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New analysis and extensions of split-spectrum processing algorithms 

Abstract 

In this paper we compare the performances of different variants of split-
spectrum algorithms and propose some new extensions based on the use of 
variable bandwidth filters equally spaced in frequency and energy gain equalized. 
Signal-to-Noise Ratio Gain and Flaw-to-Clutter Ratio Gain factors were selected as 
the figures of merit to make the comparisons among the different methods. We 
considered simulated ultrasonic signals using both stationary and non-stationary 
models for the grain noise, and real scans obtained in laboratory from low 
dispersive (aluminum) and high dispersive (cement) materials. Frequency 
Multiplication (FM) recombination method is revealed as the best option when 
combined with the new extensions. 

Keywords: Split Spectrum, variable bandwidth, frequency multiplication 

1 Introduction 
One of the main objectives of signal processing techniques in the field of 

ultrasonic Non Destructive Testing (NDT) is to eliminate or reduce as far as possible 
the effect of the grain noise to improve the Signal to Noise Ratio (SNR) of echoes in 
pulse-echo systems [1,2]. 

Although there are many methods, most of them based on time-frequency 
decomposition, the most used, due to its simplicity and the good results provided, 
is the Split Spectrum Processing (SSP) algorithm, widely studied and with a long 
history in the field of NDT [3]. SSP algorithms exploit the frequency diversity 
phenomenon [4] that appears in dispersive materials when an ultrasonic wide band 
pulse is scattered by many small scatterers having sizes comparable to the pulse 
wavelength. The combined response of all the scatterers is frequency sensitive due 
to the different phases of every individual contribution. On the contrary, the 
response of an isolated reflector of enough size will be unique and so frequency 
insensitive (Fig. 1).   

 

 
Fig. 1 Example of A-scan with a single defect at 16 µs. (a) Time and Frequency. (b) 

Normalized Spectrogram. There can be seen the random spectral distribution of the 
scatterers and how around 16µs the contribution of the defect spreads all around the 
transmitted bandwidth. 

Given an operating bandwidth, the inherent idea in SSP algorithms is to use a 
filter bank to decompose the received signal followed by a comparison of the 
different filter outputs, so that, broadly speaking, when all the filter outputs are 



similar, the presence of a true defect is enhanced, otherwise, presence of grain 
noise is reduced (Fig. 2). 

 

 
Fig. 2 SSP algorithm schema for a 3 bands filter bank. 

Hence, two main parts are given in any SSP algorithm, namely, the filter bank 
and the recombination technique [2]. In terms of the filter bank, there are two 
main trends commonly followed. One is based on constant bandwidth filters equally 
spaced in frequency and the other one uses wavelets as a multi-resolution time-
scale method [5][6][7]. In this paper, we introduce a new filter bank prototype 
based in the combination of both of the previous, using filters of variable 
bandwidth, as wavelets, but holding its equally distribution pattern along the pulse 
bandwidth. Other significant difference with wavelets is that we equalize the energy 
of the bands in order to equalize the amount of energy provided by each band to 
the analysis. 

According to the recombination methods, we will consider in this work five 
variations. Two of them based on the phase observation, the well known Polarity 
Thresholding (PT) and the Scaled Polarity Thresholding (SPT), and the other three 
are some of the classical methods based on Order Statistics (OS)[8], namely 
Minimization (MIN), Normalized Minimization (NORM) and Geometric Mean (GM). 
We will use a modification of the last one in which the mean of the product is not 
calculated, called Frequency Multiplication (FM). This method has not received 
much attention until now, but will show the best performance in this work, with the 
advantage that is quiet simple and robust and could be a good choice for its 
practical real-time hardware and software implementation. 

Comparison will be made in terms of Signal-to-Noise-Ratio Gain (SNRG) and 
Flaw-to-Clutter Ratio Gain (FCRG). We will evaluate the dependence of both 
parameters on the number of bands, what we will refer across the paper as 
efficiency of the algorithm, and dependence of SNRG on SNR at the input, what we 
refer across the paper as sensitivity of the algorithm. 

In the next section we define the new filter bank design introduced in this paper, 
followed in section 3 by a brief review of the recombination methods used as 
detectors. Then, section 4 presents the results of comparisons among the proposed 
structure and the classical filter bank, using the conventional detectors previously 
described and both simulated and real scans obtained in the laboratory, taking 
special attention to the modified FM method. Finally, in section 5 we will end with a 
brief resume and conclusions. 

2 New Filter Bank Design 
As previously mentioned, we propose an alternative design for the usual filter 

structure of SSP algorithm using variable bandwidth filters based on the bank of 



filters of constant frequency-to-bandwidth ratio (FBR) described in [9], but with 
some modifications. The structure is basically the same as the classical filter bank, 
i.e., once fixed the width of the analysis band and the number of bands, the filters 
are equally distributed across the inspection bandwidth, but now the bandwidth of 
each filter is selected proportional to its central frequency. Then, bands are energy 
gain equalized to not affect the frequency distribution of energy at the input signal, 
as uniformity of that distribution is essential to distinguish the presence of a 
possible flaw. 

In the classical filter bank the filter impulse response of band i, using Gaussian 
filters, can be written as [9,10]: 

ℎ𝑖𝑖(𝑡𝑡) = 𝑒𝑒
− 𝑡𝑡2

2𝜎𝜎𝑖𝑖
2
 

(1) 

with Fci the central frequency of the band i and σ2i the variance of the 
corresponding Gaussian window, defined as: 

𝜎𝜎𝑖𝑖2 =
√ln 2

2𝜋𝜋𝐵𝐵𝑖𝑖𝐹𝐹𝑐𝑐𝑐𝑐
 

(2) 

where Bi is the relative bandwidth at 3dB (0<Bi<1) of the filter at band i: 

𝐵𝐵𝑖𝑖 =
∆𝑊𝑊 · (1 + 2𝑅𝑅𝑜𝑜𝑜𝑜)

𝐿𝐿 · 𝐹𝐹𝑐𝑐𝑐𝑐
 

(3) 

which is a function of the operating bandwidth (ΔW), the number of bands (L), 
the overlap between bands (0<Rol<1) and the central frequency of each band Fci). 
Gaussian filters are commonly used because they provide the best compromise 
regarding the time-frequency resolution. 

In the new design proposed, the relative bandwidth Bi will be the same for all the 
bands, and considering that bands remain equally distributed, this drives to an 
implicit energy band equalization and an excess of overlap between bands that will 
grow with the frequency. Notice that the resulting excess correlation due to this 
increased band overlapping is not as critical to the performance of the detector as it 
is selecting the proper frequency range containing significant flaw information [9]. 
Furthermore, as the bandwidth of the filters is wider than in the classical design, 
the time resolution improves thus leading to a better location performance. 

Other advantage of this architecture is that the overall frequency response of the 
system is adjusted to that of the transmitted pulse, as we can see if we compare 
the resulting analyzed bandwidth of the new equalized and equally spaced variable 
bandwidth filter bank (E-ESVB) of figure 3a with the obtained with the classical 
filter bank design in figure 3b. 

Now, selecting properly the bank parameters (number of filters and bandwidth), 
all the bandwidth transmitted by the transducer is taken into account for the 
analysis, fitting it to the frequency response of the material. This configuration will 
also give greater prominence to the lower frequencies of the band of interest 
because, as more filters lay on these bands, lower frequencies are analyzed in more 
detail. According to the Frequency Diversity phenomenon, when the ultrasonic 
wavefront collides with a reflector comparable to its wavelength, the reflector acts 
as an omnidirectional and spherical emitter, generating more dispersion at high 
frequencies than at low frequencies. As a result, it can be said that high dispersive 
materials act as a low pass filter whose characteristics depend on its composition 
and the distance that the wave has propagated, attenuating the energy contained 
mostly in the upper part of the wavefront of the transmitted pulse. 



 
Fig. 3 Normalized Spectrum of the transmitted pulse (continuous line) and the band sum 

(dotted line) for a 5 bands filter bank. (a) Energy equalized variable bandwidth filters (b) 
Classical fixed bandwidth filters. 

Then, since most of the information remains in the lower frequencies of the 
inspection band, having more frequency resolution at lower frequencies will be 
desirable, which we achieve with the E-ESVB. This goal is also achieved with the 
wavelet analysis, but without the bandwidth adaptation that we get now nor with 
the time resolution we have with the wider and overlapped filter bank.  

The same frequency resolution obtained at low frequencies with the E-ESVB can 
be also obtained with wavelets or with the constant FBR filter bank. However the 
time resolution (i.e., resolution in flaw location) worsens substantially. Moreover, 
these two solutions would require a greater number of bands for the same 
inspection bandwidth 

3 Recombination Methods 
Thereafter the following notation will be used; zi(n) is the SSP output channel i, L 

is the number of bands and y(n)=F{z(n)} is the signal obtained after processing 
and recombination of the filter bank outputs at n. Thus, algorithms are defined as 
follows: 

• Minimization (MIN)[1,11]: 

𝑦𝑦(𝑛𝑛) = �min
𝑛𝑛

|𝑧𝑧𝑖𝑖(𝑛𝑛)|� 
(4) 

• Normalized Minimization (NORM)[12]: 

𝑧̂𝑧𝑖𝑖(𝑛𝑛) =
|𝑧𝑧𝑖𝑖(𝑛𝑛)|

max
𝑖𝑖
𝑧𝑧𝑖𝑖(𝑛𝑛) 

(5) 

𝑦𝑦(𝑛𝑛) = �min
𝑛𝑛

{|𝑧̂𝑧𝑖𝑖(𝑛𝑛)|}� 
(6) 

• Polarity Thresholding (PT)[11,13]: 

𝑦𝑦(𝑛𝑛) = �min
𝑛𝑛

{|𝑧𝑧𝑖𝑖(𝑛𝑛)|} �
𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖(𝑛𝑛) > 0 ∀𝑛𝑛
𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖(𝑛𝑛) < 0 ∀𝑛𝑛

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

(7) 
• Scaled Polarity Thresholding (SPT)[14]: 

  

𝑦𝑦(𝑛𝑛) = �
𝑁𝑁+ − 𝑁𝑁−

𝑁𝑁
� · min

𝑛𝑛
{|𝑧𝑧𝑖𝑖(𝑛𝑛)|} 

(8) 



where N+ and N- are the number of positive and negative samples 
respectively and N is the number of samples. 

• Frequency Multiplication (FM)[8,11]:  

𝑦𝑦(𝑛𝑛) = �|𝑧𝑧𝑖𝑖(𝑛𝑛)|
𝐿𝐿

𝑖𝑖=0

 

(9) 

Note that the geometric mean is not calculated in this case as it is in the 
classic OS method [15]. 

4 Results 
4.1 Previous Considerations 

In order to generalize the study, different stochastic models of grain noise will be 
used to generate experimental data. We have broadly classified the materials as 
low or high dispersive. Therefore, we are going to consider two propagation models 
of the ultrasonic pulse, the first one will be called low-dispersive model (LDM) and 
the second one high-dispersive model (HDM).  

In LDM it is assumed that the ultrasonic pulse remains essentially the same 
(except for a possible constant attenuation) when it propagates inside the material, 
thus a linear time invariant system model is possible, where the reflectivity of the 
material is to be convolved with the sent pulse. From a stochastic perspective, LDM 
implies a stationary model. The basic equation to simulate LDM is given by 
[16,17,18]: 

𝑟𝑟(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) ∗ ��𝜌𝜌𝑠𝑠𝑠𝑠 · 𝛿𝛿(𝑡𝑡 − 𝜏𝜏𝑠𝑠𝑠𝑠)
𝐾𝐾𝑠𝑠

𝑘𝑘=1

+ �𝜌𝜌𝑑𝑑𝑑𝑑 · 𝛿𝛿(𝑡𝑡 − 𝜏𝜏𝑑𝑑𝑑𝑑)
𝐾𝐾𝑑𝑑

𝑘𝑘=1

� 

(10) 

with Ks and Kd the number of scatterers and defects respectively, ρsk and ρdk the 
scatterers and defects reflection coefficients respectively, τsk=2zsk/cl and τdk=2zdk/cl 
the scatterers and defects locations, cl the propagation velocity of the ultrasonic 
wavefront in the material and x(t) the transducer impulse response. In flaw 
detection approach, the scatterers reflection coefficients are modeled as a white 
random process, assuming constant the gap between them [19]. 

In HDM it is assumed that the absorption, scattering and reflection effects of the 
material microstructure are frequency dependent, hence the pulse suffer significant 
deformations as it propagates inside the material. Thus a non-linear variant system 
model is required and non-stationarity appears. The basic equation to simulate 
HDM is given, in the frequency domain, by [18,20,21]: 

𝑅𝑅(𝜔𝜔) = 𝑋𝑋(𝜔𝜔) · ��𝛽𝛽
𝜔𝜔2

𝑧𝑧𝑘𝑘
· 𝑒𝑒−𝛼𝛼𝑅𝑅2𝑧𝑧𝑠𝑠𝑠𝑠𝜔𝜔2 · 𝑒𝑒−2𝑗𝑗𝑗𝑗𝑧𝑧𝑘𝑘/𝑐𝑐𝑙𝑙

𝐾𝐾𝑠𝑠

𝑘𝑘=1

+ �𝜌𝜌𝑑𝑑𝑑𝑑 · 𝑒𝑒−𝛼𝛼𝑅𝑅2𝑧𝑧𝑑𝑑𝑑𝑑𝜔𝜔2 · 𝑒𝑒−2𝑗𝑗𝑗𝑗𝑧𝑧𝑘𝑘/𝑐𝑐𝑙𝑙

𝐾𝐾𝑠𝑠

𝑘𝑘=1

� 

(11) 

where β=QV/c2l is a characteristic constant of the material which depends on the 
characteristic geometry of the reflectors Q, the analyzed volume V and cl the 
propagation velocity of the ultrasonic wavefront in the material [22], αR is the 
fraction of the dispersion coefficient in the Rayleigh zone and can be also 
considered characteristic of the material, zsk and zdk are the scatterers and defects 
locations, ρdk are the reflection coefficients of the defects and X(ω) the transducer 
impulse response in the frequency domain. 



Regarding the transducer, models will be based both on deterministic Gaussian 
envelope or decreasing exponentials signals, depending on the transducer to be 
considered. In the first case, the response of the transducer can be modeled using 
a band-pass signal with Gaussian envelope [10], and in the second one by using a 
growing potential term combined with a decreasing exponential term, modulated to 
the desired central frequency [23]. In both cases, the desired waveforms can be 
achieved by modifying the appropriate parameters. Finally, beamforming 
techniques [10] can be used to have better control over the transducer frequency 
response. 

We will compare the simulation results with real scans results obtained in the 
laboratory. For this purpose, we will use a 2MHz transducer with Gaussian envelope 
(MSW-QGC General Electric) to collect scans from aluminum and a 5MHz transducer 
with exponential envelope (KBA-5MHz General Electric)  to collect scans from 
cement, both of them focused, so beamforming techniques where included in the 
models. 

To validate the results obtained for low dispersive models, we have chosen an 
aluminum specimen analyzed with the 2 MHz transducer. At these frequencies, the 
aluminum alloy used behaves as low dispersive material. The specimen has a 1 cm 
hole in one of its faces acting as a defect. To simulate this environment, the 
transducer model used was the Gaussian envelope model centered at 2 MHz and 
with a 50% bandwidth. Scans were generated with a single delta at defect location 
with variable reflection coefficient, all immersed in a dispersive environment 
modeled by the stationary model. Figure 4 shows an example of a simulated scan 
compared with a real scan. 

 

 
Fig. 4 Comparison in time and frequency of a real aluminum scan and an experimental 

scan from the stationary model for low dispersive materials (a) Simulated scan (b) Real scan 
of aluminum with a single defect (c) Corresponding spectra. 

For high dispersive materials, we have used cement specimens to validate the 
results obtained with simulations. In this case the 5 MHz transducer was chosen 
and the specimen was a block of cement with a defect in the middle of the material 
with unknown dimensions. At these frequencies, the selected cement specimens 
(cement 32.5 30% humidity) are very dispersive. To simulate this environment, the 
transducer model used was a growing potential term combined with a decreasing 
exponential centered at 5 MHz and with a 50% bandwidth. Scans were generated 
with a single defect with variable reflection coefficient, all immersed in a dispersive 
environment modeled by the non-stationary model with attenuation parameter αR 
=4.86·10-30 and constant β=5·10-12 and with 5000 scatterers. Figure 5 shows an 
example of simulated scan compared with a real scan. 



 
Fig. 5 Comparison in time and frequency of a real cement 32.5 scan and an experimental 

scan from the non-stationary model for high dispersive materials (a) Simulated scan (b) Real 
scan of cement with a single defect (c) Corresponding spectra. 

In both cases data were collected with Dasel Ultrascope Usb hardware and 
software acquisition system at a sampling frequency of 80 MHz. 

In the simulations scenario, the sampling frequency was fixed at 25 MHz, high 
enough to ensure no lost of resolution compared with the transducer frequencies. 
In the noise models, certain amount of white noise was added to the scans to take 
into account the incoherent noise present in the real experiments. In all cases 
simulations were undertaken according to the Monte Carlo method with 1000 
iterations by simulation, varying the number of filters from 2 to 40 bands, repeating 
the experiment for the two different filter bank designs. 

SNRG [4,24] was selected as the figure of merit to make the comparisons 
among the different methods, measured as the quotient between the Normalized 
SNR at the input (NSNRIN) and Normalized SNR after applying the algorithm 
(NSNROUT): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼

 

(12) 
where 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂 =
∑ 𝑦𝑦2(𝑛𝑛)
𝐷𝐷−𝑃𝑃2
𝐷𝐷+𝑃𝑃2

∑ 𝑦𝑦2(𝑛𝑛)𝑁𝑁−1
0

 

(13) 

where D is the defect location, P the pulse width and N the record length, all in 
number of samples. An equivalent definition holds for NSNRIN.  

Notice that the Normalized SNR has a maximum value of 1 (no noise present) 
independently of the record length N, thus allowing a better comparison of cases 
having different records lengths.      

The other parameter used for performance evaluation was the Flaw-to-Clutter 
Ratio Gain (FCRG) [15], measured in dB as the difference between the FCR at the 
input (FCRIN) and the FCR at the output (FCROUT) of the algorithm: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼 
(14) 

The FCROUT is calculated as the ratio between the maximum amplitude at the 
defect location and the largest amplitude of clutter echoes, both after processing 
the signal: 

𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂 = 20 · log
𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂
𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂

 

(15) 



where FOUT and COUT are the maximum output echo amplitude of flaw and clutter 
respectively. An equivalent definition holds for FCRIN. 

FCGR gives an indication of the discrimination capability of the algorithm, i.e. 
how much the algorithm is able to increase the range between the maximum 
amplitude due to a flaw and the maximum amplitude due to the grain noise. 

4.2  Stationary Model. Low Dispersive Materials 

Figure 6 shows results obtained for the stationary model after applying the 
algorithm using both the fixed (left) and variable (right) bandwidth filter banks from 
2 to 40 bands in steps of one band and for values of NSNRIN from 0.01 to 0.2 in 
steps of 0.01. 

Figures 6a and 6b show the mean SNRG obtained averaging the gain for each 
value of NSNRIN considering all the filter banks. Figures 6c and 6d the mean SNRG 
as a function of the number of bands in the filter bank, averaging for all the 
NSNRIN, and figures 6e and 6f the mean FCRG as a function of the number of bands 
in the filter bank, averaging for all the NSNRIN. 

It can be clearly seen that the FM method provides the best values of sensitivity, 
because it shows the fastest gain increase due to small increasing in the NSNRIN   
(Fig. 6a), especially when using the new filter bank design (Fig. 6b).  Other 
advantage of this method is that it achieves the highest values of SNRG with the 
lowest number of bands (Fig 6c and 6d). For the fixed bandwidth filters (Fig. 6a and 
6c), PT and SPT reach also high values of gain but they need at least twice the 
number of bands than FM, and after that PT starts to decay while SPT remains 
stable in constant values of gain, plus having better sensitivity than PT (Fig. 6a). 
When using the variable bandwidth filters (Fig. 6b and 6d), neither PT nor SPT are 
able to denoise the signal. 

 

 
Fig. 6 Stationary-Low Dispersive model. (a)-(b) Mean SNRG vs. NSNRIN. (c)-(d) Mean 

SNRG vs. Nº of Bands. (e)-(f) Mean FCRG vs. Nº of Bands. In all cases left side figures are 
for fixed bandwidth filters and right side ones for variable bandwidth filters. 

If we put our attention in the FCR gain (Figs. 6e and 6f), we see again how the 
FM method shows the best behavior for both filter bank designs. This is particularly 
true for the new one, which can achieve values close to 75 dB with only 10 bands. 

Finally, regarding the methods based on Minimization, it can be seen that they 
are neither sensitive nor efficient. 



In figures 7a and 7b we show the output obtained after applying the algorithm to 
a scan using 10 bands. This figure shows again the superiority of the FM method in 
low dispersive or stationary models. Notice that, even in the case of having 
reasonable SNRG (PT and SPT) for the selected number of bands, the time records 
exhibit many false detection, thus indicating that SNRG should be carefully 
considered when measuring the performance of the different algorithms. 

 
Fig. 7 Stationary-Low Dispersive model. Outputs after recombination for 10 bands and 

NSNRIN=0.1 for (a) fixed and (b) variable bandwidth filters. Selected scan has a single defect 
at sample 512. 

Figure 8 shows results for real scans obtained in the laboratory from the pieces 
of the aluminum alloy previously described, representative of the low dispersive 
stationary model that has been used for the experiments. Notice that only efficiency 
(dependence on the number of bands) is shown, as generating different NSNRIN in a 
controlled manner was not possible. In any case, results are consistent with those 
of the foregoing simulations. 

 
Fig. 8 Results obtained after processing a scan of aluminum with a single defect at 

sample 1150. SNRG vs. Nº of Bands for (a) fixed and (b) variable bandwidth filters. FCRG vs. 
Nº of Bands for (c) fixed and (d) variable bandwidth filter. Outputs after recombination of 10 
bands for (e) fixed and (f) variable bandwidth filters. 



4.3 Non-Stationary Model. High Dispersive Materials 

In this case, experiments will be repeated using the non-stationary model 
assumed to be the most appropriate to simulate the behavior of dispersive 
materials.  

Figures 9a-9b show the mean SNRG obtained averaging the gain for each value 
of NSNRIN considering all the filter banks, figures 9c-9d and 9e-9f the mean SNRG 
and mean FCRG respectively as a function of the number of filters in the filter bank, 
averaging for all the NSNRIN. In all cases, left side graphics correspond to classical 
filter bank and right side ones to the E-ESVB design. Results are shown from 2 to 
20 bands only, because over this value no significant changes in the trends were 
found. 

 
Fig. 9 Non Stationary - High Dispersive model. (a)-(b) Mean SNRG vs. NSNRIN. (c)-(d) 

Mean SNRG vs. Nº of Bands. (e)-(f) Mean FCRG vs. Nº of Bands. In all cases left side figures 
are for fixed bandwidth filters and right side ones for variable bandwidth filters. 

As can be seen (Fig. 9a-9c-9e), with the fixed bandwidth filter bank, FM is again 
the most sensitive method. It reaches the highest values of SNRG, whereas SPT 
and PT methods require at least 10 bands to achieve similar values. Moreover, MIN 
and NORM are again the worst from the point of view of sensitivity and efficiency. 
In addition, with the new filter bank design, FM improves its sensitivity (Fig. 9b) 
and gets the maximum gain with a very few bands (Fig. 9d), achieving an 
extraordinary FCRG even for very low number of bands. 

In figures 10a and 10b we show the output obtained after applying the algorithm 
to a scan using 10 bands. As in the low dispersive case, FM shows the best location 
performance. Again, although having reasonable SNRG, PT and SPT still exhibit 
much false detection. MIN and NORM hold their poor resolution, although some 
improvements are shown when using the new filter bank design. 

In general terms, results show again the superiority of FM, especially when the 
E-ESVB filter bank is used. 



 
Fig. 10 Non Stationary - High Dispersive model. Outputs after recombination for 10 

bands and NSNRIN=0.15 for (a) fixed and (b) variable bandwidth filters. Selected scan has a 
single defect at sample 200. 

The last series of figures (Fig. 11) show results for real scans obtained from the 
cement specimens previously described, representative of the high dispersive non-
stationary model. Notice that only efficiency (dependence on the number of bands) 
and FCRG are shown, as generating different NSNRIN in a controlled manner was 
not possible. In any case, results are consistent with those of the foregoing 
simulations. 

 
Fig. 11 Results obtained after processing a scan of cement 32.5 with a single defect at 

sample 1050. SNRG vs. Nº of Bands for (a) fixed and (b) variable bandwidth filters. FCRG vs. 
Nº of Bands for (c) fixed and (d) variable bandwidth filters. Outputs after recombination of 
10 bands for (e) fixed and (f) variable bandwidth filters. 

 

5 Conclusion 
We have presented an experimental comparison among some representative 

variations of the SSP algorithms. Five variations were selected: MIN, NORM, PT, 
SPT and FM. NORM and SPT are respective extensions of MIN and PT, although SPT 
may be also considered an hybrid method between MIN and PT. FM is a variation of 
the Geometric Mean OS method. Experiments have been exhaustive to obtain 
conclusions that could be generalized. For this purpose, simulations were performed 



with materials of different degrees of dispersion. Additionally, real data experiments 
were carried with samples of aluminum and cement. Comparisons were made in 
terms of sensitivity (dependence of the SNRG with the NSNRIN) and efficiency 
(dependence of the SNRG and the FCRG with the number of bands). Moreover, time 
records for some representative configurations have been showed to obtain more 
evidences of the actual performance of the methods, in especial in what concerns 
the number of false echoes detected. 

It has been proposed a new design for the filter bank, which uses variable 
bandwidth filters equally spaced in frequency and energy equalized. That has 
shown to be the most efficient option from two different perspectives. First, it 
reaches the highest SNR Gain with the lowest number of bands. Second, it achieves 
very high values of the FCR, thus making much easier the detection process. 

Some significant conclusions have been reached: 

• FM has showed to be the best recombination method in most cases, 
from the point of view of sensitivity, efficiency and lacking of false 
detections. 

• PT and SPT exhibit similar sensitivity and efficiency, always superior 
to MIN and NORM, but generally worse than FM. However, the output time 
of PT and SPT show too many false echoes, which can be a practical 
limitation, especially when automatic detection of echoes is required. In 
addition of that, the achieved FCR will always be much lower than with the 
FM method. 

• FM improves significantly when using the new filter bank design. 
However PT and SPT degrade, and MIN and NORM remain basically 
unaffected. 

• The combination of the new filter bank proposed with the FM method 
is able to provide values close to 60 dB in the FCROUT with a low number of 
bands, what makes this combination an interesting option when automatic 
detection is required. 

As a main conclusion we can say that FM in conjunction with the new E-ESVB 
filter bank has showed to be a very attractive SSP method. This is in contrast with 
the few attention received in the past by the FM recombination technique.  

Acknowledgment 
This work has been supported by the Ministerio de Fomento (Spain) and the 

Ministerio de Ciencia e Innovación (Spain), and FEDER funds under the projects 
T39/2006, TEC2008-06728 and TEC2008-02975 

References 
[1] Newhouse VL, Bilgutay NM, Sniie J, Furgason . Flaw-to-grain echo enhancement 
by split-spectrum processing. Ultrasonics 1982;20(2):59–68. 

[2] Bilgutay NM, Sniie J. The effect of grain size on flaw visibility enhancement 
using split spectrum processing. Mater Eval 1984;42(6):808–14. 

[3] Rubbers P, Pritchard CJ. An overview of split spectrum processing. NDTnet 
2003;8(8). 

[4] Tian Q, Bilgutay NM. Statistical analysis of split spectrum processing for 
multiple target detection. IEEE Trans Ultrason Ferroelectr Freq Control 
1998;45(1):251–6. 

[5] Drai R, Khelil M, Benchaala A. Time frequency and wavelet transform applied to 
selected problems in ultrasonics. NDT&E International 2002;35:567–72. 



[6] Legendre S, Goyette J, Massicotte D. Ultrasonic nde of composite material 
structures using wavelet coefficients. NDT&E International 2001;34:31–7. 

[7] Le Gonidec Y, Conil F, Gibert D. The wavelet response as a multiescale ndt 
method. Ultrasonics 2003;41:487–97. 

[8] Saniie J, Nagle DT, Donohue KD. Analysis of order statistic filters applied to 
ultrasonic flaw detection using split-spectrum processing. IEEE Trans Ultrason 
Ferroelectr Freq Control 1991;38(52):133–40. 

[9] Aussel JD. Split-spectrum processing with finite impulse response filters of 
constant frequency-to-bandwidth ratio. Ultrasonics 1990;28:229–40. 

[10] Cincotti G, Cardone G, Gori P, Pappalardo M. Efficient transmit beamforming in 
pulse-echo ultrasonic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 
1999;46(6):1450–8. 

[11] Karaoguz M, Bbilgutay N, Akgul T, Popovics S. Defect detection inconcrete 
using split spectrum processing. Proc IEEE Ultrason Symp 1998 1998;1:843–6. 

[12] Bosch I, Vergara L. Normalized split-spectrum: A detection approach. 
Ultrasonics 2008;48:56–65. 

[13] Shankar PM, Karpur P, Newhouse VL, Rose JL. Split spectrum processing: 
Analysis of polarity thresholding algorithm for improvement of signal-to-noise ratio 
and detectability in ultrasonic signals. IEEE Trans Ultrason Ferroelectr Freq Control 
1989;36(1):101–8. 

[14] Nguyen TQ, Jayasimha S. Polarity-coincidence filter banks and nondestructive 
evaluation. Proc ISCAS 1994 1994;2:497–500. 

[15] Yoon S, Oruklu E, Saniie J. Performance evaluation of neural network based 
ultrasonic flaw detection. Proc IEEE Ultrason Symp 2007 2008;:1579–82. 

[16] Saniie J, Wang T, Bilgutay M. Statistical evaluation of backscattered ultrasonic 
grain signals. J Acoust Soc Am 1988;84(1):400–8. 

[17] Wagner RF, Smith SW, Sandrik JM, Lopez H. Statistics of speckle in ultrasound 
b-scans. IEEE Trans on Sonics and Ultras 1983;30(3):156–63. 

[18] Donohue KD. Maximum likelihood estimation of a-scan amplitudes for coherent 
targets in media of unresolvable scatterers. IEEE Trans Ultrason Ferroelectr Freq 
Control 1992;39(3):422–31. 

[19] Karpur P, Canelones OJ. Split spectrum processing: a new filtering approach 
for improved signal to noise ratio enhancement of ultrasonic signals. Ultrasonics 
1992;30(6):351–7. 

[20] Gustafsson MG. Nonlinear clutter suppression using split spectrum processing 
and optimal detection. IEEE Trans Ultrason Ferroelectr Freq Control 
1996;43(1):109–24. 

[21] Gustafsson MG, Stepinski T. Studies of split spectrum processing, optimal 
detection, and maximum likelihood amplitude stimation using simple clutter model. 
Ultrasonics 1997;35:31–52. 

[22] Kino GS. Acoustic waves: devices, imaging, and analog signal processing. 
Prentice-Hall Inc.; 1987. 

[23] Kuc RB. Application of kalman filtering techniques to diagnostic ultrasound. 
Ultrason Imaging 1979;1(2):105–20. 

[24] Tian Q, Bilgutay NM. Statistical analysis of split spectrum processing. Proc 
IEEE Ultrason Symp 1996 1996;:709–12. 


