RESOLUCIÓN DE UN PROBLEMA REAL
DE RELOCALIZACIÓN DE LOS
VEHÍCULOS DE EMERGENCIA
SANITARIA

Miguel Ángel Vecina García

Tutoras: Eva Vallada Regalado
María Fulgencia Villa Julia

Trabajo Fin de Grado presentado en la Facultad
de Administración y Dirección de Empresas de la
Universitat Politècnica de València, para la
obtención del Título de Graduado en
Administración y Dirección de Empresas
Curso 2019-2020

Valencia, 7 de septiembre de 2020
La rápida intervención de las ambulancias cuando surge alguna emergencia es de vital importancia en el bienestar y la salud de la ciudadanía. En la provincia de Valencia, el Sistema de Emergencias Médicas (SEM) es el encargado de la gestión y coordinación de las incidencias médicas surgidas en el día a día. Es por ello, que la correcta localización de los vehículos de emergencia sanitaria es imprescindible para poder acudir lo más pronto posible a cualquier emergencia que se manifieste y así poder evitar un mayor número de fallecimientos. Actualmente, los vehículos de emergencia sanitaria de la provincia de Valencia se encuentran ubicados según el criterio de los responsables del Sistema de Emergencias Médicas, pero no se consigue cubrir a toda la población de la provincia en un tiempo máximo estipulado.

Así pues, el presente Trabajo Fin de Grado tiene como finalidad la relocalización estática de estos vehículos con el objetivo de minimizar la cantidad de población que queda descubierta en la provincia de Valencia para ese tiempo máximo. Para ello, se proponen varios modelos y una herramienta software para la ayuda en la toma de decisiones a los responsables del SEM, de la manera más eficaz y rápida posible.

Palabras clave: SEM, SVA, SVB, VES, isócrona, solapamiento, localización, emergencias, ambulancia, Investigación Operativa, cubrimiento máximo

La rápida intervención de les ambulàncies quan sorgeix alguna emergència és de vital importància en el benestar i la salut de la ciutadania. A la província de València, el Sistema d’Emergències Mèdiques (SEM) és l’encarregat de la gestió i coordinació de les incidències mèdiques sorgides en el dia a dia. És per això, que la correcta localització dels vehicles d'emergència sanitària és imprescindible per poder acudir el més prompte possible a qualsevol emergència que es manifieste i això poder evitar un major nombre de defuncions. Actualment, els vehicles d'emergència sanitària de la província de València es troben situats segons el criteri dels responsables del Sistema d’Emergències Mèdiques, però no s’aconsegueix cobrir a tota la població de la província en un temps màxim estipulat.

Així doncs, el present Treball Fi de Grau té com a finalitat la relocalització estàtica d’aquests vehicles amb l’objectiu de minimitzar la quantitat de població que queda descoberta a la província de València per a aquest temps màxim. Per a això, es proposen diversos models i una eina software per a l’ajuda en la presa de decisions als responsables del SEM, de la manera més eficaç i ràpida possible.

Paraules clau: SEM, SVA, SVB, VES, isòcrona, solapament, localització, emergències, ambulància, Investigació Operativa, cobriment màxim
Abstract

The rapid intervention of ambulances when an emergency arises is of vital importance to the welfare and health of citizens. In the province of Valencia, the Emergency Medical System (EMS) is responsible for the management and coordination of medical incidents that arise on a daily basis. Therefore, the correct location of the medical emergency vehicles is essential to be able to go as soon as possible to any emergency that appears and thus be able to avoid a greater number of deaths. Currently, the medical emergency vehicles in the province of Valencia are located according to the criteria of those responsible for the Emergency Medical System, but it is not possible to cover the entire population of the province in a maximum time stipulated.

Therefore, this End of Degree Project aims at the static relocation of these vehicles in order to minimize the amount of population discovered in the province of Valencia for that maximum time. For this purpose, several models and a software tool are proposed to help decision makers in the EMS, in the most efficient and quickest way possible.

Key words: EMS, AVS, BVS, HEV, isochron, overlap, location, emergencies, ambulance, Operations Research, maximum coverage
<table>
<thead>
<tr>
<th>ÍNDICE DE FIGURAS</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÍNDICE DE TABLAS</td>
<td>8</td>
</tr>
<tr>
<td>CAPÍTULO I. INTRODUCCIÓN</td>
<td>9</td>
</tr>
<tr>
<td>1.1. Introducción</td>
<td>9</td>
</tr>
<tr>
<td>1.2. Objetivos</td>
<td>12</td>
</tr>
<tr>
<td>1.3. Motivación</td>
<td>13</td>
</tr>
<tr>
<td>1.4. El software QGIS 3.10.5</td>
<td>14</td>
</tr>
<tr>
<td>1.5. Estructura del documento</td>
<td>14</td>
</tr>
<tr>
<td>CAPÍTULO II. METODOLOGÍA</td>
<td>16</td>
</tr>
<tr>
<td>2.1. Metodología</td>
<td>16</td>
</tr>
<tr>
<td>CAPÍTULO III. MARCO TEÓRICO</td>
<td>18</td>
</tr>
<tr>
<td>3.1. Tipo de emergencias en la provincia de Valencia según el SEM</td>
<td>18</td>
</tr>
<tr>
<td>3.2. Diferencia entre urgencias y emergencias</td>
<td>19</td>
</tr>
<tr>
<td>3.3. La Investigación Operativa: Modelos de cubrimiento máximo</td>
<td>21</td>
</tr>
<tr>
<td>3.4. Isócronas</td>
<td>26</td>
</tr>
<tr>
<td>3.5. Introducción al software QGIS 3.10.5</td>
<td>28</td>
</tr>
<tr>
<td>3.6. Revisión bibliográfica</td>
<td>29</td>
</tr>
<tr>
<td>CAPÍTULO IV. CARACTERIZACIÓN DEL PROBLEMA</td>
<td>33</td>
</tr>
<tr>
<td>4.1. Elementos del problema</td>
<td>33</td>
</tr>
<tr>
<td>4.1.1. Departamentos de salud</td>
<td>34</td>
</tr>
<tr>
<td>4.1.2. Bases de la provincia de Valencia</td>
<td>36</td>
</tr>
<tr>
<td>4.1.3. Vehículos de Emergencia Sanitaria (VES)</td>
<td>38</td>
</tr>
<tr>
<td>4.1.4. Demanda o población cubierta</td>
<td>41</td>
</tr>
<tr>
<td>4.2. Cubrimiento actual de la provincia de Valencia</td>
<td>43</td>
</tr>
<tr>
<td>CAPÍTULO V. ESPECIFICACIÓN MATEMÁTICA, MODELIZACIÓN Y ANÁLISIS DE RESULTADOS</td>
<td>46</td>
</tr>
<tr>
<td>5.1. Procedimiento de extracción de los datos o parámetros del problema</td>
<td>46</td>
</tr>
<tr>
<td>5.1.1. Matrices de población cubierta en QGIS 3.10.5</td>
<td>47</td>
</tr>
<tr>
<td>5.2. Cubrimiento suponiendo recursos ilimitados</td>
<td>50</td>
</tr>
<tr>
<td>5.3. Modelización</td>
<td>52</td>
</tr>
<tr>
<td>5.3.1. Parámetros y variables de decisión</td>
<td>52</td>
</tr>
<tr>
<td>5.3.2. Población imposible de cubrir en la provincia de Valencia</td>
<td>53</td>
</tr>
<tr>
<td>5.3.3. Resultados de la situación actual</td>
<td>54</td>
</tr>
<tr>
<td>5.3.4. Modelo matemático</td>
<td>56</td>
</tr>
</tbody>
</table>
5.3.4.1. Modelo matemático 1.1... 60
5.3.5. Modelo matemático 2... 63
5.3.5.1. Modelo matemático 2.1... 65
5.3.6. Solapamientos entre isócronas... 68
5.3.7. Modelo matemático 3... 71
5.3.7.1. Modelo matemático 3.1. Modelo final..................................... 74

CAPÍTULO VI. COMPARACIÓN E INTERPRETACIÓN DE LOS RESULTADOS 81
CAPÍTULO VII. CONCLUSIONES Y TRABAJO FUTURO................................. 87
7.1. Conclusiones.. 87
7.2. Líneas de trabajo futuras... 88

Bibliografía .. 89
ANEXOS ... 91
Anexo I... 91
Anexo II... 102
Anexo III... 106
Anexo IV... 111
ÍNDICE DE FIGURAS

FIGURA 1. COMPOSICIÓN DEL SEM ... 10
FIGURA 2. DIAGRAMA DE GANTT BASADO EN EL REPARTO DE TAREAS LEVADADO A CABO EN LA REALIZACIÓN DEL TRABAJO FIN DE GRADO .. 17
FIGURA 3. AMBULANCIAS RESPONSABLES SEGÚN EL TIPO DE EMERGENCIA ... 18
FIGURA 4. CLASIFICACIÓN DE LAS URGENCIAS Y LAS EMERGENCIAS Y VEHÍCULOS RESPONSABLES SEGÚN EL TIPO DE RESPUESTA Y LA prioridad... 19
FIGURA 5. METODOLOGÍA DE LA INVESTIGACIÓN OPERATIVA ... 21
FIGURA 6. TIPOS DE PROBLEMAS DE LOCALIZACIÓN ... 22
FIGURA 7. MODELO DE CUBRIMIENTO TOTAL ... 23
FIGURA 8. MODELO DE CUBRIMIENTO MÁXIMO ... 23
FIGURA 9. MAPA DE LAS BASES DE LA PROVINCIA DE VALENCIA DONDE UBICAR LOS VES .. 25
FIGURA 10. EJEMPLO DE ISÓCRONA CALCULADA EN COCHE PARA UN TIEMPO DE 5 MINUTOS... 26
FIGURA 11. EJEMPLO DE ISÓCRONAS CALCULADAS EN COCHE PARA TIEMPOS DE 5 Y 7 MINUTOS ... 27
FIGURA 12. EJEMPLO DE ISÓCRONAS CALCULADAS PARA DIFERENTES FORMAS DE VIAJAR Y A DISTINTOS TIEMPOS .. 27
FIGURA 13. DEPARTAMENTOS DE SALUD DE LA COMUNIDAD VALENCIANA ... 35
FIGURA 14. TODAS LAS POSIBLES BASES LOGÍSTICAS PARA UBICAR LAS AMBULANCIAS EN LA PROVINCIA DE VALENCIA .. 37
FIGURA 15. DISTRIBUCIÓN ACTUAL DE LOS SVA EN LA PROVINCIA DE VALENCIA ... 39
FIGURA 16. DISTRIBUCIÓN ACTUAL DE LOS SVB EN LA PROVINCIA DE VALENCIA ... 40
FIGURA 17. RELACIÓN ENTRE EL TOTAL DE EMERGENCIAS VS POBLACIÓN POR MUNICIPIOS .. 41
FIGURA 18. RELACIÓN ENTRE EL TOTAL DE EMERGENCIAS VS POBLACIÓN POR MUNICIPIOS CENTRANDO AMBAS VARIABLES .. 42
FIGURA 19. VISUALIZACIÓN MEDIANTE ISÓCRONAS DEL CUBRIMIENTO ACTUAL DE LOS VES EN LA PROVINCIA DE VALENCIA .. 44
FIGURA 20. VISUALIZACIÓN DE LA ISÓCRONA CUBRIENDO PARTE DE 2 DEPARTAMENTOS SANITARIOS ... 49
FIGURA 21. VISUALIZACIÓN MEDIANTE ISÓCRONAS DEL MÁXIMO CUBRIMIENTO POSIBLE COLOCANDO UN VES EN CADA POSIBLE BASE EN LA PROVINCIA DE VALENCIA .. 51
FIGURA 22. CUBRIMIENTO DE LA PROVINCIA DE VALENCIA CON EL MODELO 1 ... 58
FIGURA 23. CUBRIMIENTO DE LA PROVINCIA DE VALENCIA CON EL MODELO 1.1 ... 61
FIGURA 24. CUBRIMIENTO DE LA PROVINCIA DE VALENCIA CON EL MODELO 2 ... 64
FIGURA 25. CUBRIMIENTO DE LA PROVINCIA DE VALENCIA CON EL MODELO 2.1 ... 67
FIGURA 26. ISÓCRONA DEL CENTRO DE SALUD DE L’OLLERIA.. 68
FIGURA 27. ISÓCRONA DEL CENTRO DE SALUD DE ALBAIDA .. 69
FIGURA 28. ISÓCRONAS DEL CENTRO DE SALUD DE L’OLLERIA Y DEL CENTRO DE SALUD DE ALBAIDA .. 69
FIGURA 29. SOLAPAMIENTO PRODUCIDO ENTRE LAS ISÓCRONAS DEL CENTRO DE SALUD DE L’OLLERIA Y DEL CENTRO DE SALUD DE ALBAIDA .. 70
FIGURA 30. BASES DEL MUNICIPIO DE ONTINYENT .. 72
FIGURA 31. CUBRIMIENTO DE LA PROVINCIA DE VALENCIA CON EL MODELO 3 ... 73
FIGURA 32. CUBRIMIENTO DE LA PROVINCIA DE VALENCIA CON EL MODELO 3.1 ... 75
FIGURA 33. DISTRIBUCIÓN DE LOS SVA SEGÚN LA SOLUCIÓN ACTUAL VS MODELO 3.1 ... 77
FIGURA 34. DISTRIBUCIÓN DE LOS SVB SEGÚN LA SOLUCIÓN ACTUAL VS MODELO 3.1 AMPLIADO .. 78
FIGURA 35. DISTRIBUCIÓN DE LOS SVA SEGÚN LA SOLUCIÓN ACTUAL VS MODELO 3.1 AMPLIADO .. 79
FIGURA 36. DISTRIBUCIÓN DE LOS SVB SEGÚN LA SOLUCIÓN ACTUAL VS MODELO 3.1 AMPLIADO .. 80
FIGURA 37. DEFECTO DE CUBRIMIENTO POR DEPARTAMENTOS SANITARIOS SEGÚN EL MODELO UTILIZADO 81
FIGURA 38. PORCENTAJE TOTAL DE DEFECTO DE CUBRIMIENTO EN LA PROVINCIA DE VALENCIA SEGÚN EL
MODELO UTILIZADO .. 82
FIGURA 39. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE MANISES SEGÚN CADA MODELO 83
FIGURA 40. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE XÀTIVA SEGÚN CADA MODELO 83
FIGURA 41. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE REQUENA SEGÚN CADA MODELO 83
FIGURA 42. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE GANDÍA SEGÚN CADA MODELO 83
FIGURA 43. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE SAGUNTO SEGÚN CADA MODELO 84
FIGURA 44. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE ARNAU - LLÍRIA SEGÚN CADA MODELO 84
FIGURA 45. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE DOCTOR PESET SEGÚN CADA MODELO..... 84
FIGURA 46. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE LA MALVARROSA SEGÚN CADA MODELO 84
FIGURA 47. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE LA FE SEGÚN CADA MODELO 85
FIGURA 48. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE HOSPITAL GENERAL SEGÚN CADA MODELO 85
FIGURA 49. PORCENTAJE DE EXCESO DEL DEPARTAMENTO DE LA RIBERA SEGÚN CADA MODELO 85
FIGURA 50. PORCENTAJE TOTAL DE EXCESO DE CUBRIMIENTO EN LA PROVINCIA DE VALENCIA SEGÚN EL MODELO UTILIZADO .. 86
FIGURA 51. INSTALACIÓN DEL COMPLEMENTO QuickMapServices en QGIS 3.10.5 106
FIGURA 52. CREACIÓN DE UNA CAPA VECTORIAL DE ARCHIVO SHAPE EN QGIS 3.10.5 107
FIGURA 53. VENTANA DE CAPAS Y BOTÓN PARA CONMUTAR EDICIÓN ... 108
FIGURA 54. VENTANA DEL COMPLEMENTO ORS Tools de QGIS 3.10.5 .. 109
FIGURA 55. VENTANA PARA CREAR ISÓCRONAS A PARTIR DE ETIQUETAS (CAPAS) YA CREADAS EN QGIS 3.10.5 .. 109
FIGURA 56. VENTANA DE EJECUCIÓN DEL CÁLCULO DE LAS ISÓCRONAS POR LOTES EN QGIS 3.10.5 110
ÍNDICE DE TABLAS

TABLA 1. RECURSOS DE EMERGENCIAS SANITARIAS ... 11
TABLA 2. POBLACIÓN SIP ASIGNADA A CADA DEPARTAMENTO DE SALUD EN 2018 .. 35
TABLA 3. TABLA ANOVA DE LA RELACIÓN ENTRE EL TOTAL DE EMERGENCIAS VS POBLACIÓN POR MUNICIPIOS 42
TABLA 4. POBLACIÓN A CUBRIR POR DEPARTAMENTO DE SALUD .. 47
TABLA 5. MUESTRA DE LA MATRIZ DE LA POBLACIÓN CUBIERTA .. 47
TABLA 6. TABLA DE ATRIBUTOS DE UNA CAPA VECTORIAL EN QGIS 3.10.5 .. 48
TABLA 7. TABLA DE ATRIBUTOS DEL DEPARTAMENTO SANITARIO DE GANDÍA ... 48
TABLA 8. PARÁMETROS PRINCIPALES DEL PROBLEMA DE RELOCALIZACIÓN ESTÁTICA ... 52
TABLA 9. VARIABLES DE DECISIÓN DEL PROBLEMA DE RELOCALIZACIÓN ESTÁTICA ... 53
TABLA 10. DEFECTO DE CUBRIMIENTO MÍNIMO EN LA PROVINCIA DE VALENCIA POR DEPARTAMENTOS SANITARIOS PARA UN TIEMPO DE ISÓCRONA DE 15 MINUTOS ... 54
TABLA 11. RESULTADOS DE LA SITUACIÓN ACTUAL DE LA PROVINCIA DE VALENCIA ... 55
TABLA 12. RESULTADOS DEL MODELO 1 .. 59
TABLA 13. PARÁMETROS NECESARIOS PARA EL MODELO 1.1 .. 60
TABLA 14. RESULTADOS DEL MODELO 1.1 .. 62
TABLA 15. RESULTADOS DEL MODELO 2 .. 63
TABLA 16. RESULTADOS DEL MODELO 2.1 .. 65
TABLA 17. PARÁMETROS NECESARIOS PARA EL MODELO 3 .. 71
TABLA 18. RESULTADOS DEL MODELO 3 .. 72
TABLA 19. RESULTADOS DEL MODELO 3.1 .. 74
TABLA 20. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE GANDÍA .. 91
TABLA 21. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE LA RIBERA .. 92
TABLA 22. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE MANISES .. 93
TABLA 23. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE REQUENA ... 94
TABLA 24. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE SAGUNTO .. 95
TABLA 25. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE ARNAU DE VILANOVA – LLÍRIA .. 96
TABLA 26. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE VALENCIA - CLÍNICO LA MALVARROSA .. 97
TABLA 27. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE VALENCIA - DOCTOR PESET .. 98
TABLA 28. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE VALENCIA - HOSPITAL GENERAL .. 99
TABLA 29. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE VALENCIA - LA FE .. 100
TABLA 30. INFORMACIÓN SOBRE LAS BASES DEL DEPARTAMENTO DE XÀTIVA – ONTINYENT ... 101
TABLA 31. MATRIZ DE POBLACIÓN CUBIERTA POR DEPARTAMENTOS SANITARIOS PARA UN TIEMPO DE ISÓCRONA DE 12 MINUTOS .. 111
TABLA 32. MATRIZ DE POBLACIÓN CUBIERTA POR DEPARTAMENTOS SANITARIOS PARA UN TIEMPO DE ISÓCRONA DE 15 MINUTOS .. 112
1.1. Introducción

La sanidad en España es un sector de enorme importancia para la sociedad y la gestión pública, debido principalmente a su aportación e impacto directo sobre la salud y el bienestar de la ciudadanía (Olmos, 2019). El Estado de Salud de la población, los programas de prevención y la calidad de la asistencia médica, entre otros, son criterios fundamentales en la medición del Bienestar Social de un país.

En la actualidad, toda persona está expuesta a sufrir un accidente o una enfermedad súbita que puede amenazar su vida o su estado de salud, por lo que es fundamental promover un adecuado modelo de atención prehospitalaria (APH) (Secretariado Técnico Consejo Nacional para la Prevención de Accidentes (STCONAPRA), 2017). Se entiende por atención prehospitalaria al servicio realizado por el personal médico adecuado y que se presta a un individuo o a un conjunto de éstos cuando son víctimas de alguna urgencia, emergencia o desastre fuera del hospital, comprendiendo tanto la atención médica recibida como el transporte prestado antes de la llegada al centro de salud u hospital más cercano. La APH en la Comunidad Valenciana está regulada y gestionada por la Conselleria de Sanitat Universal i Salut Pública a través de la Subdirección General de Actividad Asistencial en el Servicio de Atención Sanitaria a Urgencias y Emergencias (SASUE) (Servicio de Atención Sanitaria a Urgencias y Emergencias (SASUE), 2012). En el nivel provincial, se encuentran los Sistemas de Emergencias Médicas (SEM) (Álvarez Rello, y otros, 2011). Los SEM se definen como el conjunto de unidades o sistemas de carácter público encargados de dar la respuesta más rápida posible a cualquier urgencia o emergencia médica de manera que se transporte y atienda al paciente antes de llegar al hospital para intentar estabilizar su estado y que no sufra consecuencias más graves. Es decir, los SEM se encargan de la planificación, la gestión, la coordinación y la evaluación de la atención de las urgencias y las emergencias extrahospitalarias en el menor tiempo de respuesta (Conselleria de Sanitat Universal i Salut Pública, 2018). El tiempo de respuesta se puede definir como el intervalo de tiempo existente entre el momento en que se recibe la llamada de emergencia y el instante en que el vehículo del SEM llega al lugar del incidente. Este elemento es fundamental para medir la efectividad del servicio, evaluar su calidad y, consecuentemente, preservar la vida y la salud de los pacientes. No obstante, puede verse afectado por diferentes elementos como la cantidad de recursos disponibles, la programación de los turnos de trabajo, etc. así como de otra serie de decisiones, tanto estratégicas como operativas, entre las que se destacarían las estrategias de localización estática y de localización dinámica (relocalización) de los vehículos. Este trabajo se va a centrar en la localización estática de los vehículos de emergencia sanitarios (VES) en la provincia de Valencia. Una buena gestión en cuanto a la localización de los VES puede reportar importantes ventajas como mejorar los
tiempos de respuesta y un mejor aprovechamiento de los recursos, lo que se traduce en un ahorro de desembolsos al no tener que comprar nuevas unidades.

Aunque los vehículos del SEM podrían también realizar transportes médicos para pacientes no urgentes, este trabajo solo se enfoca en actividades de respuesta de emergencias, por lo que los vehículos de interés para este trabajo van a ser los SAMU (también llamados SVA) y los SVB debido a que son los que se envían generalmente cuando hay alguna emergencia de algún tipo. De aquí en adelante, cada vez que se hable de ambulancias o de VES, se referirá tan solo a los SVA y a los SVB. Los recursos que componen el SEM (Conselleria de Sanitat Universal i Salut Pública, 2018) se muestran en la Figura 1 y se explican a continuación.

Figura 1. Composición del SEM
Fuente: Elaboración propia

- **CICU**: es el Centro de Información y Coordinación de Urgencias, y es donde se gestiona y se coordina la demanda sanitaria y los recursos de emergencias para dar respuesta a dicha demanda recibida en el servicio 112 durante las 24 horas del día.
- **Sala de Atención de Llamadas del 112**: centro de atención de la demanda de emergencias.
- **SAMU/SVA**: son las unidades del Servicio de Ayuda Médica Urgente o Soporte Vital Avanzado. Son ambulancias medicalizadas que proporcionan dicho soporte y que están dotadas de un médico SAMU, enfermería SAMU y técnico/a en emergencias sanitarias.
- **SVB**: son las unidades de Soporte Vital Básico. Son ambulancias destinadas a proporcionar atención sanitaria inicial y soporte vital básico. Están dotadas de personal técnico en emergencias sanitarias y un conductor/a.
- **TNA**: es el Transporte No Asistido. Son ambulancias destinadas al transporte de pacientes en litera. Están dotadas de un conductor/a.
Helicópteros sanitarios: aeronave para el traslado con soporte vital avanzado dotadas de un médico SAMU, enfermería SAMU y tripulación compuesta por personal de pilotaje y mecánico.

VIR: vehículos de Intervención Rápida para prestar asistencia sanitaria in situ, sin transporte de pacientes.

Vehículos especiales de catástrofes: vehículos de transporte de equipamiento y material especializado para la asistencia en caso de incidentes no ordinarios con múltiples víctimas. Se activa con el personal necesario adecuado a las características de cada accidente.

Vehículos de atención domiciliaria: son vehículos para llevar a cabo la asistencia urgente domiciliaria en las ciudades de Castellón, Valencia, Alicante y Elche, de manera complementaria a la actividad de atención primaria. Están dotados de personal facultativo o de enfermería de atención primaria y personal de conducción.

Se puede ver en la Tabla 1 la cantidad de recursos de emergencias sanitarias por provincias que hay en toda la Comunidad Valenciana en el año 2018. Como el problema que se va a llevar a cabo en este trabajo conlleva solo a la provincia de Valencia (aunque podría trasladarse a cualquier otra provincia o incluso estudiar ampliarse a cualquier comunidad autónoma), tan solo habrá que fijarse en los recursos disponibles en dicha provincia. Actualmente, en la provincia de Valencia se dispone de 20 unidades de SAMU y de 47 unidades de Soporte Vital Básico, 1 unidad más que en el año 2018.

Para este Trabajo Fin de Grado (TFG), se va a desarrollar una herramienta para la ayuda de toma de decisiones que hace que un proceso sea más eficiente, sea más racional, y que haya una mejor utilización de los recursos escasos, como pueden ser las ambulancias en general. Todas las metodologías, algoritmos y herramientas que se apliquen, diseñen y desarrollen son extrapolables a otros servicios, tanto públicos como privados, donde la gestión de la localización de vehículos o recursos móviles forma parte de su actividad principal, tales como: bomberos, protección civil, policía, gestión de drones, helicópteros, la Unidad Militar de Emergencias (UME), etc. En cualquiera de los servicios mencionados también existen este tipo de problemas.
1.2. Objetivos

El principal objetivo de este Trabajo Fin de Grado es desarrollar una herramienta eficaz que ayude a la toma de decisiones para poder obtener de una manera casi instantánea la mejor localización de los VES en la provincia de Valencia (o en cualquier otra, si se extrapola). Por lo tanto, se va a obtener una solución a un problema real de optimización, que consiste en localizar correctamente a las ambulancias disponibles en la provincia de Valencia de manera que se consiga cubrir a la mayor demanda posible en un tiempo máximo estipulado (lo que se conoce como tiempo máximo de isócrona\(^1\)) mediante un modelo matemático de cubrimiento máximo. De esta manera, se conseguirá hacer un uso eficiente de los recursos, disminuyendo los tiempos de respuesta, lo que repercutirá en una mejora del servicio que se ofrece a la ciudadanía. Además, optimizar la gestión de estos recursos móviles, permitirá mejorar la cobertura de áreas de población más alejadas de los centros hospitalarios al poder llegar antes. Esto proporcionará seguridad y tranquilidad a la gente de la zona evitando, en algunos casos, los efectos negativos que conlleva la despoblación como el cierre de negocios y, consecuentemente, incremento del desempleo. Asimismo, incrementar el aprovechamiento de estos recursos racionalizará la inversión en vehículos, lo que permitirá destinar esos recursos financieros a otras necesidades más prioritarias para los ciudadanos.

Con todo esto, se va a aportar un grano de arena para apoyar la industria, la innovación y la infraestructura de la provincia de Valencia, de manera que se contribuya con los Objetivos de Desarrollo Sostenible propuestos para poner fin a la pobreza, proteger el planeta y garantizar que todas las personas gocen de paz y prosperidad para el año 2030 (Programa de las Naciones Unidas para el Desarrollo (PNUD)).

Para conseguir dichos objetivos, se han fijado una serie de propósitos que serán la guía de este proyecto:

- Definir todas y cada una de las características del problema, entre ellos el concepto de isócrona y las características de los SEM, así como distinguir claramente los tipos de emergencias que existen.
- Encontrar una herramienta para poder calcular las isócronas mencionadas anteriormente.
- Explicar correctamente en qué consisten los problemas de localización y aplicarlo a nuestro problema.
- Distinguir entre los modelos de cubrimiento total (Set Covering Model) y los modelos de cubrimiento máximo (Maximal Covering Model).
- Realizar el diseño, desarrollo, implementación y validación de los modelos matemáticos para el objetivo deseado.

\(^1\) Este concepto será explicado más adelante, en el capítulo III, apartado 3.2.
El resultado final será una herramienta que resolverá los problemas de relocalización estática según los datos que se introduzcan y el objetivo a alcanzar. El modelo propuesto ofrecerá como solución las mejores localizaciones para los vehículos de emergencia sanitaria (VES).

1.3. Motivación

Este trabajo aborda la resolución de un problema real, lo cual resulta ya de por sí interesante porque sabes que lo que hagas se va a poder aplicar a un caso existente, que puede servir para mejorar la vida de las personas.

Además, este trabajo ha sido presentado al Servicio de Atención Sanitaria a Urgencias y Emergencias (SASUE) y están muy interesados en el tema abordado ya que, para ellos, resulta una herramienta súper eficaz para ayudarles a visualizar fácilmente las isócronas de las ambulancias y a realizar simulaciones rápidamente. Por ejemplo, pueden ver qué pasaría si colocasen algún SAMU o SVB en alguna ubicación donde ahora mismo no haya ningún VES y observar cómo quedaría el nuevo mapa de isócronas. Así, ellos pueden averiguar si les conviene o no colocar una ambulancia en un sitio u otro. En todo momento, se ha estado en contacto con ellos y nos han facilitado información para abordar mejor este trabajo.

Ubicar correctamente las ambulancias en la provincia de Valencia puede ser de gran interés para poder ayudar, en primer lugar, a los servicios de emergencias médicas a gestionar mejor sus recursos, a obtener el máximo aprovechamiento de ellos y a disponer de una herramienta que les facilite el trabajo y, en segundo lugar, a los ciudadanos de la provincia a sentirse más seguros y a recibir un mejor y más eficiente servicio cuando ocurra cualquier tipo de emergencia. Gracias a este trabajo académico se va a poder cubrir a la mayor demanda posible para así intentar evitar un número elevado de fallecimientos por accidentes o emergencias de cualquier índole en la provincia. Por lo tanto, se va a utilizar el potencial de la tecnología y la innovación para promover de manera más eficiente un desarrollo sostenible en Valencia y, en definitiva, mejorar la calidad de vida de sus ciudadanos. Esto es lo que se conoce como Smart City o Ciudad Inteligente.

Además, si el TFG sigue adelante y la herramienta funciona correctamente en la provincia, se puede proponer expandirla al resto de España para tener un país más seguro y fuerte con relación a las emergencias.

Las asignaturas del grado más directamente vinculadas con este trabajo y que motivan el desarrollo adecuado del mismo son:

- **Investigación Operativa**: esta asignatura nos ha proporcionado los conocimientos suficientes para poder plantear y resolver un modelo matemático correctamente, así como las diferentes herramientas para llevarlo a cabo.
CAPÍTULO I. INTRODUCCIÓN

- **Métodos cuantitativos para la ayuda a la toma de decisiones**: esta asignatura nos ha enseñado a decidir de manera rápida y eficiente cualquier decisión, lo que es de vital importancia para el campo de los problemas de localización.

- **Econometría y Métodos estadísticos en economía**: mediante estas asignaturas hemos sido capaces de aprender a utilizar un conjunto de herramientas estadísticas para formular y analizar diferentes modelos, es decir, utilizar la estadística para contrastar las teorías que se nos planteen, además de extraer información relevante a partir de unos datos concretos.

1.4. **El software QGIS 3.10.5**

Para visualizar tanto la solución final del problema como la actual distribución de los VES de la provincia de Valencia se ha utilizado un programa informático llamado **QGIS 3.10.5**. Cabe destacar que el software QGIS 3.10.5, que es totalmente libre y gratuito, en el que se han realizado todas las tareas de ubicación de los vehículos, del cálculo de las isócronas y de la matriz de la población cubierta por departamentos, de creación de los mapas, etc. es un software muy potente, por lo que para saber utilizarlo y exprimirlo al máximo sería conveniente realizar un curso de este programa. Para este trabajo, las tareas se han confeccionado con lo que se ha podido aprender de dicho programa mediante búsqueda de información en Google y vídeos de YouTube. Gracias a esta herramienta y debido a que se trata de un programa informático muy visual en el que se pueden observar de manera relativamente sencilla las áreas que cubre cada ambulancia en un tiempo determinado (elegido por el usuario), se ha podido ayudar a los responsables de los SEM a simular ejemplos que solicitaban y a captar qué zonas están ahora mismo descubiertas por sus vehículos. Se trata de una herramienta muy útil para ellos debido a que antes de esto no disponían de ninguna herramienta para visualizar el cubrimiento de sus recursos de una manera tan fácil, rápida e intuitiva.

1.5. **Estructura del documento**

Este Trabajo Fin de Grado va a estar dividido como sigue:

- **Capítulo 2. Metodología**: se hará una explicación completa de los pasos y la metodología seguida para resolver el problema propuesto.
- **Capítulo 3. Marco teórico**: se explicarán las características de las emergencias en la provincia de Valencia, así como el concepto de isócrona. También, se explicarán los modelos de cubrimiento máximo, diferenciándolos de los modelos de cubrimiento total, se introducirá el software utilizado durante la realización del trabajo y se redactará la revisión bibliográfica donde se hará un resumen de los trabajos previos de problemas de localización que han sido consultados a la hora de realizar este trabajo.
- **Capítulo 4. Caracterización del problema**: se identificarán y se describirán los elementos del problema necesarios para la construcción y resolución de los...
modelos implementados. También, se explicará cómo es la situación actual de la provincia de Valencia respecto al cubrimiento y ubicación de sus VES.

- **Capítulo 5. Especificación matemática, modelización y análisis de resultados:** se definirán, formularán y resolverán los modelos matemáticos empleados para resolver el problema de localización de los VES en la provincia de Valencia, y se hará una comparación de éstos con la solución actual propuesta por el SEM, así como un análisis exhaustivo de la solución propuesta por cada uno de los modelos.

- **Capítulo 6. Comparación e interpretación de los resultados:** se hará una comparación global del modelo final propuesto en este trabajo con la solución actual propuesta por el SEM con el fin de poder visualizar las diferencias existentes.

- **Capítulo 7. Conclusiones y trabajo futuro:** se comentarán las conclusiones del trabajo y se hablará de los objetivos alcanzados. Además, se plantearán posibles líneas de trabajo futuras.
2.1. Metodología

Para la elaboración de este Trabajo Fin de Grado, diversas tareas han sido llevadas a cabo, las cuales pueden ser distribuidas en 4 fases atendiendo a la distribución temporal de las mismas y siguiendo la metodología de la Investigación Operativa, tal y como se especificará en el epígrafe 3.5.

En primer lugar, se introducirá la fase de análisis previo, donde se definirán y explicarán los conceptos y la información necesarios para entender el problema a tratar, realizando una búsqueda de información previa que engloba el marco teórico del trabajo. Também en esta fase, será necesario adquirir conocimientos del software QGIS 3.10.5, mediante el cual se calcularán las isócronas y se extraerán algunos datos necesarios para resolver el modelo matemático. Además, éste permitirá visibilizar fácilmente la solución del problema de una forma muy gráfica.

En una segunda etapa, se debe llevar a cabo la formulación del problema, en la cual se debe identificar el problema a tratar, describiendo claramente las características del problema e identificando los parámetros, las variables de decisión y la función objetivo.

En la siguiente fase, comenzará la modelización. Al estar ante un problema real, se construirá el modelo matemático por etapas. Partiendo de una primera versión sencilla, se irán introduciendo progresivamente características adicionales del problema hasta tener definida la versión más realista posible que refleje todas sus características. Para resolver los diferentes modelos, se utilizará la herramienta de Microsoft Excel 16.0 (versión de 2016) denominada OpenSolver 2.9.02.

Finalmente, se concluirá con la fase de implantación, donde se revisará la solución final antes de proceder a su implantación.

Una vez realizadas todas las fases, ya se estará en disposición de realizar la memoria final del documento.

A continuación, se muestran enumeradas las diversas tareas llevadas a cabo en cada una de las fases anteriormente mencionadas.

1. Trabajo previo:
 1.1. Búsqueda de información acerca de los problemas de localización y las características de los SEM.
 1.2. Revisión bibliográfica sobre los modelos de cubrimiento máximo y los problemas de localización.

2 OpenSolver es un complemento de Excel que amplía la herramienta de Solver incorporado de Excel con solucionadores más potentes, para poder resolver modelos matemáticos más complejos.
1.3. Proceso de aprendizaje previo del software QGIS 3.10.5 necesario para la visualización de las diferentes etapas del problema, tanto la distribución actual de los VES en la provincia de Valencia como la distribución final propuesta por el modelo matemático resuelto.

2. Formulación del problema:
 2.1. Estudio de diferentes herramientas empleadas para la resolución de dichos problemas.
 2.2. Identificación de las variables, los parámetros del problema y el/los objetivo/s a optimizar.
 2.3. Elaboración de la base de datos.

3. Desarrollo del modelo matemático:
 3.1. Diseño, desarrollo e implementación del modelo matemático en la base de datos de Microsoft Excel.
 3.2. Introducción de variables estadísticas tales como la población cubierta y la frecuencia de emergencias por zona al modelo diseñado, así como de todos los parámetros.
 3.3. Resolución del modelo.

4. Revisión del modelo matemático:
 4.1. Revisión del problema, control de la solución e implementación.

5. Redacción y revisión de la memoria final del trabajo.

La distribución temporal en la que dichas tareas han sido realizadas se muestra en la Figura 2.

Figura 2. Diagrama de Gantt basado en el reparto de tareas llevado a cabo en la realización del Trabajo Fin de Grado
Fuente: Elaboración propia
3.1. Tipo de emergencias en la provincia de Valencia según el SEM

Se ha mencionado en anteriores capítulos que en el problema que nos atañe se van a tener en cuenta tan solo los Soportes Vitales Avanzados (SVA o SAMU) y los Soportes Vitales Básicos (SVB), ya que son los vehículos que se encargan de los transportes de pacientes implicados en emergencias. En este apartado, se va a hablar de los criterios que utilizan los SEM para enviar un SVA, un SVB o un TNA (Transporte No Asistido) al lugar de la emergencia.

Tras mantener contacto con el Servicio de Atención Sanitaria a Urgencias y Emergencias (SASUE) y mantener conversaciones con personal del CICU de la provincia de Valencia, se pudo conocer que el SEM de la provincia de Valencia distingue 3 tipos de emergencias que se utilizan para diferenciar el grado de riesgo que supone para el paciente aquello que le haya ocurrido: tipo 1, tipo 2 y tipo 3. En la Figura 3 se pueden distinguir claramente los vehículos que acuden a cada emergencia según su tipo.

- Las emergencias tipo 1 serán las más graves, y son aquellas en las que tendrá que acudir el SVA, también conocido como SAMU. Estas emergencias incluyen todas aquellas en las que haya peligro de muerte inmediato por parte del paciente.
- Las emergencias tipo 2 serán aquellas que no conlleven peligro inmediato de muerte pero que se tengan que atender de una manera rápida para que la incidencia no se agrave. Acudirán los SVB.
- Por último, nos encontraremos con las emergencias tipo 3, para las cuales habrá que distinguir entre las que sea necesaria la intervención del SVB y las que no.

Según los responsables del SEM de la provincia de Valencia, los casos de este tipo de emergencias en los que habría que enviar a un soporte vital básico serían los siguientes:

Figura 3. Ambulancias responsables según el tipo de emergencia

Fuente: Elaboración propia
o Alteración del nivel de consciencia: Crisis convulsiva que ha cedido, fiebre en lugar público o fuera del domicilio, intoxicación por alcohol o drogas en lugar público, sincope o pérdida de consciencia recuperada en lugar público y mareo o lipotimia.

o Disnea: Disnea en paciente neoplásico y ansiedad en lugar público.

o Dolor: Dolor abdominal en vía pública o sin más datos, dolor abdominal de larga evolución sin más datos, dolor intenso en extremidades, palidez y/o fríaldad.

o Hemorragias: Hematuria, epistaxis sin gravedad, metrorragia sin gravedad y rotura de vena varicosa.

o Náuseas, vómito o diarrea: En paciente de riesgo en lugar público.

o Intento de suicidio: Crisis con antecedentes de agresividad o en lugar público.

o Accidentes: Herida que sangra poco, accidentes en el agua con poco sangrado, accidente de buceo leve, quemadura leve en el niño, accidente de vehículo con herido que sangra poco.

El personal del CICU de la provincia de Valencia, como ya se ha mencionado anteriormente, fue el encargado de transmitir toda esta información a través de preguntas realizadas por correo electrónico, reuniones presenciales (antes del confinamiento) y videollamadas a través de *Microsoft Teams*.

3.2. Diferencia entre urgencias y emergencias

En la Figura 4 se puede apreciar claramente la diferencia entre urgencia y emergencia, atendiendo al tipo de respuesta asignado a la llamada telefónica recibida en el CICU.

![Figura 4. Clasificación de las urgencias y las emergencias y vehículos responsables según el tipo de respuesta y la prioridad.](#)

Fuente: Elaboración propia
Tal y como se observa en la Figura 4, cuando en el CICU se recibe una llamada telefónica, el teleoperador tiene la obligación de saber asignar a dicha llamada una respuesta para su resolución (Servicio de Atención Sanitaria a Urgencias y Emergencias (SASUE), 2012). La respuesta podrá ser:

- **Con movilización de recursos**: Se incluirían las emergencias sanitarias, las urgencias sanitarias y los transportes sanitarios.
- **Sin movilización de recursos**: Serían llamadas para consultas médicas o información de servicios.

A estos tipos de respuesta se les asigna una prioridad, que el locutor tiene que ser capaz de clasificar, con el objetivo de definir preferencia, rapidez y recurso con que debe ser atendida esa demanda. En total se consideran cinco prioridades:

- **Prioridad 1 (P1)**. Proceso con riesgo vital inminente: Movilización inmediata y asistencia no demorable y/o graves consecuencias. Se desplazaría un SVA.
- **Prioridad 2 (P2)**. Proceso con riesgo vital no inminente: Proceso grave o de actuación urgente sin riesgo vital inmediato. Se desplazaría un SVB.

P1 y P2 se trata de emergencias sanitarias.

- **Prioridad 3 (P3)**. Proceso no vital, pero no demorable: Proceso sin riesgo vital inmediato ni diferidos, que por su naturaleza precisa pronta asistencia o valoración personal sanitario. Se desplazaría un TNA.
- **Prioridad 4 (P4)**. Proceso no vital demorable: Proceso no grave, sin riesgo vital inmediato ni diferido, que precisa asistencia, aunque puede ser demorada.
- **Prioridad 5 (P5)**. Proceso no urgente: Proceso leve sin riesgo vital inmediato ni diferido, que por su naturaleza no precisa asistencia urgente.

P3, P4 y P5 se trata de urgencias sanitarias.

Por lo tanto, la principal diferencia entre una emergencia y una urgencia radica en la gravedad de la situación y, por ende, la prioridad y la rapidez con la que haya que actuar respecto a esa situación. Las emergencias necesitarán una atención más rápida ya que su gravedad es mayor y necesitarán la actuación de las ambulancias, mientras que para una urgencia no será necesario el envío de una ambulancia debido a que no hay riesgo vital, sino que simplemente se enviará al paciente al centro de salud o al hospital más cercano, aunque se podrá enviar, si fuera necesario, un vehículo de transporte no asistido (TNA). Este Trabajo Fin de Grado se centrará, en consecuencia, en las emergencias sanitarias, ya que son las que implican la movilización de los Soportes Vitales Avanzados y de los Soportes Vitales Básicos.
3.3. La Investigación Operativa: Modelos de cubrimiento máximo

La Investigación Operativa no tiene una definición precisa generalmente aceptada y a lo largo de su evolución se ha debatido ampliamente sobre ésta.

Robinson (2000) define la Investigación Operativa como “la aplicación del método científico para mejorar la efectividad de las operaciones, las decisiones y la gestión”.

Daellenbach y otros, (2005) establecen claramente tres grandes fases en la metodología de la Investigación Operativa que son las que indicamos en la Figura 5.

![Figura 5. Metodología de la Investigación Operativa](image)

Fuente: Introducción a la Investigación Operativa en Administración y Dirección de Empresas. 2008

En una primera fase, se tendría que identificar el problema y describir todo el sistema relacionado con dicho problema para poder formularlo adecuadamente.

Tras esto, en la siguiente fase se construiría el modelo matemático con el fin de encontrar una solución y realizar el informe del proyecto.

Por último, en la fase de implantación, se revisaría que la solución obtenida fuera acorde al problema abordado y se concluiría el modelo.

Sabiendo ya la metodología de la Investigación Operativa, que es la que se va a utilizar para resolver el problema de este Trabajo Fin de Grado, se procede a introducir el problema que aborda dicho trabajo. Durante este TFG se va a resolver un problema real de localización, pero todavía no se conoce explícitamente qué significa este
concepto. Los problemas de localización consisten en decidir la ubicación de las instalaciones para satisfacer a los clientes maximizando las utilidades. Se pueden distinguir 4 tipos de problemas de localización, atendiendo al elemento que se pretende ubicar (Castillo S., 2014). En la Figura 6 se pueden observar los distintos tipos que existen.

Figura 6. Tipos de problemas de localización
Fuente: Elaboración propia

En este trabajo, se está tratando un problema de localización de servicios de emergencia, ya que lo que se pretende es conseguir ubicar las ambulancias disponibles en la provincia de Valencia para conseguir satisfacer al máximo de clientes posibles. Es decir, el objetivo será cubrir la mayor cantidad de población posible. Lo ideal sería poder cubrir a toda la población de la provincia, pero eso no será posible debido a que no se puede llegar a toda la población en el tiempo estipulado con las infraestructuras actuales (las carreteras, por ejemplo). Es por esto por lo que se abordará la resolución de un problema de cubrimiento, utilizando, por tanto, un modelo de cubrimiento máximo, como se verá a continuación.

Una vez introducida la base de la Investigación Operativa y comprendido lo que es un problema de localización, pasamos a introducir los modelos de optimización. Un modelo de optimización es la representación matemática de un problema real en el cual uno conoce el impacto de cada una de las variables y se busca encontrar el mínimo (o máximo) valor posible de una función objetivo (Halcartegaray, 2018). Como ya se ha mencionado, para el problema que se va a tratar en este TFG, se tendrá que resolver un modelo de cubrimiento máximo.
Antes de definir los modelos de cubrimiento máximo, se deben definir los modelos de cubrimiento total, ya que los segundos son el origen de los primeros. En todo problema de cubrimiento se dispone de un conjunto de puntos a cubrir y de otro conjunto que incluye todos los puntos que pueden realizar este cubrimiento. La diferencia entre el modelo de cubrimiento total y el modelo de cubrimiento máximo radica en que, mientras en el primero se busca dar cobertura a todos y cada uno de los puntos, en el segundo el modelo es capaz de dejar sin cubrir algunos puntos, pero obteniendo la máxima cobertura posible. Esto es útil desde una perspectiva económica, ya que a veces hay puntos de demanda que se encuentran muy alejados del conjunto y que, para cubrirlos, se necesitan utilizar varios recursos específicamente para dichos puntos, lo que puede derivar en una mala optimización de los recursos utilizados. Sin embargo, hay veces que esos puntos no son tan importantes y, sin darles cobertura, se obtiene una solución óptima cubriendo el máximo conjunto de puntos posible y empleando menos recursos, lo que se transforma en un menor coste para el usuario. En la Figura 7 y la Figura 8 se puede ver un ejemplo de modelos de cubrimiento total y de cubrimiento máximo, respectivamente.

En la Figura 7 se desea cubrir todo el área del cuadrado. Para ello, se dispone de una serie de localizaciones identificadas con un punto negro, las cuales cubren una parte del área total del cuadrado, identificada con una circunferencia a su alrededor. Se aprecia como colocando un recurso en cada uno de los puntos se consigue cubrir todo el área del cuadrado. Sin embargo, en el modelo de cubrimiento máximo de la Figura 8 se ve como no se consigue cubrir toda la demanda (representada por los puntos azules) ni aun colocando un recurso en cada posible localización (representada por los puntos rojos). Por lo tanto, se intenta cubrir la mayor demanda posible, es decir, la mayor parte de puntos azules, siendo posible dejar sin cubrir el resto de puntos. Esto será muy útil para el problema de este trabajo ya que, a veces, se van a tener puntos de demanda muy alejados de las posibles localizaciones de los VES (también llamadas bases) debido a que, o bien no hay posibilidad de colocar ningún VES allí (porque no existe ningún
hospital o centro de salud) o sí que la hay pero no sea adecuado colocarlo por el hecho de que las carreteras sean de mala calidad y, en consecuencia, el tiempo de respuesta de los VES para atender cualquier incidencia fuera de esa zona (punto de demanda) será demasiado elevado (mayor a 15 minutos que es el tiempo máximo que se ha estipulado para que un VES llegue al lugar de la incidencia). En conclusión, nuestro problema se puede abordar mediante la óptica de un modelo de cubrimiento máximo.

Ahora, se va a extrapolar el ejemplo anterior con el problema de este trabajo, para poder hacerse el lector una idea real de aplicación del ejemplo de la Figura 8. En el problema que se va a abordar en el desarrollo de este trabajo académico se dispone de unas posibles bases³ (Centros de Salud y Hospitales) donde colocar los VES (véase la Figura 9), y la idea sería cubrir toda la demanda de la provincia de Valencia (aunque en nuestro caso se pretende cubrir la población, ya que están directamente relacionadas, como se explicará en el apartado 4.2.).

³ Las bases serán las posibles ubicaciones o localizaciones de los Vehículos de Emergencia Sanitarios (VES).
Figura 9. Mapa de las bases de la provincia de Valencia donde ubicar los VES
Fuente: Elaboración propia
Tal y como se observa en la Figura 9, los puntos rojos serían las posibles localizaciones de los VES, y habría que ver si se conseguiría cubrir toda la provincia de Valencia con tiempos de 12 y 15 minutos (ya que son los tiempos máximos que se puede tardar en llegar al lugar de la incidencia según el vehículo sea un SVA o un SVB, respectivamente). Para averiguar esto, se necesitará calcular un concepto que es el de isócrona (véase apartado 3.4.), que será algo parecido a las circunferencias de la Figura 8 y la población serían los puntos azules de dicha figura. Se explicará en el apartado 4.2 cómo no se puede cubrir a toda la población en ese tiempo, con esa disponibilidad de bases y con los recursos disponibles, por lo que habrá que realizar, como ya se ha dicho, un modelo de cubrimiento máximo.

En el apartado 3.6 se abordarán más a fondo los problemas de localización y los distintos campos que engloban éstos.

3.4. **Isócronas**

El SEM ha utilizado un concepto para clasificar si una ambulancia puede o no llegar a un punto en un tiempo determinado. Este concepto es el de isócrona. Se define la isócrona como el área o polígono definido por un conjunto de puntos a los cuales se tarda el mismo tiempo en llegar desde un origen común. Dicho de otra manera, la isócrona es una línea en el mapa que conecta lugares desde los que se tarda el mismo tiempo en llegar a un punto determinado. En la Figura 10 se puede ver un ejemplo de isócrona para un viaje en coche desde la Facultad de Administración y Dirección de Empresas de la Universitat Politècnica de València (punto de origen) y un tiempo de 5 minutos. Las zonas que quedan dentro del polígono serían las zonas a las que el coche podría llegar en ese tiempo, es decir, las zonas cubiertas.

![Figura 10. Ejemplo de isócrona calculada en coche para un tiempo de 5 minutos](image)

Fuente: Elaboración propia
En la Figura 11 se puede ver el mismo ejemplo que antes, pero añadiendo un tiempo de isócrona de 7 minutos, lo que hace que, lógicamente, el polígono que designa las zonas a las que el vehículo puede llegar se amplíe.

Figura 11. Ejemplo de isócronas calculadas en coche para tiempos de 5 y 7 minutos

Fuente: Elaboración propia

Por último, en la Figura 12 se puede ver un ejemplo de lo que sería una isócrona para tiempos de 5 y de 7 minutos y viajando de diferentes formas: en coche, en bicicleta o caminando. El punto de origen, como ya se ha dicho, es la FADE de la UPV.

Figura 12. Ejemplo de isócronas calculadas para diferentes formas de viajar y a distintos tiempos

Fuente: Elaboración propia
Se puede observar cómo la isócrona del coche es la más grande, siguiéndole la de la bicicleta y acabando con la isócrona para una persona que se desplaza caminando. Esto tiene sentido ya que desplazándote en coche vas a poder recorrer una mayor distancia en el mismo tiempo.

La isócrona gráficamente es lo que va a medir cuánta zona queda cubierta, para poder tratarla de una forma visual en el mapa. La isócrona se mide sobre un elemento que es el tiempo. En nuestro problema, por un lado se tiene el tiempo que se tarda desde que se recibe la llamada de emergencia hasta que se atiende al paciente y, por otro lado, se tiene el tiempo que tarda el vehículo desde que se activa (desde que se pone en marcha) hasta que llega al lugar de la emergencia. El primero se conoce como tiempo de respuesta y este último tiempo se conoce como tiempo de isócrona y será el que medirá la isócrona en nuestro problema.

El SEM ha definido un tiempo máximo de isócrona de 12 minutos para los SVA y de 15 minutos para los SVB. Esta diferencia de tiempos radica en el tipo de emergencias en el que actúa cada tipo de vehículo, ya que los SAMU atienden emergencias más graves mientras que los soportes vitales básicos tienen más margen de actuación debido a que el tipo de emergencia que consideran es más leve (como ya se vio en el apartado 3.1 de este capítulo). Este tiempo está estipulado así ya que está demostrado que este es el tiempo óptimo en el que hay más probabilidades de curar al paciente. Los TNA no los tenemos en cuenta ya que tan solo se utilizan para desplazar a un paciente cuando su estado no es urgente, por lo que no hay un tiempo máximo estipulado en el que este vehículo tenga que llegar al paciente. Hay que recordar que un paciente en estado crítico recuperable se puede convertir en paciente irrecuperable a medida que transcurre el tiempo sin recibir atención.

3.5. Introducción al software QGIS 3.10.5

Para la visualización de la solución final del problema hemos empleado el software *QGIS 3.10.5* que es un software de Código Abierto licenciado bajo GNU - General Public License y totalmente gratuito que utiliza el Sistema de Información Geográfica (SIG). Este programa informático es muy visual y tiene muchísimas aplicaciones, por lo que nos va a servir para obtener las matrices de población cubierta por cada isócrona y también para visualizar la solución obtenida de manera fácil y rápida. *QGIS* utiliza capas ráster y capas vectoriales para trabajar, y está programado en el lenguaje Python. Las capas ráster son las imágenes digitales representadas en píxeles, de manera que estas capas dividen el espacio en celdas regulares donde cada una de ellas representa un único valor. En nuestro proyecto importaremos una única capa ráster, esta es, el mapamundi importado de *Google Maps* para visualizar de la manera más realista posible el mapa actualizado de la provincia de Valencia. Por otra parte, las capas vectoriales son aquellas

4 Este concepto ya se definió en el capítulo I, en el apartado 1.1.
que contienen la geometría en sí misma de la capa (ya sea un polígono, una línea o un punto) y los atributos asociados (información de dicha capa, ya sea área, longitud, coordenadas, etc.). Estos últimos se muestran en forma de tabla, denominada tabla de atributos. Todas las demás capas que se crearán en el proyecto de QGIS serán vectoriales, y son las que se enumeran a continuación:

- Delimitación de la provincia de Valencia.
- Delimitación de los 11 departamentos sanitarios.
- Las 158 posibles bases para ubicar los VES.
- Todas las isócronas, tanto de 12 minutos como de 15 minutos.
- Las ubicaciones actuales de los SVA y los SVB.

3.6. Revisión bibliográfica

Como ya se ha dicho, nuestro objetivo es modelizar un problema de localización, pero este es un campo muy amplio que abarca muchísimos ámbitos. Las instalaciones pueden ser cualquier cosa que necesite ser ubicada, como hospitales, estaciones de bomberos, ambulancias, paradas de autobús, puntos de venta, bibliotecas, parques, aeropuertos y sitios de depósitos de basura (Farahani, y otros, 2009). Los problemas de localización de instalaciones son principalmente resueltos usando varias técnicas cualitativas y cuantitativas de investigación operativa. Dependiendo de la naturaleza de la instalación, pueden ser consideradas varias funciones objetivo, como minimizar la distancia de viaje, maximizar el nivel de servicio, minimizar el tiempo de espera, maximizar la cobertura, minimizar los costes de transporte o evitar la colocación cerca de instalaciones peligrosas (Zanjirani Farahani, y otros, 2018). Algunos eruditos creen que la localización de instalaciones se remonta a Pierre de Fermat, Evangelista Torricelli (1608-1647) y Bonaventura Francesco Cavalieri (1598-1647) quienes independientemente propusieron el problema básico de la mediana espacial euclidiana a principios del siglo XVII (Farahani, y otros, 2009). Realmente, los estudios de localización de instalaciones se remontan a 1909, cuando Alfred Weber consideró la ubicación de un almacén con el objetivo de minimizar la distancia total entre dicho almacén y sus clientes (Weber, 1909). Un importante punto de inflexión para los problemas de localización de instalaciones fue en 1964 cuando Hakimi, S.L. (1964) intentó ubicar los centros de conmutación en una red de comunicación y las comisarías de policía en las carreteras.

Algunos de los primeros puntos importantes en este campo fueron las publicaciones de Toregas y otros (1971) y de Church y ReVelle (1974), que introdujeron aplicaciones de la vida real de la ubicación de instalaciones en los departamentos de emergencia.

En el artículo de Zanjirani Farahani y otros (2018) se dividen los problemas de localización de instalaciones en 6 categorías:
1. **Waste Management Systems (WMS) – Sistemas de Gestión de Residuos:** Relata cualquier actividad relacionada con la recolección, transporte, tratamiento, reciclaje, incineración y eliminación de desechos de acuerdo con las normas y regulaciones. Esta categoría o área siempre ha sido importante en la literatura y predecimos que lo seguirá siendo en el futuro.

2. **Large-scale disasters (LSD) – Desastres a gran escala:** Los desastres pueden ser naturales o causados por el ser humano. Se gestionan a través de un ciclo de gestión de desastres (DMC) que consta de cuatro fases: mitigación, preparación, respuesta y recuperación.

3. **Small-scale emergency (SSE) – Emergencias a pequeña escala:** Las principales diferencias con los LSD son sus magnitudes y frecuencias. Son más frecuentes, pero con una magnitud más pequeña. A pesar de que la magnitud sea más pequeña que los LSD, no podemos asegurar que los costes incurridos sean menores, debido a la alta frecuencia.

4. **General services and infrastructure (GSI) – Servicios generales e Infraestructura:** Instalaciones de servicios públicos o privados en áreas como banca, educación, servicios postales, centros comerciales, servicios informáticos, servicios públicos y viviendas caen dentro de esta categoría.

5. **Non-emergency healthcare systems (NEH) – Sistemas de salud no urgentes:** En esta categoría, solo investigamos las instalaciones que no son de emergencia y otras instalaciones de emergencia relacionadas (por ejemplo, accidentes y emergencias) están cubiertas por SSE. Otra razón para prestar especial atención a esta categoría es su tendencia creciente con el tiempo. Si bien la mayoría de los documentos en esta área están relacionados con hospitales generales y profesionales, algunas otras instalaciones dentro de esta categoría, como los centros para personas mayores o las casas de retiro se están volviendo importantes debido al envejecimiento de la población.

6. **Transportation systems' infrastructure (TSI) – Infraestructura de los sistemas de transporte:** Los modos de transporte incluyen tierra (carreteras y trenes), agua (barcos), aire (aviones) y tuberías (aceite y gas). En las áreas urbanas, la tierra es el modo de transporte más predominante. Los sistemas de transporte consisten en tres principales componentes: entidades fijas, entidades móviles y sistemas de control instalados en cualquier entidad fija o móvil. En términos de ubicación de las instalaciones en áreas urbanas, parece que la localización de entidades fijas como las paradas de autobús y los aeropuertos tienen más aplicaciones que las demás.

Este Trabajo Fin de Grado trata sobre las emergencias a pequeña escala (SSE). Teniendo en cuenta la naturaleza de las instalaciones de SSE (por ejemplo, ambulancias y estaciones de bomberos), es razonable que, para emergencias frecuentes, el tiempo de respuesta sea muy importante. Por otro lado, debe haber un equilibrio entre las cargas de trabajo de los recursos (ambulancias, por ejemplo) para que no estén ocupados cuando sea necesario (Zanjirani Farahani, y otros, 2018).
Hasta ahora, la mayoría de los trabajos se han focalizado en temas estratégicos y tácticos, decisiones de una naturaleza estática. Por ejemplo, los problemas de localización estática determinan el conjunto de sitios en espera donde las ambulancias serán posicionadas mientras esperan para ser despachadas para responder llamadas de emergencia. Una vez implementado, el plan de ubicación correspondiente permanecerá invariable, es decir, cada ambulancia volverá a su sitio de espera designado tras completar su misión. Estos modelos pueden ser divididos en 3 principales categorías de acuerdo a su evolución cronológica: modelos deterministas de cubrimiento simple, modelos deterministas de cubrimiento múltiple y modelos probabilísticos y estocásticos (Brotcorne, y otros, 2003).

De hecho, los modelos de ubicación han evolucionado a lo largo de los años para integrar aspectos más realistas del problema, como la incertidumbre de la demanda, la disponibilidad de vehículos, la congestión del tráfico, etc. ReVelle (1989), Marianov, (1995) y Brotcorne (2003) presentaron interesantes artículos de modelos matemáticos aplicados a la ubicación de los vehículos de emergencias sanitarias. Más recientemente, Basar, Catay y Ünlüyurt propusieron una taxonomía⁵ para los problemas de localización de los servicios de emergencias, que incluyen un análisis sistemático de las características del modelo (Basar, y otros, 2012).

Como ya se ha mencionado, hay muchos ejemplos de problemas de localización y maneras diferentes de resolver cada uno de ellos. Por ejemplo, M. Curtin, Hayslett-McCall y Fang Qiu en su artículo propusieron un modelo de cobertura máxima con doble cobertura para la localización óptima de las áreas de patrulla policiales (M. Curtin, y otros, 2007). Pérez, Maldonado y Marianov, en cambio, proponían resolver mediante un modelo FLEET (Facility – Location – Equipment – Emplacement Technique) un problema de localización de una estación de bomberos (Pérez, y otros, 2014).

Hasta aquí se han explicado los problemas de localización estática. Sin embargo, como explica el artículo de Bélanger, Ruiz y Soriano (2015) queda claro que podría ser beneficioso cambiar la ubicación de las ambulancias durante un día (es decir, relocalizarlas) atendiendo a la evolución de la situación a la que se enfrenta el SEM. Los problemas de localización de ambulancias estáticos permiten, básicamente, seleccionar el conjunto de estaciones o bases donde los vehículos pueden esperar entre dos llamadas de emergencia. Después, el vehículo volverá a su misma base tras completar su misión. Bajo algunas circunstancias podría, sin embargo, ser más interesante modificar la base del vehículo durante el día para mejorar la evolución del sistema en el tiempo. He aquí donde entran los problemas de relocalización. Los problemas de relocalización consisten en reubicar los vehículos disponibles entre bases potenciales para asegurar un adecuado servicio a la población. La evolución del sistema puede ser el resultado de las fluctuaciones del patrón de la demanda durante un día por los movimientos de la población. Para tener en cuenta estas fluctuaciones, un día de trabajo

⁵ Clasificación u ordenación en grupos de cosas que tienen unas características comunes.
es dividido en varios periodos de tiempo. Diferentes planes de localización se establecen para cada período de tiempo, por lo que los vehículos se mueven entre periodos para buscar el próximo plan de localización. Este problema se llama problema de relocalización multiperiodo. La evolución del sistema puede ser también el resultado de las variaciones de los estados del sistema. Por ejemplo, cuando algunos vehículos responden a demandas de emergencias, el sistema tiene que operar con una flota reducida de vehículos. Considerando este factor, el estado del sistema variará mientras el número de vehículos disponibles estén ocupados y terminando su misión. Entonces los vehículos serán relocalizados cuando el sistema cambie y lo requiera en base a mantener un adecuado nivel de servicio. En este caso, como las decisiones de relocalización dependen del estado del sistema, el problema se conoce como problema de relocalización dinámica.

Ambos problemas de relocalización de ambulancias están relacionados con su contraparte estática. Sin embargo, los problemas de relocalización tienen características propias. Primero, los problemas de localización estática son considerados generalmente a nivel táctico (Bélanger, y otros, 2015). Los de relocalización se consideran a nivel operacional y, en algunos casos, casi resueltos a tiempo real. Los responsables del SEM a menudo tienen que tomar decisiones muy rápido cuando llaman de alguna emergencia y decidir dónde relocalizar la ambulancia para asegurar un adecuado nivel de servicio. A parte de la diferencia en el nivel de la toma de decisiones, los problemas de relocalización normalmente incluyen un conjunto de restricciones prácticas que permiten asegurar la estabilidad del sistema, lo cual no es el caso en los problemas de localización estática (Bélanger, y otros, 2015).

Tras la lectura de todos estos documentos, se puede decir que nuestro problema es un problema de localización estática, pero gracias al modelo implementado para resolverlo, permite analizarlo como si fuese de relocalización estática. El SEM va a necesitar un modelo que les diga en cada momento la mejor ubicación de un VES, según la disponibilidad de éstos y según las bases disponibles. No obstante, al principio de cada turno no siempre van a estar disponibles todos los VES o, incluso, se pueden producir movimientos de población en diferentes estaciones del año que obligará a repensar la localización inicial de los VES. Es por ello por lo que se puede denominar como un problema de “relocalización”. Por otra parte, es estático porque se toma la decisión en un momento determinado y se mantiene durante un largo período de tiempo (ya sea durante todo el turno de trabajo o durante los meses de invierno, por ejemplo). Hay veces que algún VES puede fallar, puede estar ocupado un largo tiempo, o se quiere introducir uno nuevo. Es en estos momentos donde hay que decidir cuál podría ser la mejor ubicación para cubrir al VES que no está disponible o para introducir un nuevo VES. Todo esto conlleva resolver una especie de problemas que se podrían denominar de “relocalización” estática.
CAPÍTULO IV. CARACTERIZACIÓN DEL PROBLEMA

4.1. Elementos del problema

Para poder modelizar adecuadamente nuestro problema debemos identificar y conocer los detalles de los elementos que lo caracterizan. El primero de ellos, tal y como se ha comentado, es la isócrona. El problema surge cuando el tiempo máximo necesario para la atención prehospitalaria de un paciente por parte de los SVA o los SVB es superado. El tiempo máximo de isócrona para los SVA y para los SVB será diferente, como ya se ha mencionado, ya que los primeros atienden emergencias más urgentes (tipo 1) que los segundos (tipo 2 y tipo 3) y, por lo tanto, necesitarán un tiempo menor de actuación. En consecuencia, se declarará un tiempo de isócrona de 12 minutos para los SVA y de 15 minutos para los SVB. He aquí donde se plantea el problema de la localización de las bases de estos vehículos de manera que se pueda llegar a la mayor cantidad de personas en el tiempo máximo de isócrona (esto es, 12 y 15 minutos, respectivamente). Por lo tanto, se va a tener un problema discreto de relocalización estática con un modelo de cubrimiento máximo. No tiene sentido realizar un modelo de cubrimiento total porque hay zonas de Valencia que están muy alejadas de la urbe y en las que viven muy pocas personas, por lo que el modelo no sería viable. Además, en este caso, tampoco se podría utilizar un cubrimiento total porque no hay infraestructuras suficientes de carreteras como para llegar a todos los puntos en un tiempo razonable. Asimismo, tampoco se dispone de una cantidad ilimitada de VES. Se tendrían esas limitaciones. Obviamente, no se quiere dejar a estas personas sin opción a tratamiento prehospitalario, pero cubrirlas también alteraría los resultados y se acabaría cubriendo a menos personas por cumplir con el tiempo de isócrona en esta zona.

Además de la isócrona, otros elementos necesarios para entender mejor el problema y poder formularlo de manera adecuada, que se deben analizar serían los siguientes:

1. Departamentos de salud.
2. Bases de la provincia de Valencia.
3. Vehículos de Emergencia Sanitaria (VES).
4. Demanda o población cubierta.

En los siguientes epígrafes se irán explicando detalladamente cada uno de los elementos anteriores en relación al problema.
4.1.1. Departamentos de salud

La provincia de Valencia se encuentra dividida por el SEM en lo que se conoce como departamentos sanitarios o de salud. Para este problema, se planteó utilizar como unidad de referencia del modelo los municipios, las comarcas o los departamentos de salud. Los municipios era una unidad demasiado pequeña y con la que costaría demasiado trabajar. Trabajar con comarcas podría haber sido una buena opción, pero como este problema se quiere que sirva para ayudar al Servicio de Emergencias Médicas de Valencia y ellos trabajan (se dividen) por departamentos de salud, se decidió elegir como unidad de referencia de nuestro modelo los departamentos de salud. En la provincia de Valencia, existen un total de 11 departamentos de salud, que se listan a continuación:

1. Departamento de Salud de Gandía.
2. Departamento de Salud de La Ribera.
3. Departamento de Salud de Manises.
4. Departamento de Salud de Requena.
5. Departamento de Salud de Sagunto.
7. Departamento de Salud de Valencia – Clínico La Malvarrosa.
10. Departamento de Salud de Valencia – La Fe.
11. Departamento de Salud de Xàtiva – Ontinyent.

Cada departamento sanitario tiene un hospital general de referencia (a excepción del departamento de Xàtiva – Ontinyent y el de Arnau de Vilanova – Liria que tienen 2 hospitales de referencia) y varios Centros de Salud asociados. Cada departamento engloba a varios municipios, dependiendo de la zona en la que se encuentren estos. En la provincia objeto de estudio se tiene un caso especial, el departamento de Sagunto, ya que este departamento tiene una parte territorial en la provincia de Castellón y otra en la provincia de Valencia. Cada parte está regida por los responsables de los Servicios de Emergencias Médicas de dicha provincia, por lo que en este Trabajo Fin de Grado se trabajará tan solo con la parte que corresponde a la provincia de Valencia. Además, la comarca de “El Rincón de Ademuz”, correspondiente al departamento sanitario de Arnau de Vilanova – Llíria, no se tendrá en cuenta ya que los VES que acuden a esta comarca, a pesar de pertenecer al departamento mencionado, no son los de la provincia de Valencia. La división por departamentos sanitarios de la Comunidad Valenciana (no se ha encontrado ninguna imagen de la división territorial por departamentos sanitarios de tan solo la provincia de Valencia) queda reflejada en la Figura 13.
Según las memorias de actividad de cada departamento, la población total asignada a cada departamento según el Sistema de Información Poblacional (SIP) para el año 2018 es la que se muestra en la Tabla 2.

<table>
<thead>
<tr>
<th>DEPARTAMENTO SANITARIO</th>
<th>POBLACIÓN SIP ASIGNADA 2018 (habitantes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gandía</td>
<td>176.288</td>
</tr>
<tr>
<td>La Ribera</td>
<td>245.855</td>
</tr>
<tr>
<td>Manises</td>
<td>195.000</td>
</tr>
<tr>
<td>Requena</td>
<td>66.000</td>
</tr>
<tr>
<td>Sagunto</td>
<td>152.160 (118.832 corresponden a Valencia)</td>
</tr>
<tr>
<td>Valencia – Arnau de Vilanova – Liria</td>
<td>316.919</td>
</tr>
<tr>
<td>Valencia – Clínico La Malvarrosa</td>
<td>344.019</td>
</tr>
<tr>
<td>Valencia – Doctor Peset</td>
<td>277.280</td>
</tr>
<tr>
<td>Valencia – Hospital General</td>
<td>364.017</td>
</tr>
<tr>
<td>Valencia – La Fe</td>
<td>284.060</td>
</tr>
<tr>
<td>Xàtiva - Ontinyent</td>
<td>194.397</td>
</tr>
</tbody>
</table>

Como ya se ha dicho, el departamento de Sagunto cubre una parte de la provincia de Castellón y otra parte de la de Valencia, pero en este trabajo solo se trabajará con los datos de la provincia de Valencia. Es por ello por lo que el número de habitantes que se tendrá en cuenta en el modelo para el departamento de Sagunto será 118.832 habitantes.
4.1.2. Bases de la provincia de Valencia

Las posibles bases para localizar o ubicar a los vehículos de emergencia sanitarios van a ser los Centros de Salud y los Hospitales, ya que estos vehículos son medicalizados y requieren de provisiones de instrumentos y equipos médicos para poder atender a las personas que lo necesiten durante las emergencias. En la provincia de Valencia hay registrados un total de 127 Centros de Salud y 14 Hospitales, por lo que, en principio, habrá una cantidad de 141 posibles bases donde colocar los vehículos. Sin embargo, hay algunas bases que no están colocadas en ningún Centro de Salud ni en ningún Hospital pero que se encuentran situadas en zonas con una muy buena comunicación y salidas a las carreteras, por lo que también serían consideradas como posibles bases. En total, se dispone en la provincia de Valencia de un total de 158 posibles bases donde ubicar las ambulancias. Es decir, hay 17 bases que no serían ni Centros de Salud ni Hospitales.

En el Anexo I se pueden consultar las tablas con el tipo de centro, la localidad, la dirección y el horario por departamento sanitario de todas y cada una de las bases que se han tenido en cuenta para el presente Trabajo Fin de Grado.

En la Figura 14 se puede ver un mapa de las 158 bases disponibles en la provincia de Valencia dividido por departamentos sanitarios. En total, en cada departamento se dispone de la siguiente cantidad de posibles bases:

1. Departamento de Salud de Gandía: 10 bases
2. Departamento de Salud de La Ribera: 15 bases
3. Departamento de Salud de Manises: 13 bases
4. Departamento de Salud de Requena: 6 bases
5. Departamento de Salud de Sagunto: 8 bases
6. Departamento de Salud de Valencia – Arnau de Vilanova – Liria: 24 bases
7. Departamento de Salud de Valencia – Clínico La Malvarrosa: 18 bases
9. Departamento de Salud de Valencia – Hospital General: 17 bases
10. Departamento de Salud de Valencia – La Fe: 14 bases
11. Departamento de Salud de Xàtiva – Ontinyent: 21 bases

Queda claro cómo la mayoría de las bases se concentran en los departamentos que ofrecen asistencia a la ciudad de Valencia, ya que es aquí donde se encuentra la mayor parte de población y, en consecuencia, de demanda. En la Figura 14 puede verse de manera más clara y visual la concentración de puntos en la ciudad.
Bases por Departamento Sanitario

- Xàtiva - Ontinyent
- Gandía
- Requena
- La Ribera
- Arnau de Vilanova - Llíria
- Sagunto
- Manises
- Valencia - La Fe
- Valencia - Doctor Peset
- Valencia - La Malvarrosa
- València - Hospital General

Figura 14. Todas las posibles bases logísticas para ubicar las ambulancias en la provincia de Valencia
Fuente: Elaboración propia
4.1.3. Vehículos de Emergencia Sanitaria (VES)

Los recursos de los que dispone el SEM para atender las emergencias son limitados. Específicamente, el SEM de la provincia de Valencia tiene a su disposición, a día de hoy, 67 VES para utilizar, de los cuales 20 se corresponden con soportes vitales avanzados y 47 con soportes vitales básicos. No todos estos vehículos están disponibles las 24 horas, si no que dependiendo de la disponibilidad del Centro de Salud o el Hospital donde estén ubicados, o incluso de las decisiones del SASUE, pueden estar disponibles tan solo 12 horas (o por el día o por la noche).

Actualmente, en la provincia de Valencia se tienen ubicadas las bases logísticas de los vehículos de emergencia sanitarios respecto al criterio de la Conselleria de Sanitat Universal i Salut Pública a través de la Subdirección General de Actividad Asistencial en el Servicio de Atención Sanitaria Urgente y Emergencias (SASUE), pero no se puede asegurar que sean las ubicaciones óptimas debido a que hay posibilidad de que existan problemas de cubrimiento. A fecha de hoy, los SVA y los SVB de la provincia de Valencia están ubicados como se muestra en la Figura 15 y en la Figura 16, respectivamente.

En estas figuras se vuelve a apreciar lo que comentábamos en el anterior epígrafe, y es que la mayoría de las ambulancias se concentran en la ciudad de Valencia, bien porque la mayoría de la población vive ahí o bien porque hay una mayor frecuencia de emergencias en la ciudad. Esta decisión puede ser favorable o desfavorable, ya que tal vez se están dejando zonas de la provincia descubiertas por sobrecubrir la ciudad. También se puede ver la falta de recursos en el interior de la provincia, por lo que fijándose simplemente en estas imágenes ya se puede presuponer que va a haber una falta de cubrimiento bastante grande en esas zonas.

En el Anexo I se pueden ver las direcciones de las ubicaciones actuales tanto de los SVA (conocidos por el SASUE como “Alfas” y “Deltas”) como de los SVB (conocidos como “Bravos”), y también si están disponibles las 24 horas, 12 horas por el día o 12 horas por la noche.
Figura 15. Distribución actual de los SVA en la provincia de Valencia
Fuente: Elaboración propia
CAPÍTULO IV. CARACTERIZACIÓN DEL PROBLEMA

Figura 16. Distribución actual de los SVB en la provincia de Valencia
Fuente: Elaboración propia
CAPÍTULO IV. CARACTERIZACIÓN DEL PROBLEMA

4.1.4. Demanda o población cubierta

La demanda en este problema sería la cantidad de emergencias que ocurren en cada departamento o en cada municipio de la provincia de Valencia. En un principio, lo que se quiere cubrir sería la demanda, ya que si cubrimos las zonas con mayor frecuencia o cantidad de emergencias, estaremos evitando las peores consecuencias respecto a cualquier emergencia. Sin embargo, esta demanda es algo que cambia continuamente (dinámica), ya que la población se mueve constantemente, por lo que no se va a conocer. Para poder conocerla, se debería estimar un modelo estadístico, conocer una función de demanda, conocer el histórico de datos, etc. Como no se dispone de nada de esto, se va a realizar un estudio estadístico en STATGRAPHICS para comprobar si la demanda está relacionada con la población censada de cada municipio.

Para ver si estas dos variables están relacionadas linealmente se va a realizar un estudio estadístico de regresión lineal simple con los datos del número medio de emergencias por municipio entre los años 2016 y 2019 y de la población censada por municipio del año 2019. En el diagrama de dispersión que muestra la Figura 17 se puede ver cómo, en principio, ambas variables están relacionadas linealmente de manera positiva, es decir, a mayor población mayor frecuencia de emergencias.

![Gráfico del Modelo Ajustado](image)

Figura 17. Relación entre el Total de Emergencias vs Población por municipios

Fuente: Elaboración propia a partir de STATGRAPHICS

Pero no tiene sentido que haya constante en este modelo debido a que en un municipio donde no haya población es imposible que haya emergencias, por lo que habrá que eliminarla. Para ello, se procede a centrar las variables restando la media a cada una de ellas.
Regresión Simple - Total Emergencias vs. Población

Variable dependiente: Total Emergencias
Variable independiente: Población
Línea: $Y = b^*X$
Número de observaciones: 255

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Mínimos Cuadrados</th>
<th>Estándar Error</th>
<th>Estadístico</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendiente</td>
<td>0.178283</td>
<td>0.00115728</td>
<td>154.053</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Análisis de Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Ráiz-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>2.00851E10</td>
<td>1</td>
<td>2.00851E10</td>
<td>23732,33</td>
<td>0,0000</td>
</tr>
<tr>
<td>Residuo</td>
<td>2.22671E8</td>
<td>254</td>
<td>876957,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.10778E10</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de Correlación = 0,994691
R-cuadrado = 98,9411 porciento
R-cuadrado (ajustado para g.f.) = 98,9411 porciento
Error estándar del est. = 936,3
Error absoluto medio = 632,479
Estadístico Durbin-Watson = 1,30137
Auto correlación de residuos en retraso 1 = 0,348126

Tabla 3. Tabla ANOVA de la relación entre el Total de Emergencias vs Población por municipios
Fuente: Elaboración propia a partir de STATGRAPHICS

En la Figura 18, tras eliminar la constante, se observa como las variables están relacionadas de manera directa. En la Tabla 3 se muestran los resultados de ajustar un modelo para describir la relación entre ambas variables. Puesto que el p-valor es menor que 0,05, existe una relación estadísticamente significativa entre las variables. Además,
el coeficiente de correlación es de 0,9947, corroborando la relación relativamente fuerte entre ambas variables.

Se puede concluir que existe una relación positiva entre el número de habitantes que residen en un municipio y la cantidad de emergencias que ocurren por lo que, al no poder conocer la demanda pero sí la población cubierta (en el software QGIS 3.10.5 se puede conocer esta información, como se verá en el siguiente capítulo), se considerará que maximizar la población cubierta implica maximizar la demanda de emergencias.

En definitiva, gracias a este estudio se justifica el hecho de que en las restricciones del modelo matemático se esté cubriendo la población (como se verá en el siguiente capítulo) y no la demanda.

4.2. Cubrimiento actual de la provincia de Valencia

Una vez realizado el estudio y ubicadas las actuales bases de los 66 soportes vitales, se calculan las isócronas tanto para 12 minutos (para los SVA) como para 15 minutos (para los SVB) para visualizar la solución actual y ver si con la distribución que hay ahora mismo se consigue cubrir toda la población de la provincia. Para realizar el cálculo, se utiliza el complemento de QGIS 3.10.5 llamado ORS Tools (previa instalación desde el mismo programa) y se ejecuta el proceso por lotes para poder introducir todas las capas a la vez y no tener que introducirlas una a una. Este complemento no utiliza información en tiempo real, por lo que no tendrá en cuenta el tráfico que haya en la carretera en cada momento ni variará su resultado dependiendo de la hora a la que calculemos dichas isócronas. No obstante, los VES al tener prioridad en la carretera les afectarán menos los problemas más habituales de tráfico moviéndose en entornos más estables. Básicamente, lo que hace esta herramienta es un bucle a través de los bordes de las carreteras y ve si ese borde puede ser alcanzado dentro del límite de tiempo definido. Si puede, entonces cae dentro del límite de la isócrona que se forma cuando se identifican todos los bordes que se pueden alcanzar. Este mapa con las capas de las isócronas a 12 y a 15 minutos se puede ver en la Figura 19. Hay que indicar que dicha figura muestra la localización de los VES actuales para ambulancias que trabajan o 24 horas o 12 horas diurnas, ya que lo que se va a analizar en nuestro problema es la jornada o turno de día.
Figura 19. Visualización mediante isócronas del cubrimiento actual de los VES en la provincia de Valencia
Fuente: Elaboración propia
Se puede ver como hay una densidad muy grande en la ciudad de Valencia, por lo que hay un sobre cubrimiento, mientras que en la zona del interior de la provincia los vehículos no son capaces de llegar en el tiempo máximo de isócrona. Estas zonas estarían desprotegidas en esta distribución de ambulancias, ya que no serían capaces de responder a las emergencias en el tiempo estipulado. Es por ello, que se va a intentar proponer un modelo que, según las restricciones impuestas, localice los VES en las bases disponibles de tal forma que se cubra a la mayor cantidad de población posible.
CAPÍTULO V. ESPECIFICACIÓN MATEMÁTICA, MODELIZACIÓN Y ANÁLISIS DE RESULTADOS

Dos de los problemas a los que se enfrentan los servicios de emergencias médicas es a la ubicación de sus vehículos médicos en las posibles bases y a su posterior relocalización en las bases libres de manera que se consiga siempre cubrir a la mayor demanda posible cumpliendo el tiempo de isócrona. Cuando surge alguna emergencia, el vehículo más apropiado es transportado al lugar indicado debiendo llegar en un tiempo máximo de 12 o 15 minutos, dependiendo de si se trata de un SVA o de un SVB, respectivamente. El problema es que hay casos en los que el VES no es capaz de llegar al lugar del incidente en ese tiempo. Es por esto, por lo que los VES deben estar ubicados en las mejores localizaciones posibles para poder atender a la mayoría de la población en ese tiempo máximo. Para ello, se va a formular un modelo matemático de cubrimiento máximo para poder ubicar estos VES de la mejor manera posible con el fin de poder subsanar dicho problema.

En primer lugar, se explicará el procedimiento para obtener las 2 matrices de población cubierta (con tiempos de isócrona de 12 y 15 minutos) de la provincia de Valencia. Luego, se darán a conocer las limitaciones de nuestro problema para, finalmente, introducir el modelo matemático. Para conseguir el modelo matemático final, se realizarán 5 modelos previos en los que se irán introduciendo las restricciones necesarias para conseguir minimizar la población que queda sin cubrir en toda la provincia.

5.1. Procedimiento de extracción de los datos o parámetros del problema

Para resolver el problema, se necesitan datos e información que ayuden a definir las restricciones y el objetivo del modelo matemático que se programe. En concreto, se necesita conocer los siguientes parámetros básicos:

1. El número máximo de VES de los que dispone el SEM: 20 SAMUS y 47 SVB, respectivamente.
2. El número máximo de posibles bases donde ubicar los VES: 158 bases.
3. La matriz de población cubierta y localización para cada tiempo máximo de isócrona, que es de 12 minutos para los SVA y de 15 minutos para los SVB. En el Anexo IV se pueden encontrar ambas matrices.
4. Los departamentos de salud en los que se divide la provincia de Valencia y la población a cubrir en cada uno de ellos. Esta información se muestra en la Tabla 4. En ella, aparecen 11 departamentos de salud y sus respectivas poblaciones.
5.1.1. Matrices de población cubierta en QGIS 3.10.5

Para poder programar el modelo de cubrimiento máximo, primero se necesitan obtener las matrices de la población que queda cubierta según se ubique el VES en una base o en otra. Se quiere obtener 1 matriz de la población cubierta para el tiempo máximo de isócrona de 12 minutos (para los SVA) y otra para el tiempo máximo de isócrona de 15 minutos (para los SVB). Para construir estas 2 matrices, primeramente se han de obtener las isócronas de 12 y 15 minutos de los VES cuando se ubican en cada una de las 158 bases de las que se dispone para ubicarlos. Para obtener estas isócronas, se procede de la misma manera que se hizo para las isócronas de la solución que actualmente tiene el servicio (se identificará a partir de ahora como “solución actual”) (mencionado ya en el apartado 4.2.). Para ver paso a paso su obtención, consultar el Anexo III. Las matrices mostrarán la población que queda cubierta en cada departamento si ubicamos el VES en la base correspondiente. Se puede ver en la Tabla 5 una muestra de esta matriz de población.

<table>
<thead>
<tr>
<th>Departamento de salud</th>
<th>Población a Cubrir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dpto. Gandía</td>
<td>176288</td>
</tr>
<tr>
<td>Dpto. Xàtiva - Ontinyent</td>
<td>194397</td>
</tr>
<tr>
<td>Dpto. Manises</td>
<td>195000</td>
</tr>
<tr>
<td>Dpto. Requena</td>
<td>66000</td>
</tr>
<tr>
<td>Dpto. Llíria</td>
<td>316919</td>
</tr>
<tr>
<td>Dpto. Sagunto</td>
<td>118832</td>
</tr>
<tr>
<td>Dpto. La Malvarrosa</td>
<td>344019</td>
</tr>
<tr>
<td>Dpto. Dr. Peset</td>
<td>277280</td>
</tr>
<tr>
<td>Dpto. La Fe</td>
<td>284060</td>
</tr>
<tr>
<td>Dpto. Hospital General</td>
<td>364017</td>
</tr>
<tr>
<td>Dpto. La Ribera</td>
<td>245855</td>
</tr>
</tbody>
</table>

Tabla 4. Población a cubrir por departamento de salud
Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Departamento de salud i</th>
<th>Población cubierta del departamento i, según el tiempo de isócrona fijado, si se ubica el VES en la base j</th>
</tr>
</thead>
</table>

Tabla 5. Muestra de la matriz de la población cubierta
Fuente: Elaboración propia
Una vez obtenidas las isócronas, se accede a la tabla de atributos de cada una de éstas para ver la información que ofrece. Como ya se explicó anteriormente, las capas vectoriales tienen dos partes: la geometría en sí (en este caso el polígono de la isócrona) y los atributos asociados a dicha capa (la información que genera la isócrona). Esta información se muestra en la tabla de atributos de cada capa, y muestra por defecto la población que queda cubierta dentro del área de la isócrona, el tiempo de isócrona con el que estás trabajando, el modo del trayecto (en nuestro caso, conduciendo un coche), y el identificador de la capa. Se puede ver una muestra en la Tabla 6.

![Tabla 6. Tabla de atributos de una capa vectorial en QGIS 3.10.5](image)

Para poder trabajar con estos datos, primero se combinan todas las capas de un departamento mediante la herramienta de gestión de datos vectoriales de QGIS denominada Unir capas vectoriales. De esta manera, se consiguen acoplar todas las tablas de atributos de todas las capas vectoriales de cada departamento y se exportan a formato .xlsx para poder abrirlas con el Microsoft Excel. En la Tabla 7 se puede ver un ejemplo con el conjunto de datos del departamento sanitario de Gandía.

![Tabla 7. Tabla de atributos del departamento sanitario de Gandía](image)

En la primera columna aparece el identificador de la capa, es decir, el número que utiliza el programa para conocer con qué capa se está trabajando. En la segunda columna se muestra el tiempo de isócrona en minutos. En este caso, se tendrán tiempos de 12 y 15 minutos. En la tercera columna aparecerá el modo de transporte en el que se
calcula la isócrona (en este caso, tal y como se ha mencionado, conduciendo un coche). En la cuarta columna aparece el nombre que le da el usuario a la capa para identificarla mejor. Y, por último, en la última columna aparece el total de población que cubre cada isócrona.

El problema surge cuando la capa de isócrona de la base de un departamento cubre también parte de otro, ya que no se sabe cuánta población se corresponde con cada departamento y QGIS no tiene ninguna herramienta para diferenciar dicha población. Veamos un ejemplo para entender mejor de lo que se está hablando. En la Figura 20 se puede ver como la isócrona de 15 minutos creada con punto de origen en el Centro de Salud de Villanueva de Castellón, que pertenece al departamento de salud de Xàtiva – Ontinyent, cubre también parte del departamento de La Ribera. Por lo tanto, la población que aparece en la tabla de atributos que cubre dicha isócrona se corresponde con población perteneciente a ambos departamentos. Para construir la matriz de población cubierta se debe separar la población que cubre cada isócrona por departamentos. La solución sería la siguiente: como QGIS 3.10.5 trabaja con población censada, habría que mirar los municipios que está cubriendo la isócrona en uno de los dos departamentos y sumar su población censada. Una vez sumadas las poblaciones de todos los municipios cubiertos (en el caso en que no se cubra la totalidad del municipio se realizará una aproximación), se puede realizar la resta del total de población cubierta que aparece en la tabla de atributos con la suma de la población de los municipios del departamento. El resultado será la población cubierta en el otro departamento, por lo que ya se tendrá la población cubierta por dicha isócrona en cada departamento.

![Figura 20. Visualización de la isócrona cubriendo parte de 2 departamentos sanitarios](image)

Fuente: Elaboración propia a partir de QGIS 3.10.5
En conclusión, para construir las matrices de población enteras, habría que repetir el proceso con las 315 isócronas restantes (ya que hay 158 posibles bases en total, y el proceso habría que hacerlo 2 veces por cada base, para tiempos de 12 y 15 minutos, como ya se ha mencionado).

5.2. Cubrimiento suponiendo recursos ilimitados

Antes de pasar a introducir el modelo matemático, se va a mostrar el cubrimiento de la provincia de Valencia si se dispusiera de todos los recursos que quisiéramos, es decir, si se pudiera colocar al menos un vehículo (o más) en cada posible base. De esta manera, se pretende conocer antes de desarrollar el modelo si se va a poder cubrir a toda la provincia de Valencia con las bases de las que se dispone. Se puede ver en la Figura 21 un ejemplo del cubrimiento de Valencia con isócronas de 15 minutos (no se ha dibujado con isócronas de 12 minutos debido a que las de 15 minutos son menos restrictivas).
Figura 21. Visualización mediante isócronas del máximo cubrimiento posible colocando un VES en cada posible base en la provincia de Valencia
Fuente: Elaboración propia a partir de QGIS 3.10.5
Se puede ver que hay zonas a las que es imposible llegar en el tiempo de isócrona estipulado, con las bases de las que se dispone. En consecuencia, se va a intentar colocar los VES disponibles de manera que se pueda cubrir la mayor población posible.

Ahora que ya se conocen cuáles son las limitaciones de nuestro problema, se procede a introducir el modelo. En el epígrafe 5.3.3. se mostrarán los resultados de la solución actual para poder realizar una comparación con los modelos propuestos.

5.3. Modelización

Para obtener un modelo matemático consistente, éste se va a ir resolviendo desde cero y se irán incorporando restricciones paulatinamente. En los siguientes epígrafes, se resolverán varios modelos para intentar conseguir la mejor solución posible, en comparación con la actual.

5.3.1. Parámetros y variables de decisión

Para poder expresar los diferentes modelos propuestos para abordar la resolución del problema se debe introducir la siguiente nomenclatura (ver Tabla 8).

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = {1,2, \ldots, m})</td>
<td>Conjunto de departamentos sanitarios en los que se divide la provincia de Valencia.</td>
</tr>
<tr>
<td>(N = {1,2, \ldots, n})</td>
<td>Conjunto de posibles bases para situar los VES.</td>
</tr>
<tr>
<td>(i \in M)</td>
<td>Índice de departamentos sanitarios.</td>
</tr>
<tr>
<td>(j \in N)</td>
<td>Índice de las posibles bases.</td>
</tr>
<tr>
<td>(h_i)</td>
<td>Población total a cubrir en cada departamento (i).</td>
</tr>
<tr>
<td>(h_{ij})</td>
<td>Población cubierta en el departamento (i) si colocamos el vehículo en la base (j).</td>
</tr>
<tr>
<td>(P_A)</td>
<td>Cantidad máxima disponible de SVA.</td>
</tr>
<tr>
<td>(P_B)</td>
<td>Cantidad máxima disponible de SVB.</td>
</tr>
<tr>
<td>(t_{cA})</td>
<td>Tiempo de cubrimiento máximo dentro del cual queda cubierta la zona por el SVA.</td>
</tr>
<tr>
<td>(t_{cB})</td>
<td>Tiempo de cubrimiento máximo dentro del cual queda cubierta la zona por el SVB.</td>
</tr>
</tbody>
</table>

Tabla 8. Parámetros principales del problema de relocalización estática
Fuente: Elaboración propia

La Tabla 9 muestra las variables de decisión que aparecerán en los diferentes modelos matemáticos implementados.
53

<table>
<thead>
<tr>
<th>Variable de decisión</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_j^A \in {0,1}$</td>
<td>Variable binaria que toma el valor 1 si el SVA se sitúa en la base j y 0 en caso contrario.</td>
</tr>
<tr>
<td>$x_j^B \in {0,1}$</td>
<td>Variable binaria que toma el valor 1 si el SVB se sitúa en la base j y 0 en caso contrario.</td>
</tr>
<tr>
<td>D_i</td>
<td>Variable que denota el defecto de cubrimiento de la población en el departamento i.</td>
</tr>
<tr>
<td>E_i</td>
<td>Variable que denota el exceso de cubrimiento de la población en el departamento i.</td>
</tr>
</tbody>
</table>

Tabla 9. Variables de decisión del problema de relocalización estática
Fuente: Elaboración propia

Estas últimas dos variables se añaden a raíz de que, si no se hace, el problema podría ser infactible, por lo que se ha de recurrir a ellas para forzar al modelo a que proporcione una solución coherente.

5.3.2. Población imposible de cubrir en la provincia de Valencia

Como ya se comentó en el epígrafe 5.2., hay una parte de la población que no se va a poder cubrir con los recursos disponibles y los tiempos de isócrona establecidos. Es por esto por lo que este problema no se puede tratar como un problema de cubrimiento total. En la Figura 21 se pudo ver un mapa con las zonas descubiertas en la provincia de Valencia por departamentos. En este apartado se va a cuantificar dicha situación para conocer con exactitud cuál es la población, tanto en términos absolutos ($D_{i_{min_absoluto}}$) como relativos ($D_{i_{min_relativo}}$), que no se puede cubrir, es decir, cuál es el defecto D_i mínimo. Esto se calculará dibujando las isócronas de 15 minutos, ya que es la menos restrictiva y la que nos ofrecerá la cantidad de población mínima que se va a quedar sin cubrir, y sumando la población censada de los municipios que no se encuentran dentro del polígono de la isócrona.
En la Tabla 10 se puede ver que la población que no se puede cubrir con los recursos disponibles para un tiempo de isócrona de 15 minutos (ya que es el menos restrictivo) es un 0,542% de la población total, es decir, 14.006 personas. Si se analiza la población descubierta por departamentos, hay 6 departamentos que tienen la capacidad de cubrir a toda su población mientras que hay 5 que no. Los 5 departamentos que tienen población imposible de cubrir y, por lo tanto, siempre van a tener un defecto mínimo son departamentos que cuentan con municipios o zonas complicadas de acceder fácilmente, especialmente porque se encuentran en montañas o con infraestructuras poco adecuadas para acceder. Los departamentos de Xàtiva – Ontinyent y de Requena son los que tienen un mayor porcentaje de población sin cubrir.

5.3.3. Resultados de la situación actual

Para poder comparar los modelos propuestos y verificar si se está mejorando la solución, se debe conocer cómo es el cubrimiento actual de la provincia de Valencia. Para ello, se necesita averiguar el porcentaje de población no cubierta (defecto) en toda la provincia y en cada departamento sanitario, el porcentaje de sobrecubrimiento (exceso) y la utilización de los recursos disponibles (VES). En la Figura 19 (apartado 4.2.) se podia ver de forma visual el cubrimiento actual pero, para poder comparar los modelos, se necesita cuantificar esa situación.
A diferencia de cómo se calculó la Tabla 10, que se hizo para un tiempo de isócrona de 15 minutos, ya que es el tiempo menos restrictivo y es el que nos indicará la mínima población que se deja sin cubrir, la Tabla 11 se ha calculado para ambos tiempos de isócrona (de 12 y 15 minutos). Es decir, como ahora se quiere calcular el defecto total producido por la distribución de SVA y de SVB que ofrece esta solución, se tendrán isócronas de 12 y 15 minutos, respectivamente, por lo que se calculará la población de los municipios que caen fuera de estas isócronas y se obtendrá el defecto de cubrimiento por departamento de esta solución. La información de cada fila de la Tabla 11 está realizada para la población total de cada departamento, a excepción de la última fila donde se utiliza el total de la población de la provincia. Las columnas E_i y D_i muestran el porcentaje de población que queda sobrecubierta (exceso de población) y la que queda sin cubrir (defecto de población), respectivamente. La columna $D_{i-min_relativo}$ muestra el porcentaje de la población de cada departamento imposible de cubrir con los recursos disponibles. Esta columna es la calculada en la Tabla 10. Por último, las columnas SVA y SVB muestran la cantidad de estos vehículos que se han ubicado en cada departamento sanitario. Todo lo dicho en este párrafo es aplicable para las tablas de los resultados que se mostrarán en los siguientes epígrafes, para los modelos calculados.

Se observa cómo hay un claro descubrimiento en los departamentos de Requena, de Xàtiva y de Arnau – Llíria. También hay población descubierta, aunque en menor medida, en el departamento de La Ribera. Los demás departamentos sanitarios están totalmente cubiertos en lo que respecta al total que se puede cubrir con los recursos disponibles, ya que todos igualan al defecto mínimo. Respecto al sobrecubrimiento, se puede ver que los 4 departamentos que incluyen el conjunto de la ciudad de Valencia (La Malvarrosa, Doctor Peset, La Fe y Hospital General) superan el 700%, llegando incluso a superar este último el 1300% de exceso, lo que significa que la población residente de la ciudad de Valencia está, como mínimo, 7 veces cubierta de

<table>
<thead>
<tr>
<th>Dpto. salud</th>
<th>E_i (%)</th>
<th>$D_{i-min_relativo}$ (%)</th>
<th>D_i (%)</th>
<th>SVA (ud.)</th>
<th>SVB (ud.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requena</td>
<td>65,5</td>
<td>6,4</td>
<td>12,1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Xàtiva</td>
<td>92,3</td>
<td>2,7</td>
<td>8,8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Arnau - Llíria</td>
<td>742,1</td>
<td>0,8</td>
<td>3,3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Gandía</td>
<td>250,2</td>
<td>0,8</td>
<td>0,8</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>La Ribera</td>
<td>151,6</td>
<td>0,0</td>
<td>0,5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Hospital General</td>
<td>1357,7</td>
<td>0,2</td>
<td>0,2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Manises</td>
<td>1066,2</td>
<td>0,0</td>
<td>0,0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Sagunto</td>
<td>374,5</td>
<td>0,0</td>
<td>0,0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>La Malvarrosa</td>
<td>767,4</td>
<td>0,0</td>
<td>0,0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Doctor Peset</td>
<td>1172,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>La Fe</td>
<td>1065,8</td>
<td>0,0</td>
<td>0,0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>765,6</td>
<td>0,5</td>
<td>1,5</td>
<td>20</td>
<td>47</td>
</tr>
</tbody>
</table>

Tabla 11. Resultados de la situación actual de la provincia de Valencia
Fuente: Elaboración propia
más por los VES. Esta situación será beneficiosa ya que en la ciudad de Valencia se concentra el mayor número de población de la provincia, por lo que la probabilidad de emergencias será mayor y, por consiguiente, habrá más probabilidades de que un VES esté ocupado cuando surja una emergencia. También destacan los excesos de los departamentos de Manises y de Arnau – Llíria, siendo el primero un departamento que no cubre a demasiada población en comparación con los otros 5 mencionados, por lo que este exceso de cubrimiento podría no ser conveniente y convendría relocalizar sus recursos en otros departamentos para suplir el defecto de éstos.

En los siguientes apartados, se van a construir modelos matemáticos para proponer otras alternativas de localización de la flota de VES. Todos los modelos que se van a presentar a continuación han sido resueltos por la herramienta OpenSolver versión 2.9.0 de Microsoft Excel en un ordenador con sistema operativo Windows 10, con RAM de 6GB y un procesador Intel® Core™ i5-4200U de 1,60GHz. Los modelos tardan en resolverse una media de 3 segundos aproximadamente, lo que resulta idóneo para este tipo de problemas en los que la rapidez es imprescindible.

5.3.4. Modelo matemático 1

Teniendo en cuenta la nomenclatura introducida en la Tabla 8 y las variables definidas en la Tabla 9, el primer modelo sería el siguiente:

\[
\begin{align*}
\text{Min} & \quad \sum_{i=1}^{m} D_i \\
\text{s.a.} & \quad \sum_{j=1}^{n} (x_j^A \cdot h_{ij} + x_j^B \cdot h_{ij}) + D_i - E_i = h_i; \quad \forall \ i \in M; \\
& \quad \sum_{j=1}^{n} x_j^A = P^A \\
& \quad \sum_{j=1}^{n} x_j^B = P^B \\
& \quad x_j^A \in \{0,1\}; \quad \forall \ j \in N; \\
& \quad x_j^B \in \{0,1\}; \quad \forall \ j \in N; \\
& \quad D_i, E_i, \geq 0
\end{align*}
\]

La función objetivo (1) minimiza el conjunto de la población que queda sin cubrir en toda la provincia de Valencia. La restricción (2) impone para cada departamento el
cubrimiento de su población con los SVA y los SVB. Las restricciones (3) y (4) aseguran que el número de SVA y de SVB sea igual a un número dado, respectivamente. Los valores de P^A y de P^B serán 20 y 47, respectivamente. Se realizan estas restricciones porque se quieren aprovechar el máximo de recursos de los que se disponen. Las restricciones (5) y (6) imponen que las variables de decisión sean binarias. Por último, la restricción (7) implica que ambas variables sean no negativas.

Hay que dejar bien claro que lo que se está viendo como un problema estático es, en realidad, un problema dinámico ya que el hecho de cubrir una zona en un momento dado no significa que vaya a estar cubierta siempre debido a que las ambulancias se van a mover constantemente y esas zonas pueden quedar descubiertas.

Al resolver este modelo, se obtiene como resultado que la suma de los defectos de todos los departamentos sanitarios es 0. Como ya se ha visto, esto es imposible debido a que existen unos defectos mínimos que siempre van a aparecer con los recursos disponibles (ver Tabla 10, $D_i_{min_relativo}$). Esto ocurre porque el modelo no tiene en cuenta los solapamientos, por lo que cree que ha conseguido cubrir al total de la población cuando, en realidad, está cubriendo varias veces al mismo conjunto de población. Más adelante, se explicará qué significa el concepto de los solapamientos en el problema (epígrafe 5.3.6.). Para conocer exactamente el defecto real que se obtiene en este modelo (y en cada uno de los que se irán resolviendo), se ha de dibujar la solución en QGIS 3.10.5 y realizar una suma de la población de los municipios que no se encuentran cubiertos por la isócrona correspondiente. En la Figura 22 se puede ver el cubrimiento de la provincia con este primer modelo.
Figura 22. Cubrimiento de la provincia de Valencia con el modelo 1
Fuente: Elaboración propia a partir de QGIS 3.10.5
A primera vista, se aprecia un claro descubrimiento en el departamento de La Ribera, así como en la parte este del departamento de Manises. A pesar de esto, se va a realizar también una comparativa numérica que ayude a cuantificar la solución.

<table>
<thead>
<tr>
<th>Dpto. salud</th>
<th>E_i (%)</th>
<th>$D_i_{-\text{min_relativo}}$ (%)</th>
<th>D_i (%)</th>
<th>SVA (ud.)</th>
<th>SVB (ud.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manises</td>
<td>1066,2</td>
<td>92,8</td>
<td>0,0</td>
<td>0,0</td>
<td>14,9</td>
</tr>
<tr>
<td>La Malvarrosa</td>
<td>767,4</td>
<td>71,9</td>
<td>0,0</td>
<td>0,0</td>
<td>13,7</td>
</tr>
<tr>
<td>Arnau - Llíria</td>
<td>742,1</td>
<td>17,0</td>
<td>0,8</td>
<td>3,3</td>
<td>10,3</td>
</tr>
<tr>
<td>Requena</td>
<td>65,5</td>
<td>168,4</td>
<td>6,4</td>
<td>12,1</td>
<td>6,4</td>
</tr>
<tr>
<td>Xàtiva</td>
<td>92,3</td>
<td>254,8</td>
<td>2,7</td>
<td>8,8</td>
<td>2,7</td>
</tr>
<tr>
<td>La Ribera</td>
<td>151,6</td>
<td>44,0</td>
<td>0,0</td>
<td>0,5</td>
<td>2,1</td>
</tr>
<tr>
<td>Sagunto</td>
<td>374,5</td>
<td>123,4</td>
<td>0,0</td>
<td>0,0</td>
<td>2,0</td>
</tr>
<tr>
<td>Gandia</td>
<td>250,2</td>
<td>59,1</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Hospital General</td>
<td>1357,7</td>
<td>38,3</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Doctor Peset</td>
<td>1172,5</td>
<td>124,9</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Fe</td>
<td>1065,8</td>
<td>86,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>765,6</td>
<td>84,4</td>
<td>0,5</td>
<td>1,5</td>
<td>4,9</td>
</tr>
</tbody>
</table>

Tabla 12. Resultados del modelo 1

Fuente: Elaboración propia

Las siglas “$S.\text{ actual}$” y “$M1$” que aparecen en la Tabla 12 se refieren a la Solución Actual propuesta por el SEM y al Modelo 1, respectivamente. En las tablas de resultados de los modelos posteriores también se aplicará esta nomenclatura, pero variando el número del modelo.

En la Tabla 12 se ve que hay 5 departamentos de salud que no se cubren completamente. Además, el porcentaje de defecto de cubrimiento en la mayoría de ellos es mayor al 10%, lo que implica una mala utilización de los recursos. El defecto total de la provincia de Valencia es más de 9 veces superior al mínimo. Asimismo, el exceso total es bastante pobre, no llegando a cubrirse ni 2 veces a la población de la provincia. Esto es consecuencia de que en los departamentos ubicados en la ciudad de Valencia, que es donde se concentra la mayoría de los habitantes, el exceso es bastante pequeño, debido a que no hay ubicados ningún SVA y casi ningún SVB ahí.

En comparación con la solución actual, el defecto es mayor en casi todos los departamentos de salud y el exceso de cubrimiento es muchísimo menor en 9 de los 11 departamentos. El defecto de cubrimiento en el total de la provincia es más de 3 veces mayor en este modelo que con la actual distribución de los VES, llegando casi a dejar sin cubrir al 5% de la provincia de Valencia.

En conclusión, con esta solución se están gestionando de manera inadecuada los VES, ya que no se consigue cubrir a la mayoría de la población y, además, no hay refuerzos en zonas con mayor concentración de residentes.
5.3.4.1. Modelo matemático 1.1

En este modelo se van a modificar las restricciones (3) y (4) para que el número de SVA y de SVB en cada departamento sanitario coincida con el de la solución actual. Es decir, la diferencia con el anterior modelo va a ser que, mientras en el anterior se tenía la libertad para distribuir los SVA y los SVB como el modelo quisiera, en el modelo de ahora se asigna la cantidad de SVA y SVB por cada departamento, tal y como los tiene el servicio actual. Para ello, habrá que introducir primero 3 nuevos parámetros, que se muestran en la Tabla 13.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_i), (i \in M)</td>
<td>Conjunto de posibles bases del departamento (i).</td>
</tr>
<tr>
<td>(P_i^A)</td>
<td>Número de SVA utilizados en cada departamento en la solución actual.</td>
</tr>
<tr>
<td>(P_i^B)</td>
<td>Número de SVB utilizados en cada departamento en la solución actual.</td>
</tr>
</tbody>
</table>

Tabla 13. Parámetros necesarios para el modelo 1.1
Fuente: Elaboración propia

Las restricciones añadidas que se intercambian por la (3) y la (4) serán las siguientes:

\[
\sum_{j=1}^{N_i} x_j^A = P_i^A, \quad \forall \ i \in M \tag{8}
\]

\[
\sum_{j=1}^{N_i} x_j^B = P_i^B, \quad \forall \ i \in M \tag{9}
\]

Las restricciones (8) y (9) aseguran que el número de SVA y de SVB de cada departamento coincida con el de la solución actual, es decir, el de la Tabla 11.

El mapa y los resultados de este modelo se pueden ver en la Figura 23 y en la Tabla 14, respectivamente.
Figura 23. Cubrimiento de la provincia de Valencia con el modelo 1.1
Fuente: Elaboración propia a partir de QGIS 3.10.5
En la Figura 23 se aprecia un destacado descubrimiento del departamento de Xàtiva, de la parte oeste del departamento de La Ribera, de la zona de Venta del Moro del departamento de Requena y de parte de los departamentos de Manises y Arnau de Vilanova – Llíria. Sin embargo, el departamento de Sagunto mejora en cubrimiento respecto al modelo anterior, por lo que se ve en el mapa. Ahora se analizarán los datos numéricos.

<table>
<thead>
<tr>
<th>Dpto. salud</th>
<th>E_i (%)</th>
<th>$D_{i-min_relativo}$ (%)</th>
<th>D_i (%)</th>
<th>SVA (ud.)</th>
<th>SVB (ud.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. actual</td>
<td>M1.1</td>
<td>S. actual</td>
<td>M1.1</td>
<td></td>
</tr>
<tr>
<td>Xàtiva</td>
<td>92,3</td>
<td>5,5</td>
<td>2,7</td>
<td>8,8</td>
<td>27,1</td>
</tr>
<tr>
<td>Manises</td>
<td>1066,2</td>
<td>361,1</td>
<td>0,0</td>
<td>0,0</td>
<td>12,3</td>
</tr>
<tr>
<td>Requena</td>
<td>65,5</td>
<td>15,5</td>
<td>6,4</td>
<td>12,1</td>
<td>11,8</td>
</tr>
<tr>
<td>La Ribera</td>
<td>151,6</td>
<td>171,0</td>
<td>0,0</td>
<td>0,5</td>
<td>8,0</td>
</tr>
<tr>
<td>Arnau - Lliria</td>
<td>742,1</td>
<td>128,9</td>
<td>0,8</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>Gandia</td>
<td>250,2</td>
<td>111,2</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Hospital General</td>
<td>1357,7</td>
<td>448,3</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Sagunto</td>
<td>374,5</td>
<td>283,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Malvarrosa</td>
<td>767,4</td>
<td>437,6</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Doctor Peset</td>
<td>1172,5</td>
<td>653,7</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Fe</td>
<td>1065,8</td>
<td>685,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>765,6</td>
<td>347,8</td>
<td>0,5</td>
<td>1,5</td>
<td>4,3</td>
</tr>
</tbody>
</table>

Tabla 14. Resultados del modelo 1.1
Fuente: Elaboración propia

Se aprecia en la Tabla 14 que, en este caso, hay 5 departamentos de salud que no cubren a toda su población. Se trata de los departamentos de Xàtiva, Manises, Requena, Arnau – Llíria y La Ribera. Ademáes, a excepción del departamento de Arnau – Llíria, el defecto de cubrimiento en estos departamentos es muy elevada, superando, por ejemplo, el de Xàtiva el 27% del conjunto de su población. A pesar del elevado defecto en estos departamentos, existe a su vez un peso relativo del exceso, en ocasiones, elevado. Esto será debido, como ya se ha mencionado en anteriores epígrafes, a los solapamientos producidos entre isócronas, a veces producidos por soportes vitales avanzados y soportes vitales básicos que están situados en la misma base.

En comparación con la solución actual, tan solo se aprecia una mejoría notable del defecto en el departamento de Arnau de Vilanova – Llíria. En todos los demás departamentos, a excepción del de Requena donde se mejora un poco el defecto de cubrimiento con respecto a la situación actual, el defecto es mucho mayor o igual que en la situación actual. El exceso de cubrimiento es menor en 10 de los 11 departamentos de salud, siendo en el total de la población de la provincia más de 2 veces más pequeño.

En definitiva, este modelo tampoco mejoraría la solución que hay actualmente, ya que ni el exceso es superior ni el defecto es inferior, lo que hace que esta distribución de VES sea muy inadecuada para la provincia.
5.3.5. Modelo matemático 2

Para construir el nuevo modelo matemático, denominado “modelo matemático 2” se va a añadir al modelo 1 la siguiente restricción:

\[\sum_{j=1}^{n} x_j^A + x_j^B \leq 1 \]

(10)

La restricción (10) impone que en una misma base no puede haber un SVA y un SVB al mismo tiempo. Los resultados se representan, tanto visualmente como numéricamente, en la Figura 24 y en la Tabla 15, respectivamente.

<table>
<thead>
<tr>
<th>Dpto. salud</th>
<th>(E_i) (%)</th>
<th>(D_{\text{min relativo}}) (%)</th>
<th>(D_i) (%)</th>
<th>SVA (ud.)</th>
<th>SVB (ud.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. actual</td>
<td>M2</td>
<td>S. actual</td>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>La Ribera</td>
<td>151,6</td>
<td>26,4</td>
<td>0,0</td>
<td>0,5</td>
<td>17,5</td>
</tr>
<tr>
<td>Requena</td>
<td>65,5</td>
<td>77,7</td>
<td>6,4</td>
<td>12,1</td>
<td>6,4</td>
</tr>
<tr>
<td>Arnau - Llíria</td>
<td>742,1</td>
<td>45,6</td>
<td>0,8</td>
<td>3,3</td>
<td>3,7</td>
</tr>
<tr>
<td>Xàtiva</td>
<td>92,3</td>
<td>336,9</td>
<td>2,7</td>
<td>8,8</td>
<td>2,7</td>
</tr>
<tr>
<td>Gandía</td>
<td>250,2</td>
<td>66,5</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Hospital General</td>
<td>1357,7</td>
<td>104,9</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Manises</td>
<td>1066,2</td>
<td>176,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Sagunto</td>
<td>374,5</td>
<td>373,4</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Malvarrosa</td>
<td>767,4</td>
<td>202,6</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Doctor Peset</td>
<td>1172,5</td>
<td>66,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Fe</td>
<td>1065,8</td>
<td>154,6</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>765,6</td>
<td>136,4</td>
<td>0,5</td>
<td>1,5</td>
<td>2,6</td>
</tr>
</tbody>
</table>

Tabla 15. Resultados del modelo 2
Fuente: Elaboración propia

En este caso, los departamentos de salud que no se cubren totalmente son el de Arnau – Llíria y el de La Ribera, siendo este último el más afectado, con un 17,465% de su población sin cubrir. Además, el exceso total es bastante pequeño, consiguiendo un valor relativo de 136,387%. Se añade como inconveniente la mala distribución de los SAMU o SVA por los departamentos, habiendo 3 departamentos sanitarios sin ningún soporte vital avanzado, con los problemas que esto conlleva (ya que no se podrán atender en el tiempo recomendado las emergencias tipo 1).

En comparación con la actual solución, el defecto sigue siendo superior aunque ahora lo es solamente 1,7 veces al de la solución actual. El exceso total de la provincia es mucho peor, ya que se está sobrecubriendo a la población 1,36 veces, mientras que actualmente se sobrecubre 7,65 veces.
CAPÍTULO V. ESPECIFICACIÓN MATEMÁTICA, MODELIZACIÓN Y ANÁLISIS DE RESULTADOS

Figura 24. Cubrimiento de la provincia de Valencia con el modelo 2
Fuente: Elaboración propia a partir de QGIS 3.10.5
En la Figura 24 se puede visualizar la gran cantidad de población sin cubrir del departamento de La Ribera, ya que se encuentra descubierta casi toda la zona oeste. También se pueden ver zonas del departamento de Llíria que no se encuentran cubiertas, mientras que los demás departamentos parecen cubiertos correctamente en el mapa.

5.3.5.1. Modelo matemático 2.1

Ahora, para evitar el problema del modelo anterior con la distribución de los SVA, se va a imponer la restricción de que en cada departamento haya, como mínimo, 1 vehículo de este tipo.

\[
\sum_{j=1}^{N_i} x_j^A \geq 1, \quad \forall \ i \in M
\] (11)

El mapa de la distribución de los VES y su cubrimiento se muestra en la Figura 25. Los resultados numéricos se muestran en la Tabla 16.

<table>
<thead>
<tr>
<th>Dpto. salud</th>
<th>(E_i) (%)</th>
<th>(D_{i,M}) min. relativo (%)</th>
<th>(D_i) (%)</th>
<th>SVA (ud.)</th>
<th>SVB (ud.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. actual</td>
<td>M2.1</td>
<td>S. actual</td>
<td>M2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Ribera</td>
<td>151,6</td>
<td>24,4</td>
<td>0,0</td>
<td>0,5</td>
<td>15,5</td>
</tr>
<tr>
<td>Requena</td>
<td>65,5</td>
<td>73,4</td>
<td>6,4</td>
<td>12,1</td>
<td>6,4</td>
</tr>
<tr>
<td>Gandía</td>
<td>250,2</td>
<td>54,8</td>
<td>0,8</td>
<td>0,8</td>
<td>3,6</td>
</tr>
<tr>
<td>Xàtiva</td>
<td>92,3</td>
<td>313,6</td>
<td>2,7</td>
<td>8,8</td>
<td>2,7</td>
</tr>
<tr>
<td>Arnau - Llíria</td>
<td>742,1</td>
<td>22,3</td>
<td>0,8</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>Hospital General</td>
<td>1357,7</td>
<td>32,4</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Manises</td>
<td>1066,2</td>
<td>150,6</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Sagunto</td>
<td>374,5</td>
<td>567,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Malvarrosa</td>
<td>767,4</td>
<td>72,9</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Doctor Peset</td>
<td>1172,5</td>
<td>7,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Fe</td>
<td>1065,8</td>
<td>86,6</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>765,6</td>
<td>96,3</td>
<td>0,5</td>
<td>1,5</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Tabla 16. Resultados del modelo 2.1
Fuente: Elaboración propia

En este caso, los departamentos sanitarios con un peso relativo de defecto superior al mínimo son 3: Gandía, Arnau – Llíria y La Ribera. El más afectado con esta distribución de VES es el departamento de La Ribera con un porcentaje de defecto del 15,479%. Además, la distribución de SVB está bastante descompensada, teniendo el departamento de Xàtiva 16 soportes vitales básicos mientras que otros como Doctor Peset y La Fe tienen 0.

Realizando la comparación con la actual solución, el defecto mejora en 3 departamentos sanitarios (ya que es más pequeño), mientras que empeora (es mayor)
en 2. Fijándose en el total de la provincia, el porcentaje de descubrimiento es mayor en nuestro modelo y, además, el exceso es casi 8 veces menor, por lo que este modelo seguiría sin conseguir mejorar la situación actual. En el siguiente modelo se introducirán las restricciones de solapamiento, pero primero vamos a ver qué significa este concepto.

Si nos fijamos en la Figura 25, se aprecia que el departamento de La Ribera sigue sin cubrirse correctamente, y también queda sin cubrir la zona sud del departamento de salud de Gandía. También se observan zonas del departamento de Arnau -Llíria sin cubrir (sobre todo de la mitad norte), mientras que el resto de los departamentos parecen estar cubiertos correctamente, destacando los de Sagunto y Xàtiva – Ontinyent (refiriéndose solo a los departamentos de la periferia de la ciudad).
Figura 25. Cubrimiento de la provincia de Valencia con el modelo 2.1
Fuente: Elaboración propia
5.3.6. Solapamientos entre isócronas

Otro de los problemas que surgen al realizar el modelo son los solapamientos que se producen entre dos o más isócronas cercanas. El problema de los solapamientos es que se va a sobrecubrir a la misma población y el modelo no será capaz de discernir entre la población que se está cubriendo más de 1 vez, por lo que te podrá proporcionar un resultado falso de la población total que queda cubierta realmente, ya que está contando a la misma población más de una vez (según la cantidad de isócronas que se solapan en el mismo sitio). Para evitar esto, habrá que ver qué isócronas son las que se solapan (visualmente en el mapa se verán las isócronas que tienen un porcentaje de solapamiento alto) para evitar colocar un VES en cada una de esas bases. Es decir, si se coloca un VES en una de estas bases no se colocará en la otra y viceversa. De esta manera, se estarán evitando isócronas superpuestas y, en consecuencia, sobrecubrimiento. Para entender mejor qué son estos solapamientos, se va a ver un ejemplo en las siguientes figuras.

![Figura 26. Isócrona del Centro de Salud de l’Olleria](image)
Fuente: Elaboración propia a partir de QGIS 3.10.5
Figura 27. Isócrona del Centro de Salud de Albaida
Fuente: Elaboración propia a partir de QGIS 3.10.5

Figura 28. Isócronas del Centro de Salud de l’Olleria y del Centro de Salud de Albaida
Fuente: Elaboración propia a partir de QGIS 3.10.5
Se pueden ver en la Figura 26 y en la Figura 27 las isócronas de 15 minutos creadas en las bases situadas en los Centros de Salud de l’Olleria y de Albaida, respectivamente. En la Figura 27, al dibujar ambas isócronas juntas se puede apreciar como la figura toma densidad en la zona donde se produce el solapamiento. Para ver claramente la cantidad de solapamiento que se produce, se puede observar la zona de color verde oscuro de la Figura 29. En este caso, añadiríamos la restricción de que si colocamos un VES en el Centro de Salud de Albaida, no se podrá colocar otro en el Centro de Salud de l’Olleria, y viceversa, ya que la cantidad de solapamiento que se produce es bastante grande, por lo que ambas isócronas estarán cubriendo a una cantidad bastante grande de población idéntica.

Sin embargo, habrá algunas veces en los que sí que interese un sobrecubrimiento, debido a la alta población de la zona, lo que consecuentemente se traduce en una mayor probabilidad de emergencias. Este será el caso, por ejemplo, de la ciudad de Valencia, donde se permitirá que se produzcan solapamientos para poder hacer frente a las llamadas de emergencias cuando otro VES que cubre la zona se encuentre ocupado.

En conclusión, en el modelo matemático se escribirán restricciones de solapamiento para las zonas donde dicho solapamiento no implique una alta población, ya que, en caso contrario, sí que interesará un sobrecubrimiento.
5.3.7. Modelo matemático 3

Ahora, se va a atacar el problema de los solapamientos. Para que no haya solapamientos en el cubrimiento que hay entre bases cercanas (véase el epígrafe 5.1.2), se ha de poner una restricción para que un mismo vehículo no cubra dos veces a la misma población. Antes de escribir las restricciones pertinentes, se deben introducir algunos parámetros, que se muestran en la Tabla 17.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = {k_1, k_2, ... k_v}$</td>
<td>Conjunto del conjunto de bases cuyas isócronas se solapan y cuya población cubierta es pequeña.</td>
</tr>
<tr>
<td>$L = {l_1, l_2, ... l_w}$</td>
<td>Conjunto del conjunto de bases cuyas isócronas se solapan y cuya población cubierta es grande.</td>
</tr>
</tbody>
</table>

Tabla 17. Parámetros necesarios para el modelo 3

Fuente: Elaboración propia

Las restricciones que se añaden al anterior modelo (el modelo 2.1.) son las siguientes:

\[
\sum_{j \in k_s} (x_j^A + x_j^B) \leq 1, \quad \forall k_s \in K, \quad \text{siendo } s = \{1,2, ..., v\} \tag{12}
\]

\[
\sum_{j \in l_s} (x_j^A + x_j^B) \leq 2, \quad \forall l_s \in L, \quad \text{siendo } s = \{1,2, ..., w\} \tag{13}
\]

La restricción (12) indica que no puede haber más de un VES en bases que se solapen y cuya población sea pequeña ya que, al haber menos población, la probabilidad de que surja una emergencia será menor. La restricción (13) implica que en el conjunto de isócronas que se solapen en zonas de mucha población, se pueden colocar, como mucho, 2 VES, debido a que el sobrecubrimiento en este caso será beneficioso. Un ejemplo de un caso en el que se ha impuesto la restricción (13) es en las bases del Centro de Salud “Ontinyent III”, “Ontinyent II”, “Ontinyent San Rafael” y el “Hospital General de Ontinyent”, debido a que se encuentran muy cerca entre ellas y cubren al municipio de Ontinyent, que tiene una población de 35.395 habitantes. Como esta cantidad de población es bastante grande, la probabilidad de que surja alguna emergencia también lo va a ser, por lo que no se restringe al modelo a colocar tan solo 1 VES en una de estas 4 bases, sino que se le permite que se puedan ubicar un máximo de 2. De esta manera se estará sobrecubriendo a esa parte de la población y estarán más protegidos frente a cualquier emergencia. En la Figura 30 se puede ver la ubicación de estas 4 bases.
Los resultados numéricos se muestran en la Tabla 18.

<table>
<thead>
<tr>
<th>Dpto. salud</th>
<th>E₁ (%)</th>
<th>D₁_{min,relativo} (%)</th>
<th>D₁ (%)</th>
<th>SVA (ud.)</th>
<th>SVB (ud.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. actual</td>
<td>M₃</td>
<td>S. actual</td>
<td>M₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requena</td>
<td>65,5</td>
<td>5,3</td>
<td>6,4</td>
<td>12,1</td>
<td>10,0</td>
</tr>
<tr>
<td>Xàtiva</td>
<td>92,3</td>
<td>194,0</td>
<td>2,7</td>
<td>8,8</td>
<td>2,7</td>
</tr>
<tr>
<td>Arnau - Llíria</td>
<td>742,1</td>
<td>257,5</td>
<td>0,8</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>La Ribera</td>
<td>151,6</td>
<td>144,3</td>
<td>0,0</td>
<td>0,5</td>
<td>0,8</td>
</tr>
<tr>
<td>Gandía</td>
<td>250,2</td>
<td>101,1</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Hospital General</td>
<td>1357,7</td>
<td>433,6</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Manises</td>
<td>1066,2</td>
<td>395,7</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Sagunto</td>
<td>374,5</td>
<td>242,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Malvarrosa</td>
<td>767,4</td>
<td>384,6</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Doctor Peset</td>
<td>1172,5</td>
<td>321,4</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Fe</td>
<td>1065,8</td>
<td>505,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>765,6</td>
<td>310,4</td>
<td>0,5</td>
<td>1,5</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Tabla 18. Resultados del modelo 3
Fuente: Elaboración propia

Al añadir las restricciones de solapamiento, se han disminuido los defectos en los departamentos, lo cual resulta positivo para el objetivo a tratar. Sin embargo, continúa habiendo 3 departamentos sin cubrir totalmente (lo máximo posible con los recursos disponibles) y, además, la distribución de soportes vitales básicos parece inadecuada, ya que en el departamento de Xàtiva hay 14 de un total de 47 disponibles. Eso implica casi el 30% del total de SVB, teniendo que repartir el restante 70% entre los otros 10 departamentos sanitarios, la mayoría con una mayor población a cubrir que el de Xàtiva.

Si se compara con la solución actual, se está mejorando el defecto de cubrimiento en todos los departamentos, exceptuando el de La Ribera donde el defecto aumenta apenas 2 décimas. En relación con los excesos, éste sigue siendo mayor en la situación actual, siendo 2,5 veces mayor que en la solución de este modelo propuesto.
Figura 31. Cubrimiento de la provincia de Valencia con el modelo 3
Fuente: Elaboración propia
5.3.7.1. Modelo matemático 3.1. Modelo final

Para solucionar el problema de la distribución de los SVB, se va a añadir una última restricción que obligue a colocar 10 soportes vitales básicos como máximo en cada departamento. Se ha elegido este número para evitar que en el departamento de Xàtiva – Ontinyent se ubiquen los 16 SVB que proponía el anterior modelo, pero sin restringir tanto este número, ya que este departamento necesita bastantes recursos para su cubrimiento total ya que la población se encuentra bastante distribuida.

\[\sum_{j=1}^{N_i} x_j^{B} \leq 10, \quad \forall \ i \in M \]

(14)

El mapa con la solución de este modelo matemático se puede ver en la Figura 32. La tabla de resultados se muestra en la Tabla 19.

<table>
<thead>
<tr>
<th>Dpto. salud</th>
<th>E_i (%)</th>
<th>D_i,min_relativo (%)</th>
<th>D_i (%)</th>
<th>SVA (ud.)</th>
<th>SVB (ud.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. actual</td>
<td>M3.1</td>
<td>S. actual</td>
<td>M3.1</td>
<td></td>
</tr>
<tr>
<td>Requena</td>
<td>65,5</td>
<td>3,6</td>
<td>6,4</td>
<td>12,1</td>
<td>10,0</td>
</tr>
<tr>
<td>Xàtiva</td>
<td>92,3</td>
<td>95,9</td>
<td>2,7</td>
<td>8,8</td>
<td>2,7</td>
</tr>
<tr>
<td>Arnau - Llíria</td>
<td>742,1</td>
<td>67,9</td>
<td>0,8</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>Gandía</td>
<td>250,2</td>
<td>100,6</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Hospital General</td>
<td>1357,7</td>
<td>758,9</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Manises</td>
<td>1066,2</td>
<td>405,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Sagunto</td>
<td>374,5</td>
<td>263,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Malvarrosa</td>
<td>767,4</td>
<td>461,8</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Doctor Peset</td>
<td>1172,5</td>
<td>841,4</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Fe</td>
<td>1065,8</td>
<td>703,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>La Ribera</td>
<td>151,6</td>
<td>168,6</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>765,6</td>
<td>417,4</td>
<td>0,5</td>
<td>1,5</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Tabla 19. Resultados del modelo 3.1
Fuente: Elaboración propia
Figura 32. Cubrimiento de la provincia de Valencia con el modelo 3.1
Fuente: Elaboración propia
En este último modelo, tan solo se obtienen 2 departamentos sanitarios sin cubrir al máximo, aunque el defecto que presentan es bastante pequeño. Además, la distribución de los VES parece ser correcta y el exceso de población cubierta es adecuado, ya que los 4 departamentos correspondientes a la ciudad de Valencia y que cubren a la mayoría de la población presentan un porcentaje de sobrecubrimiento muy elevado. Esto es un aspecto positivo, debido a que si la frecuencia de emergencias es elevada, el SEM estará preparado para poder cubrir a todas las emergencias. Sin embargo, preocupa un poco el poco exceso que se produce en los 2 departamentos que presentan un defecto mayor que el mínimo, estos son, Requena y Arnau – Llíria, inquietando mucho más este último ya que la población que tiene que cubrir es mucho mayor, por lo que la probabilidad de que se produzcan emergencias también lo es.

En comparación con la solución actual, se consigue mejorar el defecto casi en un 50% y el exceso, aun siendo menor, es bastante potente, llegando a sobrecubrir 4 veces a la población total de la provincia.

Para poder visualizar correctamente la distribución de nuestro modelo final y la de la solución que hay actualmente, se van a mostrar mapas de la ubicación de los SVA y de los SVB para ambas soluciones. Estos mapas se pueden ver en la Figura 33, Figura 34, Figura 35 y Figura 36.

Si realizamos la comparación por departamentos, se aprecian en la Figura 33 una serie de cambios producidos entre ambas soluciones propuestas. En el departamento de Gandía, se pasa de trabajar con 2 SVA (en la solución actual) a trabajar con 1 solo ubicado en el Centro de Salud de Bellreguard, cerca de Gandía. En el departamento de Xàtiva, se pasa de utilizar 3 SVA para cubrir el departamento a 2 SVA, coincidiendo el SAMU ubicado en el Hospital de Ontinyent. En Requena coincide en ambas soluciones el SAMU ubicado en el Centro de Salud de Utiel, pero se difiere en el otro Soporte Vital Avanzado. Mientras que en la solución actual se localiza en el Hospital de Requena, en la solución del modelo 3.1 se sitúa en el Centro de Salud de Cofrentes. En el departamento de La Ribera, no coincide ningún SVA. La solución actual los ubica en el Centro de Salud de Sueca y en el Hospital Universitario de La Ribera, mientras que el modelo 3.1 los coloca en el Centro de Salud de Algirós y de Alginet. Respecto a los demás departamentos de salud, tan solo coinciden ambas soluciones en la ubicación de los SAMU en el Hospital de Llíria, en el Hospital de La Fe antigua y en el Hospital de La Malvarrosa.

Respecto a los SVB, mientras la solución actual parece que prefiere centrar su localización mayormente en la ciudad de Valencia, la solución del modelo 3.1 sugiere distribuirlos por toda la provincia para conseguir minimizar el defecto de cubrimiento, lo cual, como ya se ha mencionado, se consigue disminuyéndolo en casi un 50% con respecto a la solución actual.
Figura 33. Distribución de los SVA según la solución actual VS modelo 3.1
Fuente: Elaboración propia a partir de QGIS 3.10.5
Para visualizar mejor la concentración de SVA que se produce en la ciudad de Valencia y sus alrededores, se va a ampliar esa zona en el mapa (Figura 34).

Figura 34. Distribución de los SVA según la solución actual VS modelo 3.1 ampliado
Fuente: Elaboración propia a partir de QGIS 3.10.5
Figura 35. Distribución de los SVB según la solución actual VS modelo 3.1
Fuente: Elaboración propia
Para visualizar mejor la concentración de SVB que se produce en la ciudad de Valencia y sus alrededores, se va a ampliar esa zona en el mapa (Figura 36).

Figura 36. Distribución de los SVB según la solución actual VS modelo 3.1 ampliado
Fuente: Elaboración propia
CAPÍTULO VI. COMPARACIÓN E INTERPRETACIÓN DE LOS RESULTADOS

En este capítulo se va a realizar una comparación de todos los modelos resueltos anteriormente con la solución que hay actualmente para la provincia de Valencia.

En primer lugar, se va a analizar el defecto de cubrimiento producido por cada modelo tanto en cada departamento sanitario, como en el total de la provincia.

A partir de la Figura 37 se puede observar el porcentaje de defecto de cubrimiento que se produce en cada modelo para cada departamento sanitario. Se observa que los modelos que más veces presentan un porcentaje de defecto destacado del resto son los modelos 1 y 1.1, que fueron los primeros que se construyeron. En estos modelos no había restricciones de solapamiento ni de VES mínimos o máximos a colocar por departamentos, ni de colocar tan solo un tipo de vehículo de emergencia sanitaria por base. Es lógico pues, que los modelos con peores resultados sean estos dos.
En la Figura 38 se corrobora lo que se podía ver en la Figura 37, y es que los modelos que presentan un mayor defecto en términos relativos son el 1 y el 1.1. Se puede apreciar cómo ha ido mejorando la solución con respecto a minimizar los defectos, que era el objetivo principal del modelo, llegando a mejorar en los dos últimos modelos (modelo 3 y modelo 3.1) a la solución actual.

Ahora, se van a analizar los excesos que se producen en cada departamento y en el total de la provincia según el modelo empleado.
CAPÍTULO VI. COMPARACIÓN E INTERPRETACIÓN DE LOS RESULTADOS

Figura 39. Porcentaje de exceso del departamento de Manises según cada modelo
Fuente: Elaboración propia

Figura 40. Porcentaje de exceso del departamento de Xàtiva según cada modelo
Fuente: Elaboración propia

Figura 41. Porcentaje de exceso del departamento de Requena según cada modelo
Fuente: Elaboración propia

Figura 42. Porcentaje de exceso del departamento de Gandía según cada modelo
Fuente: Elaboración propia
CAPÍTULO VI. COMPARACIÓN E INTERPRETACIÓN DE LOS RESULTADOS

Figura 43. Porcentaje de exceso del departamento de Sagunto según cada modelo
Fuente: Elaboración propia

Figura 44. Porcentaje de exceso del departamento de Arnau - Llíria según cada modelo
Fuente: Elaboración propia

Figura 45. Porcentaje de exceso del departamento de Doctor Peset según cada modelo
Fuente: Elaboración propia

Figura 46. Porcentaje de exceso del departamento de La Malvarrosa según cada modelo
Fuente: Elaboración propia
CAPÍTULO VI. COMPARACIÓN E INTERPRETACIÓN DE LOS RESULTADOS

Figura 47. Porcentaje de exceso del departamento de La Fe según cada modelo
Fuente: Elaboración propia

Figura 48. Porcentaje de exceso del departamento de Hospital General según cada modelo
Fuente: Elaboración propia

Figura 49. Porcentaje de exceso del departamento de La Ribera según cada modelo
Fuente: Elaboración propia
En este caso, el mejor resultado sería el que proporciona la solución actual, ya que con su distribución de VES está consiguiendo maximizar el exceso, es decir, está sobreprotegiendo a la población porque está cubriendola más veces. Esto será útil para momentos en los que haya una alta demanda, ya que habrá más VES disponibles que pueden llegar en el tiempo de isócrona estipulado al lugar indicado. No obstante, el modelo final propuesto por nosotros (el modelo 3.1), también consigue sobrecubrir en 4 veces a la población total de la provincia, lo que se traduce en un buen resultado.

A través de los resultados obtenidos mediante los diferentes modelos, es destacable reconocer la importancia de añadir correctamente las restricciones en los modelos. Tras este análisis de las soluciones obtenidas, se ha podido observar como el dotar a los algoritmos de restricciones adecuadas ayuda a alcanzar mejores soluciones. El modelo final implementado ha permitido conseguir unos mejores resultados que los anteriores modelos y que la solución actual con respecto al objetivo deseado, que era el de minimizar la población que se queda sin cubrir.
7.1. Conclusiones

En este trabajo, se ha expuesto la importancia que tiene una buena gestión de la atención prehospitalaria para la ciudadanía, y la relevancia de los Sistemas de Emergencias Médicas (SEM) tanto a nivel autonómico como a nivel provincial en lo que conlleva a la rapidez con la que se atiende a los pacientes cuando surge cualquier incidencia grave.

También se ha trabajado con una herramienta muy potente, denominada QGIS 3.10.5 que puede ser de ayuda para los SEM para la toma de decisiones y mediante la cual el usuario es capaz de realizar simulaciones acerca de la cantidad de población que se cubriría si se colocara el Vehículo de Emergencia Sanitaria (VES) en un lugar o en otro. Estas simulaciones se pueden realizar gracias a que este software es capaz de dibujar isócronas, concepto explicado exhaustivamente en el trabajo y con el cual trabaja actualmente el SEM. En consecuencia, se han podido observar claramente las limitaciones que surgen en la provincia de Valencia atendiendo al cubrimiento de la población, y se ha podido comprobar que no es posible conseguir un cubrimiento total de la provincia para los tiempos estipulados de 12 y 15 minutos con los recursos y las posibles bases donde ubicarlos disponibles.

Además, se ha comprobado estadísticamente como la demanda aumenta con el número de habitantes de la zona, por lo que se han podido realizar los modelos matemáticos fijándose en la población residente.

Otro de los problemas que han surgido en el trabajo es el de los solapamientos que se producen entre las isócronas cercanas. Esto conlleva a un sobrecubrimiento de la población que, en ocasiones, resulta beneficioso. Estos solapamientos resultarán beneficiosos en zonas con mucha densidad de población, como es el caso de la ciudad de Valencia ya que, según el estudio realizado, habrá más probabilidad de que surja una emergencia, por lo que convendrá sobreproteger la zona. Pero no serán beneficiosos en zonas con poca población, ya que la probabilidad de que surja una emergencia será menor y no será adecuado sobreproteger la zona porque, si se hiciera, podría haber VES sin utilizarse.

Se han desarrollado 6 modelos matemáticos con el objetivo de mejorar la solución que ofrece el servicio actualmente, minimizando la población que queda sin cubrir en toda la provincia. Se ha comprobado cómo una adecuada introducción de las restricciones conlleva a un mejor funcionamiento de estos modelos. En el último modelo construido, se ha conseguido mejorar el defecto o población sin cubrir respecto al que hay actualmente en casi un 50%. Es decir, con el modelo implementado, se ha logrado alcanzar el objetivo deseado, por lo que el modelo ha sido satisfactorio. No obstante, el
sobrecubrimiento de la población que se produce en el modelo final empeora al de la solución actual, aunque los resultados son más que favorables.

Todos los modelos han sido resueltos con la herramienta OpenSolver 2.9.0, la cual es capaz de ofrecer una solución de los modelos en un tiempo muy corto. Tras la visualización de la solución de cada modelo en QGIS 3.10.5, esta herramienta permite incorporar o relajar restricciones según convenga para así poder reflejar más fielmente la realidad del servicio. Por lo tanto, va a ser un punto de partida que va a ayudar a responder mejor a las necesidades del servicio y a la realidad del mismo.

7.2. Líneas de trabajo futuras

Para finalizar, resulta conveniente establecer una línea de investigación futura que permita conocer más en detalle la inclusión del software utilizado en el sector sanitario, así como las ampliaciones de los modelos implementados.

La población en la provincia de Valencia varía con respecto a la estación del año en la que nos encontremos. Al tratarse de una provincia costera, las personas residentes en zonas del interior se trasladan en verano a las zonas de playa. Es por esto por lo que se debería tratar el problema de manera distinta dependiendo de si se está en época estival o no.

Además, se ha mencionado durante el trabajo que hay ambulancias que no trabajan durante las 24 horas, si no que tan solo trabajan 12 horas por el día o 12 horas por la noche. En el trabajo realizado, se ha considerado que las ambulancias estaban disponibles durante las 24 horas del día, por lo que una posible ampliación del trabajo, más próxima a la realidad, sería la de considerar estas jornadas.

Por otra parte, el trabajo se ha realizado como si los VES fueran a mantenerse estáticos durante todo el turno de trabajo cuando, en realidad, no es así. Las ambulancias se mueven constantemente, por lo que sería necesario trabajar en un modelo de relocalización dinámica que consiga captar todos los movimientos que se producen entre las ambulancias para reubicarlas constantemente.

Por último, el software utilizado denominado QGIS 3.10.5 está programado en lenguaje Python, por lo que sería interesante desarrollar una aplicación que permitiera interactuar de una forma dinámica y sencilla con el sujeto decisor, que en este caso sería el CICU y los responsables del SASUE, para poder aplicar todo lo mencionado anteriormente de una manera muy rápida.

Programa de las Naciones Unidas para el Desarrollo (PNUD). Objetivos de Desarrollo Sostenible | PNUD. https://www.undp.org/content/undp/es/home/sustainable-development-goals.html. [En línea] [Citado el: 7 de Agosto de 2020.]

Anexo I

Información de las 158 posibles bases para ubicar los VES de la provincia de Valencia

1. **Departamento de Gandía**

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gandía</td>
<td>Centro de Salud</td>
<td>Castelló de Rugat</td>
<td>Camí del Rafol, 2, 46841 Castelló de Rugat, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Gandía</td>
<td>Centro de Salud</td>
<td>Beniopa (Gandía)</td>
<td>Av. de Beniopa, 33, 46701 Gandia, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td>Gandía</td>
<td>Centro de Salud</td>
<td>Bellreguard</td>
<td>Ronda dels Esports, s/n, 46713 Bellreguard, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Gandía</td>
<td>Centro de Salud</td>
<td>Corea</td>
<td>Carrer Benissuai, 22, 46701 Gandia, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Gandía</td>
<td>Centro de Salud</td>
<td>Grau de Gandia</td>
<td>Carrer de la Goleta, 13, 46730 Gandia, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Gandía</td>
<td>Centro de Salud</td>
<td>Oliva</td>
<td>Carrer de l’Historiador Bernardí Llorca, 46780 Oliva, Valencia</td>
<td>6h</td>
</tr>
<tr>
<td>Gandía</td>
<td>Centro de Salud</td>
<td>Ròtova</td>
<td>Av. Jaume I, 88, 46725 Ròtova, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td>Gandía</td>
<td>Centro de Salud</td>
<td>Tavernes de la Valldigna</td>
<td>Plaça Prado Comarcal, 0, 46760 Tavernes de la Valldigna, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Gandía</td>
<td>Centro de Salud</td>
<td>Villalonga</td>
<td>Carrer Reprimala, 1, 46720 Villalonga, Valencia</td>
<td>-</td>
</tr>
<tr>
<td>Gandía</td>
<td>Hospital Comarcal</td>
<td>Francesc de Borja</td>
<td>Avinguda de la Medicina, 6, 46702 Gandia, Valencia</td>
<td>24h</td>
</tr>
</tbody>
</table>

Tabla 20. Información sobre las bases del Departamento de Gandía

Fuente: Elaboración propia
Departamento de La Ribera

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sueca</td>
<td>Centro de Salud</td>
<td>Carrer de les Palmeres, 0 S/N, 46410 Sueca, València</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>L'Alcúdia</td>
<td>Centro de Salud</td>
<td>Carrer de Magúncia, s/n, 46250 L'Alcúdia, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Cullera</td>
<td>Centro de Salud</td>
<td>Avinguda del País Valencià, 4, 46400 Cullera, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Cullera Raval</td>
<td>Centro de Salud</td>
<td>Carrer València, 119, 46400 Cullera, Valencia</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Carlet</td>
<td>Centro de Salud</td>
<td>Carrer de Sant Bernat i les Germanes, 0, 46240 Carlet, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Carcaixent</td>
<td>Centro de Salud</td>
<td>Carrer Bagnols sur Cèze, 0 S/N, 46740 Carcaixent, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Benifaió</td>
<td>Centro de Salud</td>
<td>Carrer Almussafes, 11, 46450 Benifaió, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Alzira I</td>
<td>Centro de Salud</td>
<td>Carrer de la Pau, s/n, 46600 Alzira, Valencia</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alzira II</td>
<td>Centro de Salud</td>
<td>Carrer Hort dels Frares, 60, 46600 Alzira, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Almussafes</td>
<td>Centro de Salud</td>
<td>Carrer Drassanes, 0 S/N, 46440 Almussafes, Valencia</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Alginet</td>
<td>Centro de Salud</td>
<td>Carrer Major, 77, 46230 Alginet, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Algesmesí I</td>
<td>Centro de Salud</td>
<td>Carrer de Santa Teresa, s/n, 46680 Algesmesí, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Algesmesí II</td>
<td>Centro de Salud</td>
<td>Parc de Salvador Castell, 6, 46680 Algesmesí, Valencia</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alberic</td>
<td>Centro de Salud</td>
<td>Calle Antonio Lloret, 60, 46260 Alberic, Valencia, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>La Ribera</td>
<td>Hospital Público Universitario</td>
<td>km 1, Ctra. Corbera, 46600 Alzira, Valencia</td>
<td>24h</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 21. Información sobre las bases del Departamento de La Ribera

Fuente: Elaboración propia
3. **Departamento de Manises**

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manises</td>
<td>Centro de Salud</td>
<td>Turís</td>
<td>Calle del Músico José Vicente Herrera, S/N, 46389 Turís, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Riba-Roja de Túria</td>
<td>Carrer Colón, s/n, 46190 Riba-roja de Túria, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Quart de Poblet</td>
<td>Carrer Trafalgar, 0, 46930 Quart de Poblet, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Loriguilla</td>
<td>Plaza España, 7, 46393 Loriguilla, Valencia</td>
<td>6h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Chiva</td>
<td>Calle Alcalde Urbano Blay Mañez, 4, 46370 Chiva, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Cheste</td>
<td>Carrer Esperantista Enrique Arnaud, S/N, 46380 Cheste, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Buñol</td>
<td>Av. Rafael Ridaura, 17, 46360 Buñol, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
<td>Manises</td>
<td>Av. de la Generalitat Valenciana, 50, 46940 Manises, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Hospital Crónicos</td>
<td>Mislata</td>
<td>Carrer de Dolores Ibárruri, 1, 46920 Mislata, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Consultorio Médico</td>
<td>Yátova</td>
<td>Calle Bernardo Juan, 33, 46367 Yátova, Valencia</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Consultorio Local</td>
<td>Godelleta</td>
<td>Calle Comunidad Valenciana, S/N, 46388 Godelleta, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Consultorio Local</td>
<td>Alborache</td>
<td>Av. de la Música, 12, 46369 Alborache, Valencia</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Ambulancias Autónomas</td>
<td>Av. Miguel Hernández, 3, 46960 Aldaia, Valencia</td>
<td>24h</td>
</tr>
</tbody>
</table>

Tabla 22. Información sobre las bases del Departamento de Manises

Fuente: Elaboración propia
4. **Departamento de Requena**

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requena</td>
<td>Centro de Salud</td>
<td>Utiel</td>
<td>Plaza Escuelas Pías, 1, 46300 Utiel, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Requena</td>
<td>Centro de Salud</td>
<td>Requena</td>
<td>Calle Constitución, 47, 46340 Requena, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Requena</td>
<td>Centro de Salud</td>
<td>Cofrentes</td>
<td>Calle Colón, 16, 46625 Cofrentes, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Requena</td>
<td>Centro de Salud</td>
<td>Caudete de las Fuentes</td>
<td>Calle Viñas, 12, 46315 Caudete de las Fuentes, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td>Requena</td>
<td>Centro de Salud</td>
<td>Ayora</td>
<td>Av. la Argentina, 36, 46620 Ayora, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Requena</td>
<td>Hospital General</td>
<td>Requena</td>
<td>Paraje, Calle Casablanca, S/N, 46340, Valencia</td>
<td>24h</td>
</tr>
</tbody>
</table>

Tabla 23. Información sobre las bases del Departamento de Requena

Fuente: Elaboración propia
5. Departamento de Sagunto

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagunto</td>
<td>Centro de Salud</td>
<td>Sagunto</td>
<td>Avinguda Sants de la Pedra, 81, 46500 Sagunt, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Puçol</td>
<td>Carrer del Caminàs, 69, 46530 Puçol, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Puerto de Sagunto I</td>
<td>Carrer Periodista Azzati, S/N, 46520 Port de Sagunt, Valencia</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Puerto de Sagunto II</td>
<td>Carrer Sagasta, s/n, 46520 Port de Sagunt, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Estivella</td>
<td>Carrer Sogorb, 0, 46590 Estivella, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>El Puig</td>
<td>Carrer del Progrés, 15, 46540 El Puig de Santa María, Valencia</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Hospital Urgencias</td>
<td>Sagunto</td>
<td>Av. Ramón Y Cajal, s/n, 46520 Sagunto, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Gilet (Iglesia)</td>
<td>Plaça de l’Església, 2, 46149 Gilet, Valencia</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 24. Información sobre las bases del Departamento de Sagunto

Fuente: Elaboración propia
Tabla 25. Información sobre las bases del Departamento de Arnau de Vilanova – Llíria

Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnau de Vilanova - Llíria</td>
<td>Centro de Salud</td>
<td>Villar del Arzobispo</td>
<td>del Señor, Plaza de la Huerta, 46170 Villar del Arzobispo, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Vilamarxant</td>
<td>Carrer de la Font Nova, 0 S/N, 46191 Vilamarxant, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Titaguas</td>
<td>Avenida Simón de Rojas Clemente y Rubio, 2, 46178 Titaguas</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Pobla de Vallbona</td>
<td>Av. Cervantes, 46, 46185 Pobla de Vallbona (la), Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Pedralba</td>
<td>Calle Bugarra, 102, 46164 Pedralba, Valencia</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Paterna La Coma</td>
<td>Plaza Pucol, s/n, 46980 Paterna, Valencia</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Moncada</td>
<td>Avenida del Mediterráneo, s/n, 46113 Moncada, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Llíria</td>
<td>Carrer Metge José Pérez Martínez, s/n, 46160 Llíria, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>L’Eliana</td>
<td>46183 Eliana (L’), Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Godelleta</td>
<td>Carrer Sant Sebastià, s/n, 46110 Godelleta, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Clot de Joan</td>
<td>Plaça Clot de Joan, s/n, 46980 Paterna, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Chelva</td>
<td>Av. de los Madereros, 38, 46176 Chelva, Valencia</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Burjassot</td>
<td>Carrer Beniferrí, s/n, 46100 Burjassot, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Burjassot II</td>
<td>Carrer de Rubert i Villó, 4, 46100 Burjassot, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Bètora</td>
<td>Albereda Escultor Ramon Inglés, 52, 46117 Bètora, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Benimàmet</td>
<td>Carrer de l’Enginyer Aubán, 20, 46035 València, Valencia</td>
<td>18h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Benaguacil</td>
<td>Carrer Verge del Pilar, S/N, 46180 Benaguacil, Valencia</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
<td>Llíria</td>
<td>Paratge Cabeço de l’Àguila CV-35, Salida 29, 46160 Llíria, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
<td>Doctor Moliner</td>
<td>Carrer Porta Coeli, s/n, 46118 Serra, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
<td>Arnau de Vilanova</td>
<td>Carrer de Sant Clement, 12, 46015 València, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Consultorio</td>
<td>Gestalgar</td>
<td>Calle Acequia, 2, Gestalgar, Valencia, España</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Calle Ciudad de Elda (Paterna)</td>
<td>Poigono Industrial de Paterna, Calle Ciudad de Elda</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Ambulancias Edetanas</td>
<td>Calle L’Espart, 7 polígono industrial Pla de Pascanya PAR.63-C, 46160 Llíria, Valencia</td>
<td>-</td>
</tr>
</tbody>
</table>
7. Departamento de Valencia – Clínico La Malvarrosa

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro de Salud</td>
<td>Rafelbunyol</td>
<td>Carrer Josep Maria Llopis, 26, 46138 Rafelbunyol, Valencia</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Massamagrell</td>
<td>Carrer Metge Miquel Servet, 48, 46130 Massamagrell, Valencia</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Museros</td>
<td>Av. del País Valencià, s/n, 46136 Museros, Valencia</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Foios</td>
<td>Carrer Ausiàs March, 30, 46134 Foios, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Meliana</td>
<td>Carrer d’Eduardo Romero, 1, 46133 Meliana, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Almássera</td>
<td>Carrer Ausiàs March, 1, 46132 Almássera, Valencia</td>
<td>6h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Tavernes Blanques</td>
<td>Carrer Castelló, 17, 46016 Tavernes Blanques, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Alboraya</td>
<td>Plaza dels Furs, s/n, 46120 Alboraya, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Alfahuir</td>
<td>Carrer d’Ismael Merlo, 46020 València, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Benimaclet</td>
<td>Carrer de la Guàrdia Civil, 13, 46020 València, Valencia</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Malvarrosa</td>
<td>Pabellón C, Carrer d’Isabel de Villena, 2, 46011 Valencia</td>
<td>6h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Salvador Pau</td>
<td>Carrer de Salvador Pau, 42, 46021 València, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Serrería I</td>
<td>Carrer de la Serradora, 73, 46022 València, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Serrería II</td>
<td>Carrer de Pere de València, 28, 46022 València, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Nazaret</td>
<td>Carrer de Fernando Morais de la Horra, 2, 46024 València, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Hospital Clínico Universitario</td>
<td>Valencia</td>
<td>Av. de Blasco Ibáñez, 17, 46010 València, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td>La Malvarrosa</td>
<td>Carrer d’Isabel de Villena, 2, 46011 València, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Consultorio</td>
<td>Playa de la Pobla de Famals</td>
<td>Passeig del Port, 2, 46137 La Pobla de Famals, Valencia</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 26. Información sobre las bases del Departamento de Valencia - Clínico La Malvarrosa
Fuente: Elaboración propia
8. Departamento de Valencia – Doctor Peset

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital Doctor Peset</td>
<td>Centro de Salud</td>
<td>Font de Sant Lluis</td>
<td>Carrer de l'Arabista Ambrosio Huici, 30, 46013 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Luis Oliag</td>
<td>Carrer de Lluís Oliag, 62, 46004 València, Valencia</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Valencia Ruzafa</td>
<td>Carrer de Sant Valero, 8, 46005 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Ingeniero Joaquín Benlloch</td>
<td>Carrer de Joaquín Benlloch, 27, 46006 València, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Padre Jofre</td>
<td>C/ del Beat Nicolau Factor, 1, 46007 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Plaza Segovia</td>
<td>Plaça de Segòvia, s/n, 46017 València</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>San Marcelino</td>
<td>Carrer de Sant Pius X, 32, 46017 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Valencia Castellar</td>
<td>Carrer de Vicent Puchol, 11, 46026 València, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Sedavi</td>
<td>Carrer del Metge Gómez Ferrer, 3, 46910 Alfafar, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Alfafar</td>
<td>Carrer dels Furs, 23, 46910 Alfafar, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Benetússer</td>
<td>Av. Paiporta, s/n, 46910 Benetússer, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
<td>Padre Jofre</td>
<td>Carrer de Sant Llàtzer, S/N, 46017 València, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Hospital Universitario</td>
<td>Doctor Peset</td>
<td>Av. de Gaspar Aguilar, 90, 46017 València, Valencia</td>
<td>24h</td>
</tr>
</tbody>
</table>

Tabla 27. Información sobre las bases del Departamento de Valencia - Doctor Peset

Fuente: Elaboración propia
<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Nápoles y Sicilia</td>
<td>NÁPOLES Y SICILIA, 4, 46003 València</td>
<td>6h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Guillem de Castro</td>
<td>C/ de Guillem de Castro, 149, 46008 València, Valencia</td>
<td>10h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Gil y Morte</td>
<td>Carrer del Dr. Gil i Morte, 33, 46007 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Nou Moles</td>
<td>Calle Veinticinco Abril, s/n, 46018 València</td>
<td>12h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Fontsanta</td>
<td>C. de la Mare de Déu de la Fontsanta, 18, 46014 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Sant Isidre</td>
<td>Carrer de José Andreu Alabarta, s/n, 46014 València, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Xirivella</td>
<td>Av. de la Verge dels Desemparats, 18, 46950 Xirivella, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Alaquàs</td>
<td>Plaza, Calle Dr. Francisco Tárrega Barbera, s/n, 46970, València</td>
<td>24h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Paiporta</td>
<td>Carrer Catarroja, s/n, 46200 Paiporta, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Picanya</td>
<td>Plaça Constitució, 2, 46210 Picanya, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Torrent I</td>
<td>Carrer Pintor Ribera, 28, 46900 Torrent, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Torrent II</td>
<td>Calle Chirivella, 23, 46900 Torrent, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Picassent</td>
<td>Carrer Major, 100, 46220 Picassent, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Salud</td>
<td>Monserrat</td>
<td>Carrer de València, 47, 46192 Montserrat, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Especialidades</td>
<td>Joan Llorenç</td>
<td>Carrer de Joan Llorenç, 8, 46008 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Centro de Especialidades</td>
<td>Torrent</td>
<td>Carrer dels Sants Patrons, 37, 46900 Torrent, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td>Hospital General</td>
<td>Hospital</td>
<td>Consorci General Universitari</td>
<td>Av. de les Tres Creus, 2, 46014 València, Valencia</td>
<td>24h</td>
</tr>
</tbody>
</table>

Tabla 28. Información sobre las bases del Departamento de Valencia - Hospital General
Fuente: Elaboración propia
10. Departamento de Valencia – La Fe

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital La Fe</td>
<td>Centro de Salud</td>
<td>Trinitat</td>
<td>Carrer de la Flora, 7, 46010 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Valencia Just Ramírez</td>
<td>Carrer de Just Ramírez, s/n, 46009 València, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Salvador Allende</td>
<td>Carrer del Comte de Lumiàres, 3, 46019 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Joan XXIII</td>
<td>Av. de Joan XXIII, 39, 46025 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Azucena</td>
<td>Carrer de l’Assutzena, 9, 46025 València, Valencia</td>
<td>8h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Miguel Servet</td>
<td>Carrer Amics del Corpus, 46001 València, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Massanassa</td>
<td>Carrer Doctor Gil López, 0, 46470 Massanassa, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Catarroja</td>
<td>Avinguda Rambleta, 63, 46470 Catarroja, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Albal</td>
<td>Carrer del Regne de València, 1, 46470 Albal, Valencia</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Alcàsser</td>
<td>Av. Enric Valor, s/n, 46290 Alcàsser, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Centro de Salud</td>
<td>Silla</td>
<td>Av. d’Ausiàs March, 14, 46460 Silla, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
<td>La Fe Antigua</td>
<td>Av. de Campanar, 66, 46035 València, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
<td>Vithas Valencia 9 de Octubre</td>
<td>Avenida, Carrer de la Vall de la Ballestera, 59, 46015 València, Valencia</td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
<td>La Fe</td>
<td>Avinguda de Fernando Abril Martorell, 106, 46026 València, Valencia</td>
<td>24h</td>
</tr>
</tbody>
</table>

Tabla 29. Información sobre las bases del Departamento de Valencia - La Fe
Fuente: Elaboración propia
Tabla 30. Información sobre las bases del Departamento de Xàtiva – Ontinyent

Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Tipo de Centro</th>
<th>Localidad</th>
<th>Dirección</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro de Salud</td>
<td>Albaida</td>
<td>Av. del Romeral, s/n, 46860 Albaida, Province of Valencia, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Benigànim</td>
<td>Carrer de Leonor Ortiz, 9, 46830 Benigànim, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Bocairent</td>
<td>Carrer de Santa Águeda, 0, 46880 Bocairent, Valencia</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Canals</td>
<td>Av. de Quernes, 2, 46650 Canals, Valencia</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Càrcer</td>
<td>Carrer Mestre Francisco García Grau, s/n, 46294 Càrcer, Valencia</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Chella</td>
<td>Calle Pintor Pallas, 25, 46821 Chella, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Enguera</td>
<td>Calle Manuel Ciges Aparicio, 15, 46810 Enguera, Valencia</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>L’Alcúdia de Crespins</td>
<td>Av. Corts Valencianes, 2, 46690 L’Alcúdia de Crespins, Valencia</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Llosa de Ranes</td>
<td>Calle Alicante, 2, 20, 46815 La Llosa de Ranes, Valencia</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Llutxent</td>
<td>Carrer Sant Antoni, s/n, 46838 Llutxent, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>L’Olleria</td>
<td>Plaza de la Virgen de Loreto, 0, 46850 L’Olleria (‘l’), Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Moixent</td>
<td>Carrer Riu Canyoles, 2, 46640 Moixent, Valencia</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Navarrés</td>
<td>Calle Alegria de la Huerta, 55, 46823 Navarrés, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Ontinyent II</td>
<td>Av. d’Albaida, 35, 46870 Ontinyent, Valencia</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Ontinyent III</td>
<td>Plaça de la Coronació, 0, 46870 Ontinyent, Valencia</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Ontinyent San Rafael</td>
<td>Carrer de les Trebanelles, 46870 Ontinyent, Valencia</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Pobla Llarga</td>
<td>Carrer Sant Vicent, 35, 46670 La Pobla Llarga, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Villanueva de Castellón</td>
<td>Calle de Gaspar Valentí, s/n, 46270 Castellón de la Ribera, Valencia</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Centro de Salud</td>
<td>Xàtiva</td>
<td>Av. Ausiàs March, 0, 46800 Xàtiva, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Hospital General</td>
<td>Ontinyent</td>
<td>Avinguda de Francisco Cerda, 3, 46870 Ontinyent, Valencia</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Hospital Público</td>
<td>Luís Alcanyís de Xàtiva</td>
<td>Carrer Xàtiva, Km 2, 46800 Xàtiva, Valencia</td>
<td>24h</td>
<td></td>
</tr>
</tbody>
</table>
Anexo II
Ubicaciones actuales de los SVA y los SVB

❖ Soportes Vitales Avanzados:

- **Alfa 1**: Se encuentra ubicado en el Hospital de Manises (Av. de la Generalitat Valenciana, 50, 46940 Manises, Valencia, España).
- **Alfa 2**: Se encuentra en el Centro de Salud de Alfahuir (Carrer d'Ismael Merlo, 46020 València, Valencia, España).
- **Alfa 3**: Se encuentra en el Hospital de La Fe Antigua (Av. de Campanar, 66, 46035 València, Valencia, España).
- **Alfa 4**: Se encuentra en el Consorcio Hospital General Universitario (Av. de les Tres Creus, 2, 46014 València, Valencia, España).
- **Alfa 5**: Se encuentra en el Centro de Salud de Silla (Av. d'Ausíàs March, 14, 46460 Silla, Valencia, España).
- **Alfa 6**: Se encuentra en el Hospital de Crónicos de la Malvarrosa (Carrer d'Isabel de Villena, 2, 46011 València, Valencia, España). **No está disponible por la noche**.
- **Alfa 7**: Se encuentra ubicada en el Hospital de la Fe Antigua, al igual que el Alfa 3. **No está disponible por la noche**.
- **Alfa 8**: Se encuentra en el polígono industrial de Paterna, en el Carrer Ciudad de Elda (es un caso un poco especial, pero está ubicado ahí porque tiene muy buena salida). **No está disponible por la noche**.
- **Alfa 10**: Se encuentra en el Centro de Salud de Torrent I (Carrer Pintor Ribera, 28, 46900 Torrent, Valencia, España).
- **Alfa 11**: Se encuentra en el Centro de Salud de Buñol (Av. Rafael Ridaura, 17, 46360 Buñol, Valencia, España).
- **Delta 1**: Se encuentra en el Centro de Salud de Sagunto (Avinguda Sants de la Pedra, 81, 46500 Sagunt, Valencia, España).
- **Delta 2**: Se encuentra en el Hospital de Llíria (Paratge Cabeço de l’Águila CV-35, Salida 29, 46160 Llíria, Valencia, España).
- **Delta 3**: Se encuentra en el Hospital Público Universitario de La Ribera en Alzira (km 1, Ctra. Corbera, 46600 Alzira, Valencia, España).
- **Delta 4**: Se encuentra en el Centro de Salud de Sueca (Carrer de les Palmeres, 0 S/N, 46410 Sueca, València, España).
- **Delta 5**: Se encuentra en el Hospital Comarcal Francesc De Borja en Gandia (Avinguda de la Medicina, 6, 46702 Gandia, Valencia, España).
- **Delta 6**: Se encuentra en el Hospital de Requena (Paraje, Calle Casablanca, S/N, 46340, Valencia, España).
- **Delta 7**: Se encuentra en el Hospital de Ontinyent (Avinguda de Francisco Cerdà, 3, 46870 Ontinyent, Valencia, España).
- **Delta 8**: Se encuentra en el Hospital Público Lluis Alcanyis de Xàtiva (Carrer Xàtiva, Km 2, 46800 Silla, Valencia, España).
- **Delta 9**: Se encuentra en el Centro de Salud de Oliva (Carrer de l'Historiador Bernardí Llorca, 46780 Oliva, Valencia, España). **No está disponible por la noche.**
- **Delta 10**: Se encuentra en el Centro de Salud de Utiel (Plaza Escuelas Pías, 1, 46300 Utiel, Valencia, España). **No está disponible por la noche.**

❖ **Soportes Vitales Básicos:**

- **Bravo 1**: Se encuentra en el Centro de Salud Fuente San Luis (Carrer de l'Aрабista Ambrosio Huici, 30, 46013 València, Valencia, España).
- **Bravo 2**: Se encuentra en el Hospital Universitario Doctor Peset (Av. de Gaspar Aguilar, 90, 46017 València, Valencia, España).
- **Bravo 3**: Se encuentra en el Centro de Salud de Nazaret (Carrer de Fernando Morais de la Horra, 2, 46024 València, Valencia, España).
- **Bravo 4**: Se encuentra en la base de la policía local de Alboraya, en el Polígono Industrial (Carrer del Ferrers, 10, 46120 Alboraya, Valencia, España).
- **Bravo 5**: Se encuentra en el Consultorio Auxiliar de la Pobla de Farnals Playa (Passeig del Port, 2, 46137 La Pobla de Farnals, Valencia, España).
- **Bravo 6**: Se encuentra en el Hospital Universitario y Politécnico La Fe (Avinguda de Fernando Abril Martorell, 106, 46026 València, Valencia, España).
- **Bravo 90**: Se encuentra en el Centro de Salud de Alaquàs (Plaza, Calle Dr. Francisco Tárrega Barbera, s/n, 46970, Valencia, España). **No está disponible por la noche.**
- **Bravo 91**: Se encuentra en el Centro de Salud de Godella (Carrer Sant Sebastià, s/n, 46110 Godella, Valencia, España).
- **Bravo 92**: Se encuentra en el Centro de Salud de Quart de Poblet (Carrer Trafalgar, 0, 46930 Quart de Poblet, Valencia, España).
- **Bravo 93**: Se encuentra en la base de Ambulancias Autónomas de Alzira (Av. Miguel Hernández, 3, 46960 Alzira, Valencia, España).
- **Bravo 94**: Se encuentra en el Centro de Salud de Torrent I (Carrer Pintor Ribera, 28, 46900 Torrent, Valencia, España).
- **Bravo 95**: Se encuentra en el Centro de Salud de Catarroja (Avinguda Rambleta, 63, 46470 Catarroja, Valencia, España).
- **Bravo 96**: Se encuentra en el Centro de Salud de Picassent (Carrer Major, 100, 46220 Picassent, Valencia, España).
- **Bravo 97**: Se encuentra en el Centro de Salud Clot de Joan de Paterna (Plaça Clot de Joan, s/n, 46980 Paterna, Valencia, España).
- **Bravo 98**: Se encuentra en el Hospital Militar Vázquez Bernabéu / Hospital de Crónicos de Mislata (Carrer de Dolores Ibárruri, 1, 46920 Mislata, Valencia, España).
- **Bravo 99**: Se encuentra en el Centro de Salud de Silla (Av. d'Ausiàs March, 14, 46460 Silla, Valencia, España). **No está disponible por la noche.**
- **Bravo 11**: Se encuentra en el Centro de Salud de Puerto de Sagunto I (Carrer Periodista Azzati, S/N, 46520 Port de Sagunt, Valencia, España).
- **Bravo 12**: Se encuentra en el Centro de Salud de Puzol (Carrer del Caminàs, 69, 46530 Puçol, Valencia, España).
- **Bravo 13**: Se encuentra en el Centro de Salud de Massamagrell (Carrer Metge Miquel Servet, 48, 46130 Massamagrell, Valencia, España).
- **Bravo 14**: Se encuentra en el Consultorio Local de Gilet (Carrer Canonge Gimeno, 5, 46149 Gilet, Valencia, España). En realidad, está un poco más abajo, en la plaza de la iglesia. **No está disponible por la noche.**
- **Bravo 21**: Se encuentra en el Centro de Salud de Bétera (Albereda Escultor Ramon Inglés, 52, 46117 Bétera, Valencia, España).
- **Bravo 22**: Se encuentra en el Centro de Salud de Chelva (Av. de los Madereros, 38, 46176 Chelva, Valencia, España). **No está disponible por la noche.**
- **Bravo 23**: Se encuentra en el Consultorio de Gestalgar (Calle Acequia, 2, Gestalgar, Valencia, España). **No está disponible por la noche.**
- **Bravo 24**: Se encuentra en el Centro de Salud de la Eliana (c/ Rosales, 23, 46183 L’Eliana, Valencia, España).
- **Bravo 25**: Se encuentra en la Base de la empresa de ambulancias Edetanas en el Polígono Industrial de Llíria (Calle L’Espart, 7 polígono industrial Pla de Pascanya PAR.63-C, 46160 Llíria, Valencia, España). **No está disponible por la noche.**
- **Bravo 31**: Se encuentra en el Centro de Salud de Algemesí (Carrer de Santa Teresa, s/n, 46680 Algemesí, Valencia, España).
- **Bravo 32**: Se encuentra en el Centro de Salud de Carlet Urgencias (Carrer de Sant Bernat i les Germanes, 0, 46240 Carlet, Valencia, España). **No está disponible por la noche.**
- **Bravo 33**: Se encuentra en el Centro de Salud de Carcaixent (Carrer Bagnols sur Cèze, 0 S/N, 46740 Carcaixent, Valencia, España). **No está disponible por la noche.**
- **Bravo 41**: Se encuentra en el Centro de Salud de Cullera (Avinguda del País Valencià, 4, 46400 Cullera, Valencia, España). **No está disponible por el día.**
- **Bravo 42**: Se encuentra en el Centro de Salud de Cullera (Avinguda del País Valencià, 4, 46400 Cullera, Valencia, España). **No está disponible por la noche.**
- **Bravo 51**: Se encuentra en el Centro de Salud de Grao de Gandía (Carrer de la Goleta, 13, 46730 Gandia, Valencia, España).
- **Bravo 52**: Se encuentra en el Centro de Salud de Oliva (Carrer de l’Historiador Bernadí Llorca, 46780 Oliva, Valencia, España).
- **Bravo 53**: Se encuentra en el Centro de Salud de Tavernes de la Valldigna (Plaça Prado Comarcal, 0, 46760 Tavernes de la Valldigna, Valencia, España).
- **Bravo 54**: Se encuentra en el Centro de Salud de Castelló de Rugat (Camí del Rafol, 2, 46841 Castelló de Rugat, Valencia, España). **No está disponible por la noche.**
o **Bravo 55**: Se encuentra en el Centro de Salud de Rotova (Av. Jaume I, 88, 46725 Ròtova, Valencia, España). **No está disponible por la noche**.

o **Bravo 61**: Se encuentra en el Centro de Salud de Utiel (Plaza Escuelas Pías, 1, 46300 Utiel, Valencia, España).

o **Bravo 62**: Se encuentra en el Centro de Salud de Buñol (Av. Rafael Ridaura, 17, 46360 Buñol, Valencia, España).

o **Bravo 63**: Se encuentra en el Centro de Salud de Chiva (Calle Alcalde Urbino Blay Mañez, 4, 46370 Chiva, Valencia, España).

o **Bravo 64**: Se encuentra en el Centro de Salud de Ayora (Av. la Argentina, 36, 46620 Ayora, Valencia, España).

o **Bravo 65**: Se encuentra en el Centro de Salud de Requena (Calle Constitución, 47, 46340 Requena, Valencia, España). **No está disponible por la noche**.

o **Bravo 66**: Se encuentra en el Centro de Salud de Turis (Calle del Músico José Vicente Herrera, S/N, 46389 Turís, Valencia, España). **No está disponible por la noche**.

o **Bravo 71**: Se encuentra en el Centro de Salud de Ontinyent II (Av. d'Albaida, 35, 46870 Ontinyent, Valencia).

o **Bravo 72**: Se encuentra en el Centro de Salud Básica de l'Olleria (Plaza de la Virgen de Loreto, 0, 46850 Ollería (L'), Valencia).

o **Bravo 81**: Se encuentra en el Hospital Público Lluís Alcanyís de Xátiva (Carrer Xàtiva, Km 2, 46800 Silla, Valencia, España).

o **Bravo 82**: Se encuentra en el Centro de Salud de Navarrés (Calle Alegría de la Huerta, 55, 46823 Navarrés, Valencia, España).

o **Bravo 83**: Se encuentra en el Centro de Salud de Moixent (Carrer Riu Canyoles, 2, 46640 Moixent, Valencia, España).

o **Bravo 84**: Se encuentra en el Centro de Salud de Villanueva de Castellón (Calle de Gaspar Valentí, s/n, 46270 Castelló de la Ribera, Valencia, España). **No está disponible por la noche**.
Anexo III

Procedimiento para la obtención de las isócronas en QGIS 3.10.5

En primer lugar, se tendrán que crear las capas vectoriales de las posibles bases donde ubicar los VES. Como lo que se quiere es crear capas independientes para, consecuentemente, que las capas vectoriales de las isócronas sean independientes, habrá que crearlas de una en una. Si no se quisiera o si diera igual que las capas fueran independientes, se podría crear una única capa vectorial que recogiera todas las posibles bases para los VES. Pero de esta manera, al crear las isócronas, se dibujarían todas a la vez en el mapa y no se podría seleccionar solamente las que nos interesen. Por lo tanto, aunque la segunda manera es mucho más sencilla, no es el objetivo de este problema, por lo que se explicará la primera opción.

Una vez abierto el QGIS 3.10.5, se crea un nuevo proyecto y se introduce la capa ráster del mapa de Google Maps, que será la base del proyecto. Para introducir dicha capa, se instala el complemento QuickMapServices yendo a Complementos en la barra de herramientas -> Administrar e instalar complementos. Aquí se busca el complemento mencionado y se clica en el botón Instalar complemento. En la Figura 51 se puede ver la ventana para instalar este complemento.

Una vez instalado, se accede a la pestaña Web en la barra de herramientas -> QuickMapServices -> Google -> Google.cn Normal. Ahora ya aparecerá el mapa de Google Maps como base.
Ahora, se procede a crear las capas vectoriales de las posibles bases. Para ello, se va a la barra de herramientas -> Capa -> Crear capa -> Nueva capa de archivo shape. En la ventana que aparece (Figura 52) se escribirá el nombre de la capa (por ejemplo, Centro de Salud de Villalonga), la codificación del archivo se dejará la que viene por defecto, y se elegirá el tipo de geometría. En este caso, será un punto ya que se trata de una posible ubicación del VES. Ahora, se clicará en el botón Aceptar.

En la ventana Capas que aparece a la izquierda del mapa base se selecciona la capa creada y se clica en el botón Conmutar Edición de la pestaña Capa de la barra de herramientas. Se puede ver en la Figura 53 un ejemplo de donde aparecen tanto la ventana como el botón.

![Figura 52. Creación de una capa vectorial de archivo shape en QGIS 3.10.5](Image)

Fuente: QGIS 3.10.5
Una vez apretado el botón de **Conmutar Edición** se clica en **Añadir punto** en la pestaña **Edición** de la barra de herramientas y se localiza el punto donde se quiera colocar la capa (en este caso, el Centro de Salud de Villalonga). Una vez localizado, se da clic izquierdo y aparecerá una ventana para identificar la capa. Se escribe el número 1, por ejemplo. Por último, se clica el botón de **Guardar cambios de la capa** de la pestaña **Capa** de la barra de herramientas y ya se tendrá la capa creada. Finalmente, se repetiría el proceso para las 158 bases restantes.

Una vez creadas todas las capas vectoriales de las bases, se procede a calcular las isócronas de cada capa. Para ello, se instala el complemento **ORS Tools**. Una vez instalado, se abre clicando en la pestaña **Web** - **ORS Tools** - **ORS Tools**. Cuando se abra, aparecerá una ventana como la de la Figura 54. Aquí, se clica en la pestaña **Batch Jobs** - **Isochrones from Layer**. En la ventana que se abre (Figura 55), se clica en el botón **Ejecutar como proceso por lotes** para poder crear todas las capas de isócronas a la vez.
Figura 54. Ventana del complemento ORS Tools de QGIS 3.10.5
Fuente: QGIS 3.10.5

Figura 55. Ventana para crear isócronas a partir de etiquetas (capas) ya creadas en QGIS 3.10.5
Fuente: QGIS 3.10.5

Al clicar aquí, aparecerá la ventana de la Figura 56, donde se tendrán varias columnas.
Figura 56. Ventana de ejecución del cálculo de las isócronas por lotes en QGIS 3.10.5
Fuente: QGIS 3.10.5

En la columna Provider, se dejará la opción por defecto: openrouteservice. En la columna Input Point Layer, se seleccionarán las capas de las que se quieran calcular las isócronas (para que no dé error, se seleccionarán un máximo de 20 capas). En la siguiente columna, se dejará por defecto el campo ID. En la columna Travel mode se seleccionará driving-car ya que se quieren calcular las isócronas de ir en ambulancia. En Dimension se elegirá la opción del tiempo. En la siguiente columna, se escribirán los tiempos de 12 y 15 minutos, ya que van a ser los tiempos máximos de isócrona. Para no tener que cambiar cada fila, se puede escribir en la primera fila el tiempo y clicar en el botón Autorrellenar -> Rellenar hacia abajo. En la última columna, se escoge la carpeta donde se guardarán las capas creadas. Antes de clicar en Ejecutar, seleccionamos el botón Cargar capas al completar para que las capas se creen automáticamente encima del mapa base. Finalmente, clicando en Ejecutar ya se tendrán las primeras 20 isócronas creadas. Ahora, habría que repetir el proceso con el resto de capas.
Anexo IV

Tabla 31. Matriz de población cubierta por departamentos sanitarios para un tiempo de isócrona de 12 minutos

<table>
<thead>
<tr>
<th>Dpto.</th>
<th>Hospital/Consultorio</th>
<th>Matriz Población Cubierta</th>
<th>Matriz Demandas</th>
<th>Matriz Consultas</th>
<th>Matriz Hospital</th>
<th>Matriz Centro de Salud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dpto. Xàtiva-Ontinyent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dpto. Gandia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dpto. Lliria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dpto. Sagunto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dpto. La Malvarrosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

111
<table>
<thead>
<tr>
<th>Dpto.</th>
<th>Hospital/Concepto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dpto.</td>
<td>Gandia_Base</td>
</tr>
<tr>
<td></td>
<td>CS Tavernes Valldigna</td>
</tr>
<tr>
<td></td>
<td>CS Bellreguard</td>
</tr>
<tr>
<td></td>
<td>Dpto. Manises</td>
</tr>
<tr>
<td></td>
<td>CS Yátova</td>
</tr>
<tr>
<td></td>
<td>CS Turis</td>
</tr>
<tr>
<td></td>
<td>CS Quart de Poblet</td>
</tr>
<tr>
<td></td>
<td>CS Loriguilla</td>
</tr>
<tr>
<td></td>
<td>Dpto. Requena</td>
</tr>
<tr>
<td></td>
<td>CS Ayora</td>
</tr>
<tr>
<td></td>
<td>Dpto. Lliria</td>
</tr>
<tr>
<td></td>
<td>CS Requena</td>
</tr>
<tr>
<td></td>
<td>CS Pobla de Vallbona</td>
</tr>
<tr>
<td></td>
<td>CS Moncada</td>
</tr>
<tr>
<td></td>
<td>CS L'Eliana</td>
</tr>
<tr>
<td></td>
<td>CS Bétera</td>
</tr>
<tr>
<td></td>
<td>CS Chelva</td>
</tr>
<tr>
<td></td>
<td>CS Gestalgar</td>
</tr>
<tr>
<td></td>
<td>Dpto. Sagunto</td>
</tr>
<tr>
<td></td>
<td>CS Pto Sagunto I</td>
</tr>
<tr>
<td></td>
<td>CS Pto Sagunto II</td>
</tr>
<tr>
<td></td>
<td>CS El Puig</td>
</tr>
<tr>
<td></td>
<td>CS Gilet (Esglèsia)</td>
</tr>
<tr>
<td></td>
<td>CS Pto Sagunto III</td>
</tr>
<tr>
<td></td>
<td>CS Almàssera</td>
</tr>
<tr>
<td></td>
<td>CS Serreria I</td>
</tr>
<tr>
<td></td>
<td>CS Meliana</td>
</tr>
<tr>
<td></td>
<td>CS Benimaclet</td>
</tr>
<tr>
<td></td>
<td>Dpto. La Malvarrosa</td>
</tr>
<tr>
<td></td>
<td>CS Silla</td>
</tr>
<tr>
<td></td>
<td>Dpto. CS Silla</td>
</tr>
<tr>
<td></td>
<td>Dpto. La Fe</td>
</tr>
<tr>
<td></td>
<td>Base Hospital Vithas Valencia 9 Octubre</td>
</tr>
<tr>
<td></td>
<td>Base Hospital Universitario La Fe</td>
</tr>
<tr>
<td></td>
<td>Dpto. La Fe</td>
</tr>
<tr>
<td></td>
<td>Base CS Silla</td>
</tr>
<tr>
<td></td>
<td>Dpto. Dr. Peset</td>
</tr>
<tr>
<td></td>
<td>Base CS Valencia Ruzafa</td>
</tr>
<tr>
<td></td>
<td>Base CS Sedaví</td>
</tr>
<tr>
<td></td>
<td>Base CS Font Sant Lluis</td>
</tr>
<tr>
<td></td>
<td>Base CS Benetússer</td>
</tr>
<tr>
<td></td>
<td>Dpto. La Ribera</td>
</tr>
<tr>
<td></td>
<td>Base Hospital de la Riba 9 de Octubre</td>
</tr>
<tr>
<td></td>
<td>Base CS Canet</td>
</tr>
<tr>
<td></td>
<td>Dpto. La Ribera</td>
</tr>
<tr>
<td></td>
<td>Base CS L'Ollería</td>
</tr>
<tr>
<td></td>
<td>Dpto. Xàtiva - Ontinyent</td>
</tr>
<tr>
<td></td>
<td>Base CS Ontinyent San Rafael</td>
</tr>
<tr>
<td></td>
<td>Base CS Ontinyent II</td>
</tr>
<tr>
<td></td>
<td>Base CS Ontinyent III</td>
</tr>
<tr>
<td></td>
<td>Base CS Llutxent</td>
</tr>
<tr>
<td></td>
<td>Base CS L'Alcúdia de Crespins</td>
</tr>
<tr>
<td></td>
<td>Base CS Enguera</td>
</tr>
<tr>
<td></td>
<td>Base CS Canals</td>
</tr>
<tr>
<td></td>
<td>Dpto. Xàtiva - Ontinyent Dpto.</td>
</tr>
</tbody>
</table>