄t ≤ 1.

γ̄t =
−bt +

√

b2t − 4at(ct − 1)

2at
.

And ∆tdti can be expressed

∆tdti = ∆tdt + γ̄t(∆tdi −∆tdt). �

Proposition 9.6.8 ∆tdei such that J̄e(∆tdei) = 1, and it is aligned with

the current solution ∆tdi and ∆tde is obtained:

∆tdei = ∆tde + γ̄e(∆tdi −∆tde)

Proof ∆tdei is a point which satisfies:

• ∆tdei is aligned with ∆tdi and ∆tde

• ∆tdei is in-between ∆tdi and ∆tde

• J̄e(∆tdei) = 1
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The first requirement can be expressed:

∆td(γe) = ∆tde + γe(∆tdi −∆tde)

where γe ∈ R. For the second requirement to hold γe ∈ [0, 1]. Substituting

∆td in proposition 9.6.2

e(γe) = x∗

pEp + (∆tde + γe(∆tdi −∆tde))
︸ ︷︷ ︸

∆td

Ed

which yields

e(γe) = x∗

pEp +∆tdeEd
︸ ︷︷ ︸

,Me

+ γe(∆tdi −∆tde)Ed
︸ ︷︷ ︸

,Ne

From Equations (9.37) and (9.38)

J̄e =
eeT

Jemax

Substituting in e(γe) yields

J̄e(γe) =
(Me + γeNe)(M

T
e + γeN

T
e )

Jemax

(9.59)

=
NeN

T
e

Jemax
︸ ︷︷ ︸

,ae

γ2e +
2MeN

T
e

Jemax
︸ ︷︷ ︸

,be

γe +
MeM

T
e

Jemax
︸ ︷︷ ︸

,ce

(9.60)

The third requirement can be expressed

J̄e(γ̄e) = 1

where γ̄e comes from solving the above second order equation

γ̄e =
−be ±

√

b2e − 4ae(ce − 1)

2ae
.
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Provided J̄e is symmetric to its minimum; and both Je(γ̄e) are aligned

among them and with the point that minimizes J̄e, the absolute value of

the two solutions in the previous equation are equal. Since we are only

interested in values of γe ∈ [0, 1] we take the positive solution. Note that

in case γe > 1, the current solution ∆tdi already satisfies the constraint

and no linearisation of the quadratic constraint is needed. Consequently

∆tdei need be computed only if γ̄e ≤ 1.

γ̄e =
−be +

√

b2e − 4ae(ce − 1)

2ae
.

And ∆tdei can be expressed

∆tdei = ∆tde + γ̄e(∆tdi −∆tde). �

Proposition 9.6.9 The first-order Taylor approximation of the quadratic

constraint J̄t(∆td) ≤ 1 at a point β can be expressed

Ati∆tTd ≤ Bti

Proof The first-order Taylor approximation of the quadratic constraint

J̄t(∆td) ≤ 1 at a point β

∂J̄t
∂∆td

∣
∣
∣
∣
β

(∆td − β) + J̄t(β) ≤ 1 (9.61)

β = ∆tdi or β = ∆tdti depending on which linearisation point is selected.

The first derivative of J̄t in Equation (9.39) with respect to ∆td

∂J̄t
∂∆td

= 2∆tdHt + 2fTt
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then
∂J̄t
∂∆td

∣
∣
∣
∣
β

= 2βHt + 2fTt .

Reorganising terms in Equation (9.61)

∂J̄t
∂∆td

∣
∣
∣
∣
β

︸ ︷︷ ︸

,Ati

∆td ≤ 1− J̄t(β) +
∂J̄t
∂∆td

∣
∣
∣
∣
β

β

︸ ︷︷ ︸

,Bti

Note that for β = ∆tdti, J̄t(β) = J̄t(∆tdti) = 1 hence

Bti =
∂J̄t
∂∆td

∣
∣
∣
∣
β

β. �

Proposition 9.6.10 The first-order Taylor approximation of the quadratic

constraint J̄e(∆td) ≤ 1 at a point β can be expressed

Aei∆tTd ≤ Bei

Proof The first-order Taylor approximation of the quadratic constraint

J̄e(∆td) ≤ 1 at a point β can be expressed

∂J̄e
∂∆td

∣
∣
∣
∣
β

(∆td − β) + J̄e(β) ≤ 1 (9.62)

β = ∆tdi or β = ∆tdei depending on which linearisation point is selected.

The first derivative of J̄e in Equation (9.42) with respect to ∆td

∂J̄e
∂∆td

= 2∆tdHe + 2fTe
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then
∂J̄e
∂∆td

∣
∣
∣
∣
β

= 2βHe + 2fTe .

Reorganising terms in Equation (9.62)

∂J̄e
∂∆td

∣
∣
∣
∣
β

︸ ︷︷ ︸

,Aei

∆td ≤ 1− J̄e(β) +
∂J̄e
∂∆td

∣
∣
∣
∣
β

β

︸ ︷︷ ︸

,Bei

Note that if β = ∆tdei , then J̄e(β) = 1 and

Bei =
∂J̄e
∂∆td

∣
∣
∣
∣
β

β. �

Proposition 9.6.11 The minimization problem in Equation (9.58) can

be expressed as a QP in terms of the augmented vector v.

Proof Lets define the augmented vector

v , [∆td γ].

Lets take the expanded expression for JC derived in proposition 9.4.3:

JC(∆td) = ∆tdH∆tTd + 2fT∆tTd + C

and transform it to tackle the minimization problem in Equation (9.58):

J̄C(v) = v

[

H 0

0 kI

]

︸ ︷︷ ︸

,Hv

vT + 2

[

f

0

]T

︸ ︷︷ ︸

,fTv

vT + C (9.63)
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Finally the problem in Equation (9.58) yields

min
v

vHvv
T + 2fTv v

T s.t








A 0
[

At

Ae

]

−I

0 −I







vT ≤








b

bt

be

0








(9.64)

9.7. Systematic tuning

This Section defines how to systematically tune nu and nf . It is convenient in

MPC to choose nu and nf such that nf − nu is greater than or equal to the

process settling time [Rossiter 03].

nu is often chosen as a trade-off solution between computational complexity

and achieved performance. As a rule of thumb nu should be in-between a

minimum and a maximum value [Shridhar 98]: the minimum value of nu is

such that the output at instant k + nu has reached at least 60% of its steady

state value; and the maximum value of nu is such that increasing nu has no

further effect on the first move of the controller to a step change in the set

point. Provided control in LV-MPC is implemented in the reduced space of

the latent variables, large values of nu are tenable in terms of computational

complexity, then the rule of thumb in LV-MPC is to set nu as half the process

settling time:

nu =
Tss

2
= 0.5Tss

then assuming nf − nu = Tss, nf yields

nf = Tss + nu = 1.5Tss.
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Settling time is defined as the time required for the response curve to reach

and stay within a range of certain percentage of the final value. The percentage

is usually 5% or 2%, however, for oscillatory processes or processes with fast

and slow dynamics, the settling time at 5% yields a large value for nf then

multi-step ahead predictions perform poorly, and consequently the resulting

control. For processes with combined fast and slow or oscillatory dynamic

behaviour, one can set Tss to capture the most relevant dynamics.

9.8. Stability analysis

A priori stability guarantee of an MPC control law is established if the MPC

cost function is a Lyapunov cost function. The MPC cost function in Equation

(9.29) is a Lyapunov cost function if:

• It is positive-definite, then Wy and Wu need be positive-definite matri-

ces

• Its time-derivative is negative semidefinite, which is attained if nu =

nf = ∞ [Rossiter 03]

The use of infinite horizons make MPC intractable in the case of constraints.

For this problem to be tractable one can use a dual mode implementation of

MPC. In dual mode MPC the following two modes are commonly used:

• In the first mode there are nc control moves and constrained on-line

optimization is used to fix those degrees of freedom

• In the second mode, control moves are given by a feedback law

For constraints to hold in the second mode, the state of the process at the end

of the first mode need be in a terminal set. The terminal set is defined by the

131



MPC: Relevant Identification, and Control in the LV Space

control law in the second mode such that: the more tightly tuned the control

law in the second mode is, the smaller the terminal set will be.

The two tuning parameters in dual mode MPC are:

• The number of control moves nc

• Terminal control law

The terminal control law can be defined such that the infinite horizon cost

in the constraint free case is minimized, this is denoted LQMPC (Linear

Quadratic optimal MPC). If the LQMPC is tightly tuned, then feasible re-

gions may not be large and the control law may not be robust. Alternatively

one can set the terminal control law to zero, this is denoted NTC (No Ter-

minal Control). NTC is the most popular approach deployed in Industry, in

fact DMC and GPC are NTC dual mode strategies [Rossiter 03]. For NTC to

be appropriate, the system should be open-loop stable provided the open-loop

behaviour of the system is obtained in the second mode.

For large values of nc much of the transients are shaped in the first mode

and the choice of the terminal control law will have negligible effect on con-

trol performance. Consequently, if nc is large, one can either use a loosely

tuned LQMPC, or NTC if the process is open-loop stable. A drawback in

using a large nc is an increase in computational complexity. However, the

control methodology proposed in this thesis —LV-MPC— reduces computa-

tional complexity by performing the optimization in the latent variable space,

thus making it possible to choose a large nc.

LV-MPC implements NTC dual mode MPC with the following two modes:

• In the first mode there are nu control moves and constrained on-line

optimization is implemented. From Section 9.7 nu = 0.5Tss, and assum-

ing closed-loop specifications at least halve the process settling time, the
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dynamic behaviour is shaped in the first mode and the choice of the

terminal control law has negligible effect on control performance.

• In the second mode the terminal control law is set to zero, then the

open-loop response of the process is obtained. If nf is defined such

that nf − nu is greater than the process settling time, then the resulting

control with a finite nf is equivalent to control with infinite horizon. Note

constraints are defined just for MVs and increments on the MVs, then

if constraints hold in the first mode, they also hold in the second mode

provided all increments are zero in the second mode, and the last value

for the MVs in the first mode is used in the second mode. Consequently

there is no need for a terminal region in the first mode.

Summing up, LV-MPC implements the heuristic and commonly used ap-

proach for stability that applies for open-loop stable processes with nf − nu

greater than the process settling time.

9.9. LV-MPC Implementation

This section aims at clarifying how to implement LV-MPC. The sequence

of steps to implement LV-MPC can be split into three stages: (I) obtain

the predictor, (II) obtain the matrices of the controller, (III) evaluate the

controller on-line.

(I) Obtain the predictor:

• Obtain the identification and validation data sets.

• Set sampling time Ts and control and prediction horizons nu and nf .

The directions given in Section 9.7 can be followed to set this three

parameters.
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Figure 9.9: Pseudo-code for obtaining the predictor.
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• If not available, decide the order of the linear model na and nb. The

order of the model can be swept and evaluate some indicators of the

quality of predictions, such as JOSAPI in Equation (5.13) and/or JLRPI

in Equation (5.14) for the validation data set . From the sweep, one can

decide the order of the model as the order that minimizes the quality

indicators evaluated.

• Sweep nlv in the PLS model and calculate JOSAPI and JLRPI for the

validation data set. Set nlv as the value above which no significant

improvement in terms of JOSAPI and JLRPI is attained.

• Obtain the matrices that define the PLS model: P, Q, W, and B. (see

Subsection 5.3.2)

• Evaluate the quality of predictions for the validation data set and de-

cide whether it is enough, and hence stop, or needs improvement. If the

predictor is to be improved, one can start over with the identification

procedure either obtaining a new data set, or changing some of the de-

cisions. The two previous quality indicators, JOSAPI and JLRPI, may be

used along with the coefficient of determination R2 in Equation (7.16).

(II) Obtain the matrices of the controller:

• Decide some tuning parameters of the controller: λu, Wu and Wy.

• If Hessian conditioning is to be improved, as explained in Section 9.3,

projection matrices M̄dof and M̄t in Equations (9.20) and (9.18) are to

be used. In the basic approach however, projection matrices Mdof and

Mt in Equations (9.8) and (9.11) are used. α and β need be tuned to

obtain M̄dof and M̄t, one of them may be set to one, and the other swept

to find the value that minimizes the conditioning of the resulting matrix

H.
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Figure 9.10: Pseudo-code for obtaining the matrices of the controller.
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• Calculate the matrices of the predictor as a function of the degrees of

freedom of the controller: ∆td if offset-free tracking is to be attained or

td otherwise. If offset-free tracking is desirable S̄p and S̄d in proposition

9.4.1 are obtained. In the basic control methodology however, offset-

free tracking is not considered and Sp and Sd in proposition 9.2.2 are

obtained.

• Calculate the Hessian matrix H using the expression in Equation (9.12)

or in Equation (9.32), depending on whether offset-free tracking is needed

or not.

• The controller can already be regarded as completely defined if indicators

on validity of predictions are not to be considered in the controller.

Otherwise, consider the following items:

– Calculate S2
a in Equation 9.36.

– If validity indicators should neglect past data, J̌tmax, J̌emax, Ňp,

Ňd, Ěp, and Ěd defined in Subsection 9.6.2 are obtained. However,

if validity indicators should include past data, Jtmax, Jemax, Np,

Nd, Ep, and Ed defined in Subsection 9.6.1 are to be obtained.

– If indicators on validity of predictions are to be weighted in the cost

function, a term is added to matrix H as shown in Equation (9.54)

which yields H̄. λt and λe are needed to obtain H̄ and can be given

an initial value of 1, and be readjusted in closed-loop operation to

avoid constraints on validity take values outside the desired region.

– Otherwise, if indicators on validity of predictions are to be added as

soft constraints, the decision vector is expanded with slack variables

and hence is H as shown in Equation (9.63) which yields Hv. k in

Equation (9.63) weights slack variables and is often given a large

value, i.e. k = 1 · 1010.
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(III) Evaluate the controller on-line:

• Form row vector xp using Equation (5.16), or xp∗ in Equation (9.30) if

offset-free tracking is to be attained.

• Obtain the matrices needed to solve the QP:

– Calculate f using Equation (9.13), or (9.33) if offset-free tracking is

to be attained. Then, if soft constraints for validity indicators are

to be considered, obtain fv from f as shown in Equation (9.63).

– Take H of the controller.

– Calculate A and b that define constraints as in Section 9.5. Then

Add At, Ae, bt and be if validity constraints are to be linearised

as explained in Subsection 9.6.4.

• Solve the QP.

• Obtain xdof form td as shown in proposition 9.2.1, or from ∆td from

proposition 9.4.2 in the offset-free case.

• Applying the receding horizon policy, uk is extracted from the control

sequence (xdof) and applied to the process.
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Figure 9.11: Pseudo-code for evaluating the controller.
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CHAPTER 10

LV-MPC CASE STUDIES

The proposed LV-MPC methodology is evaluated in this chapter and com-

pared to traditional MPC. The traditional MPC approach implemented uses

the dynamic matrix model to account for the use of the model in a predic-

tion window, and is denoted DM in this chapter. Four examples are used for

this comparison. First, the model of an ill-conditioned distillation column is

controlled proving LV-MPC can outperform DM in terms of computational

complexity and closed-loop performance; also the need to implement the ap-

proach explained in Section 9.3 that improves Hessian conditioning is demon-

strated. Second, a Twin-rotor non-linear simulink model is controlled proving

the LV-MPC approach can outperform DM in the event of a failure provided

the optimization is performed in the reduced latent variable space and model

validity can be taken into account in the decision of the controller. Third, the

twin-rotor model with an added perturbation is controller proving LV-MPC

can outperform DM in the event of perturbation. Fourth, the model of a 2x2

Boiler is controlled comparing using traditional validity indicators and those

neglecting past data.
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10.1. Control of a Distillation column model

In this section a 2x2 MIMO process is defined, identified, and controlled by

means of three control methodologies:

DM Traditional data-driven MPC approach. In DM, the dynamic matrix of

the predictor is obtained directly from input-output data, hence it is

MRI (Model predictive control Relevant Identification).

LV-MPC The methodology proposed in this part accounting for Hessian

conditioning, offset-free tracking, and validity of the model by weighting

validity indicators in the control cost function.

LV-MPC-basic The methodology proposed in this part accounting for offset-

free tracking, and validity of the model by weighting validity indicators

in the control cost function.

The process to control is a distillation column. Control of a distillation col-

umn is challenging provided it is ill-conditioned and multivariate with strong

interactions between its outputs.

10.1.1. Process description

The process to control is the distillation column in [Skogestad 97]. The dis-

tillation column is running in the so-called LV-configuration, so the process is

2x2 in terms of control. The variables in the process and their working points

are:

• MVs:

– u1: L, reflux flow (2.706 kmol/min)
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– u2: V , boilup flow (3.206 kmol/min)

• CVs:

– y1: xD, distilled product composition (0.99 mole fraction)

– y2: xB, bottom product composition (0.01 mole fraction)

• Unmeasured disturbances:

– F : feed rate (1 kmol/min)

– zF : feed composition (0.5 mole fraction)

Sample time is set to Ts = 1min. Random walk disturbances are added to

CVs and unmeasured disturbances. The added disturbances are obtained as

low-pass filtered uncorrelated white noises

F (z) =
0.02

1− 0.98z−1

and scaled so that the amplitude of the added disturbances are

• ±0.01 for xD and xB (y1, y2)

• ±0.1 for F

• ±0.05 for zF

The block diagram of the process is depicted in Figure 10.1.

10.1.2. Control parameters

It is convenient in MPC to choose nu and nf such that nf −nu is greater than

or equal to the process settling time (see Section 9.7). From the response of the
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Figure 10.1: Block diagram of the Distillation column.

outputs to a simultaneous 1% step in the inputs, Figure 10.2, Tss ≈ 500min.

If nf − nu is set to 500, the prediction horizon will be too large, and provided

there is modelling error, the predictor will perform poorly in the far horizon

deteriorating the overall performance. In this example nf−nu is set to 150min

as a trade-off between accounting for most of the dynamic behaviour, and not

having a too large prediction horizon.

nf = nu + 150

According to the directions given in Section 9.7, nu yields

nu =
150

2
= 75

It is noted that with normal MPC such large nu would not be tenable, and

users would make use of any of the strategies to reduce computational com-

plexity commented in Chapter 1: move blocking, Laguerre functions, or the

LVM approach presented in this part.
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Figure 10.2: Step response of the process with no added noise.

Constraints are defined for the MVs 1 ≤ uk ≤ 4, and for the rate of the

MVs −0.5 ≤ ∆uk ≤ 0.5. Future references are assumed unknown,

rk+i = rk+1, ∀i ∈ [1, nf ]

the weight of the control moves is set as 0.1 multiplied by a normalizing factor1

λu = 0.1
nf

nu

λt and λe, which weight validity indicators J̄t and J̄e in the cost function, see

Subsection 9.6.3, are tuned on-line such that J̄t and J̄e in closed loop operation

stay within the region defined by the observations in the identification data

set (J̄t ≤ 1 and J̄e ≤ 1). In this example λt = 10 and λe = 1.

1Provided there are nf error terms and nu increments on the control action in the problem

in Equation (9.29), a scaling factor has been added to λu. The scaling factor reduces the

influence of nu in the trade-off between tracking error and control effort.
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10.1.3. Identification

The identification data set is obtained in closed loop. To obtain the identifica-

tion data set the process is controlled using two PID controllers [Skogestad 97];

steps are applied to the set points of the CVs; and low-pass filtered white noise

is added to the MVs. The block diagram of the closed-loop scheme for closed-

loop identification is shown in Figure 10.3, and the identification data set can

be found in Figure 10.4.

Figure 10.3: Block diagram for closed-loop identification.

Although the distillation column is non-linear, according to [Skogestad 97]

the behaviour of the process is much less dependent on the operating point if

the CVs are transformed:

ȳi = ln

(
yi

1− yi

)

, ∀i = {1, 2}
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Figure 10.4: Identification data set
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The CVs are first transformed using the logarithmic function, and then

mean-centered and scaled previous to model identification. MVs are mean-

centered and scaled as well. From [Skogestad 97] the process can be success-

fully approximated with a linear model of order 10, hence na = 10, nb = 10.

The numbers of columns in vectors ŷf(k) and x(k) in Equation (5.16) are:

• nfno = 450 columns in ŷf(k).

• (nb − 1)ni + nano + nfni = 488 columns in x(k).

thus the size of θ in Equation (5.16) is 488 × 450. In DM, θ is fitted to the

identification data set using least squares. In LV-MPC however, PLS is used

to obtain the predictor in the latent variable space as well as θ. Weighting is

used in PLS identification, see Equation 5.24, with

Λ = diag([2nfno , . . . , 21]).

The number of latent variables to include in the predictor is a decision to

be made in the identification stage. Two indicators for a validation data set

are evaluated for this purpose. The validation data set is obtained in the same

conditions as the identification data set. The two indicators are the sum of

squared prediction errors one-step ahead JOSAPI from Equation (5.13), and

multi-step ahead JLRPI from Equation (5.12) which for a given data set can

be expressed:

JOSAPI =
N∑

k=1

||yk − ŷk||
2
F ; JLRPI =

N∑

k=1

||yf(k)− ŷf(k)||
2
F

where N is the number of rows in the regression matrix. The CVs in the

indicators are pre-treated as exposed above. Note JOSAPI is the squared error

of one-step ahead predictions, which is included as a term in JLRPI, which is

the squared error of multi-step ahead predictions.
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These two indicators are evaluated for the model used in DM, and are swept

for nlv in LV-MPC2. Provided x(k) has 488 columns, nlv can take any value

in-between 1 and 488. Nevertheless, in DM, the MPC problem has nuni = 150

d.o.f., thus there is no point in using LV-MPC with nlv > nuni. From JOSAPI

in Figure 10.5(a), one may chose nlv ≥ 60. However, from JLRPI in Figure

10.5(b), multi-step ahead predictions deteriorate for large values of nlv. As a

trade-off between one-step ahead predictions and multi-step ahead predictions

60 < nlv < 80.

20 40 60 80 100 120 140
0

50

100

 

 

DM
LV−MPC
LV−MPC−basic

(a) JOSAPI

20 40 60 80 100 120 140
0
5

10
15

x 105

n
lv

(b) JLRPI

Figure 10.5: Identification Indicators.(Note the model in LV-MPC-basic is the

same as in LV-MPC, thus triangles and circles overlay.)

If nlv = 60, the multi-step ahead predictor in LV-MPC performs better than

that in DM, but one-step ahead predictions are slightly worse. If nlv = 80,

the multi-step ahead predictor in LV-MPC performs slightly worse than that

obtained using nlv = 60, but still better than that in DM; and one-step ahead

predictions are as good as those in DM. Any nlv in-between 60 and 80 seems

reasonable.

2Note the model in LV-MPC-basic is the same as in LV-MPC, the difference between

these two methodologies is in the form to compute the matrices of the controller.
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10.1.4. Control results

To compare the three control methodologies in terms of control performance,

the following indicators are evaluated for the three controllers to a change in

the process set point:

• Hessian conditioning

• MSTE, mean squared tracking error

• MSDU, mean squared increments in the control action

• Number of floats to define the matrices of the controller

• Mean computation time to solve the QP with constraints.

In LV-MPC there are two additional tuning parameters, α and β (see Sec-

tion 9.3). What is important is the ratio between those two parameters, thus

α is set to 1, and β is given 26 values: β = 10i, ∀i = {−5,−4, . . . , 20}. The

value of β which provides the best conditioned Hessian matrix is eventually

used. Note this sweep of β is implemented off-line; given the model of the

process, H is obtained for those 26 values of β, and the best conditioned H

is eventually used. An example of this search for nlv = 60 is provided in

Figure 10.6. As shown in Figure 10.6, a good conditioning for β ∈ [105, 107]

is obtained. Conditioning in DM in logarithmic scale is around 10, thus for

102 < β < 1015, LV-MPC for nlv = 60 outperforms DM in terms of Hessian

conditioning. Note the search for β is performed off-line and no fine search is

needed.

The control performance indicators sweeping3 nlv from 1 to 150 are shown

in Figure 10.7:

3Note there is no nlv in DM, thus the value of the indicators in DM is the same for any

value of nlv.
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Figure 10.6: Tuning α and β

• Figure 10.7(a): Hessian conditioning in LV-MPC-basic is much larger

than that in LV-MPC and DM. Hessian conditioning in LV-MPC is

slightly smaller to that in DM.

• Figure 10.7(b): LV-MPC outperforms DM in terms of MSTE for nlv >

45. In LV-MPC-basic however, for nlv > 90, larger values of MSTE are

obtained due to ill-conditioning.

• Figure 10.7(c): LV-MPC is equivalent to DM in terms of MSDU for

nlv > 45. In LV-MPC-basic however, for nlv > 90, larger values of

MSDU are obtained due to ill-conditioning.

• Figure 10.7(d): the number of floats is the same in LV-MPC and LV-

MPC-basic. Both LV-MPC approaches outperform DM.

• Figure 10.7(e): LV-MPC outperforms DM in terms of computing time

for 25 < nlv < 100. LV-MPC-basic needs far more time than LV-MPC

and DM for nlv > 90 due to ill-conditioning.
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Figure 10.7: Control indicators
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Summing up, LV-MPC is preferable to LV-MPC-basic because:

• The Hessian matrix in LV-MPC is far better conditioned than that in

LV-MPC-basic.

• The performance of both methodologies is equivalent whenever LV-MPC-

basic is not ill-conditioned.

• Tuning the additional parameter β in LV-MPC is systematic, inexpen-

sive, and is done off-line.

The MVs and CVs in the control experiment using DM, LV-MPC for nlv =

60, and LV-MPC for nlv = 80, are shown in Figure 10.8. Provided the two

CVs are correlated, a change in set point in y1 affects tracking of y2 and vice

versa. Such interaction is reduced when using the LV-MPC controller, either

for nlv = 60 or nlv = 80. From Figure 10.8, a better control result is obtained

for nlv = 80. From Figure 10.5, the predictor for nlv = 80 performs better

than that using nlv = 60 at one-step ahead predictions, but worse at multi-

step ahead predictions. Hence, it makes sense to use Λ in PLS to improve

predictions in the near horizon for a reduced nlv.

Monitoring of J̄t and J̄e during closed-loop operation for LV-MPC and

nlv = 80 is shown in Figure 10.9. J̄t is plot in continuous line, J̄e in dash-

dotted line, and a dashed-line has been plot for a value of 1. Note 95% of

the identification samples provided J̄t ≤ 1 and J̄e ≤ 1. During control-loop

monitoring (Figure 10.9) most observations provide J̄t ≤ 1 and J̄e ≤ 1, hence

the model is not beeing used in extrapolation mode.

Table 10.1 shows improvements of LV-MPC versus DM for nlv = 60 and

nlv = 80. If nlv is tuned as said in the identification stage, one would choose

a value in-between 60 and 80. For 60 < nlv < 80, LV-MPC outperforms DM

in terms of MSTE in about 55%, the size of the matrices of the controller in

about 60% and computation time in about 30%.
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Figure 10.8: Time response of the controlled process

154



10. LV-MPC case studies

200 250 300 350 400 450 500 550 600
0

0.5

1

1.5

time(min)

Figure 10.9: J̄t, continuous line; and J̄e, dash-dotted line.

LV-MPC(nlv = 60) LV-MPC(nlv = 80)

MSTE 51% 59%

Floats 65% 52%

Computation 33% 26%

Table 10.1: Improvement vs DM

10.2. Control of a Twin-rotor MIMO model

In this section a 2x2 MIMO simulink non-linear model is defined, identified,

and controlled by means of two control methodologies:

DM Traditional data-driven MPC approach.

LV-MPC The methodology proposed in this part accounting for Hessian con-

ditioning, offset-free tracking, and validity of the model. Two different

strategies to ensure model validity are implemented and compared.

This example aims at comparing performance of these two control method-

ologies both in normal operation and in case of measurement error. The

controllers are tuned so that a fast closed-loop response is obtained, then the

controllers are more sensitive to errors.
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10.2.1. Process description

The process to control is the non-linear simulink model of the Twin rotor

MIMO system from Feedback. The non-linear model can be downloaded at

http://sergarro.webs.upv.es/TRMSDown/TRMSDown.html. The variables in

the process and their working points are:

• MVs:

– u1: Main rotor; range [−1 1]; operating point 0

– u2: Tail rotor; range [−1 1]; operating point 0

• CVs:

– y1: Vertical angle; range [−π π]; operating point 0 (rad)

– y2: Horizontal angle; range [−π π]; operating point 0 (rad)

Figure 10.10: Block diagram of the TRMS.

10.2.2. Control parameters

In this Section some parameters of the controller are decided. First, the sam-

pling time is defined from the step response of the process to a step of 0.1 am-

plitude applied simultaneously to both inputs, see Figure 10.11. The steepest

slope takes about 1 second, and Ts is set so that 10 samples are taken during

the fastest slope of the process, then Ts = 0.1 sec.

It is convenient in MPC to choose nu and nf such that nf−nu is greater than

or equal to the process settling time. As shown in Figure 10.11, settling time
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Figure 10.11: Step response of the process

for output y1 is greater than 30 seconds, which would yield a considerably

large prediction horizon. Provided the non-linear process is approximated

with a linear model, there is process-model mismatch, hence large prediction

horizons yield bad multi-step ahead predictions which in turn provide poor

closed-loop performance. In this example nf − nu is set to 20 seconds as a

trade-off between accounting for most of the dynamic behaviour and having a

reliable predictor. Provided Ts = 0.1

nf = nu + 200

According to the tuning directrices provided in Section 9.7,

nu =
nf − nu

2
= 100.
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Constraints are defined for the MVs −1 ≤ uk ≤ 1. Future references are

assumed unknown,

rk+i = rk+1, ∀i ∈ [1, nf ]

The weight of the control moves is set so that a fast response is obtained

λu = 10

10.2.3. Identification

The identification data set in Figure 10.12 has been obtained in open-loop.

The MVs have been excited with low-pass filtered white noise

F (z) =
0.05

1− 0.95z−1

and the amplitude of u1 doubles the amplitude of u2 so that y1 can be better

identified.

To decide the order of the model, na and nb are swept and two indicators

are evaluated for a validation data set using the DM model4. The two indi-

cators are the sum of squared prediction errors one-step ahead J̄OSAPI from

Equation (5.13), and multi-step ahead J̄LRPI from Equation (5.12), both of

them normalized to the number of quadratic terms to sum:

J̄OSAPI =
1

Nno

N∑

k=1

||yk − ŷk||
2
F ; J̄LRPI =

1

Nnonf

N∑

k=1

||yf(k)− ŷf(k)||
2
F

N is the number of samples in the data set. Note J̄OSAPI is an indicator on

squared errors for one-step ahead predictions, and J̄LRPI is an indicator on

squared errors of multi-step ahead predictions. Figure 10.13 plots the values

of J̄OSAPI and J̄LRPI for different values of n, being na = n and nb = n.

4The validation data set is obtained in the same conditions as the identification data set.
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Figure 10.12: Identification data set
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Figure 10.13: Identification Indicators versus n.

From Figure 10.13(a) n ≥ 3, and from Figure 10.13(b) n = 5, then a fifth

order linear model is used to approximate the nonlinear process: na = nb = 5.

The number of latent variables to include in the predictor is a decision to be

made in the identification stage. nlv can take any value in-between 1 and the

number of columns in x(k), which in this example yields (nb − 1)ni + nano +

nfni = 618 columns in x(k). Consequently nlv can take any value in-between

1 and 618, however, the controller has nuni = 200 d.o.f., then it makes sense

to sweep nlv in-between 1 and 200. As shown in Figure 10.14, J̄OSAPI and

J̄LRPI decrease as nlv increases, then in this example nlv = 200.

Predictive performance of the two models obtained is tested performing

predictions for a validation data set. Figures 10.15 and 10.16 contain one-step

ahead predictions, predictions in the far prediction horizon, and the index R2

evaluated for predictions from k + 1 up to k + nf . Note the LV-MPC model

contains 200 latent variables out of the 618 columns in the input vector of the

model, but still performs as the DM model.
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Figure 10.14: Identification Indicators versus nlv.

10.2.4. Control results under normal operation

The DM and LV-MPC controllers are tested under normal operation for a

sequence of step changes in the set points of the CVs. Two control scenarios

are considered for LV-MPC in terms of quadratic constraints to ensure validity

of the model, in the first scenario J̄t and J̄e are considered for quadratic

constraints and in the second one J̌t and J̌e.

As shown in Figure 10.19, the LV-MPC controller that uses J̄t and J̄e does

not reach the references in steady state when the set point is at the limit of

the identification data set 0.2 (see Figure 10.12). The reason is quadratic con-

straints depend on past data, which cannot be changed, and the identification

data set does not contain steady operation at those points, then quadratic

constraints bound the decision space in an effort to maintain the process in

the region where it has been identified. Such effort prevents the LV-MPC cost

function to reach 0 resulting in biased control for static points on the boundary
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Figure 10.15: Validation results for y1.
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Figure 10.16: Validation results for y2.
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of the identification data set. On the contrary, LV-MPC that uses J̌t and J̌e
for the quadratic constraints can reach the references at steady state because

it neglects past data. J̌t and J̌e neglect the past, then only constrain the con-

trol moves to be in a valid range compared to those used for identification,

then these quadratic constraints have an influence on the closed-loop dynamic

response, but eventually the process will reach the point if it can be reached.

The value of J̌t and J̌e obtained for the control experiment is plot in Figure

10.17, it can be seen from the Figure that quadratic constraints hold since

J̌t ≤ 1 and J̌e ≤ 1 for the whole experiment. Figure 10.18 plots the number

of iterations needed to linearise quadratic constraints.

The DM controller presents similar settling time to that obtained with the

LV-MPC controllers, but a larger overshoot. This can be an argument to chose

LV-MPC instead of DM in this case, however, overall the three controllers

provide similar closed-loop response.
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Figure 10.17: J̌t, continuos blue line; J̌e, dash-dotted red line.
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Figure 10.18: Number of iterations to linearise quadratic constraints.
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Figure 10.19: Closed-loop time response in normal operation. DM, contin-

uous blue line; LV-MPC evaluating J̄t and J̄e, dashed green line; LV-MPC

evaluating J̌t and J̌e ,dotted red line.
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10.2.5. Control results in the event of a measurement error

The DM and LV-MPC controllers are tested controlling the process to a se-

quence of step changes in the set points of the CVs. The measurement of the

CVs is assumed not to be available for k = [90, 91, 92] and they are assumed

to be equal to the measurements at k = 89. This measurement error has

not much effect in case of loose control, but in this example λu = 10 which

yields a settling time of about 2 seconds then the control is tight. In LV-MPC

quadratic constraints to ensure validity of the model are formulated in terms

of J̌t and J̌e.

Figure 10.22 plots the closed-loop time response of both control strategies.

As seen in the Figure, DM cannot cope with the measurement error whilst

LV-MPC remains almost unaltered versus the control without measurement

error in Figure 10.19. There are two reasons that justify the more robust

behaviour of LV-MPC versus DM:

• Decide in the latent variable space: LV-MPC performs the min-

imization in the latent variable space and projecting the error to the

latent variable space can reduce its effect. In fact, latent variable meth-

ods emerged as a solution to identify processes with short and fat ma-

trices of data in which correlation, lack of data, and measurement error

makes identification in the original space impossible. In latent variable

methods, data is projected onto the latent variable space in which iden-

tification can be successfully performed. LV-MPC deals with making

the decision of the control moves in a time window, but such decision is

taken in the inner, and more robust, latent variable space.

• Ensure model validity: In the event of a failure, LV-MPC with

quadratic constraints will make decisions trying to ensure model va-

lidity, then avoiding too aggressive moves which can lead to instability.

If the process remains in a safe region during the failure, the controller

will be able to lead the process back to track the set points.
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The value of J̌t and J̌e obtained for the control experiment is plot in Figure

10.20, the figure shows that quadratic constraints hold for the whole experi-

ment. Figure 10.21 plots the number of iterations needed to linearise quadratic

constraints. When the error happens, k = 90, the number of iterations reaches

its maximum. Comparing the number of iterations around k = 90 between

the two control scenarios, Figures 10.18 and 10.21, the number of iterations

around k = 90 to satisfy quadratic constraints increases from 3 to 7 due to

the measurement error.

50 100 150 200 250 300 350
0

0.5

1

k

Figure 10.20: J̌t, continuos blue line; J̌e, dash-dotted red line.
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Figure 10.21: Number of iterations to linearise quadratic constraints.
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Figure 10.22: Closed-loop time response in the event of measurement error.

DM, continuous blue line; LV-MPC evaluating J̌t and J̌e, dashed green line.
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10.3. Control of a Twin-rotor MIMO model with per-

turbation

10.3.1. Process description

The process is the same used in Section 10.2 adding filtered white noise to the

CVs as a perturbation. The low-pass filter to obtain the perturbation is

F (z) =
0.05

1− 0.95z−1

and the range of the resulting perturbation is 10% the range of the closed-loop

experiment used to compare the different control strategies [±0.02].

Figure 10.23: Block diagram of the TRMS with the added perturbation.

10.3.2. Control parameters

Ts, nf , and nu take the same values used in Subsection 10.2.2. Provided there

is a perturbation in the process λu is increased compared to that in Subsection

10.2.2.

λu = 100.
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For λu = 10, LV-MPC provides similar closed-loop response to that obtained

for λu = 100; closed-loop response in DM however, deteriorates considerably

for λu = 10. Then, in the sake of comparability among the two control strate-

gies, λu is set to 100 in this example.

10.3.3. Identification

The identification data set is generated adding the perturbation to the CVs

in the data set in Figure 10.12. Figure 10.24 plots the values of J̄OSAPI and

J̄LRPI for different values of n, being na = n and nb = n. The minimum of

both indicators happens for

na = nb = 10.
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Figure 10.24: Identification Indicators versus n.
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Figure 10.25 plots the values of J̄OSAPI and J̄LRPI for different values of

nlv. From Figure 10.25(a) nlv ≥ 90, and from Figure 10.25(b) 70 ≤ nlv ≤ 100.

In this example nlv is set to 90.
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Figure 10.25: Identification Indicators versus nlv.

Figures 10.26 and 10.27 contain one-step ahead predictions, predictions in

the far prediction horizon, and the index R2 evaluated for predictions from

k + 1 up to k + nf . Note the LV-MPC model contains 90 latent variables

out of the 638 columns in the input vector of the model, but still performs

as the DM model. Comparing this validation results with those obtained in

the previous example in which there was no perturbation, Figures 10.15 and

10.16, one can see the predictor performs slightly worse for ŷ1, whereas almost

does not change for ŷ2.
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Figure 10.26: Validation results for y1.
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Figure 10.27: Validation results for y2.
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10.3.4. Control results

The DM and LV-MPC controllers are compared. Constraints on J̌t and J̌e are

set to ensure model validity in LV-MPC. The closed-loop time response in the

event of perturbation is plot in Figure 10.30. As shown in the figure, LV-MPC

outperforms DM in the event of additive perturbation to the CVs.

The value of J̌t and J̌e obtained for the control experiment is plot in Figure

10.28, it can be seen from the figure that quadratic constraints hold since

J̌t ≤ 1 and J̌e ≤ 1 for the whole experiment. Figure 10.29 plots the number

of iterations needed to linearise quadratic constraints.
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Figure 10.28: J̌t, continuos blue line; J̌e, dash-dotted red line.
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Figure 10.29: Number of iterations to linearise quadratic constraints.
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Figure 10.30: Closed-loop time response in the event of perturbation. DM,

continuous blue line; LV-MPC, dashed green line.
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10.4. Control of a Boiler

In this section the model of a boiler is controlled by means of

DM Traditional data-driven MPC approach with no validity indicators

LV-MPC Latent variable MPC with no validity indicators

LV-MPC-cons LV-MPC with constraints on J̄t and J̄e to ensure validity of

predictions.

LV-MPC-cons-neg LV-MPC with constraints on J̌t and J̌e to ensure validity

of predictions.

In this example first a description of the process is provided; second control

parameters are set; third the predictor is obtained from data; and finally two

control scenarios are considered: normal operation, and large changes in set

points and perturbance.

10.4.1. Process description

The process to control is the simulink model of a boiler. The model can be

downloaded at http://www.dia.uned.es/~fmorilla/benchmarkPID2012/.

The variables in the process and their working points are:

• MVs:

– u1: Fuel flow; range [0 100]; operating point 35.21%

– u2: Water flow; range [0 100]; operating point 57.57%
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• Perturbation:

– m1: load level; range [0 100]; operating point 46.36%

• CVs:

– y1: Steam pressure; range [0 100]; operating point 60%

– y2: Water level; range [0 100]; operating point 50%

10.4.2. Control parameters

The sampling time is defined from the step response of the process to a step of

10% in the inputs (Figures 10.31 and 10.32) and perturbance (Figure 10.33).

From Figure 10.31, the steepest slope takes about 50 seconds, and Ts is set

so that 10 samples are taken during the fastest slope of the process, then

Ts = 5 sec.

0 200 400 600 800
59

60

61

62
y1

time (s)

0 200 400 600 800
40

45

50

55
y2

time (s)

Figure 10.31: Step u1
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Figure 10.32: Step u2
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Figure 10.33: Step m1

It is convenient in MPC to choose nu and nf such that nf − nu is greater

than or equal to the process settling time towards changes in the MVs. From

Figure 10.32, settling time for output y1 is about 300 seconds. y2 has an

integrator hence it does not settle, however it moves at a constant rate 100

seconds after the step. Hence nf − nu is set to 300sec, and for Ts = 5sec

nf − nu =
300

5
= 60 samples.
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As a rule of thumb, nu can be set as half the value set for nf − nu, which in

this case would yield nu = 30. However, from Figure 10.33, the settling time

of y1 to a change in m1 is about 600 seconds, then nf should be at least 600

seconds:

nf =
600

5
= 120 samples

then

nf − nu = 60 ⇒ nu = nf − 60 = 120− 60 = 60 samples.

Constraints are defined for the MVs and their rate:

• 0 ≤ ui ≤ 100, ∀i ∈ [1, 2]

• |∆ui| ≤ 1%/sec, ∀i ∈ [1, 2]

Future references are assumed unknown,

rk+i = rk+1, ∀i ∈ [1, nf ]

The weight of the control moves is set so that a fast response is obtained

λu = 1

10.4.3. Identification

The identification and validation data sets in Figure 10.34 are obtained in

closed-loop. The continuous blue plots represent the identification data set,

and the discontinuous green plots represent the validation data set. To obtain

the identification and validation data sets the process is controlled using two

PID controllers. The set points of the CVs are moved around the working

point; steps of 10% amplitude are added to m1; and steps of 20% amplitude

are added to the MVs.
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Figure 10.34: Identification and validation data sets
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Prior to identification, the set point is removed form the MVs and the CVs.

m1 is not considered in the model. To decide the order of the model, na and

nb are swept and two indicators are evaluated for the validation data set. The

two indicators are the sum of squared prediction errors one-step ahead J̄OSAPI

from Equation (5.13), and multi-step ahead J̄LRPI from Equation (5.12), both

of them normalized to the number of quadratic terms to sum.

Figure 10.35 plots the values of J̄OSAPI and J̄LRPI for different values of

n, being na = n and nb = n. From Figure 10.35(a) n ≥ 4, and from Figure

10.35(b) 2 ≤ n ≤ 4, then a fourth order linear model is used to approximate

the nonlinear process: na = nb = 4.
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Figure 10.35: Identification Indicators versus n.

The number of latent variables to include in the predictor is a decision to be

made in the identification stage. nlv can take any value in-between 1 and the
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number of columns in x(k), which in this example yields (nb − 1)ni + nano +

nfni = 254 columns in x(k). Consequently nlv can take any value in-between

1 and 254, however, the controller has nuni = 120 d.o.f., then it makes sense

to sweep nlv in-between 1 and 120.

Figure 10.36 plots in continuous blue line J̄OSAPI(n) and J̄LRPI(n) for the

LV-MPC model, and in discontinuous black line J̄OSAPI(n) and J̄LRPI(n) for

the DM model. From Figure 10.36(a), nlv ≥ 80. From Figure 10.36(b),

40 ≤ nlv ≤ 60 or nlv ≥ 100. Then

nlv = 100.
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Figure 10.36: Identification Indicators versus nlv.

Predictive performance of the two models obtained is tested performing

predictions for the validation data set. Figures 10.37 and 10.38 contain one-

step ahead predictions, predictions in the far prediction horizon, and the index

R2 evaluated for predictions from k+1 up to k+nf . Note the LV-MPC model

contains 100 latent variables out of the 254 columns in the input vector of
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the model, but still performs as the DM model. One-step ahead predictions

are almost exact for both outputs, then R2 in the near horizon reaches 1.

Predictions at k + nf slightly differ from the real output, but R2 is always

above 0.8, then the predictor is considered to successfully approximate the

process in the prediction window.
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Figure 10.37: Validation results for y1 removing the working point.

10.4.4. Control results: normal operation

The different control strategies are tested in a situation similar to the iden-

tification experiment. Steps are applied to the set points of the CVs. From

Figure 10.39

• DM: Presents a little bit more interaction than LV-MPC techniques, but

the response is almost equivalent.
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Figure 10.38: Validation results for y2 removing the working point.

• LV-MPC: Slightly outperforms DM and has less d.o.f.. Note in LV-MPC

the controller has 100 d.o.f., whilst in DM there are nuni = 120 d.o.f..

• LV-MPC-cons: quadratic constraints in Figure 10.40 are active in some

intervals, which provides a different control result to that obtained in

LV-MPC. However, since the use of constraints is not too important in

this scenario, the difference is negligible.

• LV-MPC-cons-neg: Quadratic constraints neglecting past data are not

active for large periods of time, Figure 10.41, then the same result as in

LV-MPC is obtained

Summing up, in normal operation all the control strategies evaluated per-

form similarly.
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Figure 10.39: Closed-loop time response in normal operation. DM, continuous

blue line; LV-MPC, dashed green line; LV-MPC-cons, dotted red line; LV-

MPC-cons-neg, dash-dotted black line.
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Figure 10.40: LV-MPC-cons: J̄t, continuous blue line; J̄e dash-dotted red line.
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Figure 10.41: LV-MPC-cons-neg: J̌t, continuous blue line; J̌e dash-dotted red

line.

10.4.5. Control results: large changes in set points and pertur-

bance

The control strategies are evaluated in a situation different to that in the

identification data set. Three events happen during the experiment: first a

large change in the set point for y1, second a large change in m1, and third a

large change in the set point for y2. From Figure 10.42:

• DM: Presents the strongest interaction, but can reach any point as model

validity is not ascertained.
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• LV-MPC: Equivalent to DM, but has less d.o.f..

• LV-MPC-cons: Interaction to a change in y1 is considerably reduced as

the model is used in the range in which it is valid. From Figure 10.43, J̄t
is at the boundaries of constraints continuously, and J̄e increases when

m1 changes. Constraints on J̄t and J̄e reduce interaction and provide

better control if the process is in the area in which it has been identified.

However, the resulting control is biased when there is a change in y2
because of the constraints to ensure validity of predictions.

• LV-MPC-cons-neg: Interaction to a change in y1 is considerably smaller

to that obtained in DM and LV-MPC, but slightly above that obtained if

past is not neglected. From Figure 10.44, J̌t and J̌e go to saturation only

when changes happen in the experiment. Neglecting past data relaxes

constraints on validity and prevents the controller to be biased.

Summing up, constraints on validity of the model neglecting past data pro-

vide better results in the event of situations not included in the identification

experiment.

Finally, the difference between linearising quadratic constraints at ∆tdti
and at ∆tdi is compared in Figure 10.45. The mean value of the constraint for

the different instants of the control experiment versus the number of iteration

of the sequential QP is represented. The continuous blue plot represents the

vale of J̄t linearising at ∆tdti , and the dashed red plot represents the vale of

J̄t linearising at ∆tdi . In the first iteration the QP runs with no linearised

constraint, thus both approaches present the same vale of J̄t. For the second

iteration, the approach linearising at ∆tdti provides a mean value of J̄t closer

to 1. In both approaches J̄t converges to 1, but if the linearisation is performed

at ∆tdti , the algorithm converges at a faster rate. In real-time applications,

computing time bounds the maximum number of iterations of the QP to im-

plement, hence a fast convergence can be of importance, then linearising at

∆tdti is better than linearising at linearising at ∆tdi .
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Figure 10.42: Closed-loop time response in the event of a large change in

the set point for y1. DM, continuous blue line; LV-MPC, dashed green line;

LV-MPC-cons, dotted red line; LV-MPC-cons-neg, dash-dotted black line.
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Figure 10.43: LV-MPC-cons: J̄t, continuous blue line; J̄e dash-dotted red line.
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Figure 10.44: LV-MPC-cons-neg: J̌t, continuous blue line; J̌e dash-dotted red

line.
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Figure 10.45: Decrease rate of J̄t. Linearising at ∆tdti , continuous blue line;

linearising at ∆tdi , dashed red line.
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CHAPTER 11

CONCLUSIONS

This Part III of the thesis proposes LV-MPC for continuous processes. LV-

MPC is a model predictive control strategy for continuous processes imple-

mented in the space of the latent variables. Part of the LV-MPC methodology

has been published in [Lauŕı 10b].

The major advantages of LV-MPC are:

• The identification is MPC relevant (MRI) provided the multi-step ahead

predictor is directly identified from the identification data set.

• Identification is performed by means of PLS

– Accounts for correlation in the identification data set.

– Acts as a prefilter reducing the effect of noisy data.

• Control is implemented in the reduced space of the latent variables which
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– Can reduce computational complexity by reducing the decision space.

– Improves robustness for tightly tuned controllers.

– Makes it possible to constrain the decision space of the controller

to ensure model validity.

• Systematic tuning strategy for nu

The major limitations of LV-MPC are:

• The structure of the model is linear and Industrial processes are non-

linear. However, some methodologies can be combined with LV-MPC

to cope with non-linearities: add constraints to MVs, keep the process

around the operating point, compensate static non-linearities, or com-

bine linear local models.

• LV-MPC, As presented in this thesis, is a dual mode strategy with no

terminal control. Thus, LV-MPC stability can only be achieved for open-

loop stable processes with nf −nu greater than the process settling time.
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CHAPTER 12

CONCLUSIONS AND FUTURE WORK

12.1. Conclusions

This thesis deals with identification for MPC and implementation of MPC in

the space of the latent variables.

As for identification, the different approaches to MRI are commented and

it is proven that unlike in one-step ahead identification, the MIMO approach

is preferable to the multiple MISO approach in MRI for a sufficiently large

prediction horizon. Additionally, a PLS line search numerical optimization

approach to deal with parametric MRI is proposed. PLS-PH is simpler than

traditional numerical optimization methods provided derivatives of the non-

linear cost function are not required. The PLS-PH approach outperforms LS in

an MPC framework and also outperforms traditional numerical optimization

when the data is ill-conditioned, being equivalent to it otherwise.
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As for control, a model predictive control strategy for continuous processes

implemented in the space of the latent variables is provided. The major ad-

vantages of LV-MPC are:

• The identification is MRI provided the multi-step ahead predictor is

directly identified from the identification data set.

• Identification is performed by means of PLS

– Accounts for correlation in the identification data set.

– Acts as a prefilter reducing the effect of noisy data.

• Control is implemented in the reduced space of the latent variables which

– Can reduce computational complexity by reducing the decision space.

– Improves robustness for tightly tuned controllers.

– Makes it possible to constrain the decision space of the controller

to ensure model validity.

• Systematic tuning strategy.

12.2. Contributions

This thesis yields the following contributions:

• [Under review]: LV-MPC: Ensure Validity of Predictions. Journal of

Process Control.

• [Lauŕı 10b]: Driven Latent-Variable Model-Based Predictive Control for

Continuous Processes. Journal of Process Control, vol. 20, pages 1207–

1219, 2010. (TOP25, October to December 2010, Chemical En-

gineering)
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• [Lauŕı 10a]: PLS-based model predictive control relevant identification:

PLS-PH algorithm. Chemometrics and Intelligent Laboratory Systems,

vol. 100, pages 118–126, 2010. (TOP25, January to March 2010,

Mathematics)

• [Lauŕı 10c]: Model predictive control relevant identification: multiple

input multiple output against multiple input single output. IET Control

Theory and Applications, vol. 9, pages 1756–1766, 2010.

• [Lauŕı 09]: A PLS Approach to Identifying Predictive ARX Models, 3rd

IEEE Multi-conference on Systems and Control (MSC 2009)

12.3. Future work

Some ideas for future work:

• Program the algorithm in C so that it can be implemented in real-time

applications for fast processes.

• Consider measurable perturbations in the model for better predictions.

• Use PCR instead of PLS to perform the projection onto the latent vari-

able space and compare both approaches.

• The dynamic matrix approach used in this thesis to account for MRI

comes from SMI [Huang 08]. Causality of the model can be enforced

in SMI [Qin 06]. In the identification approach in this paper however,

causality of the model is not enforced; thus, it can be considered future

work to improve quality of predictions.

• Combine LV-MPC with two-stage subspace identification (SSID) pro-

posed in [Kano 09]. In SSID highly accurate soft-sensors that take into

account the influence of unmeasured disturbances on estimated key vari-

ables are implemented.
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APPENDIX A

MIMO ARX MODEL

Let us take the MIMO ARX model:1






y1(k)
...

yno(k)




 =







B1,1

A1
. . .

Bni,1

A1

...
. . .

...
B1,no

Ano
. . .

Bni,no

Ano












u1(k)
...

uni(k)




+







ξ1(k)
A1

...
ξno (k)
Ano







(A.1)

Where:

Be,s = b1e,sz
−1 + . . .+ bnbe,s

z−nb

As = 1 + a1sz
−1 + . . .+ anasz

−na

e ∈ [1, 2, . . . , ni] ; s ∈ [1, 2, . . . , no].

For simplicity, all the numerators and denominators are assumed to be of

the same order. Otherwise, polynomial operations may be applied, and some

1For ease of notation, the polynomials in z−1 are represented only by their name,

Ano
(z−1) ≡ Ano

.
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values may be fixed to zero to transform the original structure into the given

general expression for a MIMO ARX model.

Output s can be expressed:

Asys(k) = [B1,s . . .Bni,s]






u1(k)
...

uni(k)




+ ξs(k)

ys(k) =[B1,s . . .Bni,s]






u1(k)
...

uni(k)




+ (1−As)ys(k) + ξs(k)

=[b̄1s . . . b̄nbs
]






uT
k−1
...

uT
k−nb




+ [−a1s . . .− anas ]






ys(k − 1)
...

ys(k − na)




+ ξs(k)

=[uk−1 . . .uk−nb , ys(k − 1) . . . ys(k − na)]














b̄T
1s
...

b̄T
nbs

−a1s
...

−anas














+ ξs(k)

Where:

b̄αs = [bα1,s
. . . bαni,s

], ∀α ∈ [1, 2, . . . , nb]

uk = [u1(k) . . . uni(k)].

The general expression for linear models used in this thesis can be derived

from the previous equation as

yk = xk−1θ + ξk (A.2)

Where:

yk = [y1(k) . . . yno(k)]
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xk−1 = [uk−1 . . .uk−nb , yk−1 . . .yk−na ]

θ̂ =









B
T

A1

...

Ana









B =






b̄11 . . . b̄nb1

...
. . .

...

b̄1no . . . b̄nbno






Aβ =












−aβ1
0 . . . . . . 0

0
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0

0 . . . . . . 0 −aβno












, ∀β ∈ [1, 2, . . . , na] (A.3)

ξ(k) = [ξ1(k) . . . ξno(k)].
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APPENDIX B

PLS-PH ALGORITHM

The pseudo-code for the algorithm is described using some Matlabr notation1:

1. Select nlv using X and Y in PLS and crossed validation techniques2

2. θk is obtained by applying PLS to X and Y using nlv

3. Form Ya and obtain Xa|k using θk

4. Obtain W, P, B and Q applying PLS to Xa|k and Ya

5. Obtain pk using eq. (7.15)

1Limiting the maximum number of iterations in each of the two loops of the algorithm is

advisable.
2The LS-PH algorithm is a particular case of PLS-PH with nlv = nx. Such value of nlv

is obtained when there is no collinearity in the data set; thus, no reduction in the number

of variables in the regression matrix is needed.
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Search for αk

6. −→α = [0 0.5 1]

7. Estimate a, b and c in eq. (7.12) using the three values in −→α .

8. Find the point in which the first derivative of eq. (7.12) vanishes:

α′ =
−b

2c

9. Decide the new value of αk:

If c > 0 (the parabola moves up)

If 0 < α′ < 1

αk = α′

else

If α′ 5 0

αk equals the middle point between minα(
−→α ), s.t. α > 0, and 0

else

αk equals the middle point between maxα(
−→α ), s.t. α < 1, and 1

else

If α′ > −→α (1, 1)

αk equals the middle point between minα(
−→α ), s.t. α > 0, and 0

else

αk equals the middle point between maxα(
−→α ), s.t. α < 1, and 1

10. The value of −→α with the largest cost is removed and αk is added to −→α .

11. Go to step 12 if eq. (7.13) holds; otherwise, go to step 7

12. αk equals the value in −→α with the lowest JLRPI

13. θk+1 = θk + αk pk

14. Finish if eq. (7.14) holds; otherwise, k = k + 1 and go to step 3
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APPENDIX C

OBTAINING XDOF

Obtain xdof given td and xp. One may think xdof can be obtained by projecting

t back to the original space by means of the corresponding submatrix in P,

from Equation (4.2):

x = tPT ⇒ [xp xf xdof ]
︸ ︷︷ ︸

x

= t[PT
p PT

f PT
dof ]

︸ ︷︷ ︸

PT

⇒ xdof = tPT
dof (C.1)

Let us denote this, option A.

An alternative approach is presented in proposition 9.2.1, let us denote this

approach option B.

xdof = td(Z
T
dofZdof)

−1ZT
dof

︸ ︷︷ ︸

Mdof

.
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In this appendix options A and B are compared. Note x is used to perform

predictions in the PLS model, and x = [xp xdof ].
1 When performing predic-

tions, x is projected to obtain t using Equation (9.4). For the methodology

to be consistent, if t is used to obtain xdof , the projection of x = [xp xdof ]

by means of Z should provide the same value of t if t is used to perform

predictions. Note that from Equation (9.4), t can be expressed:

t = tp + td = xpZp + td.

To ease understanding of the comparison, one figure for each option is

shown. The examples in the figures assume xp, xdof , and t have one dimension.

tp is obtained as the projection of xp by means of Zp, Equation (9.4). tdof
2 is

the decision variable and is given an arbitrary value for the plots.

Option A

xdof in Equation (C.1) is obtained as the projection of t onto the outer

space, see Figure C.1. Using the known xp and the obtained xdof , x yields

x = [xp tPT
dof ].

The projection of x onto the latent variable space, t∗ , should be equal to t.

The projection is performed by means of Equation (9.4).

t∗ = xZ

= xpZp + tPT
dofZdof

= tp + tPT
dofZdof

Figure C.1 shows how t∗ is obtained by projecting x onto the latent variable

space.

1In the sake of simplicity, nu in this section is assumed to be equal to nf , thus there is no

xf .
2Note td = tdof .
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C. Obtaining xdof

Provided t = tp+tdof , from the previous equation t∗ 6= t. This can also be

appreciated in Figure C.1. Hence, if xdof is obtained using Equation (C.1), t

cannot be used to perform predictions, thus this methodology is inconsistent.

x
p

t
p

t
dof

t
x

dof

x

t*

Figure C.1: xdof option A

Option B

Figure C.2 shows how xdof is obtained from tdof , proposition 9.2.1. Using

the known xp and the obtained xdof , x yields

x = [xp tdof(Z
T
dofZdof)

−1ZT
dof ].

The projection of x onto the latent variable space, t∗ , should be equal to t:

t∗ = tp + tdof(Z
T
dofZdof)

−1ZT
dofZdof

= tp + tdof
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Figure C.2 shows how t∗ is obtained by projecting x onto the latent variable

space.

Provided t = tp + tdof , from the previous Equation t∗ = t, which can be

appreciated in Figure C.2. Hence, the use of proposition 9.2.1 to obtain xdof

is consistent with using t to perform predictions.

x
p

t
p

t
dof

t,t*

t
dof

x
dof

x

Figure C.2: xdof option B

For the methodology in option A to be consistent, t∗ instead of t would need

be used to perform predictions in Equation (9.9). In this paper option B has

been used, however, one could alternatively use option A noting predictions

need be performed using t∗ . Both methodologies have been implemented and

equivalent results have been obtained in terms of closed-loop performance and

Hessian conditioning, thus, any of them may be used. The reason to use option

B is the formulation allows us to improve Hessian conditioning in Section 9.3.
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APPENDIXD

CONSISTENCY

The basic control methodology described in Section 9.2 is proven to be con-

sistent in appendix C. In Section 9.3 matrices M̄dof and M̄t are obtained to

improve Hessian conditioning. This Appendix proves the methodology with

the new matrices M̄dof and M̄t is still consistent.

For the methodology to be consistent, if t is used to obtain xfdof , the

projection of x = [xp xfdof ] by means of Z should provide the same value of

t if t is used to perform predictions.

Using the known xp and the xfdof obtained in Equation (9.19), x yields

x = [xp xfdof ] = [xp td(MQP + Z−1∗
fdof )

︸ ︷︷ ︸

M̄fdof

].
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Note M̄dof is a submatrix of M̄fdof . The projection of x onto the latent variable

space, t∗ , should be equal to t:

t∗ = xpZp + xfdofZfdof

= tp + td(MQP + Z−1∗
fdof )Zfdof

= tp + td(MQPZfdof + I)

From Equation (9.18), t yields

t = tp + td(MQPZfdof + I)
︸ ︷︷ ︸

M̄t

From the previous equations t∗ = t, then the methodology is consistent

with using t to perform predictions.
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