
Chapter 1

Introduction

The algebraic eigenvalue problem arises in many scientific and engineering appli-
cations, for instance (see [Saad, 2011, Section 10] and [Roman, 2011]):

• vibration analysis, to study the resonance phenomenon in buildings and
bridges (in structural dynamics);

• resonance in electrical networks;

• analysis of systems modeled by the Schrödinger equation (in quantum chem-
istry);

• stability analysis of dynamical systems, bifurcation analysis;

• principal components analysis (in data mining and statistics);

• analysis of Markov Chain models (for computing the stationary distribution
in discrete state and time random processes);

If the problem dimension is small (less than 106), it can be solved by direct
methods, that obtain the results in a finite number of steps. For instance, the QR
method [Francis, 1961] obtains all the eigenvalues and eigenvectors of a matrix of
dimension n in O(n3) iterations.

However, in many applications the problem dimensions are limited by the com-
putational resources, even if a small quantity of solutions are required. Examples
of this can be found in structural dynamics [Bertolini, 1998] and electromagnetism
[Arbenz and Geus, 1999] where more accurate results are obtained from solving
larger-scale eigenvalue problems as a result of finer-grain discretization. Moreover
the problem matrices often have an efficient matrix-vector products, in the sense
that the cost in operations and the storage in float point numbers are far from
O(n2), such as the sparse, the Vandermonde or the Toeplitz matrices.

In these cases iterative methods can be more optimal. Considering the comput-
ing time, the solution is corrected every iteration until the required quality of the

1

Chapter 1. Introduction

solution is satisfied, process that in general can be complete in O(n2) operations,
that is a low cost compared to O(n3) of the direct methods. Moreover the time-
expensive operations in the iterative methods (e.g, the matrix-vector products with
the problem matrices, the vector operations such as additions, scaling and inner
products) can be implemented with excellent performance in high-performance
architectures, like in distributed memory or in GPUs.

On the other hand, considering the memory requirements, iterative methods
can be implemented with a storage requirement of O(nk) with k � n, excluding
the problem matrices. However many direct methods modify the problem matrices
with the consequence of breaking their efficient structures, arriving at to the cost
of storing almost the full matrix, i.e. O(n2).

For an extended introduction to the eigenvalue problems and the methods for
solving them we refer the reader to [Bai et al., 2000; Stewart, 2001b; Saad, 2011].

1.1 Formal definition and problems classification

The thesis treats the solution of linear eigenvalue problems, whose most generic
form is as follows. Given a pair of square matrices A and B of dimension n, the
problem consists in finding non-trivial pairs, i.e., x �= 0, of scalar λ ∈ C and vector
x ∈ Cn such that

Ax = λBx. (1.1)

There are up to n distinct pairs, called eigenpairs, that satisfy this relation and
we denote them as (λi, xi). The λi solutions are called eigenvalues, and are also
the solutions of the characteristic equation det(A − λB) = 0. The xi solutions
are called (right) eigenvectors, and the y solutions that satisfy y∗A = λy∗B are
called the left eigenvectors. The subspace spanned by the eigenvectors with the
same eigenvalue λ is called eigenspace associated to λ.

An important subclass of problems is the standard Hermitian eigenproblem
(HEP), when A is Hermitian and B = I. In that case, the problem has n solutions,
whose eigenvalues are real and eigenvectors X form an orthonormal basis, i.e.,
X∗X = I, so that

A = XΛX∗, where Λ = diag(λ1, . . . , λn) and X = [x1, . . . , xn]. (1.2)

Notice that the left and right eigenvectors coincide in this problem.
Moreover, the eigenvalues are well-conditioned: the eigenvalues change at most

as much as the norm of the perturbation in A,

|Λ(A + E)i − Λ(A)i| ≤ �E�2, (1.3)

where Λ(M)i is the i-th smallest eigenvalue of M. Therefore we can bound the
error of an approximate eigenpair (λ̃, x̃) by its associated residual r = Ax̃ − λ̃x̃,

|λ̃ − λ| ≤ �r�2. (1.4)

2

1.2 Subspace methods

When A is Hermitian and B is Hermitian and positive definite, i.e., Λ(B)i > 0,
the problem is referred to as generalized Hermitian (GHEP). In that case, the
problem can be transformed into a standard one,

Ax = λBx ⇔ L−1AL−∗(L∗x) = λ(L∗x), (1.5)

where L is the Cholesky factor of B (B = LL∗). By this relation part of the
good properties of the standard Hermitian problems are inherited. For instance,
the eigenvalues are also real, the eigenvectors form a B-orthonormal basis, i.e.,
X∗BX = I, and the right eigenvectors are also equal to the left ones. In addition,
the error of an approximate eigenpair can be bound by its residual r = Ax̃− λ̃Bx̃,

|λ̃ − λ| ≤
�r�B−1

�x̃�B
. (1.6)

The standard non-Hermitian problems (NHEP), when A is not Hermitian and
B = I, lose some of the nice properties described above: the eigenvalues can be
complex, even if A is real, and the right and the left eigenvectors do not have
to coincide, do not necessarily form an orthogonal basis and may not exist n
independent vectors (although there are at least as many as distinct eigenvalues).

The rest of the problems are classified as generalized non-Hermitian problems
(GNHEP) and, beside sharing the NHEP properties described above (notice that
if B−1 exists the problem can be transformed into standard form), they can have
infinite as eigenvalues, whose associated right and left eigenvectors correspond to
the non-zero vectors x and y satisfying Bx = 0 and y∗B = 0, respectively.

In the non-Hermitian cases there is not a simple bound for the error of the
eigenvalues and the eigenvectors related with the associated residual. Neverthe-
less, practical solvers work with the backward error, an estimation of the size of the
perturbation on the problem matrices with which the solution provided would be
the exact solution. The product of the backward error and the condition number
(of eigenvalues and eigenvectors, i.e., the sensitivity of these entities for perturba-
tions in the problem matrices) provides a first order error bound for the computed
solution.

For the backward errors and condition numbers for different eigenvalue prob-
lems we refer the reader to [Higham and Higham, 1998; Bai et al., 2000].

1.2 Subspace methods

The iterative methods we will refer to belong to the subclass of subspace methods,
whose basic structure consists in generating a sequence of subspaces V(i) and
extracting approximated solutions from them.

The Rayleigh-Ritz procedure is the most basic approach to extract approximate
pairs (θ̃, x̃) and is considered useful for computing eigenvalues at the periphery of
the spectrum. In a standard problem, this technique imposes the Ritz-Galerkin
condition on the associated residual to the returned pair,

r := Ax̃ − θ̃x̃ ⊥ V, (1.7)
3

Chapter 1. Introduction

which leads to the low-dimensional projected eigenproblem

V ∗AV u = θ̃V ∗V u. (1.8)

From the solutions (θ̃, u) the returned pairs (θ̃, x̃) = (θ̃, V u) are obtained, which
are the so-called Ritz pairs.

The simplest particular case of a subspace method is the Power method, that
iterates with a subspace of fixed dimension 1 (a vector) v(i), that is replaced by a
vector in the direction of Av(i), where A is the matrix of a standard eigenproblem.
The approximate eigenvalue is computed by the Rayleigh quotient θ̃(i) = ρ(v(i)),
where ρ(x) = x∗Ax(x∗x)−1, the particular case of the Rayleigh-Ritz procedure
for a subspace spanned by a single vector. The recurrence, if it converges, tends
to the eigenvector associated to the largest magnitude eigenvalue with a linear
convergence rate.

With a similar scheme, the Rayleigh Quotient Iteration (RQI) updates the vec-
tor in the direction of (A−θ̃(i)I)−1v(i), with a convergence rate at least quadratic,
and cubic in some cases. Despite its great convergence rate, the inversion of large
matrices makes the method inefficient for large problems. See detailed information
on the Power method and RQI in [Parlett, 1980].

These two basic methods can be found in the soul of more sophisticated meth-
ods, such as methods using Krylov subspaces, which are generated by the sequence
of directions produced by the Power method,

Km(A, x) = span{x,Ax,A2x, . . . , Am−1x}.

The Arnoldi method builds a Krylov subspace basis V , orthogonalizing the
new vector vi against the previous ones in the basis V1:i−1 by Gram-Schmidt. As
a result the projected matrix V ∗AV is upper Hessenberg, and the matrix can be
filled with the intermediate results during the Gram-Schmidt orthogonalization.

When A is Hermitian, the projected matrix is symmetric tridiagonal, property
exploited by the Lanczos method, that only orthogonalizes the new vector against
the two previous ones. However, in finite precision arithmetic, the process does not
keep the vectors in the basis sufficiently orthogonal, and as a consequence spurious
copies of the eigenvalues appears. Practical versions of Arnoldi and Lanczos can
be found in [Parlett, 1980; Saad, 2011].

As the Power method, Krylov methods converge toward eigenvalues in the pe-
riphery of the spectrum. Their main drawbacks are exposed when interior eigen-
values are sought, often requiring to handle a matrix inverse, for instance with
the shift-and-invert technique [Ericsson and Ruhe, 1980]. This implies solving lin-
ear systems quite accurately at each eigensolver iteration, frequently addressed by
direct solvers to guarantee robustness.

Davidson methods, which are the main topic of this thesis, try to overcome this
limitation by solving linear systems only approximately, without compromising the
convergence in many cases, although influencing in the total number of iterations.

Unlike Krylov methods, Davidson methods work with unstructured subspaces,
formed by corrections to the approximate eigenvector closest to the target values.

4

1.3 Survey of freely available Davidson software

Table 1.1: List of software with Davidson-type methods (GD: Generalized Davidson,
JD: Jacobi-Davidson) for the solution of sparse eigenvalue problems, indicating the ver-
sion and the year of the last release, the main language in which is written and whether
distributed memory is supported.

Name Description Version Date Language Par.
ANASAZI GD, LOBPCG 10.8 2011 C++ Yes
JADAMILU JD (symmetric) 2.0 2009 F77 No
JDQR, JDQZ JD (NHEP and GNHEP, resp.) - 2002 Matlab No
JDCG JD (symmetric) - 2005 Matl., F77 No
MPB Conjugate Gradient, GD 1.4.2 2003 C Yes
PRIMME GD, JD (symmetric), LOBPCG 1.1 2006 C Yes
PySPARSE JD (symmetric) 1.1.1 2010 C, Python No
SLEPc GD, JD 3.2 2011 C Yes

Preconditioners (approximate inverses, such as incomplete Cholesky or incomplete
LU) occupy a central role in Davidson methods, being used in computing the
corrections by either accelerating the convergence of an iterative linear solver (as
in Jacobi-Davidson) or being applied in order to generate the new vectors (as
in Generalized Davidson). A more detailed explanation of Davidson methods is
exposed in §2.1 of this thesis.

Precisely the existence of a good quality preconditioner for a certain application
that properly strikes the balance between numerical behavior and computational
performance can make Davidson methods competitive against Krylov methods.
This situation is extensible to LOBPCG [Knyazev, 2001] that, although not being
a Davidson method, it has a similar structure and its performance is also influenced
by the quality of the preconditioner employed.

1.3 Survey of freely available Davidson software

The progress in iterative methods for solving eigenvalue problems is reflected in
the proliferation of software in the last 20 years, as observed in the software listed
in [Hernandez et al., 2006] and [Hochstenbach, 2007]. In this section we take a
brief tour considering the codes and libraries with Davidson methods. The ones
with some development in the last 10 years are summarized in Table 1.1.

Two of the oldest codes that implement a Davidson method are the Fortran
77 packages DVDSON [Stathopoulos and Fischer, 1994] and NA18 [Sadkane and
Sidje, 1999], block implementations of the Classical Davidson and Generalized
Davidson methods, respectively, for computing extreme (i.e., leftmost or right-
most) eigenpairs in large symmetric matrices, with several extensions such as
reorthogonalization. A C code with similar features, beside supporting paral-
lelism, can be found in the electromagnetic simulation software MPB [Johnson
and Joannopoulos, 2001].

5

Chapter 1. Introduction

The authors of the Jacobi-Davidson variants JDQR and JDQZ described in
[Fokkema et al., 1999] provide a reference implementation in Matlab, that includes
standard and harmonic Rayleigh-Ritz extraction and several iterative methods for
solving the correction equations. There is available a Fortran 77 code of the JDQZ
method using complex arithmetic.

JDCG is a modified version of JDQR for symmetric problems, that solves the
Jacobi-Davidson correction equation with CG, using a sensible stopping criterion
detailed in [Notay, 2002]. The corresponding algorithm for real GHEP is called
JDCG GEP. JDRPCG is another variant of JDCG with regular preconditioning
[Notay, 2005].

The jdsym module in PySPARSE provides a Python wrapper to a C-coded
Jacobi-Davidson method for GHEP with B-orthogonalization, whose earlier ver-
sion was developed in the context of a PhD thesis [Geus, 2002].

JADAMILU [Bollhöfer and Notay, 2007] implements a Jacobi-Davidson method
for computing the smallest or interior eigenvalues of symmetric matrices. The cor-
rection equation is accelerated by a built-in preconditioner based on ILUPACK.

Except MPB, the mentioned codes are sequential, i.e., they run in a single core.
The main parallel libraries that provide Davidson eigensolvers are: Anasazi [Baker
et al., 2009], that includes a customizable block Generalized Davidson (that with a
little coding can behave like a basic Jacobi-Davidson); and PRIMME [Stathopou-
los and McCombs, 2010], that includes many methods that fit in the Generalized
Davidson scheme, although currently limited to HEP.

1.4 The SLEPc library

SLEPc, Scalable Library for Eigenvalue Problem Computations, provides imple-
mentations of iterative methods for solving eigenvalue problems and singular value
problems, optimized for high-performance computers. The problem matrices can
be defined by explicit (sparse) matrices or implicitly by the matrix-vector products.

The methods in SLEPc include state-of-the-art implementations of the sub-
space methods described in the previous section, such as power method, inverse
iteration, Rayleigh Quotient Iteration (RQI), Arnoldi, Lanczos, Krylov-Schur and
Golub-Kahan-Lanczos for SVD, besides Generalized Davidson and Jacobi-Davidson
described in this thesis.

SLEPc has been developed and maintained by the GRyCAP group (Grid y
Computación de Altas Prestaciones) at the Universitat Politècnica de València
following the next guidelines:

stability and robustness the implementations correspond with the most nu-
merically stable variants sought, whose robustness is reinforce by the inclu-
sion of convergence monitors and error detectors;

efficiency the most expensive parts of the code are optimized by parallelizing
them and improving the data locality;

6

1.4 The SLEPc library

abstraction the software is organized in several abstraction layers, hiding imple-
mentation details and data structures, and allowing a uniform and consistent
access to the methods by an interface with concepts close to the services that
are offered. For instance, the different solvers implemented in SLEPc have a
common interface to the user, and similarly, the implementations access the
problem matrices, the preconditioner and vectors by other interfaces that do
not consider the underlying format; and

friendly usability the methods expose in an organized way the options to control
the aspects that influence in the performance, with appropriate default values
so that non-expert users can skip as much as possible of them.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for Scientific
Computation, [Balay et al., 1997, 2011]), a widespread freely available framework
for the numerical solution of partial differential equations, which provided math-
ematical algorithms using object-oriented programming techniques in order to be
able to manage the complexity of efficient numerical codes for different architec-
tures, specially considering distributed memory computers.

The object-oriented approach in PETSc has the objective of reducing the user
code to manage a set of data structures and algorithmic objects, avoiding the
considerations on the underlying data structures and implementation details. The
basic abstract data classes are index sets, vectors and matrices, and on top of
that are various classes of solver objects, including linear, nonlinear and time-
stepping solvers. Many different iterative linear solvers are provided, including CG
and GMRES, together with various preconditioners such as Jacobi or Incomplete
Cholesky. PETSc has also the provision to interface with third-party software such
as HYPRE.

SLEPc extends PETSc with all the functionality necessary for the solution
of eigenvalue problems. SLEPc inherits all the good properties of PETSc, in-
cluding portability, scalability, efficiency and flexibility. SLEPc also leverages
well-established eigensolver packages such as ARPACK, BLOPEX and PRIMME,
integrating them seamlessly. Some of the outstanding features of PETSc, also
present in SLEPc, are the following:

• object-oriented programming style, that aims at providing properties such
as extensibility and ease of maintaining;

• data-structure neutral implementation with transparent support for real and
complex arithmetic of single, double and quadruple precision;

• run-time flexibility, giving full control over the solution process (e.g., the
method for solving the eigenvalue problem, the linear system and the pre-
conditioner to be used);

• portability to a wide range of parallel platforms; and

7

Chapter 1. Introduction

• interfaces to different languages other than C/C++, such as Fortran, Matlab
and Python.

Like other high-level classes in PETSc, the SLEPc eigenvalue solvers are built
on the foundational classes:

Vec that represents dense vectors and can be used in typical algebraic operations
like scalings, additions and inner products;

Mat that represents matrices and can be operated with other matrices and vec-
tors, with a wide variety of available implementations like dense matrices,
sparse matrices (using Compressed Sparse Row format), block diagonal ma-
trices, permutation matrices or discrete Fourier transform (DFT) matrices;

KSP that represents Krylov iterative methods for solving linear systems, such as
CG, GMRES or BiCGStab (for more information about these methods and
preconditioners we refer the reader to [Saad, 2003]); and

PC that represents preconditioners (i.e., matrix inverse approximations), which
there are a wide variety of implementations (such as Jacobi, block Jacobi,
ICC and ILU), besides wrappers to external packages (such as HYPRE1 or
pARMS [Li et al., 2003]).

SLEPc in turn extends the PETSc functionality by the addition of the following
classes:

EPS that represents the eigenvalue solvers, including the Davidson methods de-
scribed in this thesis;

ST that represents a spectral transformation, which is employed by the Krylov
solvers in order to deal with GNHEP (by for instance computing the eigen-
values of B−1A) and to compute interior eigenvalues;

IP that represents the inner product that is used in the orthogonalization of
vectors.

The structure of SLEPc and PETSc is detailed in §2.2.1 and §2.2.2 of this
thesis. For general information about the libraries we refer the reader to [Balay
et al., 1997, 2011; Hernandez et al., 2005; Campos et al., 2011].

1.5 High-performance computing

High-performance computing has the objective of addressing challenging scientific
computing problems, dealing with huge data volumes and/or number of operations.
The codes in this context have to consider the underlying computer memory and
processor architectures, whose complexity has increased to satisfy the computation

1http://www.llnl.gov/casc/hypre.

8

1.5 High-performance computing

demands of scientific applications. For instance, in order to obtain high perfor-
mance in supercomputers with hybrid architectures in which the computational
processors are arranged in nodes with shared memory (the cores in the same blade)
and the communication with processors in outside nodes is significantly slower, the
operations and data must be distributed in an appropriate way, maximizing the
communication between the processors in the same node.

However, the optimal distribution of the data and the operations is not trivial
and depends on the specific characteristics of each machine, which can explain
a certain lack of competent software optimized for architectures other than the
single core with uniform memory access (UMA), such as multi/many-cores, GPU
and distributed memory.

There are software providing high-level access to the special functions on these
architectures throw standard interfaces, such as:

• Message Passing Interface (MPI) [MPI Forum, 1994], as portable message-
passing system to communicate and synchronize processes running on nodes
interconnected in some way (distributed memory).

• POSIX threads (Pthreads)2 and OpenMP3, as interfaces to shared memory
multiprocessing.

• CUDA4 and OpenCL5, as interfaces to launch and manage executions on
GPUs.

On the other hand, there are two important libraries that provide reference
implementations of common operations in scientific computation, BLAS [Black-
ford et al., 2002] for basic algebra operations in dense vectors and matrices, and
LAPACK [Anderson et al., 1992] for advance dense linear algebra operations such
as resolution of linear system of equations, eigenvalue problems, singular value
problems and least squares.

Major processor vendors provide optimized implementations of BLAS and LA-
PACK interfaces, like AMD Core Math Library (ACML)6, Intel Math Kernel
Library (MKL)7, Engineering and Scientific Subroutine Library (ESSL)8 for IBM
Power processors, and CUBLAS9 for Nvidia GPUs.

In this context, we can find great efforts to extend (or supersede) the BLAS
and LAPACK features, for instance supporting other vector and matrix formats

2Described in the standard POSIX.1c, Threads extensions (IEEE Std 1003.1.c-1995).
3The last version approved by the consortium OpenMP Architecture Review Board is 3.1,

and is available at http://openmp.org/wp/openmp-specifications/.
4Developed by Nvidia Corporation, see http://www.nvidia.com/object/cuda_home_new.

html.
5Currently been developed by the Khronos Group, see http://www.khronos.org/opencl.
6http://developer.amd.com/cpu/Libraries/acml/.
7http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/.
8http://www-03.ibm.com/systems/software/essl.
9http://developer.nvidia.com/cuBLAS.

9

Chapter 1. Introduction

(e.g., ACML implements the BLAS functionality for sparse matrices), or provid-
ing implementations optimized for different architectures (e.g., MAGMA10 and
PLASMA11), or including more advance methods for solving linear and non-linear
problems (other examples besides PETSc and SLEPc are GNU Scientific Library
(GSL)12 and Trilinos13).

1.6 Thesis objectives

As noted before, the Davidson methods are becoming an excellent alternative
where Krylov methods do not offer good performance. Despite their potential
benefit, it is still difficult to find freely available Davidson parallel implementations,
specially for the non-Hermitian case and the generalized case.

Our objective is to provide a robust and efficient parallel implementation of
Generalized Davidson and Jacobi-Davidson methods in the context of SLEPc, that
can address standard and generalized problems, Hermitian and non-Hermitian,
with either real or complex arithmetic, and follows the guidelines described in
§1.4:

stability and robustness by studying the different variants for each aspect of
the Davidson methods from the numerical point of view, such as the extrac-
tion of approximate eigenpairs, and the expansion, restarting and initializa-
tion of the search subspace (see §2.1); even studying new approach, as the
expansion described in Ch. 3;

efficiency by considering the parallel performance in the implementation of the
Davidson methods using PETSc functions (see §2.3), and even extending the
PETSc interface such as the case of the multi-vectors (see §2.2.1 and §2.2.2);

abstract by employing the interfaces provided by PETSc and being transparent
to the underlying architecture of the machine, as well as implementing as
many functions of the SLEPc eigensolver interface;

user friendly by exposing specific parameters to control critical aspects of the
Davidson methods, with appropriate default values (as show the results with
the test battery §2.4.1).

The stability, robustness and efficiency of the new solvers are validated using
a collection of problems whose matrices come from real applications (see §2.4.1),
besides two relevant scientific computing applications as a result of international
collaborations, namely the computation unstable modes of plasma (treated in Ch. 4
and 5) and the study of the electronic configurations of atoms (treated in Ch. 6),
in which obtaining the corresponding eigenpairs is challenging for iterative solvers.

10http://icl.cs.utk.edu/magma/.
11http://icl.cs.utk.edu/plasma/.
12http://www.gnu.org/software/gsl/
13http://trilinos.sandia.gov/.

10

1.7 Outline

1.7 Outline

The chapters of this thesis, except the current one, correspond to papers published,
submitted or in preparation, slightly modified to ensure uniform notation.

Chapter 2, submitted to ACM Trans. Math. Softw., starts with a presenta-
tion of the Davidson methods and the motivation of the development of parallel
solvers to address large-scale eigenvalue problems. After that, the different vari-
ants in this family of methods are described, focusing on the ones included in the
implementation, that is detailed in subsequent sections. The chapter ends with
experimental results solving a collection of problems, that includes standard and
generalized problems, both Hermitian and non-Hermitian.

Chapter 3, structured as a paper for future submission, introduces an expansion
method that is more general than the corresponding to Generalized Davidson,
originated in a collaboration with M. E. Hochstenbach. The convergence of this
original expansion is studied, including theoretical and practical results.

The Jacobi-Davidson solver has been employed in GENE, a plasma turbulence
code being developed at the Max-Planck-Institut für Plasmaphysik (IPP). Chapter
4, published as [Romero and Roman, 2011], briefly introduces the application and
the method used to solve the non-Hermitian eigenproblems that it generates, the
Jacobi-Davidson method with harmonic extraction. Chapter 5, published as [Merz
et al., 2012], extends the description of GENE, and addresses advanced issues, e.g.,
the use of a preconditioner based on part of the problem matrix, and initializing
the search subspace with previous solutions during parameter scan studies.

Finally, Ch. 6 treats the solution of generalized symmetric-indefinite problems
that appear in the finite element analysis of the electronic structure of light atoms
modeled by the density functional theory. The chapter is based on a submitted
paper to the journal Comput. Phys. Commun., written in collaboration with
T. D. Young in the context of the deal.II library.

Because of chapters being self-contained, some topics are introduced or de-
tailed more than once along the chapters. Theoretical backgrounds of Davidson
expansions are discussed in Ch. 2, 3 and 4 and summarized in Ch. 5 (for Jacobi-
Davidson in standard problems) and Ch. 6 (for Generalized Davidson for indefi-
nite problems). In addition, the harmonic extraction is fully detailed in Ch. 2 and
summarized in Ch. 4 for standard problems. Chapter 2 is devoted to the imple-
mentation of the Davidson solvers in SLEPc, although introductions to PETSc,
SLEPc and Davidson solvers are also found in chapters 4, 5 and 6.

Discussions about controlling the resolution tolerance in the Jacobi-Davidson
correction equation are found in chapters 2 and 4, with interesting experiment
results in the latter. Examples of the performance gain by subspace recycling, i.e.,
starting with a solution of a similar problem, is presented in chapters 5 and 6.

Two scientific applications are referred in the last chapters: the plasma turbu-
lence code GENE, treated in chapters 4 and 5, and the computation of electronic
configuration of atoms, presented in Ch. 6.

11

Chapter 1. Introduction

12

Chapter 2

Implementation of Davidson
Methods in SLEPc

SLEPc, the Scalable Library for Eigenvalue Problem Computations [Hernandez
et al., 2005], is a parallel library that provides state-of-the-art algorithms and
tools to solve large-scale eigenvalue problems, including linear eigenproblems as
well as other related problems like singular value decompositions and quadratic
eigenproblems. These problems appear frequently in different scientific disciplines,
like for instance nuclear engineering, electromagnetics and electronic structure cal-
culations, and demand large computational effort. In this context, it is necessary
to make use of high-end computing platforms, such as clusters of computers, and,
ever more, emerging hybrid architectures that combine multi-cores and accelera-
tors.

In this chapter we focus on the (linear) generalized eigenvalue problem, that
is, the computation of eigenvalue-eigenvector pairs (λi, xi) satisfying the equation
Axi = λiBxi, where A and B are square matrices, either real or complex. The
case B = I is often referred to as the standard eigenvalue problem. We will devote
especial attention to symmetric (Hermitian) problems, where both A and B are
symmetric (Hermitian) and B is positive (semi-)definite. Singular matrix pairs
(A,B), that is, when A and B have a common null space, are not considered in
this thesis. We are concerned with applications where A and B are large and
sparse, and only a small percentage of the eigenvalues are required. The methods
for this are iterative in nature, and compute approximate eigenpairs (θi, x̃i) such
that the residual �Ax̃i − θiBx̃i� is bounded by a given tolerance.

Among the methods available for addressing the above problem we can find:
(i) classical methods such as the power iteration, subspace iteration and Rayleigh
quotient iteration (RQI); (ii) Krylov methods such as Arnoldi, Lanczos and Krylov-
Schur, that are particularly suitable for computing extreme eigenvalues; (iii) pre-
conditioned conjugate gradient methods such as LOBPCG [Knyazev, 2001], that
is efficient and robust for generalized symmetric eigenproblems; and (iv) David-

13

Chapter 2. Implementation of Davidson Methods in SLEPc

Table 2.1: Summary of parallel libraries providing Davidson-type solvers, with eigen-
problem types supported by each method (HEP: standard Hermitian, GHEP: generalized
Hermitian, GNHEP: generalized non-Hermitian).

Methods
Libraries

PRIMME Anasazi BLOPEX SLEPc
Subspace Iteration HEP GNHEP

Rayleigh Quotient Iteration HEP GNHEP
LOBPCG HEP GHEP GHEP

Generalized Davidson HEP GHEP GNHEP
Jacobi-Davidson HEP GHEP� GNHEP

� Anasazi requires the user to implement the Jacobi-Davidson correction
equation.

son methods such as Generalized Davidson and Jacobi-Davidson, that prove being
very efficient compared with the rest of the methods when computing interior
eigenvalues. See [Bai et al., 2000; Stewart, 2001b; van der Vorst, 2002] for a more
detailed overview of these methods.

Krylov methods are very popular for computing eigenvalues in the periphery
of the spectrum, and are available in the form of parallel implementations such
as ARPACK [Lehoucq et al., 1998]. The main drawback of these methods is
that they often require to implicitly handle a matrix inverse, e.g., when comput-
ing interior eigenvalues with the shift-and-invert technique [Ericsson and Ruhe,
1980]. This implies solving linear systems at each eigensolver iteration, and for
this most often direct solvers must be employed to guarantee robustness. Meth-
ods belonging to the Davidson family try to overcome this limitation by relaxing
the precision with which these inverses are approximated (in some cases with a
simple preconditioner). As opposed to Krylov methods, general-purpose Davidson
solvers are still difficult to find in freely available parallel software, especially with
capabilities for non-symmetric and/or generalized problems, despite there being
numerous publications developing the methods for different problem types (as §2.1
summarizes) and even describing parallel implementations tailored for certain ap-
plications [Heuveline et al., 1997; Nool and van der Ploeg, 2000; Arbenz et al.,
2006; Genseberger, 2010; Hwang et al., 2010; Ferronato et al., 2012].

The main parallel libraries that provide eigensolvers similar to ours are sum-
marized in Table 2.1: Anasazi [Baker et al., 2009], that includes a customizable
block Generalized Davidson (that with a little coding can behave like a basic
Jacobi-Davidson) and LOBPCG; BLOPEX [Knyazev et al., 2007], that provides
a reference implementation of LOBPCG; and PRIMME [Stathopoulos and Mc-
Combs, 2010], that includes many methods that fit in the Generalized Davidson
scheme, although currently without support for generalized problems. As Table 2.1
shows, none of the mentioned libraries support non-Hermitian problems.

This chapter presents our developments in SLEPc in order to provide state-
of-the-art, robust, high performance Davidson solvers supporting Hermitian and

14

2.1 Davidson-type framework

non-Hermitian eigenproblems, both standard and generalized, with either real or
complex arithmetic.

In §2.1 we briefly summarize the theoretical background of the implemented
Davidson methods and their variants. Section 2.2 starts with an overview of SLEPc
and its foundation PETSc (Portable, Extensible Toolkit for Scientific Computa-
tion [Balay et al., 1997]), followed by an outline on the design of the Davidson
solvers and a description of their user interfaces. Then in §2.3 we discuss how
to implement some non-trivial aspects described in previous sections. In §2.4 we
present sequential and parallel performance results of our implementation, with a
number of test problems as well as a couple of real applications. Finally, we end
with the conclusions.

2.1 Davidson-type framework

We present a review of the Davidson methods and related techniques that we have
implemented in SLEPc. For an extensive bibliography about Davidson methods
see [Bai et al., 2000; van der Vorst, 2002, 2004; Hochstenbach and Notay, 2006].
First we describe the main steps of this type of methods, and later subsections
detail the variants of each step that are available in the implementation. Unfortu-
nately, often there is no mathematical proof that indicates the best way of carrying
out each step in the general case, that is, the optimal configuration is problem de-
pendent. For that reason, it is customary that libraries offering Davidson methods
provide several variants for each step and mechanisms to customize the execution.

2.1.1 General description of the Davidson-type methods
Subspace methods seek the eigenvectors in a low-dimensional search subspace,
which is updated at every iteration. Davidson-type methods are a distinguished
subclass of the subspace methods that expand the search subspace V in the direc-
tions of the computed corrections to the most wanted eigenvectors in the search
subspace. In fact a Davidson variant is characterized by how to select the wanted
eigenpairs in the search subspace (extraction) and how to compute the corrections
(expansion). The convergence of the eigenpairs is tracked, for instance monitoring
the norm of the residual associated to the approximate eigenpair, ri, or its correc-
tion, di. When an eigenpair is considered converged it is removed from the search
subspace and a deflation technique is used in order to prevent the convergence
of the same pair afterward. When the dimension of the search subspace V grows
up to a certain limit mmax, it is reset to an mmin-dimensional subspace V

� ⊂ V
keeping as much useful spectral information as possible (restart). Algorithm 2.1
provides a general scheme of a Davidson-type method. We next discuss some gen-
eral issues, and postpone the details of each step until later subsections, where the
theoretical background of the different alternatives is introduced.

From the numerical point of view, working with an orthogonal basis of the
search subspace V is desirable to control numerical error and also to maintain
the whole set of vectors linearly independent after the addition of the correction

15

Chapter 2. Implementation of Davidson Methods in SLEPc

Algorithm 2.1: Basic Davidson-type Method

Input: matrices A and B of size n, number of wanted eigenpairs p, block
size s, initial dimension of V m0, maximum dimension of V mmax,
restart with mmin vectors

Output: resulting eigenpairs (Θ,X)
1 Choose a starting subspace basis V of m0 vectors
2 Set m ← m0, l ← 0, Θ ← [] and X ← []
3 while l < p do

4 Extraction: Compute the Ritz pairs (�Θ, �X) from the proj. eigenprobl.
and sort them

5 Test convergence, store the k converged pairs in (Θ,X) and remove

them from (�Θ, �X)
6 Set m ← m− k and l ← l + k
7 if m ≥ mmax then
8 Restart V with an mmin-dimensional subspace basis
9 Set m ← mmin

10 end

11 Expansion: Compute the correction D of the first s pairs (�Θ, �X), and
add them to V

12 Set m ← m+ s

13 end

vectors D. The extraction of approximations is based on a projection on this
subspace, and it is also desirable to take into account any kind of structure (e.g.,
symmetry) present in the original problem in such a way that this structure is
preserved in the projected problem. This has implications on how the Davidson
method is realized. Therefore, the general scheme is specialized depending on the
properties of the eigenproblem.

For instance, in a standard Hermitian or generalized Hermitian-definite prob-
lem (with B positive definite) we know that eigenvectors are B-orthogonal, so
keeping a B-orthogonal basis V will result in a standard Hermitian problem com-
ing out from the projection, if the Rayleigh-Ritz procedure is used. The deflation
is performed by B-orthogonalizing the new vectors D against the previously con-
verged eigenvectors X. This variant is detailed in Algorithm 2.2.

Algorithm 2.2 returns eigenvectors with unit B-norm. However, if B is nu-
merically singular, i.e., |x∗Bx| is close to zero for some eigenvector x (that is,
an eigenvector corresponding to an infinite eigenvalue of the matrix pair (A,B)),
enforcing B-normality may result in breakdown if a Ritz vector converges to x. If
α ∈ R can be found such that A − αB is nonsingular, a straightforward solution
would be to run Algorithm 2.2 on the matrix pair (A−βB,A−αB), that has the

16

2.1 Davidson-type framework

Algorithm 2.2: Generalized Hermitian Davidson-type Method with B-
orthogonalization

Input: matrices A and B of size n, preconditioner K, number of wanted
eigenpairs p, block size s, initial dimension of V m0, maximum size
of V mmax, restart with mmin vectors

Output: resulting eigenpairs (Θ,X)
1 Choose a starting subspace basis V of m0 vectors, such that V

∗BV = Im0

2 Set m ← m0, l ← 0, Θ ← [] and X ← []
3 while l < p do

4 Extraction: Compute the Ritz pairs (�Θ, �X) by means of the

Rayleigh-Ritz method, that is, solve V ∗AV U = U �Θ, where U∗U = Im
and �X = V U

5 Sort the Ritz pairs (�Θ, �X)
6 Obtain the number of converged pairs k
7 if k > 0 then

8 Add eigenvalues �θ1, . . . , �θk to Θ

9 Set X ← [X �X1:k] and V ← �Xk+1:m

10 Set m ← m− k and l ← l + k

11 end
12 if m ≥ mmax then
13 Choose an m ×mmin-matrix M to reset V , V ← VM, such that

M∗M = Immin

14 Update (�Θ, �X) and U so that V ∗AV U = U �Θ, where U∗U = Immin

and �X = V U
15 Set m ← mmin

16 end

17 Expansion: Compute the correction D of the first s pairs (�Θ, �X)
18 V ← [V B-orthonormalize([X V],D)] and set m ← m+ s

19 end

same eigenvectors as the original problem and the eigenvalues

µ̃i =
θ̃i − β

θ̃i − α
. (2.1)

When the problem is not Hermitian, the implemented Davidson-type method
works completely with generalized Schur decompositions, see Algorithm 2.3. The
eigenvectors of non-Hermitian eigenproblems do not have to form an orthonormal
set (nor B-orthonormal), so an algorithm that operates directly with them would
be dangerous from the numerical point of view. In contrast, Schur decompositions
are numerically more stable because of the use of orthonormal bases of invariant

17

Chapter 2. Implementation of Davidson Methods in SLEPc

Algorithm 2.3: Generalized non-Hermitian Davidson-type Method

Input: matrices A and B of size n, preconditioner K, number of wanted
eigenpairs p, block size s, initial dimension of V m0, maximum size
of V mmax, restart with mmin vectors

Output: resulting eigenvalues Θ and Schur vectors X
1 Choose a starting subspace basis V of m0 vectors, such that V

∗V = Im0

2 Compute W corresponding to V , such that W∗W = Im0

3 Set m ← m0, l ← 0, Θ ← [], X ← [] and Y ← []
4 while l < p do

5 Extraction: Compute the Schur pairs (�Θ, �X), from the Generalized
Schur decomposition W∗AV = ZSU∗ and W∗BV = ZTU∗, where
�X = V U and �θi = si,i/ti,i

6 Sort the Schur pairs (�Θ, �X)
7 Obtain the number of converged pairs k
8 if k > 0 then

9 Add eigenvalues �θ1, . . . , �θk to Θ

10 Set X ← [X �X1:k], Y ← [Y WZ1:k]
11 Set V ← V Uk+1:m and W ← [W WZk+1:m]
12 Set m ← m− k and l ← l + k

13 end
14 if m ≥ mmax then
15 Choose an m ×mmin-matrix M to reset V , V ← VM, such that

M∗M = Immin

16 Update (�Θ, �X), U and Z so that W∗AV = ZSU∗ and

W∗BV = ZTU∗, where �X = V U and �θi = si,i/ti,i
17 Set m ← mmin

18 end

19 Expansion: Compute the correction D of the first s pairs (�Θ, �X)
20 Set V ← [V orthonormalize([X V],D)]
21 Compute W0 corresponding to Vm:m+s and set

W ← [W orthonormalize([Y W],W0)]
22 Set m ← m+ s

23 end

subspaces, which also simplifies the task of deflation. Schur forms have the ad-
ditional benefit of using quotients si,i/ti,i for representing the eigenvalues, thus
handling infinite eigenvalues more naturally with ti,i = 0.

Moreover, an additional advantage for the case of real non-symmetric eigen-
problems is the use of real Schur forms, which work with real orthogonal bases
of the invariant subspaces associated to the eigenvectors, that may be complex,
hence avoiding complex arithmetic completely. If the generalized Schur form cor-

18

2.1 Davidson-type framework

responding to a matrix pair (Â, B̂) is the decomposition ÂU = ZS and B̂U = ZT ,
where U and Z are unitary matrices and S and T are upper triangular matrices,
in the real Schur form S and T are upper quasi-triangular (possibly with 2 × 2
diagonal blocks representing complex conjugate pairs of eigenvalues).

In [Fokkema et al., 1999] a Jacobi-Davidson method using generalized Schur
forms is introduced (called JDQZ), whose main difference with respect to the
version presented in this chapter is that vectors used for deflation of the search
subspace (see §2.1.4) must be necessarily included in the projectors in the correc-
tion equation (see §2.1.3). In our implementation this is optional and, if necessary,
deflation is completed when a new vector is added to the bases V and W.

Consider the partial generalized Schur decomposition AX = Y S and BX =
Y T corresponding to already converged eigenpairs. The method considers that the
Schur tuple (x̃, ỹ, (α, β)), which comes from the Schur form of the projected prob-
lem in the extraction, has converged and must be appended to the decomposition,
that is,

A [X x̃] = [Y ỹ]

�
S s
0 σ

�

and B [X x̃] = [Y ỹ]

�
T t
0 τ

�

. (2.2)

So the only condition that the new tuple should satisfy is X∗x̃ = Y ∗y = 0 or,
equivalently, that X∗V = Y ∗W = 0, because x̃ ∈ span{V } and ỹ ∈ span{W}. In
the implementation this condition is enforced by maintaining the bases V and W
orthogonal against X and Y , respectively. This variant is detailed in Algorithm 2.3.

Both Algorithm 2.2 and 2.3 support computing the correction of more than
one approximate eigenpair, by increasing the value of parameter s (block size).
However, in terms of convergence our experience shows that the optimal value for
s is 1 (the same comment appears in [Stathopoulos and McCombs, 2007, §2.2.2]).

In step 5 of Algorithm 2.3 the generalized Schur decomposition is sorted so that
the wanted pairs are located at the beginning of the decomposition (see [Kressner,
2006] and references therein). The first s pairs will be corrected at the next steps,
and when restarting, the first mmin pairs determine the part preserved in V and
W.

We conclude this subsection with a brief comment about the case of Hermitian-
indefinite problems. When both A and B are Hermitian matrices, but B is indefi-
nite, then Algorithm 2.2 cannot be used but it is still possible to exploit symmetry
to some extent. If B−1A is non-defective, the eigenvectors X satisfy X∗BX = I±,
where I± is a signature matrix (diagonal with ±1 elements on the diagonal). For
this case, we have implemented a variant of Algorithm 2.3 where W = V , the
orthogonalization is performed with respect to the B inner product (that is an
indefinite inner product or a pseudo-inner product), and the resulting vectors are
normalized so that |x∗Bx| = 1. The corresponding projected problem is a gen-
eralized symmetric-indefinite eigenproblem and can be solved with a structure-
preserving method like the one proposed in [Brebner and Grad, 1982]. However,
since this solver is not available as a LAPACK subroutine, we currently use the
Schur decomposition instead.

19

Chapter 2. Implementation of Davidson Methods in SLEPc

2.1.2 Subspace extractions
The extraction techniques considered in this section return a set of approximate
eigenpairs (θ̃, x̃) whose vectors belong to the search subspace V spanned by the
columns of V , that is, x̃ = V u. The Rayleigh-Ritz approach is the most basic
one and is considered useful for computing eigenvalues at the periphery of the
spectrum (see [Stewart, 2001b, §4.4]). This technique imposes the Ritz-Galerkin
condition on the residual associated to the returned pair,

r := Ax̃ − θ̃Bx̃ ⊥ V, (2.3)

which leads to the low-dimensional projected eigenproblem

V ∗AV u = θ̃V ∗BV u. (2.4)

From the solutions (θ̃, u) of (2.4), the returned pairs (θ̃, x̃) = (θ̃, V u) are obtained,
which are called Ritz pairs.

The projected matrices V ∗AV and V ∗BV preserve the Hermitian structure of
the problem matrices A and B, and in case the search subspace basis V is B-
orthogonal, (2.4) will be a standard Hermitian eigenproblem, as indicated in line 4
of Algorithm 2.2.

However, the Rayleigh-Ritz approach generally returns poor approximate eigen-
vectors for interior eigenvalues (see, for instance, [Stewart, 2001b, Example 4.2]).
A simple explanation for that is that the Ritz-Galerkin condition (2.3) does not
consider the residual norm of the resulting eigenpairs (for a more detailed explana-
tion see [Sleijpen et al., 1998, §4]). The harmonic Rayleigh-Ritz method [Morgan,
1991; Paige et al., 1995] was proposed instead as an alternative technique for in-
terior eigenvalues, that imposes the Petrov-Galerkin condition to the residual of
the returned pairs (θ̃, x̃)

Ax̃ − θ̃Bx̃ ⊥ W := (A − τB)V, (2.5)

if eigenvalues close to τ are sought. Similarly to the previous case, this leads to
the projected eigenproblem

V ∗(A − τB)∗(A − τB)V u = ξV ∗(A − τB)∗BV u. (2.6)

The solution pairs (ξ, u) of (2.6) with smallest ξ correspond to the Ritz pairs
(θ̃, x̃) = (τ + ξ, V u) closest to the target τ , which satisfy

�Ax̃ − τBx̃� ≤ |ξ|�Bx̃�, (2.7)

resulting from left-multiplying (2.6) by u∗ and applying the Cauchy-Schwarz in-
equality. Hence it is sensible to think (at least for eigenvalues sufficiently close to
τ) that selecting the pairs (θ̃, x̃) with θ̃ closest to τ (i.e., with smallest |ξ|) also
correspond to the pairs with smallest residual norm.

20

2.1 Davidson-type framework

Recently, two new variations of the harmonic extraction have been proposed.
One is the relative harmonic extraction [Hochstenbach, 2005b] that finds eigenval-
ues θ with minimal

|θ̃ − τ||θ̃|−1 = |1 − τθ̃−1|, (2.8)

that is, eigenvalues θ̃ closest to τ considering the weight of θ̃, in contrast to har-
monic extraction. These approximate eigenpairs (θ̃, x) can be obtained by the
constraint

Ax̃ − τ(1 − τθ̃−1)−1(A − τB)x̃ ⊥ W := (A − τB)V. (2.9)

The resulting eigenpairs satisfy

�Ax̃ − τBx̃� ≤ |1 − τθ̃−1|�Ax̃�. (2.10)

The other one is specific for extracting the rightmost eigenvalues [Hochsten-
bach, 2005a], particularly when eigenvalues with large imaginary part are present
in the spectrum. These eigenpairs are selected with the Galerkin condition,

(A + τ̄B)x̃ −
θ̃ + τ̄

θ̃ − τ
(A − τB)x̃ ⊥ W := (A − τB)V, (2.11)

and they satisfy

�Ax̃ − τBx̃� ≤

�
�
�
�
�

θ̃ − τ

θ̃ + τ̄

�
�
�
�
�
�(A + τ̄B)x̃�. (2.12)

However our implementation follows the next approach. The Galerkin condi-
tions associated to the harmonic extraction and their variants can be generalized
in the parametrized Galerkin condition [Hochstenbach, 2005b, §5.1]

(αA − βB)x̃ − ξ(γA − δB)x̃ ⊥ W := (αA − βB)V, with ξ =
αθ̃ − β

γθ̃ − δ
. (2.13)

The values of α, β, γ and δ corresponding to the extraction methods are detailed
in Table 2.2. The projected eigenvalue problem associated to (2.13) is

W∗(αA − βB)V u = ξW∗(γA − δB)V u, with (αA − βB)V = WR, (2.14)

where W has orthonormal columns and R is upper triangular. The error associated
to the approximate eigenpairs is bounded by

�(αA − βB)x̃� ≤ |ξ|�(γA + δB)x̃�. (2.15)

This approach is concreted in Algorithm 2.3, by solving a problem equivalent
to (2.14) at step 5, and computing W as a basis of αA − βB at steps 2 and 21.
The implementation does it by setting

• W ← orthonormalize((αA − βB)V) in step 2, and

• W0 ← (αA − βB)Vm:m+s in step 21.

21

Chapter 2. Implementation of Davidson Methods in SLEPc

Table 2.2: Correspondence between the values of α, β, γ and δ in the generic Galerkin
condition (2.13) and some extraction methods.

Extraction α β γ δ
Harmonic Rayleigh-Ritz 1 τ 0 1
Relative harmonic Rayleigh-Ritz 1 τ 1 0
Rightmost eigenvalue 1 τ 1 −τ̄
Largest eigenvalue 0 1 1 0

2.1.3 Subspace expansions
The first subspace expansion in the context of the Davidson methods was proposed
with classical Davidson [Davidson, 1975]. The method tries to compute the small-
est eigenpairs of a standard Hermitian problem expanding the search subspace
with d satisfying,

(diag(A) − θ̃I)d = r := Ax̃ − θ̃x̃. (2.16)

Subsequent developments [Morgan and Scott, 1986; Natarajan and Vanderbilt,
1989; Morgan, 1990] tried to understand (2.16) as an iterative linear equation
solver step of the system

(A − θ̃I)d = r. (2.17)

Then Generalized Davidson was proposed, a more general expansion also useful
for non-Hermitian and generalized problems that introduced the use of fast, ap-
proximate inverses (the preconditioners, K),

d = K−1r, K ≈ A− θ̃B. (2.18)

The Olsen variant [Olsen et al., 1990] attempts to avoid the possible stagnation
of the method when the resulting vector from the expansion d and the approximate
eigenvector x are almost collinear (possibly because the preconditioner cannot
improve the current approximation, see [Stathopoulos et al., 1995] for numerical
experiments),

d = −

�

I −
K−1Bx̃x̃∗

x̃∗K−1Bx̃

�

K−1r. (2.19)

In Jacobi-Davidson [Sleijpen and van der Vorst, 1996, 2000] the search sub-
space is expanded by the approximate solution of the Jacobi orthogonal correction
equation, that obtains a correction d orthogonal to the selected approximate eigen-
vector x̃. In [Sleijpen et al., 1996] it is extended to generalized eigenproblems (and
polynomial problems) and adapted to the use of a preconditioner (see [Sleijpen
et al., 1996, Theorem 7.3]),

PK−1(A−θB)Pd = −PK−1r, with d ⊥ z where P = I−
K−1yz∗

z∗K−1y
. (2.20)

Also, some theorems have been proposed about the convergence speed depend-
ing on the values of z and y:

22

2.1 Davidson-type framework

• For A and B Hermitian and λ ∈ R, the choice of z = x̃ and any y such that
y �⊥ x̃, implies quadratic convergence [Sleijpen et al., 1996, Remark 3.4].

• The choice of y = Bx̃ and z such that z �⊥ x̃ leads to quadratic convergence
[Sleijpen et al., 1996, Theorem 3.2], also y = θ̃Ax̃ + Bx̃ leads quadratic
convergence [Sleijpen et al., 1996, Remark 3.1].

• The choice y = z = x̃ implies superlinear convergence [Sleijpen et al., 1996,
Theorem 3.4].

In SLEPc the correction equation is solved with z and y set to the approximate
right eigenvector x̃ and the corresponding vector from the test subspace, respec-
tively. This solution can be found also in [Sleijpen et al., 1996; Fokkema et al.,
1999].

2.1.4 Deflation
In works dealing with non-Hermitian problems and in early works of Jacobi-
Davidson, the projector P in the correction equation (2.20) is extended to deflate
also against the converged pairs (see [Sleijpen and van der Vorst, 1996; Fokkema
et al., 1999])

P = I −K−1 �Y (�Z∗K−1 �Y)−1 �Z∗, where �Y = [Y �Y], �Z = [X �X]. (2.21)

The extended projector avoids that the computed correction d converges toward
the previously locked invariant subspace instead of new directions that could enrich
the selected eigenvector. An extreme example is illustrated in [Fokkema et al.,
1999, §4.5] in which the convergence is slowed down and finally stagnated due to
the lack of newly produced directions.

The theoretical justification for this stagnation is presented next following
[Fokkema et al., 1999, §3.4]. Consider the standard eigenvalue problem with matrix

A and eigenpairs (λ̂i, x̂i) and the approximate eigenpair (θ̃, x̃) converging toward

(λ̂1, x̂1). The exact solution of the correction equation (2.20) with z = y = x̃ is
given by [Sleijpen and van der Vorst, 1996, §4.1]

d = −x̃ + �(A − θ̃I)−1x̃, � = (x̃∗(A − θ̃I)−1x̃)−1. (2.22)

Considering the projection of x̃ onto x̂i and the constraint d ⊥ x̃ results in

d ≈
�

i�=1

x̂∗
i x̃

λ̂i − θ̃
x̂i. (2.23)

Hence the directions x̂i of eigenvalues λ̂i closest to θ̃ become dominant. In that
way, the convergence rate of (θ̃, x̃) increases as θ̃ gets closer to λ̂1. However,

suppose that a good approximation to (λ̂1, x̂1) was obtained and the next closest

pair (λ̂2, x̂2) is sought. If the two pairs are approximately at the same distance

23

Chapter 2. Implementation of Davidson Methods in SLEPc

to (θ̃, x̃), that is |λ̂1 − θ̃| ≈ |λ̂2 − θ̃| and x̂∗
1x ≈ x̂∗

2x, or even worse, the first pair
is the closest one, then we expect that d has many unwanted components of x̂1.
This can justify the implementation of the deflation in the correction equation.

On the other hand, in [Stathopoulos and McCombs, 2007] the authors discuss
the correction equation without the presence of the converged vectors in the con-
text of a method for standard Hermitian problems (called JDQMR-000), showing
some examples where it outperforms the deflation discussed above. Notice that
the cost of applying the projector with converged vectors can become expensive
when many pairs are sought: a cost of O(kn) per application for the simplest
projectors and up to O(kn+k3) for oblique projectors, when k vectors are locked.

Our proposal is slightly more flexible and robust, allowing the user to limit
the maximum number of converged vectors in the projector (a parameter called
pwindow in §2.2.4). This approach can be useful in problems with presence of close
eigenvalues, if a bound of the size of these clusters is available a priori.

2.1.5 Restarting
The maximum dimension of the subspace bases V and W is restricted with the
parameter mmax, limiting the cost of maintaining them orthogonal, that in general
is one of the most expensive parts of the method, along with the matrix-vector
product and the computation of the expansion. Too low values of mmax may
prevent the convergence and too high values may affect the global performance
negatively, and its optimal value depends on the application and the expansion
employed.

From the methods that have been proposed to minimize the negative impact
of restarting on convergence, we have incorporated in SLEPc (i) the thick restart
technique [Stathopoulos et al., 1998], also called GD(mmin,mmax), that restarts V
with a subspace basis that contains the best mmin current approximate eigenvec-
tors; and (ii) its combination with a generalized CG-based restart [Stathopoulos
and Saad, 1998], resulting in GD(mmin,mmax)+k, that enriches the thick restart
basis with the best k vectors from the previous iteration. For seeking extreme
eigenpairs in standard Hermitian problems, the latter technique has theoretical
[Stathopoulos and Saad, 1998, §4] and practical [Stathopoulos and Saad, 1998;
Stathopoulos, 2007] justifications.

2.1.6 Initializing the search subspace
An interesting advantage of the unconstrained Davidson’s search subspace (in op-
position to structured subspaces, like in the case of Krylov methods) is the possi-
bility of starting with an available rough approximation of the sought eigenvectors,
for instance in applications where the solution of a previous similar eigenproblem
can be used or an analytic solution of a simpler problem is provided.

However, in practice initializing the search subspace with initial solutions X0

is not enough to improve the convergence unless it is sufficiently close to the exact
solutions. Alternatively, better results may be obtained by initializing the search
subspace with a Krylov subspace generated by the operator K−1(A − τB) and

24

2.2 SLEPc eigensolver design

X0. An example of use and performance is given in the applications of §2.4.2 and
§2.4.3.

2.2 SLEPc eigensolver design

The two following subsections depict SLEPc, the library in which the previously ex-
posed variants of the Davidson methods are implemented, and PETSc, the frame-
work on which SLEPc relies. Then related software efforts for solving large-scale
problems with Davidson solvers are presented. And the section ends with a de-
tailed description of the user interface of the Davidson solvers in SLEPc.

2.2.1 PETSc description
PETSc provides implementations of basic linear algebra operations with vectors
and matrices, as well as tools for the solution of linear and non-linear systems
of equations, all this enhanced with the support for distributed memory parallel
computing platforms as well as an incipient support for emerging architectures
such as shared memory clusters and GPUs. The interface is object-oriented, there
are sets of functions in C (the class methods) accepting the same data type (rep-
resenting a class), which encapsulates a pointer to a data structure of the class
(that stores the object). The main advantage of this simple approach, over using
a language with object-oriented support like C++, is the simplicity to invoke C
functions from other languages. In fact PETSc gives support to C++, Fortran,
Python and Matlab.

In general, the algorithm or the variant that will be used is determined by the
type, that is set after the creation of the object. For instance, some of the available
types for the KSP class, aimed at solving linear systems, are CG, GMRES and
BiCGStab(�).

The Vec and Mat classes gather different data structures for vectors and ma-
trices. All vector objects are dense, but the Mat class offers a wide variety of
matrix types like dense and sparse matrices, block diagonal matrices, FFT and
user-defined implicit matrices, among others. Some types of vectors and matrices
support high performance hardware, such as VecMPI, that distribute the vector
and operations among MPI processes, and VecPThread and VecCUSP, that per-
form the operations by its distribution among POSIX threads and by launching
GPU kernels, respectively. Types with similar capabilities can also be found in
Mat.

Hence the parallelism and other high performance mechanisms are mostly
transparent for other objects built on top of these, and also for the application pro-
grammer. The rest of classes such as linear, non-linear and time-stepping solvers,
implement their methods without taking care of the underlying data-structures in
matrices and vectors. The exception is the preconditioners class (PC), in which
many of the types correspond to complete or partial factorizations (e.g., LU, ILU,
Cholesky and ICC) that are stored in ad-hoc Mat implementations.

25

Chapter 2. Implementation of Davidson Methods in SLEPc

PETSc

Vectors

Standard CUSP

Index Sets

Indices Block Indices Stride ...

Matrices

Compressed
Sparse Row

Block Compr.
Sparse Row

Block
Diagonal Shell ...

Preconditioners

Additive
Schwarz

Block
Jacobi

ILU ICC pARMS HYPRE ...

Krylov Subspace Methods

GMRES CG BiCGStab FGMRES GCR ...

Nonlinear Systems

Line
Search

Trust
Region

...

Time Steppers

Euler
Backward

Euler
Runge-
Kutta

...

SLEPc

SVD Solvers

Cross
Product

Cyclic
Matrix

Thick R.
Lanczos

Quadratic

Linear-

ization

Q-Ar-
noldi

Eigensolvers

Krylov-
Schur

Arnoldi Lanczos GD JD ...

Spectral Transformation

Shift
Shift-and-

invert
Cayley Fold Precond.

IP

Figure 2.1: Main classes in PETSc and SLEPc.

For more information about the internal structure and the provided interfaces
see [Balay et al., 1997, 2011].

2.2.2 Internal structure of SLEPc
SLEPc provides a collection of state-of-the-art eigensolvers, SVD solvers and quadr-
atic eigensolvers. Besides the Davidson-type solver addressed in this chapter, the
class EPS provides an implementation of the Arnoldi, Lanczos and Krylov-Schur
methods as well as wrappers to other libraries such as ARPACK, PRIMME and
BLOPEX. Spectral transformations such as the shift-and-invert technique are en-
capsulated in the class ST, and are needed by Krylov methods to compute interior
eigenvalues or to deal with matrix inversion in generalized eigenproblems. Class
SVD provides algorithms for computing a partial singular value decomposition, for
instance by solving an equivalent eigenvalue problem via EPS or by implement-
ing native methods such as restarted Lanczos bidiagonalization. In the same way
QEP objects can solve quadratic eigenproblems by using EPS to solve an eigen-
value problem resulting from linearization or directly with the Q-Arnoldi method.

Like other high-level classes, these SLEPc classes are built on the foundational
classes Vec and Mat, and also KSP for the spectral transformations (matrix in-
version is implemented via linear solves). As explained in §2.3.1, KSP will also
be used in the solution of the correction equation in Jacobi-Davidson, and the
preconditioner in the Generalized Davidson expansion. Orthogonalization and B-
orthogonalization methods (like classical and modified Gram-Schmidt, optionally
with selective reorthogonalization) are encapsulated in the class IP. For a complete

26

2.2 SLEPc eigensolver design

description of SLEPc classes and usage, the reader is referred to [Campos et al.,
2011].

PETSc and SLEPc delegate many dense operations to BLAS and LAPACK
compatible libraries, such as the netlib reference implementation1 or the ATLAS,
MKL and ACML libraries. The delegated operations include frequent compu-
tations that account for most of the floating-point operations, like the addition
and product of vectors during orthogonalization. Other delegated operations are
performed on the projected problems, usually of rather small size, and they are
important in terms of robustness of the algorithms, such as the computation of
Schur decompositions in the extraction step of the algorithms in §2.1.

Furthermore SLEPc provides an interface for specifying operations with mul-
tivectors (a set of vectors that represent the columns of a thin tall matrix), giving
the possibility to accelerate a sequence of level-2 BLAS operations by rewriting
them as level-3 operations. The mechanism behind this consists in some functions
to create PETSc Vec objects whose entries are stored contiguously in memory and
to implement operations between such multivectors or multivectors with dense ma-
trices. For instance, these functions are employed in the Davidson solvers in the
creation of the projected matrices and the orthogonalization of the subspaces. As
discussed below, interfaces to multivector operations are common in other libraries
with Davidson methods.

2.2.3 Comparison with the design of other parallel Davidson
software

Part of the design principles of Davidson methods in SLEPc can also be found in
other libraries that implement related methods and share similar high performance
aims, in particular Anasazi [Baker et al., 2009], BLOPEX [Knyazev et al., 2007]
and PRIMME [Stathopoulos and McCombs, 2010].

Anasazi is part of Trilinos, a parallel object-oriented software framework for
large-scale multi-physics scientific applications. It was designed for being indepen-
dent of the particular implementation of the underlying linear algebra primitives,
in order to facilitate its incorporation into larger libraries and application codes.
The Anasazi package contains a collection of eigensolvers that includes block Gen-
eralized Davidson and LOBPCG, among other solvers not related with Davidson.
The eigensolvers provide an interface to establish the concrete implementations
that will be used for vector and matrix operations, for the orthogonalization and
for the stopping criterion.

BLOPEX is a stand-alone library that includes only a LOBPCG solver. The
library is also distributed as part of the HYPRE2 library for parallel precondi-
tioning, and can optionally be used as a external solver in SLEPc. BLOPEX
is designed with independence and interoperability goals similar to Anasazi, but
without the possibility for customizing the orthogonalization method and the stop-
ping criterion.

1http://netlib.org/blas/ and http://netlib.org/lapack/.
2http://www.llnl.gov/casc/hypre.

27

Chapter 2. Implementation of Davidson Methods in SLEPc

PRIMME implements a parametrized Davidson-type method, general enough
to include algorithms ranging from Subspace Iteration to Jacobi-Davidson with
several options about the correction equation. It uses its own distributed vec-
tors with the solely support of BLAS and LAPACK, and a user-provided sum
reduction operation. Currently, PRIMME only supports standard eigenproblems,
although the interface is prepared for a matrix B. SLEPc also provides a wrapper
to PRIMME as a external solver.

Table 2.3 summarizes the differences among these three libraries and our ap-
proach.

SLEPc’s design goals lie between Anasazi/BLOPEX and PRIMME. On one
hand, SLEPc eigensolvers use vectors, matrices and linear algebra primitives from
PETSc. However, this PETSc-dependence does not reduce the software interop-
erability because PETSc classes allow for user-defined implementations. Anasazi
and BLOPEX have an interface for multivector operations, and as mentioned be-
fore, SLEPc provides a simple interface for multivector operations such as inner-
product W∗V and the update V U, where V and W are multivectors and U is a
dense matrix.

The orthogonalization is also encapsulated in a SLEPc class and decoupled
from the eigensolvers. Another simple mechanism to make the implementation
independent of a given operation is to use callback functions. This is the way the
convergence test and the sort routine can be replaced by user-defined code.

On the other hand, the code of Davidson-type methods in SLEPc is organized
as a parametric multi-method, following PRIMME’s approach. Hence, in practice,
there is only one abstract object that contains all the Davidson code. By changing
values in a C structure, the implementation behaves like either Algorithm 2.2 or
2.3. In the same way, the structure has variables to select the extraction and the
expansion methods, to configure the restarting and to build the initial subspace.

2.2.4 Davidson-type eigensolvers interface
SLEPc offers two EPS solvers that implement Davidson-type methods, the Gener-
alized Davidson (GD) and the Jacobi-Davidson (JD). As mentioned above, these
objects are simply intermediate objects that access another abstract EPS object
(abstract, in the sense that the end user cannot directly use it) that contains the
implementation of the methods and techniques described in §2.1.

The JD and GD solvers share the following interface with the rest of EPS
objects:

• the problem matrices, with EPSSetOperators;

• the problem type like Hermitian, non-Hermitian, standard or generalized,
with EPSSetProblemType, that selects between Algorithms 2.2 and 2.3;

• the subspace expansion method, determined by the object type with EPSSet-
Type, that is (2.19) for GD and (2.20) for JD;

28

2.2 SLEPc eigensolver design

Table 2.3: Summary of differences among BLOPEX, Anasazi, PRIMME, and SLEPc’s
Davidson, considering the implementation of the linear algebra operations (Vectors and
Matrices), the possibility to change the orthogonalization routine (Orth.), the conver-
gence test (Conv.) and the sort function (Sort), and how the Davidson solvers are
organized.

Customize

Framework
Vectors and

Matrices O
rt

h.

C
on

v.

So
rt Eigensolvers

BLOPEX
Abstract classes

- - - Unique

Anasazi X X X Separate

PRIMME
Hard code

implementation
- - - Parametrized

Davidson
EigensolverSLEPc PETSc X X X

• the subspace extraction method, with EPSSetExtraction, that selects be-
tween the extraction techniques presented in §2.1.2;

• the sorting criterion for the eigenpairs computed by the extraction method,
with EPSSetWhichEigenpairs, which can be relative to a target value, or
with respect to the magnitude, the real or the imaginary part of the eigen-
value;

• the target value τ if interior eigenvalues are wanted, with EPSSetTarget,
parameter that is also used in the extraction;

• the maximum size of the search and testing subspaces, mmax (see §2.1.5),
and the number of wanted eigenpairs, p, with EPSSetDimensions, called mpd
and nev, respectively;

• the convergence criterion, with EPSSetConvergenceTest;

• the tolerance for the convergence criterion and the maximum number of
(outer) iterations, with EPSSetTolerances;

• the initial guess of the wanted invariant subspace, with EPSSetInitialSpace
(see §2.1.6); and

• the subspace in which the eigenvectors are not wanted, with EPSSetDeflat-

ionSpace (see §2.1.4).

The specific options that are shared by the Davidson solvers are (the * has
to be substituted by GD or JD, because there are different function names for
GD and JD, for instance EPS*SetBlockSize is EPSGDSetBlockSize for GD and
EPSJDSetBlockSize for JD):

29

Chapter 2. Implementation of Davidson Methods in SLEPc

• whether to enrich the initial subspace as explained in §2.1.6, with EPS*Set-

KrylovStart;

• the block size s, with EPS*SetBlockSize;

• the size of the subspace after restarting mmin and GD+k, with EPS*SetRest-
art (see §2.1.5);

• the size of the initial search subspace, with EPS*SetInitialSize (if the
number of initial vectors provided by the user is smaller than this number,
the initial subspace is filled with random vectors); and

• the maximum number of converged vectors to be included in the projectors
(parameter pwindow, see §2.1.4), with EPS*SetWindowSizes;

Moreover, the JD solver has two advanced options more that affect the con-
vergence and performance of the solution of the correction equation, EPSJDSetFix
and EPSJDSetConstantCorrectionTolerance, discussed in §2.3.1.

All preconditioned eigensolvers in SLEPc (JD and GD, but also the BLOPEX
and PRIMME wrappers) are used in combination with the special ST object
Precond. As other ST’s (including shift-and-invert), it handles a linear solver
(KSP) internally. The PC object in Precond’s KSP corresponds to the precondi-
tioner used in the Generalized Davidson expansion or to the acceleration of the
KSP that solves the Jacobi-Davidson correction equation. If the user does not
provide a matrix as a basis for the preconditioner, with STPrecondSetMatForPC,
the default preconditioner is built from A− τB if interior eigenvalues are wanted,
and B if largest magnitude eigenvalues are wanted. The method and the options
for solving the correction equation are set in the KSP object. The default iterative
solver for the JD correction equation is BiCGStab(2).

After the call to EPSSolve, the user can get individual converged eigenpairs
with EPSGetEigenpair, or an orthogonal basis of the invariant subspace associated
to them with EPSGetInvariantSubspace. Moreover, a basis of the test subspace
associated to the converged pairs is accessible by the function EPSGetInvariant-

SubspaceLeft. Although not guaranteed, the test subspace may be a rough ap-
proximation to the left invariant subspace (if future versions of SLEPc include
two-sided Jacobi-Davidson, more accurate approximations of the left invariant
subspace will be obtained).

Figure 2.2 illustrates a simple example in C that computes the largest eigen-
value of a non-Hermitian matrix A, omitting the creation of the matrix, as well
as the error checking and the functions to initialize and finalize the SLEPc envi-
ronment. Notice that if PETSc is built in real arithmetic (that is, PetscScalar
is not a complex type), SLEPc returns the real and imaginary part of eigenvalues
(kr and ki) and eigenvectors (xr and xi) separately. In order to use some David-
son solver, a call to EPSSetType(GD) or EPSSetType(JD) has to be included just
before line 11.

30

2.3 Implementation details

1 #include "slepceps.h"

2 EPS eps; /* eigensolver context */

3 Mat A; /* matrix of Ax=kx */

4 Vec xr , xi; /* eigenvector , x */

5 PetscScalar kr, ki; /* eigenvalue , k */

6 PetscInt j, nconv;

7

8 EPSCreate(PETSC_COMM_WORLD , &eps);

9 EPSSetOperators(eps , A, PETSC_NULL);

10 EPSSetProblemType(eps , EPS_NHEP);

11 EPSSetFromOptions(eps);

12 EPSSolve(eps);

13 EPSGetConverged(eps , &nconv);

14 for (j=0;j<nconv;j++)

15 EPSGetEigenpair(eps , j, &kr, &ki , xr, xi);

16 EPSDestroy(eps);

Figure 2.2: The shortest SLEPc example code that compute the eigenvalues of a non-
Hermitian matrix.

Most of the above options are accessible via the command line. For instance,
the code in Figure 2.2 can employ the GD solver to compute 10 eigenvalues with
a relative tolerance of 10−8 by the execution of

$./exe -eps_type gd -eps_nev 10 -eps_tol 1e-8

or can employ JD for seeking the eigenvalues closest to 1 solving the correction
equation with BiCGStab(2) and accelerated with an ILU preconditioner:

$./exe -eps_type jd -eps_nev 10 -eps_target 1 -st_ksp_type bcgsl \

-st_ksp_bcgsl_ell 2 -st_pc_type ilu

This feature facilitates the process of manually tunning a code to find optimal
configurations.

2.3 Implementation details

In this section we include some discussions about the way we have implemented
certain variants or aspects of the Davidson methods, such as the solution of the
Jacobi-Davidson correction equation by an iterative Krylov solver (a KSP object),
the treatment of complex numbers in real problems, how the data structures are
distributed across processors and some considerations about the memory manage-
ment.

31

Chapter 2. Implementation of Davidson Methods in SLEPc

2.3.1 Solution of the correction equation
Linear system (2.20) is solved when the Jacobi-Davidson expansion is selected. For
that, a PETSc Krylov linear solver is employed (a KSP object), accelerated with
preconditioners (PC object). Practical aspects of how to modify the correction
equation and the projectors in order to use a preconditioner are summarized below
(details can be found in [Sleijpen et al., 1998, §3.2]).

Most KSP solvers available in PETSc support left preconditioning (many of

them exclusively), that is, they solve the linear system M−1Âx = M−1b̂. In
that case, (2.20) is equivalent to a linear system with coefficient matrix Â =

PK−1(A − θB) and right hand side b̂ = −PK−1r. If the initial guess is a zero
vector, then the obtained approximate solution d will satisfy the constraint d ⊥ z.

The most frequently used KSP solver supporting right preconditioning (i.e.,

to solve instead ÂM−1Mx = b̂) is FGMRES [Saad, 1993], that is employed when
the preconditioner can change during the iteration, for instance, when it performs
a nested linear solve iteration as in pARMS [Li et al., 2003]. In the right pre-
conditioning case, (2.20) is equivalent to a linear system with coefficient matrix
Â = Q(A − τB) where Q can be P or I − zz∗, the preconditioner M−1 = PK−1

and right hand side b̂ = −r.
In both cases, the operator Â and the preconditioner M−1 are implemented

implicitly (that is, only the matrix-vector product is defined) using a MatShell and
a PCShell, respectively (these shell constructs are simply a way to encapsulate
user-defined operations as a PETSc object).

In terms of computational cost, the weight of the solution of the correction
equation can be heavy if too accurate solutions are requested. The trade-off be-
tween performance and global convergence is controlled in the stopping criterion,
that the user can configure by setting the maximum number of iterations besides
the relative and the absolute tolerances. In addition, unless EPSJDSetConstantCor-
rectionTolerance is invoked, the KSP stops when the residual of the linear sys-
tem at iteration j, �r̂(j)�2, satisfies at outer iteration i

�r̂(j)�2 ≤ 2
−i�r̂(0)�2. (2.24)

Notice that in PETSc the stopping criterion uses the preconditioned residual by
default. This dynamic criterion comes from the Newton methods and the use in
Jacobi-Davidson is suggested in [Fokkema et al., 1999], and tested in [Genseberger,
2010; Romero and Roman, 2011].

It is well-know that in the first iterations of the Davidson-type methods the
extraction method usually produces poor eigenpair approximations and the target
τ may be a relatively closer approximation to an exact eigenvalue [Morgan and
Scott, 1986]. Therefore until the residual norm associated to the selected eigenpair
reaches a threshold value so-called fix (that can be set by EPSJDSetFix), the
correction equation is solved with θ = τ [Fokkema et al., 1999].

32

2.3 Implementation details

2.3.2 Real arithmetic
In real non-symmetric problems the eigenvalues and the corresponding eigenvectors
may be complex, or even in the convergence of a real eigenpair the approximate
eigenpairs may be complex. Considering that PETSc does not support operations
mixing real and complex matrices or vectors, a simple workaround would be to
perform all the computations in complex arithmetic. However, this is wasteful not
only in terms of memory requirements but also in computational efficiency since
the effective operation throughput may be reduced up to 50% for sufficiently large
problems in which the bottleneck is the bandwidth between the main memory and
the processor.

Another possibility to avoid complex arithmetic is the use of real Schur decom-
positions, where all matrices involved are real and 2 × 2 blocks on the diagonal
of quasi-triangular matrices are used to represent complex conjugate eigenvalues.
Besides requiring half the storage of a complex Schur decomposition, another ad-
vantage of the real Schur form is that complex conjugate eigenvalues always appear
together.

Thus SLEPc’s Jacobi-Davidson has an implementation based on RJDQZ [van
Noorden and Rommes, 2007], that adapts the extraction process and the correction
equation (2.20) to work with the real Schur form. Considering the preconditioning,
the resulting correction equation for the selected complex conjugate eigenvalues
θ̃r ± θ̃ii and the associated Schur vectors x̃1 and x̃2 is

PB

�
K−1(A − θ̃rB) θ̃iK−1B

−θ̃iK−1B K−1(A − θ̃rB)

�

PB

�
d1

d2

�

= −PB

�
K−1r1
K−1r2

�

, (2.25)

where PB contains the block version of the projector P in (2.20),

PB =

�
P̂B 0

0 P̂B

�

, P̂B = I −K−1Y (Z∗K−1Y)−1Z∗, (2.26)

and the residual is computed as

�
r1
r2

�

=

�
A − θ̃rB θ̃iB

−θ̃iB A − θ̃rB

� �
x̃1

x̃2

�

. (2.27)

This version of the correction equation admits the same stopping criterion
as (2.20), because if d1 and d2 are obtained from the approximate solution of
the correction equation (2.25) with a linear system residual norm ε, then also
d = d1 + d2i satisfies the correction equation (2.20) with the same residual norm
tolerance. Moreover we do not expect a significant difference in the convergence
of the iterative resolution of both equations because the condition number cor-
responding to the coefficient matrices are the same [van Noorden and Rommes,
2007, Proposition 1].

If Jacobi-Davidson is activated, the KSP in ST is responsible for solving the
correction equation, that can be

33

Chapter 2. Implementation of Davidson Methods in SLEPc

EPSDavidson

Mat

IP

STPrecond KSP

PCNone

MatShell

Mat

PC

VecComp

Figure 2.3: Collaboration diagram for the SLEPc’s Davidson solver when the Jacobi-
Davidson expansion is selected.

• the linear system (2.20), if either the problem and the selected eigenpair are
both real or the problem is complex, or

• the double-sized linear system (2.25), if the problem is real, but the selected
eigenpair is complex.

In the case of real problems, the KSP object would have to solve linear systems
of different sizes, which implies reallocating the memory every time the system
size changes. This problem can be neglected if the block size is one and the
eigenpairs last many iterations before their convergence, because in general we do
not expect an excessive number of jumps of a single approximate eigenvalue from
real to complex (and vice versa). For applications that require many eigenvalues
and they converge quickly, we have designed a special vector type VecComp with
virtually the length of the double-sized system, which is employed by the KSP
object. VecComp vectors are formed by two sub-vectors whose length is equal
to the problem size, and only one is used when the approximate eigenvalue is
real. Working with these vectors also simplifies the implementation of the double-
sized coefficient matrix-vector product (which is implemented using the MatShell
PETSc class, because the double-sized matrix is never built explicitly), that can be
arranged as a 2-by-2 block product. This product also includes the projection and
the preconditioner application. For that, the PC associated to the KSP object
is detached and replaced by a dummy PC (PCNone). Figure 2.3 depicts the
component diagram in this case.

2.3.3 Parallelization and memory management details
The problem matrices A and B and the vectors of the same size, such as the
search and test subspaces V and W, and the converged invariant subspace �X,
are distributed by blocks of rows among the processes, in the case of using MPI
objects for vectors and matrices. The rest of the matrices and vectors with smaller
size (bounded by mmax) are implemented as sequential (non-MPI) objects, but are
replicated in all nodes. For instance, this is the case of the projected matrices and
the associated decompositions Θ, U, Z, S and T .

34

2.3 Implementation details

Algorithm 2.4: Optimized Iterative Classical Gram-Schmidt with B-inner
product.

Input: matrix B of size n, B-orthonormal basis V , V B = BV , vector v0

Output: B-orthonormal basis [V v] of span{[V v0]} and vB = Bv
1 v ← v0 and vB ← Bv0

2 for i = 1, 2, 3 do
3 h ← V ∗vB

4 v ← v − V h

5 vB ← vB − V Bh
6 Test criterion

7 end
8 v = v/�v�B

The operations involving distributed operands are parallelized, such as the A
and B matrix-vector product, the subspaces updating, the computation of the pro-
jected problem matrices and the orthogonalization of the subspaces. In addition,
these operations can also be accelerated by the GPU or parallelized for taking
advantage of multi-cores, if the appropriate types are set for matrices and vectors.
Currently these features are experimental in PETSc, but in the near future they
are expected to be fully functional.

In terms of memory management, nearly all memory required by the eigensolver
(the bases of the search and test subspaces, auxiliary vectors and work spaces)
is allocated in a contiguous array, in order to reduce the memory management
overhead. Each piece in which the allocated memory is divided is aligned properly.

2.3.4 Subspace orthogonalization
The orthogonalization of vectors can become an expensive step in variants with
cheap expansion, e.g., Generalized Davidson, so it is important to use a procedure
that is efficient both sequentially and in parallel. The SLEPc class IP provides
Classical and Modified Gram-Schmidt to carry out that process. The default
configuration (used in §2.4) employs iterative CGS (which yields better parallel
scaling and higher floating point operations throughput than MGS), with a DGKS-
like re-orthogonalization criterion. See [Hernandez et al., 2007] for details.

This configuration is also used for maintaining B-orthogonal bases, although
it is not clear that the re-orthogonalization criterion can be useful when using
B-inner products with ill-conditioned B [Kopal et al., 2011] (to avoid problems,
it is possible in SLEPc to deactivate selective re-orthogonalization and use double
orthogonalization instead). In any case, we present in Algorithm 2.4 a variant
of iterative CGS that avoids the extra matrix-vector products when the search
subspace is B-orthogonalized, at the cost of additional storage for vectors BV .

35

Chapter 2. Implementation of Davidson Methods in SLEPc

Table 2.4: Number of converged cases in each experiment.

Solver Total None Jacobi ILU/ICC HYPRE pARMS
Experiment I: GNHEP, largest magnitude eigenvalues

GD 218 14 24 70 54 56
JD BiCGStab(2) 273 35 41 69 70 58

Experiment II: NHEP and GNHEP, eigenvalues closest to target
GD 599 81 86 186 104 142

JD GMRES 280 21 42 94 43 80
JD BiCGStab(2) 490 90 100 143 77 80

Experiment III: HEP, eigenvalues closest to target
GD 854 279 304 271

PRIMME JDQMR Etol 965 423 233 309
JD BiCGStab(2) 895 280 358 257

2.3.5 Convergence criterion for the eigensolver
SLEPc monitors the residual norm associated to the approximate eigenpairs in
order to detect the converged ones with respect to some criterion, e.g., �r�2 ≤ ε
for a given tolerance ε, or other criteria that can be defined by the user. When
the problem is non-Hermitian, the solver works with approximate Schur vectors
instead of eigenvectors, so the residual norms associated to the eigenpairs are not
readily available. Our implementation first checks the convergence criterion with
the residual associated to the Schur vector, and if it is passed, the criterion is
checked again with the corresponding eigenvector residual. In this way, we avoid
the costly computation of the eigenvector in each iteration unless it is close to
convergence.

2.4 Results

In this section, we present performance results of the SLEPc Davidson solvers.
First sequential results are shown comparing our implementations of GD and JD,
as well as with PRIMME solvers, in the context of a collection of small eigen-
problems. Then we show parallel results in the context of two large-scale scientific
applications.

2.4.1 Test battery
We compare the Davidson solvers in terms of execution time and number of pre-
conditioner applications required by each one in the solution of a collection of
problems.

The collection consists of standard and generalized problems whose matrices
come from the University of Florida Sparse Matrix Collection [Davis and Hu,
2011]. For each problem, the sequential performance of the solvers, in terms of
number of matrix-vector products and time spent, is obtained computing 1 and 10

36

2.4 Results

101

102

103

104

101 102 103 104

J
D

M
a
tr

ix
-v

ec
to

r
p

ro
d

.

GD Matrix-vector prod.

10−2

10−1

100

101

10−2 10−1 100 101
J
D

T
im

e

GD Time

Figure 2.4: Comparison of number of matrix-vector products (left) and execution time
in seconds (right) between SLEPc GD and JD computing the largest magnitude eigen-
values of generalized non-Hermitian problems. A mark above the line corresponds to an
experiment with GD performing better than JD.

pairs with a relative tolerance of 10−10 using either no preconditioner or one of the
PETSc preconditioners Jacobi, ILU (or ICC for Hermitian problems), HYPRE and
pARMS. The rest of the solver’s parameters keep the default values: 5 random
vectors as initial subspace, restart the search subspace with 6 vectors after the
dimension reaches 17 or 26, respectively for seeking 1 or 10 pairs. The default linear
solver for the JD correction equation is BiCGStab(2). Each of these configurations
is executed twice with three different initial random vectors, discarding the slower
one.

Table 2.4 summarizes the number of cases in which the solvers obtained all
the requested eigenpairs with less than 5050 and 10100 matrix-vector products for
standard and generalized problems, respectively. We use matrix-vector products
because it is unfair to compare GD and JD in terms of the number of outer
iterations. Instead, it is more natural to roughly compare the number of iterations
used by GD with the accumulated number of inner iterations employed by JD.

Experiment I takes results of the SLEPc solvers GD and JD computing the
largest magnitude eigenpairs of a group of 25 generalized non-Hermitian problems.
JD solves slightly more problems than GD, and many of them faster (see Figure 2.4,
right). However, in terms of matrix-vector products, JD generally requires more
products than GD (see Figure 2.4, left).

Experiment II collects the performance of the solvers with a group of 52 stan-
dard and generalized non-Hermitian problems while computing the eigenvalues

37

Chapter 2. Implementation of Davidson Methods in SLEPc

101

102

103

104

101 102 103 104

J
D

M
a
tr

ix
-v

ec
to

r
p

ro
d

.

GD Matrix-vector prod.

10−2

10−1

100

101

10−2 10−1 100 101

J
D

T
im

e

GD Time

Figure 2.5: Comparison of number of matrix-vector products (left) and execution time
in seconds (right) between SLEPc GD and JD computing the eigenvalues closest to a
target in non-Hermitian problems. A mark above the line corresponds to an experiment
with GD performing better than JD.

closest to a target in the interior of the spectrum. In absolute terms, GD success-
fully converges in more cases than JD (599 vs 490). In part, this is due to the
few converged problems obtained by JD using sophisticated preconditioners (ILU,
HYPRE and pARMS), compared with the JD results when no preconditioning is
used, and with the GD results for those preconditioners. Apparently, the use of
GMRES for solving the correction equation does not improve the results. Never-
theless, GD needs less matrix-vector products, but JD is generally faster, as in the
previous experiment (see Figure 2.5).

Experiment III compares SLEPc GD and JD solvers with PRIMME’s solver
JDQMR Etol, in which the JD correction equation is solved by QMR with an
ad-hoc stopping criterion [Stathopoulos, 2007, §3.3]. In this case, the eigenvalues
closest to an interior target are computed in a group of 99 standard Hermitian
problems. We observe the same trend concerning the number of converged pairs
by GD and JD as in experiment II. PRIMME JD obtains better figures than SLEPc
solvers, possibly due to the effectiveness of the PRIMME stopping criterion, that
reduces significantly the number of matrix-vectors products (see Figure 2.6, left).
However this PRIMME advantage is less important considering the total time
spent by the solvers (see Figure 2.6, right).

38

2.4 Results

101

102

103

104

101 102 103 104

M
a
tr

ix
-v

ec
to

r
p

ro
d

.

GD Matrix-vector prod.

10−2

10−1

100

101

10−2 10−1 100 101
T

im
e

GD Time

Figure 2.6: Comparison of number of matrix-vector products (left) and execution time
in seconds (right) between SLEPc JD (∗) and PRIMME JD (�), taking the results of
SLEPc GD as a basis, when computing the eigenvalues closest to a target in standard
Hermitian problems. A mark above the line corresponds to an experiment with GD
performing better than JD.

2.4.2 Application 1: unstable modes of turbulent plasma
The plasma physics application GENE [Dannert and Jenko, 2005] computes micro-
instabilities in fusion plasma, solving the gyrokinetic equations, a set of nonlinear
partial integro-differential equations in five-dimensional phase space by means of
the method of lines. In certain analyses, a few rightmost eigenvalues of a large
complex non-Hermitian linear operator (available through matrix-vector products)
must be computed, which is computationally hard because eigenvalues with large
imaginary part dominate the spectrum. The required rightmost eigenvectors cor-
respond to the unstable modes of the linearized gyrokinetic equation,

∂g

∂t
= L[g], (2.28)

that describes the time evolution of the distribution of the particles in the plasma.
A study of the sequential and the parallel performance of SLEPc’s Jacobi-

Davidson is presented in Ch. 4, computing two rightmost eigenvalues using the
harmonic extraction and solving the correction equation with BiCGStab(2) with-
out preconditioner. The results reveal that the dynamic stopping criterion in the
iterative solution of the JD correction equation (see §2.3.1) effectively improves
the parallel performance (by reducing the overall number of reductions), and that
the global performance has a strong dependence on the matrix-vector product
performance.

39

Chapter 2. Implementation of Davidson Methods in SLEPc

0

50

100

150

200

250

300

350

0 50 100 150 200 250

sp
ee

d
u

p

processes

0

50

100

150

200

250

0 50 100 150 200 250
sp

ee
d

u
p

processes

JD None
JD ASM+ILU

JD pARMS GD

Figure 2.7: Speedup examples corresponding to GENE (left) and the DFT code (right)
employing the SLEPc JD and GD solvers, respectively.

An explicit sparse representation of the operator is not computationally feasible
because of the high density of the resulting matrix. Instead, we opted for building
a preconditioner based on a sparse part of the operator that still retains most
of the information of the system. The results in Ch. 5 corresponding to this
preconditioning illustrate an acceleration of more than 10 times faster using ASM
(restrictive Additive Schwarz Method) and more than 3 times using pARMS, both
preconditioners scaling well (see Figure 2.7, left). Moreover the work presents a
parameter scan test case in which similar problems are solved, and the total time
is reduced around 23% if the eigensolver’s initial subspaces are taken from the
previously obtained solutions enriched as described in §2.1.6.

2.4.3 Application 2: electronic configuration of atoms
The Density Functional Theory (DFT) is one of the most popular methods that can
be used to compute the electronic structure (principally the ground state) of atoms
and molecules. The method requires the solution of the Schrödinger equation and
the Poisson equation, that are coupled to each other. The computational approach
consists in applying a self-consistent scheme, that is, the solution of the Schrödinger
equation determines the next Poisson equation. The alternate solution of both
equations is stopped when their results do not differ from the previous iterations
under certain threshold.

After the discretization by the finite element method, the Poisson and Schrödin-
ger equations result in a linear system and a generalized eigensystem, respectively,
with large, sparse Hermitian matrices. Both problems are solved approximately,

40

2.5 Conclusions

and in the case of the eigenvalue problem, the number of computed solutions
depends on how many orbitals are sought.

Chapter 6 presents a comparison of different refinement strategies for the
meshes generated during the discretization. The computation of the smallest eigen-
values (corresponding to the lowest energy orbitals) of the generalized Hermitian
problems was done using GD with harmonic extraction and block Jacobi as the
preconditioner for the expansion. Results for sequential and parallel performance
are given, together with the acceleration produced by the subspace recycling within
the self-consistent loop, resulting in a speedup of 4 with respect to no recycling.
A sample parallel speedup is shown in Figure 2.7, right.

2.5 Conclusions

This chapter has introduced the implementation of Davidson methods in the con-
text of the SLEPc library for the solution of Hermitian and non-Hermitian eigen-
value problems, both standard and generalized. The proposed solvers incorporate
state-of-the-art expansion methods (such as Generalized Davidson and some vari-
ants of Jacobi-Davidson), extraction techniques (such as standard Rayleigh-Ritz
and harmonic variants) and restart techniques (GD+k), exposing a number of pa-
rameters that allow for the adaptation of the solver to the characteristics of the
problems. The solvers are robust and efficient by trying to maintain the structural
properties of the original problem in the projected problem, and performing the
operations in real arithmetic whenever possible.

The implementations are fully integrated in the PETSc framework, as the rest
of SLEPc solvers, inheriting its benefits such as ease of solver customization via
the command line (generally the optimal configuration is not straightforward),
availability of a large variety of iterative linear solvers and preconditioners even
from external packages, and high-performance computing capabilities, mostly MPI
but also increasing support for novel architectures like multi-cores and GPUs.

In terms of practical use, the SLEPc Davidson solvers are competitive with
respect to other free parallel libraries, and even provide new features like the
support for non-Hermitian problems and harmonic extraction methods. We have
addressed two relevant scientific computing applications, the computation of un-
stable modes of plasma and electronic configurations of atoms, in which obtaining
the corresponding eigenpairs is challenging for iterative solvers.

41

Chapter 2. Implementation of Davidson Methods in SLEPc

42

Chapter 3

A Double-Expansion Davidson
Method

We consider the generalized eigenvalue problem (GEP)

Ax = λBx, (3.1)

where A and B are n×n matrices, and are interested in interior eigenvalues close
to a given target τ ∈ C. Efficient computation of these eigenvalues is a hard
task that generally requires both a suitable subspace extraction process (often
harmonic Rayleigh–Ritz is used, see, e.g., [Stewart, 2001b]) and a quality subspace
expansion method. This subspace expansion in turn generally requires a (good)
preconditioner and/or many steps of an iterative linear solver, depending on the
complexity of the problem at hand. In this chapter we assume that we have a
preconditioner M, which, for instance, may be an inexact LU-decomposition of
A − τB.

Iterative methods based on Krylov subspaces (for instance, Lanczos for Her-
mitian problems, and Arnoldi and Krylov-Schur for non-Hermitian problems) are
widely used to compute the eigenvalues in the extremes of the spectrum of stan-
dard eigenvalue problems. However, Davidson methods may present better perfor-
mance computing interior eigenvalues and/or in generalized eigenproblems when
exact solves with A−τB are unaffordable, but some approximations are available,
so-called preconditioners, [Davidson, 1975; van Lenthe and Pulay, 1990; Crouzeix
et al., 1994; Heuveline et al., 1997; Arbenz et al., 2006; Genseberger, 2010].

The outline of the chapter is as follows. We start with a review of the Davidson
methods, with a special interest in the expansions of Generalized Davidson (GD),
Olsen (more robust method than Generalized Davidson but twice preconditioner
applications) and Jacobi-Davidson. Then a new expansion is presented in §3.2,
that tries to improve the robustness of Olsen at the same cost in terms of pre-
conditioner applications, and we compare the new expansion with GD in terms
of convergence. The section ends discussing some consideration for an optimal

43

Chapter 3. A Double-Expansion Davidson Method

implementation. After that, in §3.3 we offer some examples of the effectiveness of
the new expansion computing interior eigenvalues in a collection of problems.

3.1 Expansions in Davidson methods

Starting with the introduction of the Davidson method [Davidson, 1975], there
have been a wide variety of developments in the subspace expansion. Generalized
Davidson (GD) [Morgan and Scott, 1986] introduces the first expansion that uses
an arbitrary preconditioner, which is applied to the residual to try to enrich the
approximation in the direction of the desired eigenvector. However, it may very
well occur that the resulting vector is almost collinear to the approximate eigen-
vector, leading to the stagnation of the method. The Olsen variant [Olsen et al.,
1990] attempts to avoid this situation by working on the orthogonal complement
of the span of the approximate eigenvector.

Jacobi–Davidson (JD) [Sleijpen and van der Vorst, 1996, 2000] also seeks to
avoid the stagnation, but differs from the previous methods in the fact that the
convergence of JD may depend less on the quality of the preconditioner. The JD
expansion results from the approximate solution of a linear system called the cor-
rection equation; the quality or the efficiency of the computation may be enhanced
by a preconditioner.

GD and Olsen are attractive because of their straightforward implementation
and good performance for easier problems. A major challenge in JD is the adaptive
determination of parameters such as the number of inner steps; see [Stathopoulos,
2007; Hochstenbach and Notay, 2009] for recent progress in this direction. A
rule-of-thumb is that JD may be necessary for harder problems.

For interior eigenvalues subspace expansion methods include (inexact) Rayleigh
quotient iteration (RQI), (inexact) inverse iteration, or Jacobi–Davidson [Sleijpen
et al., 1996]. Let (θ, u) ≈ (λ, x) be an approximate eigenpair, where u is in the
search space U. In the Jacobi–Davidson method, a possible correction equation is

�

I −
Buu∗

u∗Bu

�

(A − θB) t = −r, t ⊥ u, (3.2)

where r := Au − θBu. This t is used to expand the search space. With the
(standard) projected preconditioning we solve t ⊥ Bu from

�

I −
M−1Buu∗

u∗M−1Bu

�

M−1(A − θB)t = −

�

I −
M−1Buu∗

u∗M−1Bu

�

M−1r.

First we note that we may approximate the solution t by just taking the right-hand
side

tolsen = −

�

I −
M−1Buu∗

u∗M−1Bu

�

M−1r.

This is a linear combination of M−1(Au−θBu) and M−1Bu, orthogonal to u. The
subscript reflects that fact that it is a generalization for the GEP of the approach

44

3.2 A double subspace expansion approach

advocated by Olsen et al. [Olsen et al., 1990], who proposed the expansion

−

�

I −
M−1uu∗

u∗M−1u

�

M−1(Au − θu)

for the standard eigenvalue problem Ax = λx.
We can also precondition (3.2) by a regular (unprojected) preconditioner (cf.

[Hochstenbach and Notay, 2009])

M−1

�

I −
Buu∗

u∗Bu

�

(A − θB) t = M−1r, t ⊥ Bu.

Again, we may approximate the solution t of (3.2) by just taking the right-hand
side

tGD = M−1r;

this approach is called generalized Davidson (GD) or also preconditioned inverse
iteration (PINVIT) in the literature (see, e.g., [Neymeyr, 2001]).

We now make some comparisons between tolsen and tGD. Suppose that M
is a preconditioner of good quality, for the moment we will assume that M−1 =
(A − τB)−1 is an exact inverse. Then, for this special case,

tolsen = −u + (u∗(A − τB)−1Bu)−1 (A − τB)−1Bu

and
tGD = u + (τ − θ)(A − τB)−1Bu.

If θ is very close to τ , which for instance may be possible if the target is quite
accurate, it is clear that tGD may degenerate. Indeed, the case that θ = τ suffers
from the well-known “Davidson paradox”: the perfect preconditioner gives no
subspace expansion. The Olsen approach does not share this disadvantage; note
that

�(u∗(A − τB)−1Bu)−1 (A − τB)−1Bu� ≥ 1.

However, a clear disadvantage of tolsen is that, unless M
−1 is an exact inverse of

A−τB as above, this approach spends two actions of the preconditioner (M−1Au
and M−1Bu, or M−1Bu and M−1(Au − θBu)); while tGD spends only one. In
the next section we propose a new approach that attempt to turn this fact into a
strength.

3.2 A double subspace expansion approach

Based on the observations of the previous section, we conclude that tGD is a com-
paratively cheap approach and may be sensible in particular if the preconditioner
is of good quality and M−1(A − θB) is not close to the identity. On the other
hand, the expansion tolsen may be more robust in general, but is twice as expensive
in terms of actions with the preconditioner.

45

Chapter 3. A Double-Expansion Davidson Method

Algorithm 3.1: Simplified Davidson for finding the eigenvalue closest to τ

Input: initial eigenvector approximation u(0).
Output: θ(k) and u(k) from the last iteration k.

1 Compute θ(0) = ρ(u(0))
2 for i = 0, 1, 2, . . . do
3 Compute the residual r(i) = (A − θ(i)B) u(i)

4 Test for convergence

5 Compute t(i) ⊥ B∗Bu(i) such that �(A − τB)t(i) − r(i)� ≤ ξ
(i)
1 �r(i)�

6 Set u(i+1) = �u(i) − t(i)�−1(u(i) − t(i)) and θ(i+1) = ρ(u(i+1))

7 end

We now propose a new subspace expansion that may combine the strengths of
the two approaches: we will expand the search space by both M−1Au and M−1Bu.
While these vectors will asymptotically be collinear, generally this will not be the
case until very late in the process.

We note that this subspace expansion process has a number of potential fa-
vorable properties. First, the expansion includes both tolsen and tGD. Second,
by expanding the space by more than one vector per outer iteration, effectively
one (harmonic) Rayleigh–Ritz extraction process is avoided, saving computational
costs. Third, the new expansion relies on the robustness of the extraction process
to select the best combination of M−1Au and M−1Bu.

3.2.1 Comparative analysis
We introduce a simplified scheme of a Davidson method for seeking an eigenpair
with the eigenvalue close to τ , that does not take into account the subspace accel-
eration, and in which the computed expansion at each iteration t(i) is treated as
an approximate solution of

(A − τB)t(i) = r(i), (3.3)

with a residual tolerance of ξ
(i)
1 with respect to �r(i)�. In this scheme the double

expansion is considered as the linear combination

M−1Au(i) + β(i)M−1Au(i)

with the β(i) that obtains the best solution of (3.3) under some criterion. The
GD expansion corresponds to setting β(i) = −θ(i). The scheme is detailed in
Algorithm 3.1.

Without loss of generality, for the following discussion we compute the approx-
imate eigenvalue associated to an approximate eigenvector as the related general-
ized Rayleigh quotient

ρ(u) =
u∗B∗Au

u∗B∗Bu
, (3.4)

46

3.2 A double subspace expansion approach

and we consider that the approximate eigenvectors u are normalized so that
�Bu� = 1.

Assume we have the approximate eigenvector u(i) and an expansion

M−1t̃(i) = M−1(A + β(i)B)u(i),

computed by either expansion. Consider t(i) in Algorithm 3.1 as a projection of
the expansion M−1t̃(i) orthogonal to B∗Bu(i). We characterize the quality of the
expansion by d(i),

(A − τB)t(i) = r(i) + d(i), for t(i) ⊥ B∗Bu(i). (3.5)

We can write (3.5) as

(A − τB)M−1t̃(i) = r(i) + αBu(i) + d(i),

where

α =
u(i)∗B∗B

�
M−1t̃(i) − (A − τB)−1(r(i) + d(i))

�

u(i)∗B∗B(A − τB)−1Bu(i)
.

This results in

Q(A − τB)M−1t̃(i) = (A − τB)Q̃M−1t̃(i) = Qr(i) + Qd(i), (3.6)

where

Q = I−
Bu(i)u(i)∗B∗B(A − τB)−1

u(i)∗B∗B(A − τB)−1Bu(i)
and Q̃ = I−

(A − τB)−1Bu(i)u(i)∗B∗B

u(i)∗B∗B(A − τB)−1Bu(i)
.

Hence we take t(i) := Q̃M−1t̃(i), satisfying Q̃M−1t̃(i) ⊥ B∗Bu(i).
Then we approximate the distance to the best expansion by δ(i) := �d(i)�, that

for the GD expansion is

δ
(i)
GD := �d

(i)
GD� =

�
�
�
�
Q(A − τB)M−1 − I

�
r(i)

�
�
� .

Note that δ
(i)
GD = 0 if M = A − τB. In the case of GD2, β(i) is a free parameter,

and it is possible to find the optimal value β
(i)
opt that minimizes δ

(i). Furthermore,

we will assume that GD2 selects β
(i)
opt when computing the correction t(i).

Proposition 1. If GD2 selects β(i) = β
(i)
opt, then in general δ

(i)
GD ≥ δ

(i)
GD2 and the

equality holds at every iteration if M = A− τB.

Proof. If we rewrite (3.6) as

d(i) = (Q(A − τB)M−1 − I)r(i) + Q(A − τB)M−1Bu(i)(β(i) − θ(i))

= d
(i)
GD + Q(A − τB)M−1Bu(i)(β(i) − θ(i)), (3.7)

47

Chapter 3. A Double-Expansion Davidson Method

Algorithm 3.2: Inexact Inverse Iteration

Input: initial approximate eigenvector u(0)

Output: θ(k) and u(k) from the last iteration k
1 for i = 1, 2, . . . do
2 Choose the shift σ(i) and the tolerance ξ(i)

3 Find y(i) such that

�(A − σ(i)B) y(i) − Bu(i−1)� ≤ ξ(i)�Bu(i−1)� (3.8)

4 Set u(i) = y(i)�By(i)�−1 and θ(i) = ρ(u(i))
5 Test for convergence

6 end

then the application of least squares leads to bound δ
(i)
GD2 as

δ
(i)
GD2 = min

β(i)
δ(i) = �(Q(A − τB)M−1Bu(i))⊥d

(i)
GD� ≤ �d

(i)
GD� = δ

(i)
GD,

where, by abuse of notation, we employ v⊥ to denote the orthogonal projector

I−v(v∗v)−1v∗. Of course, when M = A−τB, d
(i)
GD = 0, and hence d

(i)
GD2 = 0.

From Proposition 1 it seems clear that the case where the double subspace
expansion is more likely to be advantageous is in problems with preconditioners
M−1 far from (A − τB)−1.

3.2.2 Convergence analysis
We approach the analysis of the convergence of GD by relating the Davidson
iterations with inexact inverse iterations.

A quite general convergence theory of Algorithm 3.2 is presented in [Freitag and
Spence, 2007], for the computation of a finite eigenvalue θ1 and the corresponding
right eigenvector x1 of a generalized nonsymmetric eigenvalue problem. Consider
the block factorization of A − θB as

U−1(A − θB)X =

�
t11 0∗

0 T22

�

− θ

�
s11 0∗

0 S22

�

, (3.9)

with nonsingular square matrices U and X of size n. In [Freitag and Spence, 2007],
u(i) is decomposed as

u(i) = α(i)(x1ζ
(i) + X2p

(i)),

for some ζ(i) ∈ C and p(i) ∈ Cn−1, where X = [x1 X2] and α
(i) is chosen so that

�Bu(i)� = 1. Then the quotient

π(i) :=
�S22p

(i)�

|s11ζ(i)|
48

3.2 A double subspace expansion approach

is introduced as a measure for convergence, since it can be interpreted as a gen-
eralized tangent of the angle between u(i) and the eigenvector x1. The following
theorem shows the conditions guaranteeing that π(i) decreases linearly.

Theorem 1. Let (θ1, x1) be an algebraically simple eigenpair of (3.1) and let the
decomposition (3.9) be induced by x1, with θ1 = t11/s11. Assume that the initial
guess u(0) satisfies 0 < �S22p

(0)� < 1 and σ(i) /∈ λ(T22, S22). If σ(i) and τ(i) are
chosen in Algorithm 3.2 so that

|θ1 − σ(i)| <
�(T22 − θ1S22)

−1�−1

2 �S22�
�S22p

(i)�,

and

ξ(i) <
α(i)

�Bu(i)� �u1�
β |s11ζ

(i)|,

with 0 ≤ 2β < 1 − π(0), then Algorithm 3.2 converges linearly.

Proof. See Theorem 3.4 in [Freitag and Spence, 2007].

Using the convergence theory of Inexact Inverse Iteration, we shall prove the
linear convergence of GD2. For that we rewrite the step of the computed correction
t(i) (step 5 in Algorithm 3.1) represented by (3.5) in the form of (3.8),

(A − τB)(t(i) − u(i))(τ − θ(i))−1 − Bu(i) = d
(i)
GD2(τ − θ(i))−1.

Hence if the computed correction obtained in Algorithm 3.1, t(i), is used in Algo-
rithm 3.2 as

y(i) = (t(i) − u(i))(τ − θ(i))−1,

we can bound δ
(i)
III , assuming that the inequality in step 5 of Algorithm 3.1 for the

GD2 expansion holds at every iteration (�d
(i)
GD2� ≤ ξ1�r

(i)�), as

δ
(i)
III = �(A − σ(i)B) y(i) − Bu(i−1)� = �d

(i)
GD2�|τ − θ(i)|−1 ≤ ξ1�r

(i)�|τ − θ(i)|−1.
(3.10)

Corollary 1. Let (λ1, x1) be an algebraically simple eigenpair of (3.1). Assume

that the initial vector u(0), and the values of σ(i) = τ and ξ(i) = ξ
(i)
III , where

ξ
(i)
III := ξ1�r

(i)�|τ − θ(i)|−1, (3.11)

satisfy the conditions of Theorem 1. Then Algorithm 3.1 converges linearly to
(λ1, x1).

49

Chapter 3. A Double-Expansion Davidson Method

Proof. Note that �Bu(i)� = 1 and (3.10) yield

δ
(i)
III ≤ ξ1�r

(i)�|τ − θ(i)|−1 ≤ ξ
(i)
III�Bu(i)�.

Note that the suggested value of ξ
(i)
III of (3.11) is similar to the one proposed

in [Freitag and Spence, 2007, Remark 3.5].

3.2.3 Algorithmic details
As a consequence of expanding the search subspace with two vectors, the matrix-
vector product, the preconditioner application and the orthogonalization of the
search subspace double their cost, at least, per iteration with respect to the single
vector expansions. Rearranging the operations in blocks may improve the data
locality and reduce the time spent per vector.

Some high-performance libraries provide multivector versions of the sparse
matrix-vector product and are available even for new computer architectures such
as multicore processors and GPUs [Williams et al., 2009]. Unfortunately, the avail-
ability of multivector preconditioners is quite rare. Still, in very large problems,
consecutively applying the preconditioner to the vectors may imply an effective
time reduction since the second application can reuse the preconditioner data al-
ready available in faster memory. An example of this can be found in Ch. 4.

The SVQB method [Stathopoulos and Wu, 2002] computes an orthogonal basis
from a set of vectors, but instead of orthogonalizing one vector at a time, it works
with a block of vectors employing matrix-matrix operations almost exclusively.
An interesting candidate for updating the search subspace V with several new
vectors W is the GS-SVQB variant that combines a Gram–Schmidt procedure
to orthogonalize the new vectors against V , W ← (I − V V ∗)W, and SVQB for
the inner orthogonalization of the new block. Like (classical or modified) Gram–
Schmidt, an iterative version of GS-SVQB that achieves good orthogonality levels
is available.

Remark 1. As mentioned before, Au and Bu will asymptotically become linearly
dependent. Therefore, it may be sensible to first determine an orthonormal basis
for [Au Bu] before applying the preconditioner M. However, in our experiments
we did not encounter an example in which the orthogonalization of [Au Bu] de-
creased the number of iterations significantly.

3.3 Numerical results

First we illustrate the potential of the new expansion by computing interior eigen-
values of a diagonal generalized eigenvalue problem of order n = 200, formed by
diagonal matrices A and B, with ai,i = i and bi,i = n − i + 1. We study the
impact of the quality of the preconditioner in the convergence. For that, we use a

50

3.3 Numerical results

-12

-10

-8

-6

-4

-2

0

2

0 2 4 6 8 10 12 14 16 18

lo
g
1
0
(r

es
id

u
a
l)

#preconditioner applications

-12

-10

-8

-6

-4

-2

0

2

4

0 10 20 30 40 50 60 70

#preconditioner applications

GD
GD2

GD
GD2

Figure 3.1: Residual norm against preconditioner applications spent by single expansion
(GD) and the new expansion (GD2) using the high quality preconditioner M0 (left plot)
and the low quality preconditioner Mα with α = 104/3 (right plot).

preconditioner with a configurable quality,

M−1
α = (A − τB + αE)−1, (3.12)

where E is a diagonal matrix whose diagonal elements are random numbers uni-
formly distributed in the interval [−1, 1]. The quality of a preconditioner M for
A − τB may be estimated by its difference relative to M:

γ(M) = �M−1(M − (A − τB))� = �I −M−1(A − τB)�.

For the above eigenproblem, we obtained larger values of γ(Mα) for larger values
of α, when α has a relatively small value (see Table 3.1). We present results up to
the point where this trend is dramatically inverted, because for large values of α,
γ(Mα) lowers to 1:

lim
α→∞

�I −M−1
α (A − τB)� = lim

α→∞
�(A − τB + αE)−1αE� = 1.

We look for the eigenvalues closest to τ , which in this experiment is set to the
arithmetic mean of the eigenvalues of the pair (A,B). The tolerance on the residual
norm for the convergence of the eigenpair is 10−10. The search subspace is bounded
to 50 vectors and the solvers restart with 25 vectors. The harmonic Rayleigh-Ritz
procedure is used to extract the approximate eigenpairs from the search subspace.
In Figure 3.1 we have plotted the residual norm against the number of applications

51

Chapter 3. A Double-Expansion Davidson Method

Table 3.1: Iterations spent by the solvers versus the preconditioner quality

α 10
0
3 10

1
3 10

2
3 10

3
3 10

4
3 10

5
3 10

6
3

γ(Mα) 1.2 1.1 2.5 9.6 31.3 251.6 20.5

GD 13 16 22 34 65 174 –
GD2 18 22 28 34 50 78 126

of the preconditioner (which is the same as the application of the matrix A, and
also for matrix B), until one eigenpair converges. We can infer from the left plot
that, in the case of using the high quality preconditioner M0, the extra vector of the
new expansion does not accelerate the convergence, compared with GD. However,
using the low quality preconditioner Mα with α = 10

4
3 the acceleration of the new

expansion is evident. Table 3.1 shows the progressive effect of the preconditioner
quality on the total number of preconditioner applications required by the solvers.
One sees that the new expansion is less sensitive to the lack of preconditioner
quality and its performance is significantly better in (very) low quality cases (like
the case of α = 100, in which GD required more than 1000 iterations to converge).

We tested the approach also on standard eigenvalue problems, in particular
with a diagonal matrix A with entries ai,i = i/(n− i+ 1), that has the same solu-
tions as the generalized example above. In this case, we found that the convergence
history is very similar to the one shown in Fig. 3.1.

We have checked the conclusion inferred in the previous simple case by testing
the new expansion in a collection of 262 problems, both standard and generalized.
The problem matrices were taken from the real and complex matrices available
in the University of Florida Sparse Matrix Collection [Davis and Hu, 2011], dis-
regarding their original application. The targets have been set to the arithmetic
mean of the eigenvalues of the problem, which guarantees that the obtained ap-
proximate eigenvalues are interior. The tolerance on the residual norm for the
converged eigenpair was 10−7�A�2 and 10

−7(�A�2 + |θ|�B�2), respectively, for
standard and generalized eigenproblems. These stopping criteria come from the
backward stability theory applied to eigenvalue problems and is useful to auto-
matically set sensible tolerances considering the conditioning of the problem (see
[Higham and Higham, 1998, Th. 2.1]). The preconditioner used was the standard
incomplete LU factorization without fill-in, ILU(0), provided by the Matlab func-
tion ilu. The search subspace is bounded to 100 vectors and the solvers were
configured to restart with 50 vectors. All the problems are solved five times with
different random initial vectors (but the same vectors for both methods).

We present the time and the iterations spent by an experimental code in Matlab
with harmonic Rayleigh-Ritz procedure to extract the eigenvalues close to the
target, thick restart and the possibility of selecting between the single expansion
(GD) or the double expansion (GD2) approach. The executions were carry out

52

3.3 Numerical results

10−10

100

1010

1020

1030

1040

0.2 0.4 0.6 0.8 1 1.2 1.4

γ
(M

)

GD Its. / GD2 Its.

10−10

100

1010

1020

1030

1040

0.5 1 1.5 2

GD Time / GD2 Time

Figure 3.2: Gain of the new expansion (GD2) over the single expansion (GD) in number
of preconditioner applications (left plot) and time (right plot), versus the quality of the
ILU(0) decomposition as preconditioner.

on a machine consisting of 256 JS20 blade computing nodes, each of them with
two 64-bit PowerPC 970+ processors running at 2.2 GHz. The interpreter of the
Matlab code was Octave 3.3.54.

Considering an iteration as adding one vector to the search subspace, the left
plot in Figure 3.2 represents the gain in iterations of the new expansion over the
single expansion against the quality of the ILU(0) preconditioner. It is possible to
observe two clusters of points roughly separated by the gain 0.7 and the quality
10: in general the preconditioner quality of the points with a gain lower than 0.7
is less than 10, and the preconditioner quality of the points with a gain higher
than 0.7 is more than 10. This tendency strengthens our hypothesis that the new
expansion is more suitable for low quality preconditioners.

Finally, we present some timing results. Our code uses the Matlab multivector
matrix-vector product and the multivector preconditioner application. We note
that instead of a block orthogonalization procedure (discussed in the previous
section), the simpler repeated classical Gram–Schmidt procedure is used. The
right plot in Figure 3.2 represents the gain in time of the new expansion over
the single expansion. We can observe that the quality-gain pattern is similar to
the pattern shown by the left plot: the single expansion is faster in 115 out of
169 (68%) problems with preconditioner quality less than 10, while the double
expansion is faster in 85 out of 93 (91%) with preconditioner quality greater than
10.

53

Chapter 3. A Double-Expansion Davidson Method

3.4 Conclusions

We have proposed a new subspace expansion method, as an alternative to Olsen
and Generalized Davidson. Compared to Olsen, the new approach has a double
expansion with the same number of applications of the preconditioner. Compared
to Generalized Davidson, the method doubles the number of actions of the precon-
ditioner per outer iteration, but not when compared to the size of the subspace.
Based on the analysis comparing the convergence of both Generalized Davidson
and the double expansion with Inexact Inverse Iteration, the new approach seems
to be most promising for relatively low-quality preconditioners. This conclusion
is supported by comparing the performance of the methods computing interior
eigenvalues in the proposed collection of eigenproblems.

The convergence analysis did not consider the extraction method neither the
subspace acceleration, although it is reasonable to think that they may play an
important role in the robustness of the method. Their influence, besides the influ-
ence of a block orthogonalization like GS-SVQB, in the performance of the method
are left for future work.

We remark that a prototype of the proposed method has already been imple-
mented in SLEPc.

54

Chapter 4

Parallel Jacobi-Davidson in GENE

We are concerned with the standard eigenvalue problem defined by a large, sparse
matrix A of order n, Ax = λx, where the scalar λ is called the eigenvalue, and the
n-vector x is called the eigenvector. Many iterative methods are available for the
partial solution of the above problem, that is, for computing a subset of the eigen-
values. The most popular ones are Krylov projection methods such as Lanczos,
Arnoldi or Krylov-Schur, and Davidson-type methods such as Generalized David-
son or Jacobi-Davidson. Details of these methods can be found in [Bai et al., 2000].
Krylov methods achieve good performance when computing extreme eigenvalues,
but usually fail to compute interior eigenvalues. In that case, the convergence can
be improved by combining the method with a spectral transformation technique,
i.e., to solve (A − σI)−1x = θx instead of Ax = λx. The drawback of this ap-
proach is the added high computational cost of solving large linear systems at each
iteration of the eigensolver. Moreover, for stability reasons these systems must be
solved very accurately (normally with direct methods). Davidson-type methods
aim at reducing the cost by solving linear systems approximately, without com-
promising the robustness, usually with iterative methods. This topic is treated,
e.g., in [Hochstenbach and Notay, 2009].

Davidson methods are becoming an excellent alternative due to the possibility
of striking a balance between numerical behavior and computational performance.
A powerful preconditioner (close to the matrix inverse), if available, can usu-
ally reduce the number of iterations significantly. However, in practice its use is
normally too expensive computationally and may be difficult to parallelize, thus
dominating the cost of the eigensolver. Otherwise, depending on the performance
of the matrix-vector product, the preconditioner and the orthogonalization, there
exist Davidson-type variants that can be competitive with respect to Krylov-type
eigensolvers. This chapter illustrates an example of this.

In this chapter, we show results for the eigenvalue calculation that takes place
in the plasma physics application GENE, that solves a set of non-linear par-
tial integro-differential equations in five-dimensional phase space by means of the

55

Chapter 4. Parallel Jacobi-Davidson in GENE

-200

-100

0

100

200

-4 -3 -2 -1 0 1

im
a
g
in

a
ry

p
a
rt

real part

Figure 4.1: Spectrum of the linearized operator of a GENE problem similar to the test
case I (Table 4.1). The largest magnitude (circle marks) and the rightmost (cross marks)
eigenvalues are desired.

method of lines. Because of the shape of the spectrum (see Fig. 4.1), computing
the largest magnitude eigenvalues of the linearized operator is not particularly
difficult, despite the unfavorable characteristics of the problem (complex non-
Hermitian with matrix in implicit form). However, the case of computing the
rightmost eigenvalues is much more difficult from the numerical point of view,
since these eigenvalues are much smaller in magnitude compared to the dominant
ones. This makes the computational problem challenging and suitable as a testbed
for our new parallel eigensolver running on distributed memory architectures.

The rest of the chapter is organized as follows. First we describe the Jacobi-
Davidson method with harmonic extraction for standard problems without con-
sidering the preconditioning. Then the implementation details, including how the
method is parallelized, are discussed. Next we provide a brief description of the
application. The performance of the parallel eigensolver in this application is
presented in the results section. Finally, we wrap up with some conclusions.

56

4.1 The Jacobi-Davidson method

4.1 The Jacobi-Davidson method

Davidson-type methods belong to the class of subspace projection methods, where
approximate eigenvectors are taken from a search subspace V. Each iteration
of these methods has two phases: subspace extraction and expansion. In the
extraction phase, the solver selects the best (in terms of closeness to the desired
region of the spectrum) from all available eigenpair approximations contained in
V. In the subspace expansion, a correction for the selected eigenpair is added to
V.

The subspace expansion distinguishes a Davidson-type variant from others.
Jacobi-Davidson computes a correction d orthogonal to the selected approximate
eigenvector x̃ (considered normalized, �x̃� = 1) as an approximate solution of the
so-called Jacobi orthogonal component correction (JOCC) [Jacobi, 1846] equation

A(x̃ + d) = λ(x̃ + d), x̃ ⊥ d. (4.1)

The correction d can be approximately obtained by the solution of the following
system, often referred to as the Jacobi-Davidson correction equation [Sleijpen and
van der Vorst, 1996],

(I − x̃x̃∗)
�
A − θ̃I

�
(I − x̃x̃∗) d = −r, (4.2)

where r := Ax̃−θ̃x̃ is the residual associated to the selected approximate eigenpair
(θ̃, x̃). However from (4.1) it is possible to formulate different linear systems. For
our purpose, we implement the correction equation

�

I −
zz∗

z∗z

��
A − θ̃I

�
(I − x̃x̃∗) d = −r, (4.3)

where z ∈ span{Ax̃, x̃}. The equation comes from the one used in JDQZ [Fokkema
et al., 1999], simplified for standard problems. This variant shows excellent results
computing interior eigenvalues [Fokkema et al., 1999, Section 4.3].

If (4.3) is solved exactly, one step of the algorithm turns out to be one step of
the Rayleigh Quotient Iteration, which converges almost quadratically [Fokkema
et al., 1999]. Otherwise, if it is solved approximately, this high convergence rate
may get lost. There is a trade-off between speed of convergence and the amount
of work one is willing to spend for solving the equation, that is easily tuned if an
iterative method is used. In practice, the performance of the eigensolver depends
dramatically on a suitable stopping criterion for the iterative method.

Note that the correction equation (4.3) involves an operator for which the
domain and the image space differ, due to the projectors when x̃ �= z. This can
be problematic while forming powers of the coefficient matrix, like in the iterative
solution of the correction equation using Krylov methods. Our implementation

57

Chapter 4. Parallel Jacobi-Davidson in GENE

includes the solution proposed in [Sleijpen et al., 1998, Section 3.2] and in [Fokkema
et al., 1999, Section 2.6], that solves instead the equation

�

I −
zx̃∗

x̃∗z

��
A − θ̃I

��

I −
zx̃∗

x̃∗z

�

d = −r. (4.4)

In the subspace extraction phase, Davidson-type methods classically impose
the Ritz-Galerkin condition to the eigenpair (θ̃, x̃) that will be selected,

r = Ax̃ − θ̃x̃ ⊥ V. (4.5)

Since x̃ ∈ V, it is possible to express x̃ = V u, V being an orthogonal basis of V.
This leads to the low-dimensional projected eigenproblem V ∗AV u = θ̃u.

In practice this extraction technique, called Rayleigh-Ritz projection, obtains
good convergence rates when the eigenvalues of interest are those located at the
periphery of the spectrum. However, it gives poor approximate eigenvectors for in-
terior eigenvalues. The harmonic Rayleigh-Ritz method was proposed in [Morgan,
1991; Paige et al., 1995] as an alternative extraction technique for this case.

Assuming that interior eigenvalues close to a given target τ are desired, har-
monic Rayleigh-Ritz imposes the Petrov-Galerkin condition

(A − τI)x̃ − ξx̃ ⊥ W := (A − τI)V (4.6)

to the selected eigenpair (θ̃, x̃) with x̃ = V u, where ξ = θ̃ − τ. For numerical
stability reasons, both V and W (a basis of W) are constructed to be orthonormal.
The relation between the two bases is given by (A−τI)V = WH, where H is upper
triangular. Similarly to the previous case, this leads to the projected eigenproblem

Hu = ξW∗V u, (4.7)

considering that W∗(A − τI)V = H. Then the smallest magnitude pairs (ξ, u) of
(4.7) correspond to the pairs (ξ + τ, V u) in V closest to the target τ .

The eigenvectors of the projected eigenproblem, U, are not orthogonal in gen-
eral, so updates such as V U1:k would require reorthogonalizing the resulting basis.
For improved stability, instead of directly computing the eigenpairs of the pro-
jected problem, the generalized Schur decomposition of (4.7) is computed,

H = ZSU∗, W∗V = ZTU∗, such that U∗U = Z∗Z = I, where ξi = si,i/ti,i.

At the end, the method works with Schur vectors along the computation, and
the solver has obtained a partial Schur decomposition from which it is possible to
compute the corresponding approximate eigenpairs.

The harmonic pairs are employed in other parts of the method,e.g., the asso-
ciated left vector of the selected pairs are set as z in the correction equation (4.4),
and in the restart, the bases V and W are replaced by V U1:mmin

and WZ1:mmin

respectively.

58

4.1 The Jacobi-Davidson method

Algorithm 4.1: Harmonic non-Hermitian Jacobi-Davidson

Input: matrix A of size n, number of wanted eigenpairs p, block size s,
initial dimension of V m0, maximum size of V mmax, restart with
mmin vectors

Output: resulting eigenvalues Θ and Schur vectors X
1 Choose a starting subspace basis V of m0 vectors, such that V

∗V = Im0

2 Compute W such that (A − τI)V = WH and W∗W = Im0

3 Set m ← m0, l ← 0, Θ ← ∅ and X ← ∅
4 while l < p do

5 Extraction: Compute the Schur pairs (�Θ, �X), from the generalized Schur

decomp. H = ZSU∗ and W∗V = ZTU∗, where �X = V U and
θ̃i = si,i/ti,i + τ

6 Sort the Schur pairs (�Θ, �X)
7 Obtain the number of converged pairs k
8 if k > 0 then

9 Add eigenvalues �θ1, . . . , �θk to Θ

10 Set X ← [X �X1:k], V ← V Uk+1:m and W ← WZk+1:m

11 Set m ← m− k and l ← l + k

12 end
13 if m ≥ mmax then

14 Set V ← V U1:mmin
, W ← WZ1:mmin

, �Θ ← �Θ1:mmin,1:mmin
, �X = V ,

U = Z = Immin
and m ← mmin

15 end
16 Expansion: Compute the correction D as in (4.4) for the first s pairs

(�Θ, �X)
17 Set V ← [V orthonormalize([X V],D)]
18 Set W ← [W orthonormalize([X W], (A − τI)Vm:m+s)]
19 Set m ← m+ s

20 end

Algorithm 4.1 summarizes the scheme of a Jacobi-Davidson method with har-
monic Rayleigh-Ritz extraction. Note that the algorithm illustrates a block ver-
sion, i.e., s eigenpair approximations are improved simultaneously in each itera-
tion. As in all iterative algorithms based on expanding subspaces, due to memory
limitations and in order to improve efficiency, the maximum size of the search
and test subspaces have to be bounded. Thus, it is necessary to restart the com-
putation whenever the available space for new basis vectors is exhausted. The
thick restart technique [Stathopoulos et al., 1998] resets the subspace with the
best mmin approximate eigenvectors when its size reaches mmax. A related issue is
locking of already converged eigenvectors �X, a deflation technique that amounts
to extracting them from the active basis in order to avoid unnecessary computa-

59

Chapter 4. Parallel Jacobi-Davidson in GENE

tion for further improvement. When an eigenpair converges, it is removed from
the subspace bases V and W, and in subsequent iterations the new d vectors are
orthogonalized against all locked vectors.

For a more detailed description, the reader is referred to [Sleijpen and van der
Vorst, 1996; Fokkema et al., 1999; Sleijpen et al., 1996, 1998].

4.2 Implementation description

In this section, we describe the details of our particular implementation, with
special attention to the parallelization and important aspects such as the solution
of the correction equation.

4.2.1 Overview of SLEPc
SLEPc, the Scalable Library for Eigenvalue Problem Computations [Hernandez
et al., 2005], is a software library for the parallel solution of large-scale, sparse
eigenvalue problems. It was designed to solve problems formulated in either stan-
dard or generalized form, both Hermitian and non-Hermitian, with either real or
complex arithmetic. It can also be used for singular value and quadratic eigenvalue
problems.

SLEPc provides a collection of eigensolvers on top of PETSc (Portable, Exten-
sible Toolkit for Scientific Computation, [Balay et al., 2010]), including Krylov-
Schur, Arnoldi, Lanczos, Subspace Iteration and Power/RQI. Davidson-type solvers
were missing, and this motivated the development of our implementation, which
was finally included in SLEPc 3.1 (released in August 2010).

PETSc is a parallel framework for the numerical solution of partial differential
equations, whose approach is to encapsulate mathematical algorithms using object-
oriented programming techniques in order to be able to manage the complexity
of efficient numerical message-passing codes. PETSc is object-oriented in the
sense that all the code is built around a set of data structures and algorithmic
objects. The application programmer works directly with these objects rather
than concentrating on the underlying data structures. The three basic abstract
data objects are index sets, vectors and matrices. Built on top of this foundation
are various classes of solver objects, including linear, nonlinear and time-stepping
solvers. Many different iterative linear solvers are provided, including GMRES,
BiCGstab and BiCGstab(�) [Sleijpen and Fokkema, 1993], which can be combined
with different preconditioners.

SLEPc eigensolvers rely on the parallel implementation of vector operations,
the matrix-vector product and linear equation solvers. Basic implementations of
these operations are supplied by PETSc objects. However, certain time-consuming,
critical operations have custom implementation in SLEPc in order to improve the
overall performance, as explained below.

60

4.2 Implementation description

4.2.2 Parallelization details
The problem matrix A and the vectors of size n, e.g., those stored in V , W, X,
�X and R, are distributed by blocks of rows in the corresponding matrices. The
rest of vectors and matrices of size bounded by mmax � n, e.g., the matrices H,
U and Z, are replicated in all nodes.

Operations involving distributed operands are parallelized. These include up-
dating W, computing the coefficient matrices of the projected eigensystem H and
W∗V , the selected Ritz vectors �X and their residuals R, solving the correction
equation (4.4) and orthogonalizing V and W.

The search subspace V is initialized with a basis of randomly generated vectors
in parallel, taking care that each processor generates different random sequences.

The orthogonalization is based on a variant of classical Gram-Schmidt with
selective reorthogonalization, providing both numerical robustness and good par-
allel efficiency [Hernandez et al., 2007]. The Schur decomposition of the projected
problem and other minor computations are replicated in all nodes.

PETSc only provides basic support for multivectors (a multivector can be seen
as a thin tall matrix, or a set of vectors that should be stored contiguously for
memory efficiency). In order to develop an optimized version of Jacobi-Davidson
it is necessary to implement basic multivector operations using BLAS to perform
the local calculations. We provide an implementation in which individual vectors
in a multivector can be used in common PETSc functions.

The most time-consuming operations are the multivector inner product W∗V
and the update V U. However, PETSc only implements the level 2 BLAS opera-
tions W∗vi and V ui. For W

∗V , our implementation (i) performs the level 3 BLAS
matrix-matrix product of the locally stored parts of V and W on each process,
and then (ii) sums up all of them with a single call to an MPI reduction operation.
For V U, it performs the BLAS matrix-matrix product of the locally stored part
of V and the whole U.

4.2.3 Solution of the correction equation
The correction equation (4.4) is solved using PETSc’s Krylov linear solvers, which
need to compute matrix-vector products with the coefficient matrix. In this case,
performing the shifting and the projections implicitly is more efficient than ex-
plicitly building the coefficient matrix. Also, applying only the left projector is
sufficient to guarantee the condition d ⊥ x̃, provided that a Krylov solver is used
with a zero starting vector, as shown in [Sleijpen et al., 1998].

The trade-off between performance and global convergence is controlled in two
ways. First, the maximum number of iterations and the relative residual tolerance
can be tuned for the linear system solver. Generally, increasing the number of
linear solver iterations (inner iterations) causes a decrease of the global method
iterations (outer iterations). In §4.4.1 we will compare the performance of two
stopping criteria.

Secondly, the convergence behavior of different Krylov solvers depends on the
properties of the problem. We have tested two well-known solvers of this family:

61

Chapter 4. Parallel Jacobi-Davidson in GENE

GMRES and BiCGstab(�). They have different parallel behavior because GMRES
generally requires less matrix-vector products than BiCGstab(�), but in contrast
it has to explicitly maintain an orthonormalized basis whereas BiCGstab does not.

Finally, it is noteworthy that in the first outer steps the pairs resulting from
the (harmonic) Rayleigh-Ritz procedure are usually poor approximations of the
desired eigenpairs, and the target τ may be a relatively better approximation.
Therefore, when the selected eigenpair’s associated residual norm is greater than
a threshold value fix, the correction equation (4.4) is solved with θ̃ = τ instead
[Fokkema et al., 1999, Section 4.0.1].

In principle, the preconditioning of the correction equation is desirable. How-
ever, this issue is not addressed in this chapter because, as we will see below, the
application matrix is defined in implicit form, thus preventing from computing
conventional preconditioners. Instead it is treated in Ch. 5.

4.3 GENE: A gyrokinetic plasma simulation code

One of the main goals of plasma simulation is to study the micro-instabilities that
drive turbulence which in turn produces anomalous transport. This analysis must
be done to determine the energy confinement time, a crucial parameter for the
design of a fusion reactor.

GENE [Dannert and Jenko, 2005] is a massively parallel plasma simulation
code written in Fortran 90/95, which is based on the numerical solution of the
gyrokinetic equations. These equations stem from a simplification of the Maxwell-
Boltzmann equations by eliminating the fast gyration of ions and electrons in
strongly magnetized, dilute plasmas. This periodic motion is not relevant for
most investigations, usually focusing on observables related to much slower time
scales such as the net particle transport.

The linearized gyrokinetic equation can be written schematically as

∂g

∂t
= L[g], (4.8)

where L is a time independent, complex, non-Hermitian integro-differential oper-
ator. It describes the time evolution of the modified distribution function of the
gyrocentres g, which is a (scalar) function of the perpendicular spatial wave vec-
tor (kx, ky), the coordinate z parallel to the magnetic field, the velocity parallel
to the magnetic field v�, the magnetic moment µ, and the species label j. The
GENE code follows an Eulerian approach. In particular, an explicit Runge-Kutta
scheme is used for time integration, while the semi-discretization of phase space
variables is done with a fixed grid and a combination of spectral and finite differ-
ence techniques. In GENE, the operator matrix is never computed explicitly, but
implemented in a highly parallelized and efficient matrix-free form. For reasonably
accurate models, the size of the problem ranges from several hundred thousand
for linear simulations up to a few billion for nonlinear problems.

In GENE, some selected eigenvalues of the linearized operator need to be com-
puted. In [Roman et al., 2010], the Krylov eigensolvers available in SLEPc are

62

4.4 Computational results

Table 4.1: Test case I: GENE configuration for a very unstable kinetic ballooning
mode with growth rate of 0.2055 and frequency of 0.2872 and another unstable mode
(0.1227 − 0.4494i).

Dir. Resol. Boxsize Geom. & other params. Param. Ions Electrons

s 2 geom. circular R/Ln 2.0 2.0
x 12 lx 125.628 ŝ 0.8 R/LT 3.125 3.375
y 1 ky,min 0.25 q0 1.4 mass 1.0 0.00027
z 24 trpeps 0.18 charge 1.0 -1.0
v 48 lv 3.0 β 0.001 T 1.0 1.5
µ 12 lµ 9.0 (hypz, hypv) (2, 0.5) dens 1.0 1.0

Table 4.2: Test case II: GENE configuration similar to test case I but with a more
realistic species configuration: deuterium, tritium, helium and electrons.

Dir. Resol. Boxsize Geom. & other params. Param. 2H 3H He e-

s 4 geom. circular R/Ln 2.5 2.5 2.5 2.5
x 12 lx auto ŝ 0.8 R/LT 3.5 3.5 3.5 4.0
y 1 ky,min 0.25 q0 1.4 mass 2.014 3.016 4.002 5.4e-4
z 24 trpeps 0.18 charge 1 1 2 -1
v 48 lv 3.0 β 0.001 T 1.0 1.0 1.0 1.5
µ 8 lµ 9.0 (hypz, hypv) (2, 0.5) dens 0.45 0.45 0.05 1.0

used for this. One scenario is the computation of the largest magnitude eigenvalue
(circled in the spectrum of Fig. 4.1) in order to estimate the optimal timestep
of the initial value solver. In this case, Krylov solvers converge very fast. In a
different context, SLEPc is also used for computing the subdominant unstable
modes, i.e., the rightmost eigenvalues (crosses in Fig. 4.1). Due to the shape of
the spectrum, these eigenvalues are much more difficult to compute. In [Roman
et al., 2010], it is shown that the Krylov-Schur method with harmonic extraction
has a reasonably good performance, compared to plain Krylov-Schur with spectral
transformation. In the next section, we will show that our Jacobi-Davidson imple-
mentation performs even better. Computing these rightmost eigenpairs very fast
is critical for some kind of analyses, e.g., when tracking the subdominant modes
for varying values of several parameters [Merz and Jenko, 2010], in which case a
sequence of eigenproblems has to be solved.

4.4 Computational results

This section summarizes the experiments carried out in order to evaluate the
performance of our implementation, particularly in terms of scalability to a large
number of processes.

The experiments are executed on Tirant, a machine consisting of 256 JS20
blade computing nodes, each of them with two 64-bit PowerPC 970+ processors

63

Chapter 4. Parallel Jacobi-Davidson in GENE

Table 4.3: Test case III: GENE configuration corresponding to a stellarator device.

Dir. Resol. Boxsize Geom. & other params. Param. Ions Electrons

s 2 geom. tracer R/Ln 0.0 0.0
x 3 lx auto file hm128.dat R/LT 4.0 0.0
y 1 ky,min 0.3 ŝ -0.1088 mass 1.0 0.0025
z 128 q0 1.11 charge 1.0 -1.0
v 48 lv 3.0 β 0.001 T 1.0 1.0
µ 12 lµ 9.0 (hypz, hypv) (5, 0.5) dens 1.0 1.0

running at 2.2 GHz, and interconnected with a low latency Myrinet network. Only
256 processors are used due to account limitations.

The following software is employed: GENE 1.4, PETSc 3.1, SLEPc 3.1 and
LAPACK 3.2.1. All of them are built with the IBM compilers XL for C and
Fortran, and linked with the BLAS routines in ESSL and MPICH 1.2.7.

Three different GENE parameter settings are used, detailed in the Tables 4.1,
4.2 and 4.3. These can be considered real use scenarios. In our previous work
[Romero and Roman, 2010], only a lower resolution version of the test case 4.1
was employed. The GENE parameters shown in the tables determine the size and
the spectrum of the associated eigenproblem (which influence the convergence of
the solvers), and change the performance of matrix-vector products (which is an
important part of the overall performance).

All experiments in this section are run using the default domain distribution
(how many groups of processes there are in each direction) computed by GENE.
For instance, when running test case II with 64 processes the default is to split
the s, x, y, z, v, and µ directions in 4, 2, 8, 1, 1, 1, respectively. The impact of
different domain distributions on parallel performance is studied in [Roman et al.,
2010] and [Romero and Roman, 2010].

The Jacobi-Davidson solver will be compared with the fastest alternative found
in [Roman et al., 2010], that is the Krylov-Schur method with harmonic extraction,
which is available in SLEPc. Both solvers are configured for computing the two
eigenvalues with largest real part (that correspond to the two instabilities with
largest growth rates), with a tolerance of 10−5 for the residual norm relative to
the magnitude of the eigenvalue. The search subspace is limited to 64 vectors, and
when it is full, Krylov-Schur restarts with 32 vectors whereas Jacobi-Davidson
keeps only 8. We have used block size 1, since larger values do not improve the
performance in this case.

The harmonic procedure in both eigensolvers needs a target (called τ in Al-
gorithm 4.1), that is, a point in the complex plane whose nearest eigenvalues are
the desired ones. In the experiments the target is set to 1, which is a reasonable
assumption for the upper bound for the real part of the eigenvalues for the problem
at hand.

64

4.4 Computational results

0

5000

10000

15000

20000

25000

30000

25 50 80 var
25

var
50

var
80

0

2 105

4 105

6 105

8 105

1 106
ti

m
e

(s
)

#
re

d
u

ct
io

n
s

MV
Ops 0
Ops 1

reductions

Figure 4.2: Time (in seconds, left axis) and number of reductions (right axis) spent by
Jacobi-Davidson solving the test case I with four processes. The correction equation is
solved with BiCGstab(2) and a maximum number of iterations of 25, 50 and 80. The
cases labeled as “var” use a variable tolerance for the stopping criterion. The total time
is split into matrix-vector products (MV) and vector operations without (Ops 0) and
with (Ops 1) communication.

4.4.1 Stopping criterion for the correction equation solver
As already remarked, the way in which the correction equation is solved has a
significant impact on the overall performance of the method. Our study in [Romero
and Roman, 2010] compares the performance of Jacobi-Davidson when solving the
correction equation with 110 iterations of GMRES and BiCGstab(2), showing that
the latter obtained better results (this can be attributed to the high overhead of
basis orthogonalization in GMRES). In this chapter, we extend the analysis by
testing more flexible criteria with BiCGstab(2).

Figure 4.2 shows the time spent by Jacobi-Davidson using four processes when
solving test case I with the BiCGstab(2) solver configured to perform 25, 50 and
80 (inner) iterations. We also consider modified versions of these configurations
using a variable tolerance, that is, the iterative solution of the correction equation
is stopped earlier if

�r(j)�2 ≤ 2
−i�r(0)�2,

where r(j) is the residual of the correction equation at the linear solver iteration
j, and i is the current outer iteration. This criterion comes from Newton methods
and its use in the context of Jacobi-Davidson is suggested in [Fokkema et al., 1999],
and is also used in [Genseberger, 2010].

65

Chapter 4. Parallel Jacobi-Davidson in GENE

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

K
S

case
I

JD
case

I

K
S

case
II

JD
case

II

K
S

case
III

JD
case

III

ti
m

e
(s

)

MV
Ops 0
Ops 1

0

100

200

300

400

500

600

K
S

case
I

JD
case

I

K
S

case
II

JD
case

II

K
S

case
III

JD
case

III

ti
m

e
(s

)

MV
Ops 0
Ops 1

Figure 4.3: Time (in seconds) using Krylov-Schur (KS) and Jacobi-Davidson (JD) with
BiCGstab(2) solving test cases I, II and III with 4 (left) and 256 (right) processes. The
total time is split into matrix-vector products (MV) and vector operations without (Ops
0) and with (Ops 1) communication.

From the figure, we observe that the best times are obtained limiting the num-
ber of iterations to 80, and in general the more iterations, the better time. In all
cases, the variable tolerance criterion slightly reduces the time and, more impor-
tantly, significantly reduces the number of parallel reductions. Parallel reductions
require the synchronization of all processes and constitute a great penalty for the
scalability of the method. If we repeat the analysis for a larger number of processes,
we will see that using more iterations may be counterproductive because overhead
associated to collective communication becomes more important. Therefore, in
subsequent experiments we use the variable tolerance criterion with a maximum
number of inner iterations of 50.

4.4.2 Jacobi-Davidson versus Krylov-Schur
Figure 4.3 compares the results of Jacobi-Davidson and Krylov-Schur for test cases
I, II and III. With four processes (left plot) the advantage of Jacobi-Davidson is
clear. However, the difference between both methods is reduced significantly when
the number of processes increases, as can be appreciated in the results with 256
processes (right plot) and in the speedups in Figure 4.4 commented below.

One of the possible causes is that Jacobi-Davidson needs more than twice as
many matrix-vector products as Krylov-Schur (see Table 4.4), but the order in
which they are performed (quite consecutive compared to Krylov-Schur) allows
the cache to reduce this penalty. When the local problem size is small enough,

66

4.4 Computational results

Table 4.4: Total number of matrix-vector products (#MV), total time spent by them
(T. MV) in seconds, average time spent by one product (T./#MV), and number of
reductions (#red.) performed by both methods when solving the test cases with four
processes.

Krylov-Schur Jacobi-Davidson
Case #MV T. MV(s) T./#MV(s) #red. #MV T. MV(s) T./#MV(s) #red.

I 119776 5226.2 0.0436 177000 297147 7185.15 0.0241 865900
II 67136 5299.4 0.0789 100700 169685 5754.05 0.0339 494000
III 45216 2439.6 0.0539 66960 110499 2527.2 0.0228 321100

Krylov-Schur performs the matrix-vector product as fast as Jacobi-Davidson and
the excess of matrix-vector products in Jacobi-Davidson is reflected in the time
(see matrix-vector product times in the bottom right plot of Figure 4.4).

Another explanation is the fact that Jacobi-Davidson performs approximately
five times more parallel reductions than Krylov-Schur (see Table 4.4). Some par-
allel reductions are performed in the orthogonalization procedure and others in
the iterations of the solution of the correction equation. The latter is the main
source of parallel reductions in Jacobi-Davidson, and keeping their number small
is necessary for a competitive implementation.

4.4.3 Speedup and Scalability
Figure 4.4 illustrates the speedups, in the strong scaling sense, of Jacobi-Davidson
and Krylov-Schur solving the test cases I, II and III. The time spent by Jacobi-
Davidson in four processes is selected as the reference time for the speedup in each
test case. The bottom right plot shows the speedup of the matrix-vector product
taking as basis the performance in Jacobi-Davidson.

We can observe that there is a clear connection between the speedup of the
matrix-vector product and the total speedup. The reason is that this operation
approximately accounts for 50% of the total time in Jacobi-Davidson and just 33%
in Krylov-Schur, with 256 processes. This can explain the poor speedup results
for test case I. In each test case, the trend of the global speedup inherits the trend
of the matrix-vector product as the number of processes grows.

Finally, Figure 4.5 illustrates the weak scaling scenario, plotting the time spent
by the eigensolvers in the solution of the cases I (left plot) and II (right plot) with
the resolution of the v direction increased. It is observed that both solvers are
comparably good, with the exception of the anomalous and punctual malfunction
of Krylov-Schur with 16 and 32 processes due to extremely slow convergence (this
may not happen with a different set of parameters).

67

Chapter 4. Parallel Jacobi-Davidson in GENE

0

50

100

150

200

250

300

0 50 100 150 200 250 300

sp
ee

d
u

p

processors

0

50

100

150

200

250

300

0 50 100 150 200 250 300

processors

0

50

100

150

200

250

300

0 50 100 150 200 250 300

sp
ee

d
u

p

processors

0

50

100

150

200

250

300

0 50 100 150 200 250 300

processors

KS
JD

ideal

KS
JD

ideal

KS
JD

ideal

MV in KS case I
MV in JD case I

MV in KS case II
MV in JD case II

MV in KS case III
MV in JD case III

Figure 4.4: Speedups solving the test cases I (top left), II (top right) and III (bottom
left) with Jacobi-Davidson and Krylov-Schur. Speedup of the matrix-vector product in
these problems (bottom right).

4.5 Conclusions

We have presented a parallel implementation of the Jacobi-Davidson eigensolver
for complex non-Hermitian matrices. The proposed solver incorporates all the in-
gredients necessary to be competitive with other solvers, such as restart and lock-
ing with Schur vectors. It is also equipped with harmonic extraction for finding
interior eigenvalues, and several options for the efficient solution of the correction
equation (projectors, preconditioning, and the fix parameter). The implementa-

68

4.5 Conclusions

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300

ti
m

e

processors

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300

ti
m

e

processors

KS

JD

KS

JD

Figure 4.5: Time (in seconds) solving versions of the test cases I (left) and II (right)
with increasing resolution in the v direction, with Jacobi-Davidson and Krylov-Schur.

tion has been carried out in the context of SLEPc, where the user is able to easily
adjust the different parameters for the best performance.

In order to analyze the performance of the new solver, we have addressed
a relevant scientific computing application, namely the computation of micro-
instabilities in fusion plasmas as implemented in the GENE code. This application
requires computing the rightmost eigenvalues (unstable modes) of a discretized
advection dominated partial integro-differential equation, where the matrix has
almost pure imaginary eigenvalues. This problem is a challenge for iterative eigen-
solvers.

The comparison, in terms of time, with the harmonic Krylov-Schur method
is very favorable, being Jacobi-Davidson up to four times faster in some cases.
However, this gain is diminished when the local problem size is small, that is,
both methods become nearly equivalent when increasing the number of processes,
although in absolute terms Jacobi-Davidson is still faster, at least up to 256 pro-
cesses with the problems tested. The reason for this behavior is that the Jacobi-
Davidson eigensolver, in order to be competitive with respect to Krylov-Schur,
needs to perform many inner iterations. In this way, the cost is dominated by
the matrix-vector product operation. In the considered application, the parallel
efficiency of the matrix-vector product is rather variable, depending on the con-
figuration of the GENE parameters.

In terms of practical use, we have shown that Jacobi-Davidson is a competitive
method for GENE, even without using a preconditioner. It remains as a topic
for further research the addressing of the correction equation preconditioning by,

69

Chapter 4. Parallel Jacobi-Davidson in GENE

for instance, designing a specific preconditioner for the GENE linearized operator
(see Ch. 5). Furthermore, it may be interesting to consider other iterative methods
for solving the correction equation, such as deflated restarting GMRES [Morgan,
2002], and advanced stopping criteria, such as those proposed in [Hochstenbach
and Notay, 2009].

70

Chapter 5

Use of Preconditioners and Initial
Guesses in GENE

In magnetically confined high temperature plasmas as they occur in fusion exper-
iments, temperature and density profiles are determined by turbulent transport.
Given that the relevant time scales are usually clearly above the particles’ gyration
times, this so-called microturbulence can be described in the framework of gyroki-
netic theory [Brizard and Hahm, 2007] which is a reduced kinetic model, neglecting
the fast gyrophase dependence. It describes the plasma as a collection of quasi-
particles (charged rings) in a five-dimensional phase space, coupled via a modified
form of Maxwell’s equations. Assuming that the system size clearly exceeds the
radial correlation length of the turbulence, it is common to make a (radially) local
approximation, reducing the simulation volume to a thin flux tube [Beer et al.,
1995]. Moreover, if one is only interested in the microinstabilities which drive
the turbulence, the gyrokinetic equations may be linearized. While greatly reduc-
ing the overall computational effort, this still allows to make valuable predictions
concerning the expected properties of the resulting turbulent transport.

In local gyrokinetics, the time evolution of the modified distribution function
g of the gyrocenters can schematically be written as [Kammerer et al., 2008]

∂tg = Lg + N[g] .

Here, the distribution function g is a function of the two spatial coordinates (kx, ky)
perpendicular to the background magnetic field, the parallel coordinate z, the two
velocity space coordinates (parallel velocity and magnetic moment) (v�, µ), the
species index s, and time t. L is the linear gyrokinetic operator and N[g] is the
quadratic E × B nonlinearity; both operators are of integro-differential form.

The turbulence in the nonlinear system is driven by linear instabilities, i.e.,
eigenmodes of L with positive real part of the eigenvalue. Investigations of the
growth rate and frequency (i.e., real and imaginary parts of the eigenvalue) of
these instabilities, which occur owing to temperature and density gradients of

71

Chapter 5. Use of Preconditioners and Initial Guesses in GENE

the background, already give some information about the behavior of the system.
Furthermore, the eigenvalues and -vectors can be used to construct quasilinear
models (see, e.g., [Merz and Jenko, 2010]).

The linear operator L is block diagonal in ky and only couples certain kx
values. The problem size of a linear computation is very much reduced compared
to a nonlinear simulation, where the nonlinearity couples all values in the kx, ky
plane. Linear investigations are therefore computationally much less demanding
than full nonlinear turbulence simulations. This can be exploited to perform high
dimensional parameter scans, which allows, e.g., for checks of the robustness of
a simulation result with respect to variations about a nominal set of parameters,
predictive simulations of fusion plasmas, and the optimization of experimental
parameters.

For a general set of background gradients, several modes are unstable. While
the most unstable mode is usually the most interesting one for quasilinear mod-
els, parameter variations lead to variations of the growth rates and therefore to
transitions of the most unstable mode. The most unstable mode can be computed
both as initial and eigenvalue problem, but mode transitions can only be moni-
tored if an eigenvalue solver is used. Furthermore, the computation time for the
initial value approach diverges exactly at a mode transition. Since the results of
[Merz and Jenko, 2010] suggest that subdominant modes only contribute to the
nonlinear properties if they are similar in growth rate to the most unstable mode,
only the dominant and the first subdominant mode are considered.

This chapter is organized as follows. In the next section, we introduce the equa-
tions solved in the gyrokinetic GENE code and present the test case which will
be used throughout this chapter. In Section 5.2, the interface between the GENE
code, which implements the gyrokinetic equations, and the SLEPc library, which
is used for the eigenvalue computations, is described, with focus on the recently
implemented Jacobi-Davidson solver and the preconditioner, which is necessary
for good performance. In Section 5.3, we discuss strategies to efficiently process
large numbers of eigenvalue computations, including subspace recycling and par-
allelization. The capability of the resulting setup is demonstrated for an example
in Section 5.4. Finally, Section 5.5 closes with a summary.

5.1 The GENE code

Since the nonlinear gyrokinetic equations generally do not allow for analytic solu-
tions, they have to be solved numerically. A state-of-the-art gyrokinetic solver is
provided by the GENE code [Jenko et al., 2000; Dannert and Jenko, 2005; Merz,
2008; Görler et al., 2011]. GENE is physically comprehensive and flexible, com-
putationally efficient, and hyperscalable. GENE is being further developed by an
international team and is freely available. More details can be found on the GENE
website http://gene.rzg.mpg.de.

In the context of the present work, we will focus on the linearized gyrokinetic
equations as implemented in GENE. We start by noting that the linear gyrokinetic

72

5.1 The GENE code

operator is a complex, non-Hermitian integro-differential operator. It can be split
in two parts

L = Lg + Lχ ,

where

Lg = −
T0s(2v

2
� + µB0)

qsB0
(Kyiky + Kxikx) −

vTs
JB0

v�
∂

∂z
+

vTs
2JB0

µ∂zB0
∂

∂v�

is a differential operator acting directly on g, and Lχ is a more complicated oper-
ator that contains the various derivatives of the (gyro-averaged) electromagnetic
fields. It can be written as

Lχg = −

�

ωn + (v
2
� + µB0 −

3

2
)ωTs

�

F0sikyχs −
2v2� + µB0

B0
F0 (Kyiky + Kxikx) χs

−
vTs
JB0

v�
qs
T0s

F0∂zχs −
2qs

msJB0
v2�µF0Ā�s(∂zB0)

−
qs

msJB0
µ(∂zB0)Ā�s(∂v�v�F0s),

where
χs = φ̄s − vTsv�Ā�s

is a combination of the electromagnetic fields φ and A� (the bars denote gyro-
averaging). Its dependency on the species index s is introduced by the gyro-
averaging operator. The fields are computed from g by the linear operators

φ =

�
s n0sπqsB0

�
J0(λs)gsdv� dµ

k2⊥λ
2
D +

�
s

q2s
T0s

n0s(1 − Γ0(bs))

A1� =

�
s
β
2 qsns0vTsπB0

�
v�J0(λs)gs(�k)dv� dµ

k2⊥ +
�

s
βq2s
ms

n0sπB0

�
v2�J

2
0 (λs)F0sdv� dµ

.

For the definitions of the prefactors, see [Merz, 2008]. The derivatives are dis-
cretized with (centered) finite differences in GENE, leading to a banded structure
of Lg. The field operators contain integrals in the v�, µ and s coordinates and
therefore leads to a large bandwidth of Lχ, which is inherited by L.

Since a computation based on an explicit representation of a matrix with this
structure would be very inefficient, the operator is implemented in a matrix-free
form in GENE, exploiting the knowledge about the integro-differential structure
of the operator.

The default parameter set that will be used as a test case throughout this chap-
ter is specified in Table 5.1. It corresponds to the parameter set 4 of the SLEPc
testsuite provided by GENE. For this parameter set, a dominant ion tempera-
ture gradient (ITG) mode and a subdominant collisionless trapped electron mode
(TEM) can be observed. To simplify the notation, we represent the v� coordinate
as v in Table 5.1 and in the rest of the chapter.

73

Chapter 5. Use of Preconditioners and Initial Guesses in GENE

Table 5.1: Test case I: GENE configuration for an ITG mode with growth rate of 0.2055
and frequency of 0.2872 and a subdominant TEM (0.1227 − 0.4494i).

Dir. Resol. Boxsize Geom. & other params. Param. Ions Electrons

s 2 geom. circular R/Ln 2.5 2.5
x 5 ŝ 0.8 R/LT 3.5 4.0
y 1 ky,min 0.25 q0 1.4 mass 1.0 0.00027
z 16 trpeps 0.18 charge 1.0 -1.0
v 48 lv 3.0 β 0.001 T 1.0 1.5
µ 8 lµ 9.0 (hypz, hypv) (2, 0.5) dens 1.0 1.0

5.2 Fast eigenvalue computations

The GENE code was coupled to the SLEPc package several years ago and since
then it has been routinely used to compute the spectral radius of the linear op-
erator. This allows the exact determination of the maximum allowed time step
for the Runge-Kutta scheme used in initial value computations. Apart from this
rather technical application, the investigation of a selected subset of eigenvalues
and eigenvectors is of great physical interest and can be used, e.g., in the con-
text of quasilinear models (see, e.g., [Dannert and Jenko, 2005; Jenko et al., 2005;
Merz and Jenko, 2010]). Of obvious interest are the unstable eigenmodes (i.e.,
eigenmodes with positive real part), because they drive the turbulent transport in
fusion plasmas.

The approach presented here can be used to compute any part of the spectrum
(critical gradients, stable eigenmodes that are relevant for the saturation of the
nonlinear system). It is well known that eigensolvers have much more difficul-
ties, in terms of convergence, when computing interior eigenvalues, compared to
eigenvalues in the periphery of the spectrum. In the case of unstable modes, the
eigenvalues of interest are the rightmost ones, which in our case are as difficult to
compute as interior eigenvalues because the spectrum is very elongated along the
imaginary axis, and the few modes with positive growth rate are relatively close
to the origin.

Because of the integro-differential structure discussed in the previous section,
the linear operator L has a banded pattern only in two (kx and z) of the five
dimensions, with the velocity space and species dimensions completely filled. For
our test case, this corresponds to a matrix with almost 4000 non-zero diagonals
for a matrix dimension of around 60000 (here, a non-zero diagonal is a diagonal
k consisting of entries aij with |i − j| = k where some or all of the entries are
different from zero).

The iterative solvers in SLEPc only require the matrix-vector product of a
test vector with the linear operator for the computation of the eigenvectors. This
means that no explicit matrix representation has to be computed. SLEPc can

74

5.2 Fast eigenvalue computations

directly use the matrix-vector product with L which is also used for initial value
computations in GENE.

Previous efforts to improve the computation of these rightmost eigenvalues
in SLEPc resulted in the implementation of the harmonic projection method for
the Krylov-Schur solver [Roman et al., 2010], which allowed for the discovery of
non-Hermitian degeneracies of gyrokinetic eigenmodes [Kammerer et al., 2008].

Recently, a Jacobi-Davidson solver has been implemented in SLEPc (see Ch. 4).
The performance of this solver depends, in contrast to the previously used solver,
on effective preconditioning methods for the correction equation. We next give
details related to this approach.

5.2.1 Eigenvalue solver
Iterative eigensolvers are usually based on a projection onto a search subspace of
increasing dimension. The expansion of the subspace is done by computing a new
vector at each iteration, until a maximum dimension is reached (then the method
is restarted). At each iteration, eigenvalue approximations can be obtained from
the subspace, either with a Rayleigh-Ritz procedure or other extraction methods
such as the aforementioned harmonic projection.

In some cases, Krylov methods are limited by the fact that the built subspace
has to maintain the Krylov structure. As a consequence, convergence can be
extremely slow in difficult problems such as the ones discussed in this chapter.

An alternative to Krylov methods are Davidson-type methods, that do not
impose any restriction on the subspace and can thus expand the subspace with
the “best” vector according to some criterion. In particular, these methods choose
one of the eigenvalue-eigenvector approximations (θ, u) contained in the subspace
(e.g., the eigenvalue closest to the target τ specified by the user), then form the
residual vector associated to it, r = Au − θu, and finally compute the so-called
correction vector t that will be added to the subspace.

This new vector can be computed by simply preconditioning the residual,

t = K−1r, (5.1)

as in the Generalized Davidson (GD) method [Morgan, 1992], where the precondi-
tioner K can be viewed as a rough approximation of A− θI. However, in difficult
problems this simple approach is not effective enough. The more sophisticated
Jacobi-Davidson (JD) method [Sleijpen and van der Vorst, 2000] computes t by
(approximately) solving the so-called correction equation: a system of linear equa-
tions involving the matrix A, the preconditioner K, and a projector P related to
K and the approximate eigenvector u. In particular, in this chapter we use

PK−1 (A − θI) P t = −r̂, P = I −
K−1zu∗

u∗K−1z
, t ⊥ u, (5.2)

where z ∈ span{Au, u} and r̂ = PK−1r. Furthermore, we employ algorithmic
techniques similar to the JDQZ variant [Fokkema et al., 1999], in order to enable

75

Chapter 5. Use of Preconditioners and Initial Guesses in GENE

the use of harmonic extraction in a numerically stable way. Additional details
about the algorithm and its use in the context of the GENE code can be found in
Ch. 4, except for the preconditioning which will be treated in this chapter.

Another drawback of Krylov methods is that they start building the subspace
from a single vector. If one has an a priori knowledge of a rough approximation
of the wanted eigenspace, e.g., from a closely related eigenproblem, then this
knowledge cannot be exploited. In contrast, Davidson methods can indeed benefit
from using a rough approximation of the solution as initial guess. The explanation
is that Davidson methods can be viewed from the perspective of inexact Newton
schemes [Wu et al., 1998]. Thus, a good starting solution can improve convergence
considerably, with the corresponding reduction of the overall cost. We will exploit
this fact in parameter scans, see §5.3.

5.2.2 Overview of SLEPc and PETSc
SLEPc, the Scalable Library for Eigenvalue Problem Computations, is a software
package for the solution of large-scale eigenvalue problems on parallel computers.
It can be used to solve a variety of eigenvalue problems, including standard and
generalized problems, both Hermitian and non-Hermitian, as well as other types
of problems such as the quadratic eigenvalue problem or the singular value de-
composition. SLEPc can work with either real or complex arithmetic, in single or
double precision.

SLEPc offers a number of iterative eigensolvers, as described in the previous
subsection. In particular, it provides a parallel implementation of the Krylov-
Schur method, as well as GD and JD solvers, with various possibilities for the
computation of the correction vector. In the Davidson-type methods (GD and
JD), the user can easily select which preconditioner to use, via PETSc as described
below.

SLEPc is built on top of PETSc, a parallel framework for the numerical solution
of partial differential equations, which is based on defining basic abstract data
objects such as vectors and matrices, and building solver objects on top of them,
including linear, nonlinear and time-stepping solvers. SLEPc inherits all the good
properties of PETSc, including portability to a wide range of parallel platforms,
scalability to a large number of processors, and run-time flexibility giving full
control over the solution process (one can for instance specify the solver at run
time, or change relevant parameters such as the tolerance or the size of the subspace
basis).

For the solution of linear systems, PETSc provides a list of iterative solvers such
as GMRES, together with a variety of preconditioners including Jacobi (diagonal)
preconditioning, and block Jacobi/additive Schwarz (with a choice of incomplete
factorizations for the blocks). See [Saad, 2003] for details about the algorithms.
It is also possible to use preconditioners available in third-party packages that are
seamlessly integrated into PETSc.

Both in SLEPc and PETSc, iterative solvers can be employed in a matrix-free
manner, that is, accessing the matrix only via matrix-vector product operations.

76

5.2 Fast eigenvalue computations

However, this limits part of the functionality, most notably the construction of
preconditioners.

5.2.3 Approximate explicit matrix representation for the
preconditioner

Most preconditioning techniques are based on explicitly building a preconditioner
based on information about the individual entries of the matrix, e.g., computing
an incomplete factorization or a sparse approximate inverse. Those techniques are
not viable to compute a preconditioner for a matrix-free operator. Only methods
that are based solely on the information collected from matrix-vector products
could be used, for instance using a Krylov iterative solver as a preconditioner.
However, our experience with these nested Krylov techniques indicates that they
are not competitive, at least for our application.

Since an explicit representation of the full linear operator L cannot be used
for the reasons given above, we have opted for constructing the preconditioner
from the explicit representation of Lg, which can be viewed as a rough (sparse)
approximation of L. The bandwidth of this operator is much smaller (only 9
diagonals for our test case), but it still contains important contributions like, e.g.,
the parallel electron dynamics, which usually is the dominant advection term of
the linear operator and therefore largely determines its spectral radius. The Lg

matrix is stored in parallel sparse matrix format provided by PETSc, and the time
for its computation is negligible.

We next describe the two preconditioning techniques that we have tested,
namely additive Schwarz and parallel ARMS.

5.2.4 ASM+ILU preconditioner
Having an explicit representation of the matrix Lg, preconditioners can be built
with the standard PETSc packages. The linear system has to be solved in parallel
and thus it has to be distributed to the different MPI processes. A first step
would be to compute a preconditioner from a block diagonal approximation by
Lg ≈

�
i RiLgRi with Ri being a diagonal matrix having ones only for the indexes

belonging to the ith subdomain. For the additive Schwarz method (ASM) [Cai
and Sarkis, 1999] even points outside the domain are added if they have a neighbor
of δth order being inside the domain. Thus the differential operator Lg can be
approximated by

Lg ≈
�

i

Lδ
gi =

�

i

Rδ
i LgR

δ
i (5.3)

with Rδ
i being the restriction operator involving also the δth order neighbor.

The overlap δ is thus representing the interaction between neighboring subdo-
mains and is thus a measure of the required communication between the subdo-
mains. Since the linear operator Lg is just containing a few diagonals, the number
of δth order neighbors is rather small and requiring few computational resources
for communication. The main idea of that domain decomposition is to create a

77

Chapter 5. Use of Preconditioners and Initial Guesses in GENE

preconditioner K being a sum of preconditioners Ki, which are themselves con-
structed from the Lδ

gi. The overall system to solve is then

�

i

Ki

�
Lδ
gi

�
Lgx =

�

i

Ki

�
Lδ
gi

�
b (5.4)

which can be done in parallel since both the computation of the preconditioner and
the evaluation of the linear gyrokinetic operator are distributed on the respective
processes via MPI and PETSc.

The explicit representation of Lδ
gi allows the construction of an incomplete LU

(ILU) decomposition [Saad, 2003] L̃iŨi with its inverse being computable cheaply
via forward/backward substitution. This allows the construction of a precondi-
tioner by

K =
�

i

Ki =
�

i

�
L̃iŨi

�−1

≈
�

i

�
Lδ
gi

�−1
≈ L−1

g (5.5)

in parallel. Doing only an incomplete LU decomposition has the advantage of
preserving the sparsity of Lδ

gi, since a full decomposition would lead to a large
fill-in which is requiring a lot of additional memory. PETSc allows one to set a
maximum level of fill-in, which is limiting the creation of entries from other filled
in values to preserve the sparsity pattern. Also the ILU decomposition creates
less fill-in if the ordering of the matrix is optimized. Different reorderings exist
and the quotient minimum degree [George and Liu, 1980] reordering seemed to
provide the best results for our purposes. All mentioned algorithms are provided
by PETSc and could thus be easily connected with the eigenvalue computation in
SLEPc.

5.2.5 pARMS preconditioner
The pARMS preconditioner [Li et al., 2003; Sosonkina et al., 2004] is a parallel,
multi-level preconditioner based on the Schur complement and algebraic recursive
multilevel solver (ARMS) techniques.

Given a system of linear equations Ax = b that is written in block form

�
B F
E C

��
x1
x2

�

=

�
b1
b2

�

, (5.6)

the idea is to compute an incomplete block LU decomposition of A as

�
B F
E C

�

≈

�
L 0

EU−1 I

� �
U L−1F
0 S

�

, (5.7)

where LU is an incomplete factorization of B and the Schur complement matrix
is S = C − (EU−1)(L−1F).

As in the case of Schwarz preconditioners, pARMS is also based on the domain
decomposition idea. In this case, all the unknowns interior to the different subdo-
mains are placed in the x1 part in (5.6), whereas the x2 part contains unknowns

78

5.2 Fast eigenvalue computations

corresponding to the interface between subdomains. Therefore, a permutation is
required for reordering the unknowns. The ARMS method consists in applying
the permutation and incomplete factorization to the Schur complement S recur-
sively for a given number of levels. In parallel, pARMS distributes the available
subdomains across processors. For further details, see [Li et al., 2003; Sosonkina
et al., 2004].

There is an MPI implementation of the pARMS preconditioner1. As part of
this work, we have integrated it as an external package in PETSc 3.2.

5.2.6 Results for one parameter set
We now present results from some experiments to evaluate different eigensolver
configurations. The tests are executed on HPC-FF, a Linux cluster of 1080 nodes
composed of two Intel Xeon X5570 (Nehalem-EP) Quad-Core processors at 2.93
GHz and 24 GB of DDR3 memory at 1066 MHz, and interconnected by Infiniband
QDR with non-blocking Fat Tree topology.

The results correspond to GENE 1.5 linked with versions 3.2 of PETSc and
SLEPc. All code is compiled with Intel C and Fortran Compilers 11.1.

The parameter set used is detailed in Table 5.1.
The SLEPc JD eigensolver is configured to compute the two eigenvalues closest

to the target τ = 1, with a relative tolerance of 10−5. The search subspace is
bounded to 64 vectors and when it is complete, the method restarts with 5 vectors.
The correction equation is solved in a maximum of 300 iterations of BiCGstab(2)
and with a tolerance of 10−8, accelerated by a preconditioner K−1 ≈ (Lg − σI)−1

with σ being a constant value (to avoid recomputing the preconditioner at each
iteration). Usually, the shift σ is taken to be equal to the target τ , but in our
experiments we observe a small improvement by taking slightly larger values of σ
than τ (see Figure 5.1 (right)), so we set σ = 3 as the default value.

Optimal settings of the ASM preconditioner

The Lg matrix exhibits a block diagonal structure in the dimensions s and µ. When
these dimensions prevail in the distribution, the resulting domains become quite
unconnected and the block Jacobi preconditioner is effective. For other decomposi-
tions that have more connected domains, ASM can provide better preconditioners
(in terms of convergence), but with more time-consuming application, due to the
requirement of taking into account the neighbors of the order determined by the
overlap δ.

Of course, the most efficient overlap value depends on the problem settings and
the distribution. However, we obtained good results with an overlap δ = 2 if fine-
grained local preconditioners are used. Figure 5.1 (left) compares the performance
of JD solving the test case I with different overlap values, using ASM with ILU as
the local preconditioner.

1http://www-users.cs.umn.edu/~saad/software/pARMS/

79

Chapter 5. Use of Preconditioners and Initial Guesses in GENE

0

50

100

150

200

N
one

B
lock

Jacobi

A
SM

δ
=

1

A
SM

δ
=

2

A
SM

δ
=

3

T
im

e
(s

)

0

10

20

30

40

50

60

0 5 10 15 20
T

im
e

(s
)

Shift θ

Figure 5.1: Influence of the overlap δ (left) and the shift σ of the preconditioner matrix
(right) on the total time. The plots show the mean and the standard deviation (left) and
the minimum time (right) spent by JD with different domain decompositions.

Whereas previous solvers could rely on GENE’s internal automatic optimiza-
tion of the domain decomposition for a fast evaluation of L, this choice might
not be optimal for the ASM (and Block-Jacobi) preconditioner. Tests have shown
that any decomposition in the z and v directions leads to a significant drop in per-
formance due to increased communication, with the decomposition in z behaving
even worse than the one in v (see some examples in Table 5.2 and the standard
deviations of the time in Figure 5.1 (left)). Care has to be taken that the domain
decomposition is chosen in a way that the s and µ directions are decomposed first,
followed by a decomposition in the v direction.

Besides the optimal configuration of the preconditioner, the maximum iteration
of the Jacobi-Davidson solver has to be changed to achieve optimal runtimes. If the
ASM+ILU preconditioner is applied, five iterations of the BiCGstab algorithm lead
to a sufficient accuracy in solving the correction equation to achieve convergence
of the Jacobi-Davidson algorithm in minimal time.

80

5.3 Parameter scans

Table 5.2: Time (in seconds) spent by JD with ASM+ILU solving the test case I with
different distribution of processes across the directions s, z, v and µ.

s z v µ Time s z v µ Time s z v µ Time
1 processor 4 processors 32 processors
1 1 1 1 73.29 2 1 1 2 24.69 2 1 2 8 3.88
2 processors 1 1 1 4 24.52 2 2 1 8 5.61
2 1 1 1 33.53 16 processors
1 1 1 2 35.20 2 1 1 8 6.29
1 1 2 1 49.48 1 2 1 8 10.45
1 2 1 1 79.88 1 4 1 4 92.50

Optimal settings of the pARMS preconditioner

The performance of the pARMS preconditioner is specially sensitive to the problem
settings, the domain distribution and the number of processes, making it very
difficult to find an optimal configuration. For the test case I, we found the best
performance when using ARMS as local preconditioner, up to 16 levels of recursion,
with a drop tolerance of 10−7 and a maximum fill-in of 90%. The solution obtained
by the Schur complement recursive factorization of pARMS is enriched with up to
5 iterations of FGMRES.

The resulting preconditioner is slightly more expensive than ASM+ILU, as
Figure 5.2 (left) shows, but pARMS converges with less preconditioner applica-
tions (3313, against 5229 ASM+ILU applications). However, in this case JD with
ASM+ILU is faster. Notice that the use of preconditioners shifts the computa-
tional effort from GENE (the matrix-vector product, MV in Figure 5.2) to the
preconditioner application operation.

On the other hand, the overhead of pARMS does not seem to penalize its
parallel performance, as the comparison of speedups shows in Figure 5.2 (right).

5.3 Parameter scans

5.3.1 Subspace recycling
In an m-dimensional parameter scan, all eigenvalue problems are identified by a
vector �p in the m-dimensional subspace of the physical parameters varied, while
the remaining (physical and numerical) parameters �p0 are the same for all eigen-
value problems in the scan. The structure of the linear operator and most of the
parameter values stay the same throughout the scan, and this should be reflected
by a similarity of the eigenvectors. Since the initialization of the test vectors has a
big influence on the speed of convergence of iterative solvers, the reuse of already
computed eigenvectors as initial condition for a ‘nearby’ parameter set, so-called
subspace recycling, has therefore the potential to speed up parameter scans signifi-

81

Chapter 5. Use of Preconditioners and Initial Guesses in GENE

0

10

20

30

40

50

60

70

N
one

A
SM

+
ILU

pA
R
M

S

T
im

e
(s

)

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300
sp

ee
d

u
p

processes

Others

MV

Precond

None

ASM+ILU

pARMS

Figure 5.2: Time spent with 16 processes (left) and speedup (right) of JD solving the
test case I without preconditioner (None), with ASM preconditioner using δ = 2 and the
local preconditioner ILU (ASM+ILU), and with pARMS using the local preconditioner
ARMS (pARMS). MV stands for matrix-vector products.

cantly. To illustrate this, we have computed a one-dimensional parameter scan over
the ion temperature gradient R/LTi from 2.5 to 5.5 around the nominal parameter
set. Then the eigenvalue problem corresponding to the central point of the scan
(R/LTi = 4.0) has been repeatedly solved, using the eigenvectors from the first
scan at the different R/LTi positions as initial condition. The computation time
relative to the computation time with random initialization is show in Fig. 5.3 as
a function of ΔR/LTi = R/Lin

Ti−4.0. As expected, the computation time drops to
almost zero for ΔR/LTi = 0, with only the time for initialization remaining. The
computation time increases quickly for |ΔR/LTi| > 0, but the speedup compared
to the computation time with random initial condition is significant throughout
the parameter interval.

This illustrates two points. First of all, if eigenvectors ei,a (a = 1, . . . , nev)
for the parameter sets �pi (i = 1, . . . , n, where n is the total number of previously
computed solutions) are available, subspace recycling can reduce the computation
time for a new parameter point �pn+1 dramatically. And secondly, since the effect
decays rapidly, an optimal selection of i is crucial.

82

5.3 Parameter scans

0

10

20

30

40

50

60

70

80

90

100

-1.5 -1 -0.5 0 0.5 1 1.5

re
la

ti
v
e

ru
n
ti

m
e

[%
]

ΔR/LTi

Figure 5.3: Computation time for the eigenvalue problem with R/LTi = 4.0 as a
function of the difference to the R/LTi value of the eigenvectors used as initial condition,
normalized to the computation time with random initial vectors.

5.3.2 Distances in parameter space
To speed up the computation for �pn+1, the �pi ‘closest’ to �pn+1 has to be found. For

a one-dimensional scan, the difference vector in parameter space, �Δi = �pn+1 − �pi,
has only one entry, which can naturally be used as a measure for the distance (as

in Fig. 5.3). For an m-dimensional scan however, �Δi is m-dimensional, so that a
metric has to be defined in parameter space. Then, the available ei can be ranked
according to their |�Δi| and the closest one can be selected.

For multi-dimensional scans, the scan ranges for the different parameter di-
rections can differ by orders of magnitude, as can the effects of the variation on

the solution, so that a simple Euclidean norm |�Δi| =

�
�Δi · �Δi does not make

sense. It is reasonable to assume that the speedup of the computation of the ath
eigenvector of �pn+1 due to initial vector �ei,b is related to the correlation coefficient
between ei,a and en+1,b,

C(ei,a, en+1,b) =
|
�
dλ e∗i,aen+1,b|

��
dλ e∗i,aei,a

��
dλ e∗n+1,ben+1,b

,

where
�
dλ denotes integration over the whole phase space, i.e., over all coordinates

including the species. In our test problem, two eigenvalues are computed for each
parameter set (a, b = 1, 2), which results in four combinations for C(ei,a, en+1,b).

For �Δi → �0, two of the correlation coefficients approach unity, while the other

83

Chapter 5. Use of Preconditioners and Initial Guesses in GENE

60

80

100

120

140

160

180

200

220

10−5 10−4 10−3 10−2 10−1 100

it
er

a
ti

o
n

s

D�

60

80

100

120

140

160

180

200

220

10−5 10−4 10−3 10−2 10−1 100

it
er

a
ti

o
n

s

D

Figure 5.4: Number of iterations for the eigenvalue problem with the nominal param-
eters as function of D� = 1.0 − C(ei, en+1) (left) and D (right).

two values approach the (smaller) correlation coefficient between the eigenvectors
at �pn+1. For the speedup, only the two combinations with the largest correlation
coefficients are of interest, they are averaged to C(ei, en+1), giving one real scalar
quantity for each parameter combination.

To check the relevance of C(ei, en+1), a set of random sample points �pi has
been created, with a Gaussian distribution in R/LTi and R/LTe (σ = 0.6) around
the nominal parameter set. In a second stage, these ei have then been used as
initial condition for the computation of the problem with the nominal parameter
set. Figure 5.4 (left) shows the number of iterations as a function of D� = 1.0 −
C(ei, en+1). The number of iterations is proportional to log(D

�), approaching the
217 iterations needed for D� = 1.0 (random initial condition). Finding the optimal
ei is thus equivalent to finding the smallest D

�. The true 1 − C(ei, en+1) can of
course only be determined after en+1 has been computed, but it can be modeled

to a good precision by D(pi, pn+1) = �ΔT
i ·M · �Δi ≈ D�. For simplicity, the metric

tensor M is assumed to be constant in parameter space. The entries of M can
be determined by a fit (we use least squares fitting) to data, once the number of
data points exceeds m(m + 1)/2, which is the number of unknowns of M in m
dimensions. For scan intervals that are not too big, we found that M converges
quickly with the number of data points (here, we use 33 = 9 equidistant points,
corresponding to the first refinement stage for the hierarchical scans described in
the next section). The data of Fig. 5.4 (left) plotted against D(pi, pn+1) is shown
in Fig. 5.4 (right).

84

5.3 Parameter scans

5.3.3 Parallelization
Going from a single eigenvalue computation to a parameter scan introduces new
possibilities for parallelization. Without subspace recycling, the computations for
the different parameter sets are completely independent and trivial to parallelize.
This means that the individual eigenvalue computations can be run at their most
efficient parallelization (which is determined by a balance of cache effects, com-
munication overhead, and efficiency of the parallel preconditioner) and the whole
scan can still employ a high number of processors to complete in a reasonable time.

To exploit this, the GENE solver has been extended to be able to deal with
(independent) sets of input parameter files. In the initialization, the global MPI
communicator is split into n parallel sims new communicators. On each of these
subcommunicators, one (parallel) eigenvalue computation is run at a time. When
the computation has finished, a new parameter set is selected from the (common)
set of input files. The different instances keep track of the status of computation
for each of the input files via MPI communication, so that each problem is only
solved once; this is repeated until all parameter sets have been computed and
GENE exits. In the present implementation of the solver, the file containing the
initial vectors has to be specified in the input files, so they have to be known before
the code is started.

As has become obvious in the previous subsections, subspace recycling is es-
sential for the speed of parameter scans, the question is therefore how we can
combine the benefits of subspace recycling (which introduces dependencies of the
parameter sets) and this additional parallelism.

A good solution are hierarchical parameter scans, where the eigenvectors from
previous refinement stages can easily be used as initial vectors, so that subspace
recycling and parallelization over parameter sets can efficiently be combined. The
necessity for a hierarchical sequence of parameter scans occurs naturally for adap-
tive grid refinement techniques, but even for dense grid scans without adaptivity,
starting with a low resolution in the scan volume and hierarchically refining by
bisection has the benefit of providing an interpolation for the full scan volume
while the scan is still running.

The scans are managed by a superordinated Python script that is part of the
GENE package since release 1.5. Controlled by a master input file, the script
manages the creation of the parameter sets for a refinement stage. Taking into
account all available eigenvectors from the previous stages, it computes the op-
timal ei for each �pn+1 of this new stage. It then starts the actual GENE code,
which treats all parameter points of this refinement stage as independent and can
therefore efficiently parallelize over the parameter points. The script then collects
the results, and manages the storage of the eigenvectors and other output files,
and continues with the next refinement stage.

85

Chapter 5. Use of Preconditioners and Initial Guesses in GENE

Table 5.3: Wall clock times to compute the test parameter scan on 64 processors.

Solver Parallelization Subspace Recycling Time [s]

Krylov-Schur 64/1 no 2375
Jacobi-Davidson 64/1 no 342
Jacobi-Davidson 8/8 no 264
Jacobi-Davidson 4/16 no 306
Jacobi-Davidson 8/8 yes 202

5.4 Application

We now want to demonstrate the gains due to the various improvements pre-
sented in the previous sections. As a test case, we perform a three-dimensional
scan around the nominal parameter set presented in Table 5.1, varying the ion tem-
perature gradient between 3.0 and 4.0, the electron temperature gradient between
3.5 and 4.5, and the magnetic safety factor q0 between 1.2 and 1.4. We compute
53 = 125 equidistant points in this parameter volume and use 64 processors for all
cases. The results are shown in Table 5.3.

The solvers that have been compared are SLEPc’s Krylov-Schur solver with
harmonic projection, which needs no preconditioning and the Jacobi-Davidson
solver with ASM+ILU preconditioning as described in Section 5.2. The paral-
lelization column shows the number of processors per computation / number of
parallel computations. As can be seen, the most important gain (a speedup of a
factor 7) is due to the new solver/preconditioner. Both the optimal parallelization
(8 cores per eigenvalue computation in this case) and the subspace recycling lead
to further reductions of around 25% each. All in all, the computation time for
eigenvalue scans with GENE/SLEPc has been reduced by more than an order of
magnitude compared to previous versions.

5.5 Conclusions

In this chapter, we have presented and analyzed advanced numerical methods to
perform large parameter scans with the GENE/SLEPc linear gyrokinetic eigen-
value solver. Considerable progress has been made concerning the robustness and
speed of each single eigenvalue computation using the Jacobi-Davidson eigenvalue
solver available from SLEPc 3.1 onwards, in combination with a preconditioner
based on an approximate explicit representation of the linear gyrokinetic opera-
tor. In addition, two methods to speed up parameter scans have been used, namely
the recycling of previously computed eigenvectors as initial condition for the com-
putation at a nearby parameter set, and parallelization over the parameter sets,
which removes the need to go to high processor numbers for the single parameter
computations and therefore increases the efficiency. The performance gains for

86

5.5 Conclusions

multi-dimensional parameter scans using a three-dimensional test case compared
to previous code versions were substantial, reaching a speedup factor of up to 12.

The overall implication of these improvements is that detailed investigations of
the stable and unstable eigenmodes in the multi-dimensional gyrokinetic param-
eter space are now computationally feasible. The application of the techniques
described in this chapter will certainly contribute to a better understanding of the
important driving mechanisms of turbulent transport in fusion plasmas.

87

Chapter 5. Use of Preconditioners and Initial Guesses in GENE

88

Chapter 6

Parallel DFT with Grid Refinement
and Subspace Recycling

In this chapter adaptive finite element analysis of density functional computations
of light atoms are explored based on two disparate themes: (i) h–adaptive grid
refinement techniques that are applied within self-consistent iterations with the
aim of reducing the total number of degrees of freedom in the real-space grid while
improving on the approximate resolution of the system at hand; and (ii) subspace
recycling of the approximate solution in subsequent self-consistent cycles with the
aim of improving the performance of the generalized eigenproblem solver. Both
techniques are shown to give a significant speed-up in the computation process.
The computational toolkit consists of a set of freely available open source software
libraries chosen for their high performance. These are integrated into a small
and portable application code that solves the self-consistent algorithm for atomic
systems.

6.1 Introduction

Density Functional Theory (DFT) [Hohenberg and Kohn, 1964; Kohn and Sham,
1965; Tsuchida and Tsukada, 1998] is one of the most celebrated first-principles
framework used in theoretical and computation Physics for determination of the
ground-state properties of multi-reference systems, and has far-reaching applica-
bility in nuclear, atomic, and solid-state physics. DFT-based computer simulations
are based on self-consistent iterations between a pair of coupled equations: (i) The
Schrödinger equation that describes the wave-like properties of quantum objects;
and (ii) The Poisson equation that describes the charge density as a functional
of the relative charges of quantum objects (essentially a classical equation). The
numerical implementation of DFT is to seek a configuration for which the charge
density, ni(r) ∼ ni−1(r), where n(r) is a function of real-space r ∈ R evaluated
between two consecutive iterations i−1 and i. It is then said that a self-consistent

89

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

field has been found. Initializing the self-consistent procedure is largely a choice
at the whim of the investigator, the principal rule being only that a “better” start-
ing guess of the self-consistent field yields less self-consistent iterations and faster
convergence to the wanted solution; that is, where the “best” starting guess would
be the fully converged solution itself.

In the finite element basis the equation set to solve becomes an iterative process
between the generalized eigenvalue problem (Schrödinger’s equation) and a system
of scalar-valued linear equations (Poisson’s equation); see for example the intro-
ductory text by Ram-Mohan [2002] and the comparative review of Beck [2000].
The cost of solving a DFT-based problem in the finite element basis is directly
related to the choice of finite element basis functions, i.e., polynomial type and
order, the choice of real-space representation, i.e., grid type, and the number of
eigenvalue problems that need to be solved in the iterative process. It is therefore
worth exemplifying the advantages of that scheme:

1. In the finite element basis, being a strictly local theory, matrices arise that
are sparse and for which numerical solvers optimized to take into account
sparsity exist;

2. The choice of interpolation polynomials used in the finite element basis can
guarantee continuity Cn of the global solution vectors of interest (up to
arbitrary order n) which can be placed in accordance with the principles of
quantum mechanics and classical mechanics;

3. Within the finite element scheme it is relatively straightforward (though
not trivial) to employ p-adaptivity, which is the usage of a hierarchy of
polynomial interpolations, and/or h-adaptivity, which is the usage of locally
refined areas of the grid; and

4. In general, global basis functions fail to capture the subtleties of, and thus
fail to describe, complicated functions over all R-space. In that case a system
based on local basis functions (such as the finite element method) is preferred.

To date, much of the work in adaptive real–space finite element quantum me-
chanics relies on improving the finite element approximation by examination of the
underlying polynomial interpolation between grid points on which the computation
is performed. These include the works of Pask and Sterne [2005] who investigate
the rôle of the choice of well-known basis states in the finite element interpolation
scheme. There is also a study of the Hydrogen atom by Guimarães and Prudente
[2005], and the discrete variable representation of Rayson [2007] and Schneider
et al. [2006]. The problem of using mixed basis functions was solved by Yamakawa
and Hyodo [2005] who addressed the problem of treating core electrons in molecu-
lar orbits. The use of mixed basis functions as a local error estimate by Ackermann
and Roitzsch [1993]; Ackermann et al. [1994] then leads to the so-called “multilevel
method” and the “hierarchical method” investigated by Sugawara [1998].

90

6.1 Introduction

An alternative to improving on the polynomial interpolation of the finite ele-
ment approximation is to focus on the grid on which computations are performed.
An example of local refinement applied within density functional theory applied
to Beryllium clusters was investigated by Fattebert et al. [2007]. The works of
Tsuchida and Tsukada [1995, 1996] use non-regular meshes based on geometric
(logarithmic) considerations to locally control the resolution of calculations of elec-
tronic structure. The underlying proposition is that the space grid is small near
to the locality of the nucleus, where the potential is varying rapidly. In this work
we introduce a method of grid adaptation that is based on geometric observations
of the underlying atomic potential that appears in the Schrödinger equation and
is motivated by a need to create an initial starting grid on which a solution of the
Hartree problem can be found with reasonable accuracy. That is then passed over
to more traditional methods of grid adaptivity during the iterative determination
of the self-consistent field (cf. Kelly error estimate [Kelly et al., 1983]).

The solver that addresses the computation of some eigenpairs of the Schrödinger
equation, should converge fast, dealing with degeneracies and eigenvalue clustering.
This makes the problem challenging. Preconditioned conjugate gradient methods
have been usually proposed to handle this task, however Davidson methods have
recently demonstrated being faster and more robust in many cases, e.g., [Vömel
et al., 2008].

In any case an efficient and sufficiently general solution of DFT is highly
desirable. In this chapter we discuss how h-adaptive techniques based on the
Honenberg–Kohn (HK) theorems as well as solver techniques (in particular sub-
space feeds) based on the fundamentals of non-linear self-consistent procedure, can
be exploited to achieve that goal. Rather than to modify the mathematical foun-
dations of DFT, we exploit those foundations (in particular the HK theorems);
a method of investigation similar to that of Napoli et al. [2011]. It is thus, that
our methods do not require the introduction of specializations and remain widely
applicable to all systems that pertain to treatment by DFT.

This chapter is thus divided into five further sections. In the next section a
brief overview of the DFT of finite electronic systems is given. In §6.3 some of
the theoretical and computational requirements for the management of adaptive
grids are considered, and estimates of the local error on the grid discussed. The
resultant generalized eigenvalue problem and the solver methods used are given in
some depth in §6.4, in which the notion of subspace feeds for solver initialization
is explored. Following that, numerical experimentation of the methods of §6.3 and
§6.4 is undertaken in §6.5 for a series of light atoms. Finally a brief discussion and
our conclusions arising from this work are laid out in §6.6.

91

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

6.2 Theoretical background

In recent years a reasonable effort has been concentrated on the Finite Element
Analysis (FEA) of the DFT of electronic structure in atomic/molecular physics and
in condensed matter physics. As sketched above, there are some very sound reasons
to put a concentrated effort toward this a goal: Ease and speed of computations
without compromising accuracy and the physical basis on which computations are
performed is highly desirable. In this section an overview of DFT for a system
of an isolated atom is given that is based on the two HK theorems and in the
finite element basis. For completeness the two HK theorems are stated here as
prescribed in Ref. [Parr and Yang, 1989] with only some changes in notation. The
first concerns the form of the potential:

Hohenberg–Kohn theorem 1. The external potential V (x) is determined, within
a trivial additive constant, by the electron density ρ(x).

and the second which concerns the variational procedure:

Hohenberg–Kohn theorem 2. For a trial density ρ(x), such that ρ(x) ≥ 0 and�
ρ(x) dr = N,

E0 ≤ EV [ρ] ,

where EV [ρ] is the energy functional of (6.1).

6.2.1 Physical–theoretical framework
Schrödinger’s wave equation in quantum mechanics describes the quantum state of
a particle in a body by the wave function Ψ = {ψi}

∞
i=0 in an external potential V as

(Δ+V)ψ = EΨ, where E is the energy state of the system. The form of potential
that governs the state vectors for atoms is based on the Coulomb potential which is
exact for the Hydrogen atom. In dimensionless form, Schrödinger’s time-dependent
equation is

−
1

2
ΔΨ+ (V (n(r)) + VEXC(n(r)))Ψ = EΨ , in Ω , (6.1)

where Δ := ∇·∇ and where V (n(r)) is a density composed of single-particle states
and VEXC(n(r)) is the exchange term whose functional properties are normally
taken from computational Monte Carlo experiments. In the non-interacting case
VEXC = 0 Eqn. (6.1) can be solved by substituting (as a first approximation) the
second term for the Coulomb potential (in dimensionless form) V = Z/|r − r�|

where Z is the atomic number (number of protons) and r − r� =
��

d(x
2
d − x�2d)

gives the radial distance from the atomic nucleus at r = 0 to any arbitrary point
of the field r�. That yields a finite set of N orbitals Ψ = {ψi}

N
i=1 that reproduce

the density n(r) of the original many-body system

n(r) =
�

i

|ψi(r)|
2 . (6.2)

92

6.2 Theoretical background

The main difficulty in solving Eqn. (6.1) is that the electron density ρ is depen-
dent on the solution vector Ψ. This is usually obtained by solving Poisson’s equa-
tion and adding the resultant density to the non-interacting potential, such that
V → V �, cf. theorem 1. Following that, the process repeats by solving Eqn. (6.1)
again, yielding new wave functions Ψ and a new density n(r), until convergence is
achieved, cf. theorem 2. It is worth noting here that this method of solution for
the Kohn-Sham (KS) equation set for determining the Self-Consistent Field (SCF)
is not the most efficient. It is however an algorithm that preserves the Coulomb
potential as the initial guess from which the derived eigenstates of the system are
determined. More specifically, one could for example use an explicit start scheme
for the Poisson equation by first guessing the eigenstates. This by-and-large makes
use of carefully chosen set of orthogonal basis states from which the initial density
functional ρ is formed. That scheme, and many like it, require prior knowledge
of the particular system at hand and therefore cannot be generically applied in a
computation.

6.2.2 Finite element approach
The physical equations are posed on a finite Lipschitz domain Ω ∪ Rd with di-
mensionality d = 3 where any point in the domain Ω is decomposed into three
Cartesian components xd ∈ x = {x, y, z}. Auxiliary conditions are applied on the
boundary of the finite domain Γ∪Rd−1. In steady state or stationary state, consid-
ered here, dependency over time vanishes and the partial differential equation sets
with boundary constraints together constitute a class of boundary value problems.
Casting the equations into a form suitable for subsequent finite element analysis
can be summarized in brief as follows: (i) Consider the “test” function ϕ which
is supposed to solve the system of equations exactly; (ii) Multiply the equation
set on the left by the scalar–valued test function ϕ; (iii) Integrate over the (finite)
domain Ω, and integrate by parts using Green’s first identity. Using these scalar
test functions the discretized finite element solution can be written uh =

�
i ϕiUi

where i denotes degrees of freedom in the finite element h. An analogous function
vh is then defined for the test function.

Following that procedure to find the finite element solution of Schrödinger’s
equation gives:

�

Ω

�
1

2
∇ϕ∇Ψ+ V (r)ϕΨ

�

dΩ −

�

∂Ω

1

2
ϕ∇Ψ · n̂ dΓ =

�

Ω

ϕEΨ , (6.3)

where n̂ denotes the outward normal on the surface Γ. After discretization this
becomes:

�

ij

UiVj

�
1

2
∇ϕi∇ϕj + V (r)ϕiϕj

�

=
�

ij

ϕiϕjE . (6.4)

93

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

The surface integral in Eqn. (6.3) above is associated with boundary constraints
on the finite volume. In the parlance of quantum theory there exists a posit that

�

Ω

|akψk|
2 dΩ = 1 , (6.5)

corresponds to a probability density function ∀ k with arbitrary normalization
constants ak. The boundary integral is replaced by stronger condition in the form
of Dirichlet zero boundary constraints: ψi = 0 onΓ, which means that ψi = ∇ψi =
0 for all states i. The boundary integral term has therefore been eliminated in
Eqn. (6.4). The usage of zero boundary means that the solution vectors are unique
and, moreover, scaling transformations can be used to determine the probability
density as the square of the wavefunction ρi = |ψiψi|

2.
There is no known analytical solution to the KS equation set and an analysis

of the system energy can only be compared with experimental values or other
theoretical means of evaluation. Ideally one would prefer to have a solution to the
equation set A(x)x = B(x)λx; however the solution to that is allusive. Thus the
system of equations is solved self-consistently, i.e., by repeated iterations against
Poisson’s equation. When convergence is achieved, we say that we have a Self-
Consistent Field (SCF). The Poisson equation can be cast in the finite element
basis by following the analogous procedure applied to the Schrödinger equation
above. We find

�

Ω

∇ϕ∇φdΩ −

�

∂Ω

ϕ∇φ · n̂ dΓ =

�

Ω

ϕn(r) , (6.6)

where n(r) is the density of Eqn. (6.2), and after discretization:

�

ij

UiVj∇ϕi∇ϕj =
�

j

ϕjn(r) . (6.7)

Since the electric potential at the boundary must match those of the Schrödinger
equation, we have again over–specified the boundary constraints by setting φ = 0
on Ω.

6.3 Management of computational grids

Let the ultimate practical goal of computer simulations in the physical sciences
be to obtain the solution to a set of partial differential equations with maximal
accuracy (Tol) and minimal computational effort (Work). Then the central idea
of adaptive algorithms in a finite element approach is to improve on previous
calculations and from there to find more accurate solutions in an automated way
using some form of a local error estimate. One standard approach that can be
employed is to adapt the grid on which calculations are performed by refining

94

6.3 Management of computational grids

finite elements in local regions of the domain; so called h-adaptivity. The scheme
is given by the process:

Estimate → Flag → Refine .

In this section we discuss the computational toolkits used for the finite element
representation of the equation set and put forward two methods of grid adaptivity
that can be used to obtain error estimates for the process of adaptivity.

6.3.1 Finite element toolkit
deal.II, an acronym for the Differential Equations Analysis Library [Bangerth
et al., 2007] is written in templated C++, provides an abstract set of base tools
for computations with adaptive finite elements. deal.II has support for using ex-
ternal solvers in the form of wrapper classes which enable standard computational
toolkits to be used with relative ease. In particular, wrapper classes to PETSc
and SLEPc (for explicit details on external libraries see §6.4). Additionally grid
managment over parallel worlds is handled through an interface to the p4est li-
brary, which facilitates communications by dynamic management of a collection
of “adaptive octrees”; see Ref. [Burstedde et al., 2011; Bangerth et al.].

At the time of writing, the deal.II tutorial suite contains one example code
developed in course by one of the authors for solving the Schrödinger general-
ized eigenvalue problem (the serial step-36 tutorial program) which can be readily
extended to more complex systems, grid adaptivity, and parallelization. Also de-
veloped specifically for this work is a (pre–alpha) library package that contains a
variety of tools for computations in quantum physics “namespace ewalena” [Young,
2011a]. Also written in C++ the namespace ewalena library builds on deal.II

objects and provides a collection of tools that are useful for describing systems of
interest in mathematical and computational physics. There are, for example, basis
states of arbitrary size, a growing set of predefined trial wavefunctions for DFTs,
a set of atomic/molecular potentials (defined as a linear superposition of atomic
potentials), and a zoo of physical constants based on the NIST database.

This combined scheme, appropriately extended and adapted, has been suc-
cessfully used for problems pertaining to general quantum physics [Young and
Armiento, 2010], atomic physics [Young et al., 2009], and solid–state physics
[Young, 2011b]. In this chapter it is used to compute the energetic state of light
atoms within a SCF theory. The algorithm of the governing user code makes use
of dimension-independent programming

95

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

Coarse grid nodes

Active nodes

Hanging nodes

(a) Coarse grid. (b) Cycle one. (c) Cycle two.

Figure 6.1: Local refinement of cells: (a) Coarse grid on level zero; (b) Level one
refinement of one cell; and (c) Level one refinement of two cells and level two refinement
of one cell.

6.3.2 Grid refinement
The basic idea of using error estimates is quite straightforward. First an error
estimate is obtained for each finite element cell based on a given criterion; and
second refinement and/or coarsing of the grid is given according to the rules applied
to the collection of error estimates.

Actually constructing the error estimate is nontrivial and often dependent on
the equation set at hand. What one would like to do is to jump straight from
Fig. 6.1(a) to an optimally refined grid of Fig. 6.1(c) without any need of solution
to equation sets and thus further minimizing the usage of computational resources.
This task could easily be accomplished in a whimsical manner, for which the
production rules for a new grid depend on the investigator’s “best guess”. A more
rigorous option would be to examine the functional properties of the underlying
equation set to be solved and from that extract error estimates.

We now discuss two methods of grid refinement used in this chapter in order
to successively improve on our solution. The first is the a priori error estimate of
Kelly et al. [1983] and the second is a “Projected Potential” based error estimate
designed by the authors.

Kelly error estimate

A commonly used method for a priori error is the Kelly error estimate and is
conveniently provided in the deal.II::KellyErrorEstimator class. The Kelly
error estimate is generally considered to be a universal tool for estimating the errors
in sets of linear equations (cf. Poisson’s equation). It is based on estimating errors
to the Laplace equation, ∇2φ = 0, of which Poisson’s equation ∇2φ = f, which has
a nonzero right–hand–side vector f, is a special case. That, and other methods,
have been extended to more complex systems [Ainsworth and Oden, 2000; Babuška
and Strouboulis, 2001]. The basic idea of the Kelly error estimate is to compute
the second derivative (Hessian) of the solution vector at each point on the grid
and, by integration of the discontinuity between each cell, assign an approximate

96

6.3 Management of computational grids

error to that cell. The greater the discontinuity, the higher the error estimate; and
it is worth noting that error estimates in that definition are in N+ only. Defining
the boundary of the cell K as the union of its faces ∂Kd ∪Kd−1

i ,Kd−1
i+1 , this leads

to an error estimate of the form:

η2K =
h

24
�∂iφh�

2
∂K , (6.8)

where ∂iuh denotes the discontinuity of the normal derivative of the solution vector
φ at the interface between cells.

Projected potential error estimate

An alternative approach to relying on known solutions is to attempt to employ
an a posteriori error estimate; that is, one in which the expected error is known,
or at least supposed by exploiting knowledge of the equation set. The crucial
considerations that make this scheme are presented below, where a more detailed
exposition is to appear elsewhere. Let us start with the following ideas: First,

Proposition 1. (Physical) There is (or can be obtained) at least a posteriori
knowledge of the atomic potential function V .

and second,

Proposition 2. (Numerical) Between self consistent cycles I given a suitable ini-
tial “good guess” for the functional n(r)I given n(r)I−1 the change in the external
potential δV := V I − V I−1 is vanishingly small.

Provided proposition 1 is fulfilled, in general, it can be supposed that proposi-
tion 2 will be automatically fulfilled. Taking into account large spin-orbit splitting,
or the introduction of large external perturbations in the potential (for example,
an applied magnetic field), this may not always be the case. Nevertheless, there is
little more to be said about proposition 2 other than that if the initial guess of the
potential function is not well suited to the actual solution, then the initial guess
should be improved by examining the initial equation set. If this improvement is
ever found to be the needed, then proposition 2. As it turns out, proposition 1
is far more interesting since it relates the solutions of the eigenvalue problem to
that of the external potential in a way that is mathematically amenable and in
the spirit of the first HK theorem 1. Recall that the density ρ uniquely defines
the electron wavefunctions Ψ (and vice–versa). Then, if proposition 2 holds (let
δφ → 0), the potential will uniquely define the electron wavefunctions. It is then
taken as a corollary that a good representation of the underlying potential will
yield a good representation of the wavefunctions.

Consider the equation for a bulk criterion C defined in terms of the bulk error
E

C := max [E] ∝ f(V (xd)) → 0 , on x ∈ Ω , (6.9)

97

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

where f(·) is an as–of–yet unspecified function of the real-space potential V and the
resulting criterion for the cell K is CK ⊂ C. The error is then calculated per finite
element and the set of elements in the volume Ω̄ ⊂ Ω for which max

�
EK

�
K∈Ω

> 0

are flagged for refinement. The size of the set Ω̄ is a free parameter, though is
normally chosen to double the number of cells in the grid.

Before proceeding it is worth considering the following suggestive comments:
(i) The wavefunction ψi drops off exponentially as it extends from a potential
barrier (core). It is therefore reasonable to expand the potential at each point in
space as an exponential function. (ii) The absolute value of the potential does not
affect the wavefunctions, which are eigenfunctions. It is therefore always possible
to scale the potential with a number (normalization) without affecting the result.

It seems natural to continue by expanding the function as a left (negative)
exponential of the absolute value f(V) → exp[−|V |]; thus avoiding the divergent
properties of exp[a] for all a > 0. The exponential function of the potential,
which converges to zero at the boundaries, has the following useful properties:
(i) The left-hand-side of the exponential function is convergent as exp [−1/0] ∼
exp [−∞] → 0 =: ψi|∂Ω; and (ii) The left-hand-side of the exponential function
is always finite as exp [0] ∼ exp [1/ −∞] → 1. In other words, the expansion of
the potential has the same numerical properties as the solution vectors toward the
boundaries of the domain, and non-singular properties at infinities of the potential
function – as do the solution vectors – where exp [−∞] → 0 =: 1 − �ψi��∞(Ω). By
choice, the potential function is normalized by the energy of the vacuum Evac,
which in the case considered here is zero; and finally remove the proportionality
relation with the introduction of a constant. This leads to an expression as a
function of the Coulomb potential from which the error estimate can be evaluated
as

C = 1 − exp

�

−η

�
�
�
�

1

|r − r�|
− Evac

�
�
�
�

�

. (6.10)

This procedure turns out to be self-normalizing because of the second property of
the exponential function: exp[−∞] = 0 together with the addition of the vacuum
term f(V) ∝ (V − Evac) which, as sketched above, gives a value of one to the
projected potential at singular points. In order to extract an error estimate for
each active cell in the grid, the expression above is first discretized and then its
gradient is integrated over each cell face in 3D (line in 2D, vertex in 1D). That
procedure is similar to the Kelly error estimate described above (Eqn. (6.8)).

The resultant projected potential function and its associated error estimate
are given in Fig. 6.2. First we note that the initial grid (upper panel) gives a
poor approximation for the potential and a maximal error estimate max

�
E(0)

�
∼

0.25. After applying the error estimate twice by two cycles of refining a fractional
N = 1/d2 and then recalculating the projected potential, the representation of
the projected potential on an adapted grid is a better numerical approximation
of the analytical form of Eqn. (6.10) (lower panel of Fig. 6.2). Furthermore, after
these cycles of refinement, the error estimate has fallen – max

�
E(2)

�
∼ 0.06 and

98

6.3 Management of computational grids

max
�
E(4)

�
∼ 0.006 – a 76% and 98% reduction in the maximal error estimate

respectively from the coarse starting grid.

6.3.3 Summary
The resultant grids obtained using the two error estimates in two space dimensions
are given for comparison in Fig. 6.3 for the Kelly error estimate and in Fig. 6.4 for
the projected potential scheme. Starting from a single affine cell globally refined
three times, three results of three cycles of adaptivity are compared. Two examples
of refinement are given for each, one (upper-panel) where the number of cells
flagged for refinement N = 1/d2 = 0.25 and the second where N = 1/d = 0.5 are
refined (leading to a more aggressive refinement scheme).

The Kelly error estimate is found by solving the Hartree problem and then
basing the error estimate on the sum over the lowest eigenvector states, or in
other words, on the electron density function. The main refinement is found to
expand out from the center of the grid where the singularity in the potential is
present, or conversely, where the cusp in the wavefunction is known to be. The
adaptivity based on the projected potential scheme, cf. Fig. 6.4, appears to give
very similar results, that is, that the refinement levels increase as the singularity
in the potential is approached. There is however one marked difference: namely,
that at the location of the singularity itself, the level of refinement is lower than
the surrounding cells. These leads to a “hole” in the refinement pattern, which is
particularly noticeable in the less aggressive version of refinement (upper-panel).
That this appears is no surprise, since the function of Eqn. (6.10) has a cusp as the
potential becomes divergent – as does the electron density function. The projected
potential evidently has a shallower gradient than the electron density at this point,
and hence the gradient of the function between adjacent cells is minimal.

The Kelly error estimate has the advantage in that it works directly on the
electron density to estimate errors in the solution but requires that a minimum of
one eigenvalue problem and one set of linear equations be solved on each and every
adaptive cycle. The method of projecting the potential onto a continuous space for
estimating the errors does not require either of these computations on equation
sets but simply a representation of the underlying potential. The difference in
computational cost for the latter is therefore significantly lower than the Kelly
error estimate, though otherwise, both yield similar grids.

It was noted above that the method of projecting potentials misses information
about the core arising from the reciprocal of the radius-squared term that is the
Coulomb potential. This is beneficial in that places where the computation may
blow-up are avoided, however the loss of information is not highly desirable. Nev-
ertheless, in §6.5, numerical experiments are applied to the Hartree problem using
the method of projecting the potential and it is shown that convergence toward
the exact (i.e., analytical) result can easily be found within this scheme.

99

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

Projected potential Estimated error

Figure 6.2: Projected potential plotted as an interpolated function and the resultant
error estimate for the starting grid (upper panel) and after two levels of refinement
(middle panel) and four levels of refinement (lower panel). The error estimate is plotted
for each finite element cell, where the “height” of the finite element cell depicts the
estimated error. Note the change of scale in the error estimate.

100

6.4 Large-scale eigenvalue problems

Kelly error estimate

Figure 6.3: Two sets of successfully refined grids based on the Kelly applied to the
density functional as an error indicator and using different levels of refinement. In (a)
for fractional refinement N = 1/d2 of the total number of active cells; and (b) The more
aggressive condition N = 1/d.

6.4 Large-scale eigenvalue problems

To compute the eigenstates within the self-consistent loop, we need an efficient
solver for the associated algebraic eigenproblem. Here, efficiency is understood
in various ways: (i) The ability to exploit the sparsity of matrices; (ii) Expedient
convergence to a small number of wanted eigenvalues; and (iii) Parallel capabilities
to address large-scale problems. In this section, we discuss methods and software
for this purpose.

In this chapter, we are primarily concerned with eigenpair solutions to the real
generalized symmetric-definite eigenvalue problem,

Ax = λBx , (6.11)

where A,B ∈ Rn×n, λ ∈ R (eigenvalue) and x ∈ Rn (eigenvector). A is symmetric
and B is symmetric positive-definite. In the methodology described in previous
sections, B would naturally represent the overlap matrix, but this is not positive-
definite. We will discuss later how to make the problem fit the above formulation
so that symmetry can be exploited.

101

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

Potential error estimate

Figure 6.4: The same as in Fig. 6.3 but for two sets of successfully refined grids based
on the projected potential as an error indicator. The results vary slightly.

We will focus on projection methods for the above eigenproblem, which are
appropriate when the matrices A and B are very large but their action on a
vector is relatively cheap (e.g., they are sparse) and only part of the spectrum
is required. Projection methods rely on two main stages: building a subspace
basis and extracting approximations from that subspace. These computations are
carried out iteratively, where the extracted approximations are used to improve
the subspace and extract better approximations. The process is repeated until the
computed approximations are sufficiently accurate. For background material on
projection methods, the reader is referred to [Parlett, 1980; Bai et al., 2000]. For
completeness, we discuss several alternative approaches for subspace extraction
and expansion below.

102

6.4 Large-scale eigenvalue problems

6.4.1 Subspace extraction
For the moment, we restrict the description to the standard eigenvalue problem
Mx = λx, where M can be non-symmetric in general (in which case λ and x may
be complex). We want to compute k eigenpairs, (λi, xi), i = 1, . . . , k, usually with
k � n. The basic principle of projection methods is to find the best approxima-
tions to the eigenvectors in a given subspace of small dimension. Let V be an
n × m matrix, with k ≤ m � n, whose columns vi constitute an orthonormal
basis of a given subspace V, i.e., V T V = Im, where I is the identity matrix and
span{v1, v2, . . . , vm} = V. Then the eigenvalues of the so-called Rayleigh quotient
matrix H = V TMV approximate eigenvalues of M. More precisely, if Hyi = θiyi
then the eigenpair approximations are λ̃i = θi and x̃i = V yi. These approximate
eigenvectors belong to subspace V and are the best possible approximations in
that subspace.

The method outlined above is referred to as the Rayleigh-Ritz procedure, and
provides m Ritz approximations (λ̃i, x̃i). This routine can be viewed as an orthog-
onal projection satisfying the Galerkin condition that the residuals are orthogonal
to the subspace,

ri = Mx̃i − λ̃ix̃i ⊥ V . (6.12)

6.4.2 Subspace expansion

The quality of the eigenpair approximations (λ̃i, x̃i) depends on how the sub-
space V is built. A popular choice is to use Krylov subspaces of increasing di-
mension, since they contain increasingly good approximations of eigenvectors of
extreme eigenvalues. Computing an orthogonal basis of the Krylov subspace as-
sociated with matrix M and a given unit-length initial vector v1, Km(M, v1) =
span{v1,Mv1,M

2v1, . . . ,M
m−1v1}, can be done with the Lanczos or Arnoldi al-

gorithms, which basically consist in orthogonalizing the vector Mvk with respect
to the previous basis vectors. In a practical implementation, it is not possible to
expand the subspace up to a very large dimension, that is, to increase m too much,
otherwise the storage and computational cost explodes. Thus it is necessary to
restart the algorithm, that is, stop after m iterations and rerun the method by
keeping as much relevant information as possible from the computed quantities.
For a description of efficiently restarted Krylov methods, see [Ramos et al., 2010]
and the references therein.

An alternative to Krylov methods are Davidson-type methods such as Gener-
alized Davidson (GD) or Jacobi-Davidson (JD). The main characteristic of this
class of methods is that they expand the subspace with a so-called correction vec-
tor t, which is computed from the residual vector r associated to the most wanted
eigenpair with the aim of improving it further. This new vector can be computed
by simply preconditioning the residual,

t = K−1r , (6.13)

103

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

as in the GD method [Davidson, 1975; Morgan and Scott, 1986], or by (approxi-
mately) solving the correction equation,

(I − x̃x̃∗)
�
M − λ̃I

�
(I − x̃x̃∗) t = −r , (6.14)

as in the JD method [Sleijpen and van der Vorst, 2000]. As in (6.13), a pre-
conditioner K can also be introduced in (6.14). K can be viewed as a rough
approximation of M, the simplest version being diag(M) as originally proposed
by Davidson [1975].

In many contexts, especially when computing interior eigenvalues in difficult
non-symmetric problems, JD can be the most competitive method, and even more
so if a good, cheap preconditioner is available. However, for symmetric problems
where only extreme eigenvalues are to be sought, the high cost of the correction
equation does not usually compensate. In this chapter, we focus on the simpler
GD scheme.

6.4.3 Exploiting symmetry in definite matrix pairs
We now discuss how the above methods can be extended to the generalized
symmetric-definite eigenproblem (6.11). In the case of Krylov methods, it is not
possible to directly cope with generalized eigenproblems, so the trick is to set
M = B−1A, or if B is singular, use M = A−1B for the equivalent eigenproblem

Bx =
1

λ
Ax . (6.15)

In any case, the inverted matrix implies that linear solves must be performed
in each iteration of the eigensolver, thus increasing the cost considerably. This
approach was used in our preliminary work [Young and Armiento, 2010].

In contrast, Davidson methods can be extended naturally to generalized eigen-
problems [Sleijpen et al., 1996]. When the projection is applied to the matrix pair
(A,B) an m-dimensional matrix pair (H, T) is obtained, with H = V TAV and
T = V TBV . If the original matrix pair is symmetric-definite, so it is the projected
one. In this context, symmetry can be exploited in two ways:

1. Modify the algorithm so that the computed basis V is not orthonormal but
B-orthonormal, that is V TBV = I. In that case, T becomes the identity
and therefore the projected problem is standard. Note that this alterna-
tive requires B to be positive-definite, so if it is not but the matrix pair is
definite, then one has to solve the reverse problem (6.15). The drawback
of this alternative is that B-orthogonalization is generally more expensive
than orthogonalization, since the standard inner product must be replaced
by �x, y�B = xTBy.

2. Use regular orthogonalization and exploit symmetry only when computing
the solution of the symmetric-definite projected eigenproblem (H, T). In this
case, there is little gain in terms of computation, but the robustness may be
improved significantly.

104

6.4 Large-scale eigenvalue problems

In §6.5 the latter option is used. In particular, the implementation is based on
an unsymmetric version of GD (see Algorithm 2.3), where the symmetric entries
of the matrices of the projected problem are computed only once. Further details
about the implementation can be found in Ch. 2.

6.4.4 Subspace recycling
A drawback of Krylov methods is that they start building the subspace from a
single vector v1. If one has an a priori knowledge of a rough approximation of
the solution, e.g., from a previous iteration of the self-consistent loop, then this
knowledge cannot be exploited. In contrast, Davidson methods can indeed benefit
from using a rough approximation of the solution as initial guess. The justification
is that Davidson methods can be viewed from the perspective of inexact Newton
schemes [Wu et al., 1998]. Thus, a good starting solution can improve convergence
considerably, with the corresponding reduction of the overall cost.

In our code, the eigenvalue computation at a given self-consistent iteration is
started with an initial guess V 0 coming from the solution computed in the previous
iteration. In order to further improve the convergence, this initial subspace can be
enriched with a Krylov subspace generated by the operator K−1(A − τB) acting
upon the initial guess (see §2.1.6).

6.4.5 The SLEPc library
SLEPc, the Scalable Library for Eigenvalue Problem Computations [Hernandez
et al., 2005], is a software package for the solution of large-scale eigenvalue prob-
lems on parallel computers. It can be used to solve standard and generalized eigen-
value problems, as well as other types of related problems such as the quadratic
eigenvalue problem or the singular value decomposition. SLEPc can work with
either real or complex arithmetic, in single or double precision, and it is not re-
stricted to symmetric (Hermitian) problems. It can be used from code written in
C, C++, FORTRAN, and Python.

SLEPc provides a collection of eigensolvers, most of which are based on the
subspace projection paradigm described in the previous paragraphs. In particular,
it includes a parallel implementation of a robust and efficient restarted Krylov
method, namely the Krylov-Schur method [Stewart, 2001a]. Several Davidson-type
solvers are included as well, in particular GD and JD, with various possibilities
for the computation of the correction vector. In these solvers, the user can easily
select which preconditioner to use.

SLEPc is built on top of PETSc, a parallel framework for the numerical solu-
tion of partial differential equations, whose approach is to encapsulate mathemat-
ical algorithms using object-oriented programming techniques in order to be able
to manage the complexity of efficient numerical message-passing codes. All the
PETSc software is freely available and used around the world in many application
areas. PETSc is object-oriented in the sense that all the code is built around a
set of data structures and algorithmic objects. The application programmer works
directly with these objects rather than concentrating on the underlying data struc-

105

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

tures. The three basic abstract data objects are index sets, vectors and matrices.
Built on top of this foundation are various classes of solver objects, including lin-
ear, non-linear and time-stepping solvers. SLEPc inherits all the good properties
of PETSc, including portability to a wide range of parallel platforms, scalability
to a large number of processors, and run-time flexibility giving full control over
the solution process (one can for instance specify the solver at run time, or change
relevant parameters such as the tolerance or the size of the subspace basis).

6.5 Numerical experiments

If the target is to employ the methods of §6.3 (and summary therein) within a
modern multi-electron theory, i.e., density functional theory, one must take into
account the troublesome Coulomb divergences that are characteristic of atomic
potentials (for example, the review in [Tsuchida and Tsukada, 1998]). It is common
in the application of those methods to handle the unscreened divergences through
pseudopotentials, giving a resulting eigenproblem that avoids that issue. As noted
in §6.3, the method of projecting the potential handles divergencies in the Coulomb
potential and thus this problem does not arise in error estimation.

The most direct approach to solving the KS equation set is to discard the elec-
tron interaction terms, or in other words, to set the electron density functional to
zero. The physical model then becomes the Hartree model and is one in which
the SC cycle disappears. Since the Hartree approximation was found not to have
a major impact on computational resources, the numerical experiments are per-
formed on a serial architecture. That, incidentally, provides an excellent ground
on which to test methods of grid adaptivity, as outlined in §6.3. The computa-
tions of the Hartree model were performed on Tramwaj, a single machine with two
64-bit AMD processors running at 2.4 GHz. The results correspond to deal.II

7.1 linked with versions 3.2 of PETSc and SLEPc.
While the results of Fig. 6.2 demonstrate how the error estimate can provide a

better representation of the potential in which the form of the resultant grid was
discussed, a second consideration is the number of degrees-of-freedom for that grid
which is directly proportional to the size of the matrix that has to be presented to
the solver. Tables 6.1 and 6.2 present statistical information about the resultant
grids for the method that starts from projecting the potential (the shorthand O/M
means Out of Memory).

Consider first the results of Table 6.1 in which the fraction of refinement is
N = 1/d2 = 0.111. In this case the most reasonably coarse grid is used (global
refinement g = 2 which, in three dimensions, leads to sixty-four active cells in the
grid). Successive refinement based on the projected potential as an error estimate
clearly leads to convergence with respect to the previous level of refinement and,
more fortuitously, the eigenenergy converges toward the correct (i.e., analytical)
result. In this example the energy appears to converge to an energy that is slightly
lower than the analytical solution. This, we assume, may be a artifact of lacking
refinement around the core; as discussed in §6.3. The same refinement strategy

106

6.5 Numerical experiments

Table 6.1: Evolution of the number of active cells (Act. cells), the total number of
degrees of freedom (dofs), the total eigenenergy of the mean-field (eV) and the difference
in the Hartree energy (ΔErelative = |En−1−En|), computing the electronic configuration
of the Hydrogen atom. At each cycle of intermediate refinement defined by Eqn. (6.9),
the number of cells flagged for refinement is N = 1/d2 starting from a coarse grid globally
refined g = 2 times.

Phase Act. cells Dofs eV ΔErelative

Global 2 64 125 -11.1149
Intermediate-0 120 223 -12.2267 0.0409
Intermediate-1 400 649 -12.7780 0.0203
Intermediate-2 736 1157 -13.1234 0.0127
Intermediate-3 1688 2475 -13.2962 0.0064
Intermediate-4 3060 4179 -13.4066 0.0040
Intermediate-5 5454 7273 -13.4524 0.0017
Intermediate-6 9710 12263 -13.4968 0.0016
Intermediate-7 17606 21465 -13.5230 0.0010
Intermediate-8 31536 27483 -13.5389 0.0006
Intermediate-9 57296 65925 -13.5506 0.0004
Intermediate-10 102544 115043 -13.5597 0.0003
Intermediate-11 183184 201191 -13.5643 0.0002
Intermediate-12 326432 254273 -13.5677 0.0001

Analytical ∞ ∞ -13.6057 0

is applied to grids that start from a higher level of refinement and the refinement
level has been set to N = 1/d = 0.333. The results are gathered in Table 6.2.

The first clear result comes from a comparison of the starting grid g = 2 in
both Table 6.1 and 6.2. A more aggressive refinement criterion (N = 0.333) leads
to more degrees of freedom in the grid and a better energy convergence for a
lower number of refinement cycles. This behavior is typical of error estimates. A
closer examination shows that starting from a coarser grid in fact yields a better
converged eigenenergy for a lower number of degrees of freedom; which is the
second result. Starting from a well refined grid, cf. g = {4, 6}, a relative error
in the energy is found to be ΔEg=4 ∼ 0.0001 and ΔEg=6 ∼ 0.0003, respectively,
before running out of memory (O/M). The corresponding number of degrees of
freedom in those cases are dof= 1.6×106 and dof= 3.0×106. The same comparison
between of g = 2 and g = 4 show them to be quantitatively similar. Comparing
this with the results of Table 6.1 we find the analogous result: ΔEg=2 ∼ 0.0001
and dof= 0.25 × 106.

The numerical experiments testing the energy convergence and computational
cost of computing the error estimated based on the projected potential are sum-
marized in Fig. 6.5. Since using the error estimate based on the projected potential

107

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

Table 6.2: Same as in table 6.1, where at each cycle the number of cells refined is
N = 1/d. Three computations are given starting from a coarse grid globally refined
g ∈ {2, 4, 6}.

Phase Act. cells Dofs eV ΔErelative

Global 2 64 125 -11.1149
Intermediate-0 288 469 -12.4016 0.0473
Intermediate-1 1072 1523 -13.0560 0.0240
Intermediate-2 3592 4721 -13.3736 0.0117
Intermediate-3 12370 15059 -13.5003 0.0047
Intermediate-4 41742 48367 -13.5433 0.0016
Intermediate-5 140050 155333 -13.5624 0.0007
Intermediate-6 468700 503735 -13.5662 0.0001
Intermediate-7 1565376 1641721 -13.5692 0.0001

Global 4 4096 4913 -13.0918
Intermediate-0 13840 16217 -13.4077 0.0116
Intermediate-1 46656 52699 -13.5211 0.0042
Intermediate-2 156416 171327 -13.5555 0.0013
Intermediate-3 523160 557655 -13.5655 0.0004
Intermediate-4 1746424 1828109 -13.5695 0.0001
Intermediate-5 5829832 6016979 O/M O/M

Global 6 262144 274625 -13.5237
Intermediate-0 873832 911987 -13.5581 0.0013
Intermediate-1 2919568 3015425 -13.5674 0.0003
Intermediate-2 9742384 9977315 O/M O/M

Intermediate-3 O/M O/M O/M O/M

is of very low computational cost, it is satisfying that starting from the coarsest
possible grid and a modest level of refinement between cycles yields a very good
result. This, remembering the convergence behavior of the eigenenergy, indicates
that refinement based on the projected potential is very suitable for producing a
starting grid on which computations can be performed after which a solution-based
error estimate (such as the Kelly error estimate) should be employed.

108

6.5 Numerical experiments

10−5

10−4

10−3

10−2

10−1

0 2 4 6 8 10 12 14 16

re
la

ti
v
e

en
er

g
y

d
iff

er
en

ce

refinement cycles

global 2 (0)
global 2 (1)
global 4 (1)
global 6 (1)

102

103

104

105

106

107

0 2 4 6 8 10 12 14 16
d

o
fs

refinement cycles

global 2 (0)
global 2 (1)
global 4 (1)
global 6 (1)

Figure 6.5: Evolution of the relative energy difference and total number of degrees
of freedom as a function of refinement cycle using the projected potential as an error
estimate. The key (0) refers to a refinement level of N = 1/d2 cells, whereas (1) refers
to a refinement level of N = 1/d cells.

6.5.1 Performance of the combined scheme
The following discussion summarizes the experiments carried out in order to evalu-
ate the performance of our implementation, and particularly in terms of scalability
to a large number of processes. The experiments are executed on Tirant, a machine
consisting of 256 JS20 blade computing nodes, each of them with two 64-bit Pow-
erPC 970+ processors running at 2.2 GHz, and interconnected with a low latency
Myrinet network. Only 256 processors are used due to user account limitations.

The results correspond to deal.II 7.0.0 linked with versions 3.2 of PETSc and
SLEPc. The application employs the PETSc implementation of vectors, matrices
and linear system solvers, and the SLEPc GD. The Poisson’s Problem is solved
iteratively with GMRES(30) accelerated with a Block Jacobi preconditioner. Al-
though this iterative method does not exploit the problem symmetry and the
preconditioner could be more powerful, the time spent by this part is considerably
small; Fig. 6.6 shows this to be the case. On the contrary, the GD solver dominates
the time, and therefore we focus on its settings for the rest of this section.

The GD solver is configured to compute as many eigenpairs as electrons there
are in the atom, with a tolerance of 10−6, using a symmetric variant of Algo-
rithm 2.3. The search subspace is initialized with 10 vectors, and bounded to
18 vectors. When the subspace is full, the method restarts with 8 vectors. The
preconditioner employed is the Block Jacobi approximation of A − τB, using in-
complete Cholesky factorization on the blocks (level of fill equal to 5). The initial

109

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

Table 6.3: Evolution of the number of active cells (Act. cells), the total number of
degrees of freedom (dofs), the iterations spent by the linear system solver (Poi.) and
the eigensystem solver (Schr.), the total eigenenergy of the mean-field (eV) and the
difference in the Hartree energy (ΔErelative = |E(n−1) −E(n)|), computing the electronic
configuration of the Hydrogen atom performing two intermediate steps.

Phase Act. cells Dofs Poi. Schr. eV ΔErelative

Global 32768 35937 27 -13.4088
Intermediate-0 58192 69749 22 -13.5190 4.04 10−3

Intermediate-1 116012 148749 56 36 -13.5378 6.91 10−4

Kelly-0 SC-0 207152 241837 53 54 8.27 10−4

SC-1 53 1 1.34 10−10

SC-2 53 1 1.00 10−12

SC-3 53 1 -13.5603 < 10−13

Kelly-1 SC-0 370175 415072 43 69 1.57 10−4

SC-1 43 1 3.20 10−11

SC-2 43 1 6.00 10−12

SC-3 43 1 -13.5646 1.00 10−13

Kelly-2 SC-0 660052 713196 76 85 7.45 10−4

SC-1 76 1 5.10 10−11

SC-2 76 1 1.10 10−11

SC-3 76 1 -13.5666 3.00 10−12

Kelly-3 SC-0 1175609 1246510 76 104 5.26 10−5

SC-1 76 1 5.80 10−11

SC-2 76 1 9.00 10−12

SC-3 76 1 -13.5681 3.00 10−12

Kelly-4 SC-0 2091727 2194572 40 129 3.29 10−5

SC-1 40 1 1.16 10−10

SC-2 40 1 1.40 10−11

SC-3 40 1 -13.5689 2.00 10−12

Kelly-5 SC-0 3744049 3926380 1 159 1.59 10−5

SC-1 1 1 2.34 10−10

SC-2 1 1 3.30 10−11

SC-3 1 1 -13.5694 9.00 10−12

target value is τ = −1, and the subsequent ones are obtained from the previous
converged eigenvalue.

Tables 6.3 and 6.4 show a trace of the size (degree of freedom) and the number
of iterations spent by the linear solver and the eigensolver. Notice that the Hartree
energy in a Kelly phase converges with few self-consistent iterations.

Figure 6.6 compares the time spent by the different parts and highlights the
effectiveness of the feeding to reduce the time spent by GD (more than four times

110

6.5 Numerical experiments

Table 6.4: Same as in table 6.3, but performing four intermediate steps.

Phase Act. cells Dofs Poi. Schr. eV ΔErelative

Global 32768 35937 27 -13.4088
Itermediate-0 58192 69749 22 -13.5190 4.04 10−3

Itermediate-1 116012 148749 36 -13.5378 6.91 10−4

Itermediate-2 232576 309753 45 -13.5457 2.90 10−4

Itermediate-3 234816 311931 51 35 -13.5451 2.91 10−5

Kelly-0 SC-0 424901 505787 56 69 6.68 10−4

SC-1 56 1 7.00 10−12

SC-2 56 1 1.00 10−12

SC-3 56 1 -13.5633 < 10−13

Kelly-1 SC-0 764254 850338 77 86 1.31 10−4

SC-1 77 1 4.70 10−11

SC-2 77 1 7.00 10−12

SC-3 77 1 -13.5669 2.00 10−12

Kelly-2 SC-0 1366681 1460988 71 108 5.35 10−5

SC-1 71 1 9.30 10−11

SC-2 71 1 1.10 10−11

SC-3 71 1 -13.5683 3.00 10−12

Kelly-3 SC-0 2432578 2561494 26 130 3.97 10−5

SC-1 26 1 1.55 10−10

SC-2 26 1 1.70 10−11

SC-3 26 1 -13.5692 3.00 10−12

Table 6.5: Collective timings for the Schrödinger–Poisson set up and solution on 16
processors. Ref. means refinement.

Poisson Schrödinger
Phase Time Ref. Assem. Setup Solve Assem. Setup Solve

Table 6.3 621.7 84.49 57.29 28.86 64.77 53.29 22.91 288.71
Table 6.4 395.9 58.61 34.87 18.33 60.08 33.54 14.51 160.98

faster) computing the electronic configuration of Hydrogen. However recycling
the eigenvalue as a target has a negative effect in the convergence of GD, in-so-
much that the application does not converge if the non-symmetric variant of GD
is used instead. The proposed scheme has been tested successfully to compute the
electronic configuration of atoms up to 4 protons (see Fig. 6.6, right). For heavier
atoms, difficulties arise in terms of convergence, so other preconditioning strategies
should be employed (e.g., multigrid).

111

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

0

100

200

300

400

500

600

700

R
efinem

ent

P. A
ssem

.

P. Setup

P. Solve

S. A
ssem

.

S. Setup

S. Solve

T
im

e
(s

)

0

1000

2000

3000

4000

5000

6000

7000

8000

H He+ H− He Be2+

no feed
with feed

Refinement
Poisson

Schrödinger

Figure 6.6: Wallclock times with 16 processes computing the electronic configuration
of H without and with feeding (left), and the various atoms with feeding (right). The
time is split between the refinement processes and the solution of the Poisson and the
Schrödinger problems.

Finally, Fig. 6.7 shows the scalability of the different components in the appli-
cation. The refinement process is the least scalable part, but takes a relatively
small portion of the time for the whole computation. The other parts present a
good speedup, leading the application as a whole to good parallel performance.
It is worth emphasising here, that the error estimate based on a projection of
the potential does not require any computations involving the solution vectors; at
each intermediate refinement stage the solution has been calculated here only to
demonstrate the convergent properties of the scheme.

6.6 Discussion and conclusions

In summary, the generic adaptive finite element scheme for electronic structure
computations introduced above focuses on exploiting (i) h–adaptive grid methods;
and (ii) Subspace recycling, offering experimental results regarding the proposed
grid refinement techniques and performance of iterative solvers for the Poisson
and Schrödinger problems. For numerical experimentation of grid adaptivity and
the eigenvalue solvers employed here it is the convergence of the eigenenergies
with respect to adaptive and SC cycles that are of central interest. We were also
occupied in the relative convergence (between cycles, cf. the variational principle)
and the scalability of convergence with respect to subspace recycling; and not in
obtaining the best possible global convergence, i.e., reproducing highly accurate

112

6.6 Discussion and conclusions

0

50

100

150

200

250

300

0 50 100 150 200 250 300

sp
ee

d
u

p

processes

Global
Refinement

Poisson
Schrödinger

Figure 6.7: Speedup computing the electronic configuration of H.

results numerically. The latter is to be the concern of a more specific applications
than the scheme proposed in this contribution. In the majority of other works
“specialized” techniques are used that, while sophisticated and accurate, are not
generally applicable (see discussion in §6.1). Our methods on the other hand, are
integrable into other computational schemes and models with ease: that is, as long
as a potential exists and adaptive methods are used, and/or a high-performance
generalized eigenvalue solver is required.

Over a simple algorithm for solving the KS equation set, we detailed critical
aspects from the point of view of the overall computational effort in time and mem-
ory in the case of employing h–adaptive grid techniques and subspace recycling.
We evaluate some approaches for those critical decisions, such as the heuristic
for selecting the cell to be refined and the configuration for the linear system
and eigenproblem iterative solvers. Specifically, we provide experimental evidence
that the use of the projected potential heuristic combined with Kelly’s refinement
method yields efficient grids, reducing the memory requirements and computa-
tional cost. Also, the overhead of the eigensolver can be significantly alleviated
by Generalized Davidson with an appropriate starting subspace management that
exploits the previous step solution as initial guess.

The following algorithm is therefore proposed that is expected to make the most
of estimating errors based on the potential and alleviating computational cost: (i)
An initial grid is constructed, deeming it possible to start from an appropriately
refined grid while having not computed any solution vectors (with the projected
potential heuristic); that is, maximum accuracy in the solution, minimal number
of degrees of freedom. (ii) The self-consistent iterative technique of solving the

113

Chapter 6. Parallel DFT with Grid Refinement and Subspace Recycling

equations of DFT can then proceed using, at each self-consistent cycle, the previous
eigenvectors as an approximate starting space to feed the eigensolver – in the
case investigated here, that was the GD solver. (iii) Iterations over each fully
converged self-consistent cycle can be successively improved on by using the Kelly
error estimate to improve on the initial grid.

A rigorous numerical test of the techniques developed in this work using more
sophisticated versions of the equations of DFT is desirable. Time dependency is a
good test ground on which our scheme may have a significant impact by reducing
the overall cost of computation. For now, these and other possibilities remain as
the outlook for the future. A relatively straightforward extension to the current
scheme would be to introduce nonlocal terms into the Schrödinger equation; which
was supposed not to have a significant impact on the robustness of the methods
used in this work.

In any case, if the ultimate goal of real–space approaches to electronic structure
theory on the atomic scale is to perform fast and highly accurate time-dependent
computations of atomic/molecular structure; then our scheme is a promising can-
didate for that purpose.

114

Chapter 7

Conclusions and Future Work

The solution of eigenvalue problems is considered one of the most important tasks
in many scientific and engineering applications. Very frequently they requiere the
computation of a small quantity of solutions of problems with certain structure,
such as symmetric-definite, although the non-structured cases are also worth con-
sidering; and whose matrices have a scalable matrix-vector product, in the sense
that its cost is far from O(n2) for a matrix with dimension n, being a remarkable
example the case of sparse matrices. In this contexti, iterative methods present
important advantages from the point of view of the computational resources uti-
lized.

The thesis is concerned with the implementation of Davidson-type methods, a
subclass of the subspace iterative methods, for the solution of Hermitian and non-
Hermitian large-scale partial eigenvalue problems, both standard and generalized.
The implementations are integrated in the SLEPc library and incorporate (i) state-
of-the-art expansion methods, such as Generalized Davidson and Jacobi-Davidson
(with the Newton stopping criteria), besides the new expansion GD2; (ii) state-
of-the-art extraction techniques, such as the Rayleigh-Ritz method and harmonic
variants; and (iii) restart techniques, such as GD+k. The solvers are robust and
efficient, exploiting the structural properties of the problem and performing the
operations in real arithmetic as much as possible.

The main contribution of this thesis is that some features provided by the
SLEPc Davidson solvers are not available in other free parallel libraries, such as
the support of non-Hermitian or generalized problems and the harmonic extraction
techniques. The software profits from the PETSc framework, inheriting the access
to a wide variety of iterative linear system methods and preconditioners, and
the computational capabilities of high performance hardware, specially supporting
distributed memory.

The presented solvers were validated by their testing in a collection of problems
whose matrices come from real applications, and the comparison of the results for
Hermitian cases, considering the convergence and the computational performance

115

Chapter 7. Conclusions and Future Work

against similar libraries. In short, the Jacobi-Davidson solver presents slightly
worse performance than the one available in PRIMME (because of the lack in
the SLEPc implementation of sensible stopping criteria for the correction equa-
tion), and the Generalized Davidson is as competitive as the versions available
in PRIMME and Anasazi. In addition, the new method to expand the subspace,
GD2, provides better results compared with Generalized Davidson when the pre-
conditioner is very far from the ideal.

As a consequence of the integration on the described frameworks of SLEPc and
PETSc, the presented solvers, as the rest of SLEPc components, can interoperate
in other applications and be configured not only in terms of problem properties,
but also in the solution requirements through the convergence criterion (to indicate
the solution quality) and the sort criterion (to specify the region in which to find
solutions, e.g., largest magnitude, rightmost/leftmost values, closest to a target).

This has been illustrated addressing two relevant scientific computing applica-
tions, in which obtaining the corresponding eigenpairs is challenging for iterative
solvers. One of them is in the context of computation of plasma unstable modes
with the code GENE, in which we provided examples of Jacobi-Davidson im-
proving the performance of calculating eigenvalues, some of them initialized with
previous solutions of similar problems. In the other, Generalized Davidson obtains
the leftmost eigenvalues from problems that come from the discretization of the
Schrödinger equation in an application for computing the electronic configurations
of atoms.

SLEPc is currently an active project and there are plans for the continuation
of the development of the Davidson implementation in order to address more
problems and improve its efficiency and robustness. Concretely, a list of near
future work includes

• the implementation of two-sided and alternating Jacobi-Davidson [Hochsten-
bach and Sleijpen, 2003], which have asymptotically cubic convergence find-
ing both left and right eigenvectors at the same time;

• the implementation of robust Davidson methods specific for SVD [Hochsten-
bach, 2001] and polynomial eigenproblems [Sleijpen et al., 1996; Voss, 2007;
Hochstenbach and Sleijpen, 2008] (these problems can be currently solved
by the SVD and QEP SLEPc solvers that linearize the problem to a linear
eigenvalue problem);

• the implementation of sensible stopping criteria, such as the one described
for CG in [Notay, 2002] and QMR in [Stathopoulos, 2007] (implemented by
PRIMME), and the more general criteria described in [Hochstenbach and
Notay, 2009], which support non-Hermitian problems and can be efficiently
employed in many iterative solvers for linear systems;

• the implementation of dense eigensolvers for the projected problem in the
case of generalized symmetric-indefinite problems [Brebner and Grad, 1982]

116

7.1 Publications

and polynomial eigenproblems [Betcke and Kressner, 2011], that can make
the solvers more robust; and

• the improvement of the support of the SLEPc Davidson solvers for novel ar-
chitecture hardware such as multi-cores and GPUs, that currently is limited
to accelerate the matrix-vector product and some vector-vector operations.

About the mentioned applications, some parts of the interface to PETSc/SLEPc
can be improved, e.g., the creation of the problem matrices in PETSc formats or
the interchange of vectors between the application and PETSc. In addition, ex-
tending the SLEPc sorting criteria interface to consider the vectors also can be
interesting for the code GENE. Finally the DFT code can be extended with more
sophisticated versions, for instance considering time dependency.

7.1 Publications

The following list of publication in conferences and journals has been produced in
the context of this thesis:

• E. Romero and Jose E. Roman. A parallel implementation of the trace mini-
mization eigensolver. In J. M. Palma, P. R. Amestoy, M. Daydé, M. Mattoso,
and J. C. Lopes, editors, High Performance Computing for Computational
Science - VECPAR 2008, volume 5336 of Lect. Notes Comp. Sci., pages
255–268, 2008.

• T. D. Young, E. Romero and J. E. Roman. Finite Element Solution of
the Stationary Schrödinger Equation Using Standard Computational Tools.
Proceedings of the International Conference on Computational and Math-
ematical Methods in Science and Engineering, CMMSE 2009, 1140–1150,
2009.

• M. B. Cruz, E. Romero, J. E. Roman and P. B. Vasconcelos. Uma imple-
mentação paralela do método de Jacobi-Davidson para problemas de val-
ores próprios não simétricos de grande dimensão. Congreso de Métodos
Numéricos en Ingenieŕıa 2009, METNUM 2009.

• E. Romero and J. E. Roman. A Parallel Implementation of the Davidson
Method for Generalized Eigenproblems. In B. Chapman, F. Desprez, G. R.
Joubert, A. Lichnewsky, F. Peters and T. Priol, editors, Parallel Computing:
From Multicores and GPU’s to Petascale, volume 19 of Advances in Parallel
Computing, pages 133–140. IOS Press, 2010.

• E. Romero, M. B. Cruz, J. E. Roman and P. B.Vasconcelos. A Parallel Im-
plementation of the Jacobi-Davidson Eigensolver for Unsymmetric Matrices.
In J. M. L. M. Palma, M. Daydé, O. Marques, and J. C. Lopes, editors,
High Performance Computing for Computational Science – VECPAR 2010,
volume 6449 of Lect. Notes Comp. Sci., pages 380–393. Springer, 2011.

117

Chapter 7. Conclusions and Future Work

• E. Romero and Jose E. Roman. Computing Subdominant Unstable Modes
of Turbulent Plasma with a Parallel Jacobi-Davidson Eigensolver, Concur.
Comput.: Pract. Exp, 23(17):2179–2191, 2011.

• F. Merz, C. Kowitz, E. Romero, J. E. Roman and F. Jenko. Multi-dimensional
gyrokinetic parameter studies based on eigenvalue computations, Comput.
Phys. Commun., 183(4):922–930, 2012.

• T. D. Young, E. Romero and J. E. Roman. Parallel Finite Element Density
Functional Computations Exploiting Grid Refinement and Subspace Recy-
cling. Submitted to Comput. Phys. Commun.

7.2 Projects

The work developed in this thesis was partially supported by the Spanish Ministry
of Science and Innovation (MICINN) under the projects

• Advanced methods and novel computational techniques for the numerical
solution of large-scale eigenvalue problems, grant number TIN2009-07519,
whose objective is to extend SLEPc, besides the inclusion of the Davidson
solvers and the harmonic extraction, in order to support quadratic eigen-
problems and improve the performance in multi-core and GPUs computing
environments; and

• Numerical Methods for Spectral Computations: Development and Implemen-
tation in Parallel Computers, in the context of the Spanish-Portuguese In-
tegrated Action, that funded the collaboration with M. B. Cruz and P. B.
Vasconcelos in the initial development of the Jacobi-Davidson for standard
non-Hermitian problems, among other works.

7.3 Software based on SLEPc

The SLEPc source code, in which the Davidson solvers described in this thesis
are included, is freely distributed in Internet under the GPL license since 2003,
encouraging its use in other software projects as a specialized component for solv-
ing eigenvalue problems. Some software using SLEPc is listed next, for a more
complete reference see [Roman, 2011]:

FEniCS a toolkit for the Automation of Computational Mathematical Modeling
(ACMM);

libMesh a C++ framework for the numerical simulation of partial differential
equations;

deal.II a finite element Differential Equations Analysis Library;

Elefant Efficient Learning, Large-scale Inference, and Optimisation Toolkit;
118

7.3 Software based on SLEPc

TiberCAD Multiscale Device Simulator;

GENE Gyrokinetic Electromagnetic Numerical Experiment;

GYRO The General Atomics TGYRO Code Suite;

OpenCMISS Open Continuum Mechanics, Imaging, Signal processing and Sys-
tem identification;

Milonga a free nuclear reactor core analysis code;

Dome tools for power system analysis.

The Davidson solvers in SLEPc are available from SLEPc version 3.1, and some
libraries are starting to using them, like for instance in GENE, which employs
the Jacobi-Davidson solver as default (configured similarly as described in the
experiments of chapters 4 and 5); and deal.II, which added the corresponding
wrappers so that they can be used by the rest of the library.

119

Bibliography

J. Ackermann, B. Erdmann, and R. Roitzsch. A self–adaptive multilevel finite ele-
ment method for the stationary Schrödinger equation in three space dimensions.
Chem. Phys. Lett., 101:7643, 1994.

J. Ackermann and R. Roitzsch. A two-dimensional multilevel adaptive finite el-
ement method for the time-independent Schrödinger equation. Chem. Phys.
Lett., 214(1):109–117, 1993.

M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element
Analysis. John Wiley and Sons, 2000.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK User’s Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.

P. Arbenz, M. Becka, R. Geus, U. Hetmaniuk, and T. Mengotti. On a parallel
multilevel preconditioned Maxwell eigensolver. Parallel Comput., 32(2):157–165,
2006.

P. Arbenz and R. Geus. A comparison of solvers for large eigenvalue problems
occuring in the design of resonant cavities. Numer. Linear Algebra Appl., 6(1):3–
16, 1999.

I. Babuška and T. Strouboulis. The Finite Element Method and its Reliability.
Claredon Press, New York, 2001.

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 2000.

C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist. Anasazi
software for the numerical solution of large-scale eigenvalue problems. ACM
Trans. Math. Softw., 36(3):13:1–13:23, 2009.

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Kne-
pley, L. C. McInnes, B. Smith, and H. Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 3.2, Argonne National Laboratory, 2011.

121

Bibliography

S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C.
McInnes, B. Smith, and H. Zhang. PETSc users manual. Technical Report
ANL-95/11 - Revision 3.1, Argonne National Laboratory, 2010.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management
of parallelism in object oriented numerical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific
Computing, pages 163–202. Birkhaüser, 1997.

W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data
structures for massively parallel generic adaptive finite element codes. ACM
Trans. Math. Softw., ???? (Submitted).

W. Bangerth, R. Hartmann, and G. Kanschat. deal.IIa general-purpose object-
oriented finite element library. ACM Trans. Math. Softw., 33, 2007.

T. L. Beck. Real-space mesh techniques in density-functional theory. Rev. Mod.
Phys., 72:1041, 2000.

M. A. Beer, S. C. Cowley, and G. W. Hammett. Field-aligned coordinates for
nonlinear simulations of tokamak turbulence. Phys. Plasmas, 2(7):2687–2700,
1995.

A. F. Bertolini. Review of eigensolution procedures for linear dynamic finite ele-
ment analysis. Appl. Mech. Rev., 51(2):155–172, 1998.

T. Betcke and D. Kressner. Perturbation, extraction and refinement of invariant
pairs for matrix polynomials. Linear Algebra and its Applications, 435(3):514–
536, 2011.

L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and
R. C. Whaley. An updated set of Basic Linear Algebra Subprograms (BLAS).
ACM Trans. Math. Softw., 28(2):135–151, 2002.

M. Bollhöfer and Y. Notay. JADAMILU: a software code for computing se-
lected eigenvalues of large sparse symmetric matrices. Comput. Phys. Commun.,
177(12):951–964, 2007.

M. A. Brebner and J. Grad. Eigenvalues of Ax = λBx for real symmetric matrices
A and B computed by reduction to a pseudosymmetric form and the HR process.
Linear Algebra Appl., 43:99–118, 1982.

A. J. Brizard and T. S. Hahm. Foundations of nonlinear gyrokinetic theory. Rev.
Mod. Phys., 79:421–468, 2007.

C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for
parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput.,
33(3):1103–1133, 2011.

122

Bibliography

X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general
sparse linear systems. SIAM J. Sci. Comput., 21(22):792–797, 1999.

C. Campos, J. E. Roman, E. Romero, and A. Tomas. SLEPc users man-
ual. Technical Report DSIC-II/24/02 - Revision 3.2, D. Sistemes Informàtics
i Computació, Universitat Politècnica de València, 2011. Available at
http://www.grycap.upv.es/slepc.

M. Crouzeix, B. Philippe, and M. Sadkane. The Davidson method. SIAM J. Sci.
Comput., 15(1):62–76, 1994.

T. Dannert and F. Jenko. Gyrokinetic simulation of collisionless trapped-electron
mode turbulence. Phys. Plasmas, 12(7):072309, 2005.

E. R. Davidson. The iterative calculation of a few of the lowest eigenvalues and
corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys.,
17(1):87–94, 1975.

T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, 2011.

T. Ericsson and A. Ruhe. The spectral transformation Lanczos method for the
numerical solution of large sparse generalized symmetric eigenvalue problems.
Math. Comp., 35(152):1251–1268, 1980.

J.-L. Fattebert, R. D. Hornung, and A. M. Wissink. Finite element approach for
density functional theory calculations on locally refined meshes. J. Comput.
Phys., 223(2):759–773, 2007.

M. Ferronato, C. Janna, and G. Pini. Efficient parallel solution to large-size sparse
eigenproblems with block FSAI preconditioning. Numer. Linear Algebra Appl.,
2012. In press.

D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst. Jacobi–Davidson
style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci.
Comput., 20(1):94–125, 1999.

J. G. F. Francis. The QR transformation: a unitary analogue to the LR transfor-
mation. Comput. J., 4(3):265–271, 1961.

M. A. Freitag and A. Spence. Convergence theory for inexact inverse iteration
applied to the generalised nonsymmetric eigenproblem. Electron. Trans. Numer.
Anal., 28:40–64, 2007.

M. Genseberger. Improving the parallel performance of a domain decomposition
preconditioning technique in the Jacobi-Davidson method for large scale eigen-
value problems. App. Numer. Math., 60(11):1083–1099, 2010.

123

Bibliography

A. George and J. W. H. Liu. A fast implementation of the minimum degree
algorithm using quotient graphs. ACM Trans. Math. Softw., 6:337–358, 1980.

R. Geus. The Jacobi-Davidson algorithm for solving large sparse symmetric eigen-
value problems with application to the design of accelerator cavities. Ph.D. thesis,
ETH Zürich, 2002.

T. Görler, X. Lapillonne, S. Brunner, T. Dannert, F. Jenko, F. Merz, and D. Told.
The global version of the gyrokinetic turbulence code GENE. J. Comput. Phys.,
230(18):7053–7071, 2011.

M. N. Guimarães and F. V. Prudente. A study of the confined Hydrogen atom
using the finite element method. J. Phys. B: At. Mol. Opt. Phys., 38:2811, 2005.

V. Hernandez, J. E. Roman, and A. Tomas. Parallel Arnoldi eigensolvers with en-
hanced scalability via global communications rearrangement. Parallel Comput.,
33(7–8):521–540, 2007.

V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A survey of software for
sparse eigenvalue problems. Technical Report STR-6, Universidad Politécnica
de Valencia, 2006. Available at http://www.grycap.upv.es/slepc.

V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit
for the solution of eigenvalue problems. ACM Trans. Math. Softw., 31(3):351–
362, 2005.

V. Heuveline, B. Philippe, and M. Sadkane. Parallel computation of spectral por-
trait of large matrices by Davidson type methods. Numer. Algorithms, 16(1):55–
75, 1997.

D. J. Higham and N. J. Higham. Structured backward error and condition of
generalized eigenvalue problems. SIAM J. Matrix Anal. Appl., 20(2):493–512,
1998.

M. Hochstenbach. Jacobi-Davidson Gateway. 2007.

M. E. Hochstenbach. A Jacobi–Davidson type SVD method. SIAM J. Sci. Statist.
Comput., 23(2):606–628, 2001.

M. E. Hochstenbach. Generalizations of harmonic and refined Rayleigh-Ritz. Elec-
tron. Trans. Numer. Anal., 20:235–252, 2005a.

M. E. Hochstenbach. Variations on harmonic Rayleigh–Ritz for standard and
generalized eigenproblems, 2005b. Preprint, Department of Mathematics, Case
Western Reserve University.

M. E. Hochstenbach and Y. Notay. The Jacobi–Davidson method. GAMM Mitt.,
29(2):368–382, 2006.

124

Bibliography

M. E. Hochstenbach and Y. Notay. Controlling inner iterations in the Jacobi–
Davidson method. SIAM J. Matrix Anal. Appl., 31(2):460–477, 2009.

M. E. Hochstenbach and G. L. Sleijpen. Two-sided and alternating Jacobi-
Davidson. Linear Algebra Appl., 358(1-3):145–172, 2003.

M. E. Hochstenbach and G. L. G. Sleijpen. Harmonic and refined Rayleigh-Ritz for
the polynomial eigenvalue problem. Numer. Linear Algebra Appl., 15(1):35–54,
2008.

P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,
136(3B):B864–B871, 1964.

F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. A parallel additive Schwarz
preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems
in quantum dot simulation. J. Comput. Phys., 229(8):2932–2947, 2010.

C. G. J. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säculärstörungen
vorkommenden Gleichungen numerisch aufzulösen. Crelle’s J., 30:51–94, 1846.

F. Jenko, T. Dannert, and C. Angioni. Heat and particle transport in a toka-
mak: advances in nonlinear gyrokinetics. Plasma Phys. Control. Fusion,
47(12B):B195, 2005.

F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers. Electron temper-
ature gradient driven turbulence. Phys. Plasmas, 7(5):1904–1910, 2000.

S. G. Johnson and J. D. Joannopoulos. Block-iterative frequency-domain methods
for Maxwell’s equations in a planewave basis. Opt. Express, 8(3):173–190, 2001.

M. Kammerer, F. Merz, and F. Jenko. Exceptional points in linear gyrokinetics.
Phys. Plasmas, 15(5):052102, 2008.

D. W. Kelly, J. P. de S. R. Gago, O. Zienkiewicz, and I. Babuska. A posteriori
error analysis and adaptive processes in the finite element method, Part I: error
analysis. Internat. J. Numer. Methods Engrg., 19:1593–1619, 1983.

A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally Opti-
mal Block Preconditioned Conjugate Gradient method. SIAM J. Sci. Comput.,
23(2):517–541, 2001.

A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov. Block Locally
Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in HYPRE and PETSc.
SIAM J. Sci. Comput., 29(5):2224–2239, 2007.

W. Kohn and L. J. Sham. Self-Consistent equations including exchange and cor-
relation effects. Phys. Rev., 140(4A):A1133–A1138, 1965.

125

Bibliography

J. Kopal, M. Rozloz̆ńık, M. Tuma, and A. Smoktunowicz. Rounding error analysis
of orthogonalization with a non-standard inner product. Numer. Math., 2011.
Submitted.

D. Kressner. Block algorithms for reordering standard and generalized Schur forms.
ACM Trans. Math. Softw., 32(4):521–532, 2006.

R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide, Solution
of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1998.

Z. Li, Y. Saad, and M. Sosonkina. pARMS: a parallel version of the algebraic
recursive multilevel solver. Numer. Linear Algebra Appl., 10(5-6):485–509, 2003.

F. Merz. Gyrokinetic simulation of multimode plasma turbulence. Ph.D. thesis,
University of Münster, 2008. Available at http://en.scientificcommons.

org/41889457. Accessed 1 December 2011.

F. Merz and F. Jenko. Nonlinear interplay of TEM and ITG turbulence and its
effect on transport. Nuclear Fusion, 50:054005, 2010.

F. Merz, C. Kowitz, E. Romero, J. E. Roman, and F. Jenko. Multi-dimensional gy-
rokinetic parameter studies based on eigenvalues computations. Comput. Phys.
Commun., 183(4):922–930, 2012.

R. B. Morgan. Davidson’s method and preconditioning for generalized eigenvalue
problems. J. Comput. Phys., 89:241–245, 1990.

R. B. Morgan. Computing interior eigenvalues of large matrices. Linear Algebra
Appl., 154–156:289–309, 1991.

R. B. Morgan. Generalizations of Davidson’s method for computing eigenvalues
of large nonsymmetric matrices. J. Comput. Phys., 101:287, 1992.

R. B. Morgan. GMRES with deflated restarting. SIAM J. Sci. Comput., 24(1):20–
37, 2002.

R. B. Morgan and D. S. Scott. Generalizations of Davidson’s method for comput-
ing eigenvalues of sparse symmetric matrices. SIAM J. Sci. Statist. Comput.,
7(3):817–825, 1986.

MPI Forum. MPI: a message-passing interface standard. Int. J. Supercomp. Applic.
High Perf. Comp., 8(3/4):159–416, 1994.

E. D. Napoli, S. Blügel, and P. Bientinesi. Correlations in sequences of gener-
alized eigenproblems arising in density functional theory. arXiv:1108.2594v1 :
retrieved 12 Aug 2011, 2011.

126

Bibliography

R. Natarajan and D. Vanderbilt. A new iterative scheme for obtaining eigenvectors
of large, real-symmetric matrices. J. Comput. Phys., 82(1):218–228, 1989.

K. Neymeyr. A geometric theory for preconditioned inverse iteration I: Extrema
of the Rayleigh quotient. Linear Algebra Appl., 322(1-3):61–85, 2001.

M. Nool and A. van der Ploeg. A parallel Jacobi–Davidson-type method for solving
large generalized eigenvalue problems in magnetohydrodynamics. SIAM J. Sci.
Comput., 22(1):95–112, 2000.

Y. Notay. Combination of Jacobi-Davidson and conjugate gradients for the partial
symmetric eigenproblem. Numer. Linear Algebra Appl., 9(1):21–44, 2002.

Y. Notay. Inner iterations in eigenvalue solvers. Technical Report GANMN 05-01,
Service de Métrologie Nucléaire, Université Libre de Bruxelles, 2005.

J. Olsen, P. Jørgensen, and J. Simons. Passing the one-billion limit in full
configuration-interaction (FCI) calculations. Chem. Phys. Lett., 169(6):463–472,
1990.

C. C. Paige, B. N. Parlett, and H. A. van der Vorst. Approximate solutions
and eigenvalue bounds from Krylov subspaces. Numer. Linear Algebra Appl.,
2(2):115–133, 1995.

B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood
Cliffs, NJ, 1980. Reissued with revisions by SIAM, Philadelphia, 1998.

R. G. Parr and W. Yang. Density–Functional Theory of Atoms and Molecules.
Number 16 in International series of monographs on chemistry. Oxford Univer-
sity Press, New York, 1989.

J. E. Pask and P. A. Sterne. Finite element methods in ab initio electronic structure
calculations. Modelling Simul. Mater. Sci. Eng., 13:R71, 2005.

L. R. Ram-Mohan. Finite element and boundary element applications in quantum
mechanics. Oxford University Press, New York, 2002.

E. Ramos, J. E. Roman, S. Cardona-Serra, and J. M. Clemente-Juan. Parallel
implementation of the MAGPACK package for the analysis of high-nuclearity
spin clusters. Comput. Phys. Commun., 181(12):1929–1940, 2010.

M. J. Rayson. Lagrange–Lobatto interpolating polynomials in the discrete variable
representation. Phys. Rev. E, 76(2):026704, 2007.

J. E. Roman. SLEPc web page. 2011.

J. E. Roman, M. Kammerer, F. Merz, and F. Jenko. Fast eigenvalue calculations in
a massively parallel plasma turbulence code. Parallel Comput., 36(5-6):339–358,
2010.

127

Bibliography

E. Romero and J. E. Roman. A parallel implementation of the Jacobi-Davidson
eigensolver and its application in a plasma turbulence code. In P. D’Ambra,
M. Guarracino, and D. Talia, editors, Euro-Par 2010, Part II, volume 6272 of
Lect. Notes Comp. Sci., pages 101–112. Springer, 2010.

E. Romero and J. E. Roman. Computing subdominant unstable modes of turbulent
plasma with a parallel Jacobi–Davidson eigensolver. Concur. Comput.: Pract.
Exp, 23(17):2179–2191, 2011.

Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci.
Comput., 14(2):461–469, 1993.

Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM Publications, 2nd
edition, 2003.

Y. Saad. Numerical Methods for Large Eigenvalue Problems, Revised Edition.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2011.

M. Sadkane and R. B. Sidje. Implementation of a variable block Davidson method
with deflation for solving large sparse eigenproblems. Numer. Algorithms, 20(2–
3):217–240, 1999.

B. J. Schneider, L. A. Collins, and S. X. Hu. Parallel solver for the time–dependent
linear and nonlinear Schrödinger equation. Phys. Rev. E, 73:036708, 2006.

G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst.
Jacobi-Davidson type methods for generalized eigenproblems and polynomial
eigenproblems. BIT, 36(3):595–633, 1996.

G. L. G. Sleijpen and D. R. Fokkema. BiCGstab(�) for linear equations involving
unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal.,
1:11–32, 1993.

G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi–Davidson iteration method for
linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17(2):401–425, 1996.

G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi–Davidson iteration method
for linear eigenvalue problems. SIAM Rev., 42(2):267–293, 2000.

G. L. G. Sleijpen, H. A. van der Vorst, and E. Meijerink. Efficient expansion of
subspaces in the Jacobi–Davidson method for standard and generalized eigen-
problems. Electron. Trans. Numer. Anal., 7:75–89, 1998.

M. Sosonkina, Y. Saad, and X. Cai. Using the parallel algebraic recursive multilevel
solver in modern physical applications. Future Generation Computer Systems,
20:489, 2004.

128

Bibliography

A. Stathopoulos. Nearly optimal preconditioned methods for Hermitian eigen-
problems under limited memory. Part I: Seeking one eigenvalue. SIAM J. Sci.
Comput., 29(2):481–514, 2007.

A. Stathopoulos and C. F. Fischer. A Davidson program for finding a few selected
extreme eigenpairs of a large, sparse, real, symmetric matrix. Comput. Phys.
Commun., 79:268, 1994.

A. Stathopoulos and J. R. McCombs. Nearly optimal preconditioned methods for
Hermitian eigenproblems under limited memory. Part II: Seeking many eigen-
values. SIAM J. Sci. Comput., 29(5):2162–2188, 2007.

A. Stathopoulos and J. R. McCombs. PRIMME: PReconditioned Iterative Mul-
tiMethod Eigensolver: Methods and software description. ACM Trans. Math.
Softw., 37(2):21:1–21:30, 2010.

A. Stathopoulos and Y. Saad. Restarting techniques for the (Jacobi-)Davidson
symmetric eigenvalue methods. Electron. Trans. Numer. Anal., 7:163–181, 1998.

A. Stathopoulos, Y. Saad, and C. F. Fischer. Robust preconditioning of large,
sparse, symmetric eigenvalue problems. J. Comput. Appl. Math., 64(3):197–
215, 1995.

A. Stathopoulos, Y. Saad, and K. Wu. Dynamic thick restarting of the Davidson,
and the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput., 19(1):227–
245, 1998.

A. Stathopoulos and K. Wu. A block orthogonalization procedure with constant
synchronization requirements. SIAM J. Sci. Comput., 23(6):2165–2182, 2002.

G. W. Stewart. A Krylov–Schur algorithm for large eigenproblems. SIAM J.
Matrix Anal. Appl., 23(3):601–614, 2001a.

G. W. Stewart. Matrix Algorithms. Volume II: Eigensystems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2001b.

M. Sugawara. Adaptive basis set for quantum mechanical calculation based on
hierarchial finite element method. Chem. Phys. Lett., 295(5-6):423–430, 1998.

E. Tsuchida and M. Tsukada. Electronic-structure calculations based on the finite-
element method. Phys. Rev. B, 52(8):5573, 1995.

E. Tsuchida and M. Tsukada. Adaptive finite–element method for electronic–
structure calculations. Phys. Rev. B, 54(11):7602, 1996.

E. Tsuchida and M. Tsukada. Large-scale electronic-structure calculations based
on the adaptive finite-element method. J. Phys. Soc. Jpn., 67(11):3844–3858,
1998.

129

Bibliography

H. A. van der Vorst. Computational methods for large eigenvalue problems. In
P. G. Ciarlet and J. L. Lions, editors, Handbook of Numerical Analysis, volume
VIII, pages 3–179. Elsevier, Amsterdam, 2002.

H. A. van der Vorst. Modern methods for the iterative computation of eigenpairs
of matrices of high dimension. Z. Angew. Math. Mech., 84(7):444–451, 2004.

J. H. van Lenthe and P. Pulay. A space-saving modification of Davidson’s eigen-
vector algorithm. J. Comput. Chem., 11(10):1164–1168, 1990.

T. van Noorden and J. Rommes. Computing a partial generalized real Schur form
using the Jacobi–Davidson method. Numer. Linear Algebra Appl., 14(3):197–
215, 2007.

C. Vömel, S. Z. Tomov, O. A. Marques, A. Canning, L.-W. Wang, and J. J.
Dongarra. State-of-the-art eigensolvers for electronic structure calculations of
large scale nano-systems. J. Comput. Phys., 227(15):7113–7124, 2008.

H. Voss. A Jacobi-Davidson method for nonlinear and nonsymmetric eigenprob-
lems. Comput. & Structures, 85(17-18):1284–1292, 2007.

S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization
of sparse matrix–vector multiplication on emerging multicore platforms. Parallel
Comput., 35(3):178–194, 2009.

K. Wu, Y. Saad, and A. Stathopoulos. Inexact Newton preconditioning techniques
for large symmetric eigenvalue problems. Electron. Trans. Numer. Anal., 7:202–
214, 1998.

S. Yamakawa and S. Hyodo. Gaussian finite-element mixed-basis method for elec-
tronic structure calculations. Phys. Rev. B, 71:035113, 2005.

T. D. Young. namespace ewalena, Documentation and technical reference. IFTR
of the Polish Academy of Sciences, pre–alpha edition, 2011a. Available at http:
//www.ewalena.sourceforge.net.

T. D. Young. A qualitative semi–classical treatment of an isolated semi–polar
quantum dot. J. Phys.: Conf. Ser., 281:012015, 2011b.

T. D. Young and R. Armiento. Strategies for h-adaptive refinement for a finite
element treatment of harmonic oscillator Schrödinger eigenproblem. Commun.
Theor. Phys., 53(6):1017, 2010.

T. D. Young, E. Romero, and J. E. Román. Finite element solution of the station-
ary Schrödinger equation using standard computational tools. In Proceedings of
the International Conference on Computational and Mathematical Methods in
Science and Engineering 2009, page 1140. Gijón, Asturias, Spain, 2009.

130

