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Abstract This work presents a software system designed to track the reproduc-
tion of a musical piece with the aim at match the score position into its symbolic
representation on a digital sheet. Into this system, known as automated Musi-
cal Accompaniment System, the process of score alignment can be carried out
real-time. A real-time score alignment, also known as score following, poses an im-
portant challenge due to the large amount of computation needed to process each
digital frame and the very small time slot to process it. Moreover, the challenge is
even greater since we are interested on handheld devices, i.e. devices characterized
by both low power consumption and mobility. The results presented here show
that it is possible to exploit efficiently several cores of an ARM® processor, or a
GPU accelerator (presented in some SoCs from NVIDIA) reducing the processing
time per frame under 10 ms in most of the cases.

Keywords Audio-to-Score Alignment - Score Following - Musical Accompani-
ment - Parallel Computing - Real-time Computing
1 Introduction

The task of synchronizing an audio recording of a musical piece with the corre-
sponding sheet music is known as alignment [1]. Alignment is a process that can
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be carried out offline or online. Online alignment, also called score following, is
the real-time synchronization of a live musician playing a score (music live perfor-
mance) with the symbolic score itself and decoding of expressive parameters of the
musician on the fly. The interactivity between the performance and the score fol-
lowing (Interactive Music System) is associated with an electronic equipment that
“listens” and “responds” to the performer’s input. To conduct this tracking, the
system software running on this equipment acquires a digital signal and performs
the estimation from the current and previous signals. There are many useful ap-
plications for an efficient score following system featuring, for instance, automatic
page turning [2], automated computer accompaniment of a live soloist [3], syn-
chronization of live sound processing algorithms for instrumental electroacoustic
composition, and the control of visual effects synchronized with the music.

Before triggering the score following, it takes place an offline preprocessing
stage. Under this stage, all the information contained in the MIDI score is orga-
nized so that it can be used for alignment purposes. At this stage, for instance,
a set of combinations of concurrent notes and the transitions between them is
defined. Afterwards, the score following, which works real-time, divides the pro-
cessing on each upcoming digital frame in several stages. The first one is the feature
extraction, where the features that characterize some specific information about
the musical content are extracted from the audio signal. The second stage, named
Module Distortion, is in charge of calculating a cost matrix that will be used as
input by the following stage; it is the most expensive in terms of floating point op-
erations (flops). The third stage performs the matching by finding the best match
between the feature sequence and the score. Of the two main methods used for this
matching, i.e. the Hidden Markov Model (HMM) [8-11] and the Dynamic Time
Warping (DTW) [4,12-14], the last one is the one which has been integrated in
the system proposed in this contribution.

In this work, we aim at closing the whole online alignment for score following
system by proposing a fast implementation of the most expensive module, the
second stage, i.e. the Module Distortion. Our implementation exploits one of the
most commonly found multicore processors in tablets and smart phones, such
as it is the ARM® processor. Moreover, our application is also able to use the
embedded GPU contained into some NVIDIA ARM® processor chips, allowing
thus to achieve a high performance for very long musical scores.

The structure of the paper is as follows. In Section 2, we explain the architecture
of the proposed system and go through details of the computational aspects of the
application from a theoretical point of view. Section 3 exposes the implementation,
in particular, for the GPU since is one of the most important highlights of the
paper. The experimental results are shown in Section 4. The paper is closed with
a conclusions section.

2 The Musical Accompaniment System

Our aim is to address the score following problem through the development of an
automated computer Musical Accompaniment System that is mainly based on the
framework proposed in [4]. Of this system, the matching stage (the third one),
which has been implemented using the DTW method, was already tackled in [15],
where it was designed a parallel version suitable for several processor cores and
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Fig. 1 The Musical Accompaniment System.

for GPUs. The software solution proposed for the online alignment has been built
satisfying the following two basic requirements: real-time and mobility. Accord-
ingly, this design should be aware of the low computational power of the handheld
devices, specially the cheapest ones, and should deeply use the possibilities offered
by some heterogeneous parallel architectures that provide the processor with a low
consumption GPU embedded into the same chip (SoC).

Figure 1 outlines the main blocks of the Musical Accompaniment System. Our
audio signals (frame) are monaural with 44.1 kHz sampling frequency and 16 bits
per sample. When a new frame arrives, frame(t), the process starts at the Fea-
ture Extraction block, where it is obtained a low-level spectral representation of
the audio data (Time-Frequency representation). First, a windowed Fast Fourier
Transform (FFT) is applied to the signal. A Hanning window with a size of 128 ms
and a hop size of 10 ms is used (for both synthetic and real-world signals). Note
that, according to these values the frame length (Nfrqme) is 5700 samples. We
chose this value as in [17] to have enough frequency resolution for low frequency
sounds. However, the transform length (Nppr) is 16384 (zero padding is used) in
order to obtain at least one frequency bin to each MIDI interval.

Performed the FFT, the time-frequency representation is converted from linear
frequency to MIDI resolution. In order to obtain this computation, first the mag-
nitude spectrogram (inset Module in Fig. 1) is computed from the complex output
of the FFT (in real and imaginary parts). Afterward, the frequency bins belonging
to the same MIDI interval is summed up (inset MIDI Resolution in Fig. 1) result-
ing in z¢(f), that is the time-frequency representation of the input frame in MIDI
resolution. Note that the number of MIDI pitches (Njyrpr) corresponds with the
range of notes that a piano can play in MIDI scale.

The inputs of the Distortion Block (DB) are x+(f), in addition to the spectral
patterns B(f, k) obtained in the preprocessing stage. Note that the maximum value
of kis Ngpasgs, which corresponds to the number of units in the score. A score unit
represents the occurrence of concurrent or isolated notes in the score (see [17]). The
Distortion Block calculates D¢(7), which measures the suitability of each unit to be
active at each frame t (referenced to the signal input) by analyzing the likelihood
between the spectral patterns B(f, k) and the time-frequency representation of the
input signal x:(f). Note that, in D¢(7), 7 represents the synthetic signal frames
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Algorithm 1 Module Distortion

Let B(f, k) the matrix learned in preprocessing stage.

{/* Compute Block */}

Di(k) = 0.

for k=1 to Ngasgs do
for f=1 to N]WIDI do

U W N =

§zt(f)B(f,k)<5*1>
S B(f.k)P
f

[=]

Py (k) = Pi(k) + Distg(xe(f), ge(k)B(f,k)), where g¢(k) =

end for
end for

9 {/* Apply Block */}

10 for 7=1 to DTWg;,. do

11 Dy¢(71) = P¢(ks), where k- is the unit played at time 7 at the score.
12 end for

0 1

or score positions. To obtain the optimum unit at each frame we use, as a cost
function, the Beta-divergence (see (1)), which includes in its definition the most
used costs functions in the state-of-art (see [16]). One component per unit is used
so that, single non-zero restriction can be imposed to the gains allowing thus the
use of the efficient signal decomposition method described in [16], among others.
Finally, the length of D¢(7) at frame ¢ is given by the DTWs;,. parameter, that
is the duration in frames of the score (MIDI time) to be aligned. Remember that,
as in [17], a hop size of 10 ms is used for frame duration in MIDI time.

As it can be seen in Algorithm 1, the computational intensity of the Distor-
tion Block is larger than in Feature Extraction module. This is mainly because it
depends on the number of units of the composition. Consequently, the higher the
number of units of the score, the larger the computational intensity.

s (@7 + (B -1 — pzif~1) B e (0,1)U(1,2]
Dg(x|@) = ¢ zlog% —z+2 g=1 (1)
Z+logZ—1 B=0.

Finally, in order to perform the alignment we used the DTW to match the
score position with each input signal frame. In this stage and in order to reduce
latency, no backtracking is allowed, that is, the decision is made directly from the
information contained into frame t. The simplest online approach is obtained by
matching the performance position at frame ¢ with the score position 7 associated
to the minimum value of the accumulated cost at frame ¢. A thorough explanation
of the theoretical aspects of the problem, as well as the multi-tier architecture
designed for the DTW functional block, can be found in [4,16,17]. Our parallel
implementation of this algorithm, presented in [15], has been used here with some
little changes, including some optimizations carried out to avoid the downside of
a reduction operation in parallel.

From the theoretical point of view, the sequential cost of the computation
applied to each frame can be approximated by

1. Feature Extraction.
— Hanning Window. Element-wise product of two vectors of size N¢rqme.-
— FFT. One-dimensional FFT algorithms have computational complexity of
O(nlog(n)) when n is a power of 2. We have used the high performance
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Algorithm 2 Distortion matrix computation method
1 for k=1to Ngasgs do

2 fOI‘fZItO NJW]DI do

3 a=oa+ fiTy ¢

4 end for

5 a=a/nt

6 c=af1

7 fOI‘fZItONM]DI do

8 d=d+ (f§ +c(a(B = 1)Sk,s — Bf)Thk.r)/(B(B— 1))
9 end for

10 DS, =d

11 end for

libraries fftw [18] for the processor and cuFFT [19]) for the GPU. The
vector size Nppr has been selected as a power of 2 so the FFT cost can be
approximated by Nppr loge(Nppr) flops.
— Module. Performs Nppr/2 times three basic operations: 3Nppr /2 flops.
— MIDI Resolution. Computes Nasrpr squares and the sum of the elements
calculated in Module, thereby giving a cost of Nayrrpr + Nppr/2 flops.
2. Module Distortion.
— Compute. The computational cost depends on the value of 8 (Eq. 1). How-
ever, for all the cases is O(Npgses X NMmi1DI)-
— Apply. Performs 2DTWs; .. operations so € 8(DTWg;.e).
3. DTW. Following [15], the cost of this operation is O(DTWs;..), being for the

plog(p)+DTWm-,ze>

parallel version O ( >

In summary, the overall cost is

O(Nframe + Nrrrloge(Nrrpr) + 2Nrpr + Naviipr + Neases X Nyrpr + 2DTWize) =
O(Nframe + Nrrprloge(Nrrr) + Nrpr + Nmipr + Neases X Nyrpr + DTWize) -

for the sequential version. When parallel computing is used in multi-core sys-
tems and following [15], the theoretical computational complexity of DTW is

0] (%). The rest of the steps are mainly conformed by loops with

independent iterations and, thereby, easily divided between the CPU cores (ex-
cluding FFT where an external optimal code is used). Consequently, we can state
that the efficiency is near to the optimal, specially when the number of cores of
the CPU is low, which is the case of the ARM® CPUs.

3 The Module Distortion

We depart in our analysis form a refined version of Algorithm 1, in particular
of lines 3-8, that we can inspect in Algorithm 2. This algorithm works mainly
walking on two matrices, T" and S of size Ngasgs X Nyrpr, to produce an array
DS of size Ngagsgs of distortion states. Based on this fact we have developed a
CUDA kernel that performs this computation in parallel using as many threads
as possible to execute all possible operations in parallel.

To this end, we arrange computations in 2D thread blocks of size 32 x 16 so that
parameter Nasrpr (which is 114) is partitioned in chunks of size 32 and parameter
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Listing 1 Kernel for the distortion matrix computation.

__global__ kernel_CD( * DS, * f, * n,
* S, * T, *p,
beta, MIDI, BASES) {
i = blockIdx.x * blockDim.y + threadIdx.y, j, k;

stride = i *x 128;

th_row = threadldx.y;

th_col = threadIdx.x;

row = i + threadIdx.x;
guard = th_row == 0 && row < BASES && th_col < blockDim.y;

a = 0.0, b, ¢c = beta-1.0;
__shared__ s_al[16], s_b[16];

( i < BASES ) {
( j=th_col, k=stride+th_col; j<MIDI; j+=32, k+=32 )
a += f£[j] * T[k];
a = warpReduceSum(a);
( th_col == 0 ) s_alth_row] = a;
__syncthreads () ;
( guard ) {
a = s_alth_coll / nlrowl;
b = pow(a, c);
s_b[th_col] = beta * b;
s_a[th_col] = b * a * c;
}
__syncthreads () ;
j = th_col; k = stride+th_col;
( j=th_col, k=stride+th_col; j<MIDI; j+=32, k+=32 )
a += (p[jI+T[k] * (S[kl*s_alth_rowl-f[jl*s_bl[th_row])) / (betax*c);
a = warpReduceSum(a);
( th_col == 0 ) s_alth_row] = a;
__syncthreads () ;
( guard ) DS[row] = s_alth_coll;

Npasgs is partitioned in chunks of 16. This way we can get that each thread access
exclusively one position of matrices T" and S. Previously to the call to the kernel
we need to managed data adequately to make more efficient the performance of
the kernel. Matrices T and S are fit into memory within an allocated array of size
Npasgs X 128 for alignment purposes. Consequently, each row of T" or S has 128
elements though only the first 114 positions are referenced in the computations.

Listings 1 shows a snippet of the kernel for the computation of the distortion
array of states that results from the translation of Algorithm 2 into CUDA. The
listing shows the double precision version, existing also the simple precision one.
For simplicity and coherence between Algorithm 1 and Listing 1, it must be noted
that we assume vector p has been previously computed by another kernel to power
each entry of array f to .

The kernel fills vector DS with the computed distortion states. We have focused
mainly onto the optimization of the memory access pattern, with the help of the
CUDA profiler, since this fact is one of the most that usually influences on effi-
cient executions of CUDA kernels, specially of memory bound codes. Variable i
addresses the ith row of matrices T and S. (Be aware that we store these rectan-
gular matrices in a linear array.) Note that blockDim.x is 32 and blockDim.y is 16
so the threads within the same warp access consecutive memory locations (access
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entries within the same row). The goal is that loops in lines 15-16 and 28-29 are
executed by all the threads within the block. Upon termination of these loops, each
thread contains a partial result stored into the local variable a that must be com-
bine by a reduction operation. We aimed to manage operations so that they can
take place within the active warp. Hence, the reduction can be carried out using
warp shuffle instructions to exchange variables among threads. This instruction
set is available since CUDA compute capability 3.x, and is available in the target
machine used for our experiments. The device kernel warpReduceSum performs a
reduction sum over variables a of all the threads within the active warp, leaving
the final result into the variable a of the first thread of that warp. This routine is
easily accessible on Internet!.

We used a boolean variable guard, computed at line 9, that is true only for
the first warp of the thread block. This warp is in charge of computing some
instructions like, for instance, those of the if clause at lines 20-25. Otherwise,
only the first thread of the warps would execute this snippet of code thus loosing
a lot of performance. Furthermore, we can guarantee this way that the access to
memory (in line 33) is always to consecutive allocations.

4 Evaluation and experimental results

For the experimental evaluation we have focused our interest only on a light-
weighted device like it is the NVIDIA Jetson, in particular, the TX1 model. This
development kit features a Quad-core ARM® Cortex®-A57 MPCore Processor,
and a NVIDIA Maxwell™ GPU with 256 NVIDIA® CUDA® Cores. The TX1
version of this board represents a significant step forward over the previous model
(TK1) that allows to address the alignment of scores of longer duration in less
time. Note that this micro-architecture is similar to that used in many tablets and
smartphones (e.g. Jiayu S3s, with a more powerful CPU, or NVIDIA Shield, with
the same chip), thus fulfilling with one of the established requirements: mobility. In
addition, the improvement we have made in the software developed, in particular,
in the GPU version produced as a result a very good performance. In order to
help improving the final output we used the high performance libraries fftw and
cuFFT.

Figure 2 summarizes the most important results we can expect from the
NVIDIA Jetson executing our high performance online score matching software
to follow a musical score by using either the ARM cluster of cores (left graphics)
or the embedded GPU (right graphics). The results are presented in terms of Av-
eRage Time per Sequence (ARTpS) and WoRst Time per Sequence (WRTpS) in
milliseconds. The first is the most likely time that we may need to process a frame,
while the second one represents an upper bound. The system can be considered
quite stable according to the similarity obtained between the two times in most
of the cases. The complexity per frame of the algorithm depends on the length
of the score. We used synthetic audio files of duration: 150 sec., 5 min., 10 min.,
15 min., and 30 min. to test and explore the limits of the system. The implemented
software makes use of double precision real numbers (64 bits) and simple precision
(float numbers of 32 bits), and all the parameters of the score alignment algorithm

! https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions—kepler
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Fig. 2 Experimental results of Online Score Following. AveRage (ARTpS) and WoRst
(WRTpS) Time per Frame (in ms.) using the four ARM cores (left figures) and the GPU
(right figures) for g8 = {0,1,1.6}.

were set to the same values given in [17]. The flat line that intersects the y-axis at
10 ms. in the figure corresponds to what we judge is the maximum acceptable time
to process a frame in real-time (real-time threshold) (with the hop size between
frames used in [17]).

As it is shown in the graphics on the left, the implemented score matching
is able to execute in real-time for all cases except for the largest score in double
precision in the general case for 3, i.e. for 8 ¢ {0,1}. When § is 0 or 1 the system
responds in real-time for scores of < 15 minutes in simple precision, and for scores
of < 5 minutes. Different values of § may imply the use of the log function, only
multiplications, or power functions (see (1)) so, consequently, may highly impact
on the frame processing time. The existence of a GPU coprocessor embedded in the
Jetson device in addition to the implementation of the score following algorithm
presented in this contribution for the GPU allows to fit the frame processing
time always below the real-time threshold for all the combinations of 8 and score
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Fig. 3 Comparison of the frame processing time between the use or not of the GPU copro-
cessor of the NVIDIA Jetson TX1.

Table 1 Average time in seconds of 50 repetitions of the main blocks of the proposed system
for a 30 minutes audio file using double precision real numbers.

ARMx1 ARMx4 GPU
Feature Extraction 38.34 13.02  36.18
Distortion Block 530.29 142.64  39.77
Dynamic Time Warping 343.14 88.80 14.90

lengths, whatever the precision used, as it can be seen on the right hand size
graphics of Fig. 2.

Finally, and for comparison purposes, we show in Fig. 3 the relationship among
the times achieved when using or not the GPU, varying the precision and the score
length, using the general case for the 8 parameter as example. Also, we show in
Table 1 the average time of the main blocks of the Musical Accompaniment System
depicted in Fig. 1 using double precision for a 30 minutes audio file. Combining
the information of Fig. 3 and Table 1 it can be appreciated the substantial growth
in GPU performance with regard to the ARM processors if the Feature Extraction
stage (FS) is not considered. It is important to note that the computational weight
of F'S, which is quite small when compared with the other two blocks, comes from
the FFT module and we used there libraries fftw and cuFFT. Library fftw is very
optimized for the ARM® processor and performs very well in parallel. Table 1
also shows that the parallelization, implemented with OpenMP [20] for the CPU,
is efficient, i.e. the empirical efficiency obtained is close to one, as it was expected
according to the theoretical estimation presented in Section 2.

5 Conclusions

In this work we have addressed the score following problem developing an auto-
mated computer Musical Accompaniment Parallel System. We managed to use
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high performance computing techniques including tools like OpenMP for multi-
cores or CUDA for GPUs with the aim of solving the problem in real-time using
hadheld/mobile devices. The low computational power of these devices and the
small time window (10 ms) to process each digital frame are both very strong and
critical requirements enforced by many applications.

To demonstrate the high performance achieved with our proposed software
system, we carried out the tests using the most commonly multi-core processors it
can be found in modern tablets and smartphones, i.e. the ARM® processor, and
also the embedded GPU contained into some NVIDIA ARM® processor chips.
In this context, we have analyzed the limits of a real-time response in terms of
score duration. As a result, we conclude that the system always achieves good
score alignments within the real-time constraint of 10ms for short/medium score
durations. For long, and very long, scores it is necessary to use our GPU based
approach.
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