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Abstract
Being able to read and interpret affective states plays a significant role in hu-
man society. However, this is difficult in some situations, especially when
information is limited to either vocal or visual cues. Many researchers have
investigated the so-called basic emotions in a supervisedway. This thesis holds
the results of a multimodal supervised and unsupervised study of a more real-
istic number of emotions. To that end, audio and video features are extracted
from the GEMEP dataset employing openSMILE and OpenFace, respectively.
The supervised approach includes the comparison of multiple solutions and
proves that multimodal pipelines can outperform unimodal ones, even with
a higher number of affective states. The unsupervised approach embraces a
traditional and an exploratory method to find meaningful patterns in the mul-
timodal dataset. It also contains an innovative procedure to better understand
the output of clustering techniques.

Keywords—MultimodalMachine Learning, EmotionRecognition, Supervised Learn-
ing, Unsupervised Learning
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Sammanfattning
Att kunna läsa och tolka affektiva tillstånd spelar en viktig roll i det mänskliga
samhället. Detta är emellertid svårt i vissa situationer, särskilt när informa-
tion är begränsad till antingen vokala eller visuella signaler. Många forskare
har undersökt de så kallade grundläggande känslorna på ett övervakat sätt.
Det här examensarbetet innehåller resultaten från en multimodal övervakad
och oövervakad studie av ett mer realistiskt antal känslor. För detta ändamål
extraheras ljud- och videoegenskaper från GEMEP-data med openSMILE re-
spektive OpenFace. Det övervakade tillvägagångssättet inkluderar jämförelse
av flera lösningar och visar att multimodala pipelines kan överträffa unimodala
sådana, även med ett större antal affektiva tillstånd. Den oövervakade metoden
omfattar en konservativ och en utforskande metod för att hitta meningsfulla
mönster i det multimodala datat. Den innehåller också ett innovativt förfaran-
de för att bättre förstå resultatet av klustringstekniker.

Nyckelord—MultimodalMaskininlärning, Känsloigenkänning, Övervakad Inlärning,
Oövervakad Inlärning
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Chapter 1

Introduction

Whenever people communicate, they reveal emotions through their facial ex-
pressions, body gestures, and voice tone. Recognition of such nonverbal com-
munication techniques is crucial for social interaction [1]; and has applications
in many fields varying from psychotherapy [2] to human-computer interaction
[3]. However, mastering this skill can sometimes be troublesome for some
people, especially when information is limited to either verbal or nonverbal
communication; or when distinct channels provide conflicting information [4]
[5]. Something similar happens when it comes to recognizing emotions using
Artificial Intelligence (AI) algorithms. Multimodal approaches (those which
combine multiple inputs, e.g., audio, video, text) tend to outperform unimodal
solutions [6] [7] [8]. Objective properties of expressions can be measured in
many different ways (e.g., facial gestures, body movements, speech prosody,
brain imaging) as they unfold over time. But do they have any multimodal
cue patterns? This is one of the main questions contemplated within the inter-
disciplinary five-year research project led by Petri Laukka at the Psychology
Department of Stockholm University. This thesis serves as part of a feasi-
bility study before new videos are recorded for a novel database that will be
employed in Laukka’s research project.

1.1 Background
One of the first research efforts conducted in Multimodal Machine Learning
(MML) was in 1989 and focused on audio-visual speech recognition [9] pro-
pelled by the McGurk effect [10] – an interaction between hearing and vision
in speech perception. The phenomenon happens when the auditory compo-
nent of one sound is combined with the visual component of another sound,
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2 CHAPTER 1. INTRODUCTION

resulting in the perception of a third sound (e.g., a voiced /ba-ba/ with a vi-
sual /ga-ga/ is perceived as /da-da/ by most individuals). These results pushed
many researchers in the field to investigate multimodal approaches. The vast
majority of the unimodal speech recognition solutions were based on Hidden
Markov Models (HMMs) back then [11] [12], and so were the early multi-
modal ones [13]. Even though the original purpose of using two different
modalities was to improve speech recognition performance, the experimen-
tal results proved that the main benefit of using visual content was when the
speech signal had a low signal-to-noise ratio [14] [15].

The study of human multimodal behaviors during social interaction was
established in the early 2000s [16]. But it was not until the 2010s that the fields
of emotion recognition and affective computing bloomed, thanks to technical
improvements in automatic face detection, facial landmark detection, and fa-
cial expression recognition [17]. A meta-analysis conducted by D’Mello et al.
in 2015 [7] disclosed that multimodal affect recognition leads to improvement
when using more than one modality, nevertheless, this betterment is reduced
when it comes to spontaneous emotions. Moreover, it has been shown that
studies based on posed emotions are prone to outperform those solutions that
use natural and induced datasets, where induced means it has been created by
exposing subjects to a stimulus (e.g., watching a video) in a controlled envi-
ronment [18].

Even though most of the affective applications have been unimodal, mul-
timodal approaches have been investigated by countless researchers in the last
few years [19] [20] [21] [22]. The principal modalities used in such applica-
tions are facial expression estimation, speech prosody (tone) analysis, physio-
logical signal interpretation, and body gesture analysis [18]. A growing body
of literature has evaluated the use of these cues in a supervised manner [23]
[24] [25], yet few researchers have addressed the problem in an unsupervised
way [26]. Besides, only a few studies have addressed the issue of classifying
a wide variety of emotions for both facial [27] and vocal [28] expressions, as
well as incorporating multimodal expressions [29] [30]; distancing their work
from the commonly investigated basic emotions (anger, disgust, fear, happi-
ness, sadness, and surprise).

Much work on the potential of emotion AI has been carried out, however,
according to the 2019 Gartner hype cycle, this emergent technology will sig-
nificantly impact on business, society, and people over the next five to ten years
[31].
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1.2 Problem
Past research on emotion recognition has tended to focus on supervised ap-
proaches rather than unsupervised solutions. Furthermore, most studies have
relied on datasets with a limited number of so-called basic emotions, although
everyday interactions are characterized by a wide variety of more subtle af-
fective states. Hence, it remains unknown whether studying a broader number
of emotions using a multi-solution strategy could lead to novel answers in the
field. Therefore, the core problem of this thesis is the apparent standardiza-
tion of supervised strategies together with the conventional use of rather small
emotion datasets.

1.3 Purpose
The main goals of this thesis are to confirm that even with a higher number of
emotions, a multimodal supervised machine learning solution defeats a uni-
modal one, and to see if an inductive data-driven tactic can steer toward un-
precedented discoveries. Thus, the two research questions could be stated as
follows:

• Do supervised multimodal strategies outperform unimodal ones, even
with a more realistic number of emotions?

• Can unsupervised algorithms reveal any meaningful structures in the
multimodal dataset?

1.4 Benefits, Ethics, and Sustainability
This thesis serves as a contribution to Laukka’s research project as it represents
an initial step toward being able to fully answer one of the big three research
questions of the project, and it is part of a feasibility study. In the same way,
it also contributes to the research community since some of the solutions and
results could be used, either directly or indirectly, inmany differentmultimodal
scenarios.

Moreover, this work could end up being useful in areas such as healthcare,
supporting people that can not properly read emotional cues (because of brain
damage or disease); education, adjusting teaching methodologies according to
the learners’ affective states; entertainment, adapting game sounds in harmony
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with the players’ emotions; and industry, adjusting self-drivingmodes depend-
ing on the drivers’ mood. Hence, this project may eventually play a part in
some of the 2030 Sustainable Development Goals (SDGs)1. For instance, Goal
4: Quality Education, assuring non-violent and non-discriminative environ-
ments and helping learners with disabilities; and Goal 11: Sustainable Cities
and Communities, improving road safety and inclusion of minority groups.

The results obtained in this thesis are reproducible and can be replicated
by running the proper Jupyter2 notebook available on the following GitHub
repository3. Furthermore, all employedmethods are compared using statistical
measurements to be able to draw solid conclusions.

Bear in mind that this study has been carried out using a dataset with por-
trayed emotions, therefore, results may change depending on the employed
dataset. No videos were recorded and no personal information was used in
this investigation.

1.5 Research Methodology
In order to answer the above-stated research questions, the following quantita-
tive research method was used. First, video and audio features were extracted
from a multimodal dataset with a wide variety of acted emotions. Second,
different unimodal and multimodal approaches were compared in terms of
their performance. Lastly, two unsupervised solutions were utilized to find
meaningful patterns in the multimodal dataset. Refer to Chapter 3 for further
information.

1.6 Thesis Outline
This thesis is laid out as follows. Chapter 2 provides supplementary informa-
tion about multimodality, audio and video features, and some of the employed
machine learning algorithms. Chapter 3 presents a more exhaustive descrip-
tion of the methodology along with the deployed supervised and unsupervised
solutions. Chapter 4 discloses the obtained results in a tabular and graphical
way. Chapter 5 discusses the results presented in the previous section. Chap-
ter 6 draws general conclusions and announces recommendations regarding
the future directions of Laukka’s project.

1https://www.undp.org/content/undp/en/home/sustainable-development-goals.html
2https://jupyter.org/
3https://github.com/marferca/automated-multimodal-emotion-recognition

https://www.undp.org/content/undp/en/home/sustainable-development-goals.html
https://jupyter.org/
https://github.com/marferca/automated-multimodal-emotion-recognition


Chapter 2

Extended Background

2.1 Related Work
This thesis is a pre-pilot study before a more complicated research activity is
started. Laukka’s project will involve the creation of a very structured dataset
with a large number of emotions and information from different modalities.
The GEMEP dataset [29] shares this idea and has been employed by many
groups over the years [32] [33]. The openSMILE [34] and OpenFace [35]
toolkits have been commonly utilized in the AVEC (Audio-Visual Emotion
recognition Challenge) workshops to extract audio and video features [36] [37]
[38] [39]. Future work of the project will be not only inspired by studies fo-
cused on audio and video features but also by what other groups have more
recently attempted with other signals [40] [41] [42].

There are several examples of multimodal emotion recognition systems
in the literature. These can be divided into traditional machine learning so-
lutions, where features are “manually” extracted from the data and then in-
put into a predictor [6]; and deep learning solutions, where the raw signals
are input directly into the network so that it automatically extracts an inter-
mediate representation of the input data [43]. Kessous et al. [6] proposed a
multimodal system to recognize 8 different emotions based on the traditional
solution. Facial expressions, body gestures, and acoustic analysis of speech
were used to extract features, fuse them in a feature-level fashion, and then
use them as input to a Bayesian classifier (BayesNet). With this configuration,
they achieved an overall performance of 78.3%, reaching the highest accuracy
for anger (96.7%) and the lowest for despair (53.3%). On the other hand, Tzi-
rakis et al. [43] opted for the deep learning approach, using raw signals from
the auditory and visual modalities as input data. In order to extract robust fea-
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6 CHAPTER 2. EXTENDED BACKGROUND

tures from the raw data, they utilized a convolutional neural network and a deep
residual network of 50 layers (ResNet-50) [44] for the speech and the visual
channels, respectively. The output of these two networks was then fused and
fed to an LSTM to predict the affective states. Their system outperformed, in
terms of the concordance correlation coefficient, traditional solutions based on
handcrafted features (e.g., eGeMAPS [45] and the ones used in the ComParE
challenges [46]) on the RECOLA database [47] of the AVEC’16 challenge.
Their solution achieved the performance of 0.789 for arousal and 0.691 for
valence.

2.2 Multimodality
The aggregation of multiple affective cues not only affords a more extensive
compilation of data but also helps relieve the uncertainty effects of raw sig-
nals. In the end, these signals are acquired by imperfect sensors and frequently
processed to extract features from them. Additionally, multimodality brings
flexibility and robustness as it gives the possibility of using other modalities
if one or more channels are suffering from a lack of meaningful information
(e.g., visual occlusion or no aural content) [18]. In 1967, Albert Mehrabian,
a body language pioneer researcher, discovered that 7% of the communica-
tion is verbal, 38% is vocal, and 55% is visual [48]. This explains why the
bulk of studies use audiovisual content to study how emotion expressions are
produced. More details regarding audio and video modalities and fusion tech-
niques are given in the following subsections.

2.2.1 Audio Modality
Speech contains two interrelated channels of information: linguistic informa-
tion that reflects the semantics of the message and paralinguistic information
transmitted by prosody [18] – an oft-cited description from the book of Titze
[49] is; “the non-lexical patterns of tune, rhythm, and timbre in speech; mod-
ulated by the implements of human vocal control: air pressure from the lungs,
tension in the vocal cords and filtration through the throat, tongue, palate,
cheeks, lips and nasal passages.”

As was reported earlier, verbal communication only constitutes a very
small part of human communication. Also, the linguistic speech channel has
some other drawbacks. First, it is not universal, hence a different natural lan-
guage speech processor has to be developed for each dialect; second, it is sensi-
tive to concealing since people are not always sincere about their feelings. On
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the other hand, the paralinguistic channel seems to be a more informative and
reliable source of information. As mentioned by Eyben et al. [45], “the under-
lying theoretical assumption is that affective processes differentially change
autonomic arousal and the tension of the striate musculature and thereby af-
fect voice and speech production on the phonatory and articulatory level and
that these changes can be estimated by different parameters of the acoustic
waveform [50].”

With the increasing interest in vocal expression, many researchers from
different fields have been extracting a wide range of paralinguistic audio fea-
tures, thereby hindering the comparison of methods and results across stud-
ies. To tackle this problem Eyben et al. [45] proposed two standard acoustic
parameter sets for various areas of automatic voice analysis, such as paralin-
guistic or clinical speech analysis. The minimalistic version (GeMAPS) con-
tains prosodic, excitation, vocal tract, and spectral descriptors, whereas the
extended variant (eGeMAPS) adds a small set of cepstral descriptors (features
based on the inverse Fourier transform of the log-magnitude of a signal spec-
trum). More details on this topic can be found in [45]. Both parameters sets
can be extracted using the open-source toolkit openSMILE [34].

These features are used together with machine learning algorithms to pre-
dict affective states. According to a recent survey on AI-based multimodal
methods for emotion detection [22], some of the most commonly employed
classificationmethods areArtificial Neural Networks (ANNs), k-Nearest Neigh-
bor (k-NN), Support Vector Machines (SVMs), and Decision Trees. The focus
of the ML algorithms was put on classifiers since, to a large extent, this thesis
centers on classifying emotions.

2.2.2 Video Modality
The visual modality is a rich source of information since it includes different
types of non-verbal indicators such as body posture, gestures, facial expres-
sions, eye gaze, etc. But, body movements and facial expressions are the most
studied ones. Among both, the latter prevail as one of the most direct channels
to transmit human emotions in non-verbal communication [51].

Darwin [52] was one of the first researchers to study the field of emo-
tional expressions. In his work, he stated that facial expressions of emotion
are universal, specific movements announce a particular emotion, and emo-
tions should be seen as discrete entities and not unique to humans. Leaning
on Darwin’s universality concept, Ekman and Friesen [53] defined the Facial
Action Coding System (FACS), a method that objectively describes all visually
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possible facial muscle activations. To do so, they divided facial expressions
into separated components of muscle movements, called Action Units (AUs)
(see Table 2.1).

There are some commercial tools for AU recognition, such as AFFDEX
[54], Noldus FaceReader [55], and OKAO [56]. However, these solutions tend
to be prohibitively costly and a bit of a black box, since they neither disclose the
employed training data and algorithms, nor give open access to benchmarks.
Fortunately, there are a few freely alternative toolkits that allow extracting
these features, e.g., TAUD [57] and OpenFace [35]. The latter is not only
the most recent free toolkit for such a feature extraction task but also utilizes
computer vision algorithms that achieve state-of-the-art results on landmark
detection, head pose estimation, facial action unit recognition, and eye gaze
estimation (see Figure 2.1).

These video features have been commonly used as input data to ANNs,
SVMs, and HMMs for classification tasks [18]. However, due to the fast-paced
evolution of chip processing abilities, video frames have also been employed
as raw input data to deep learning models [58].

Figure 2.1: OpenFace 2.2.0 tracking results of a GEMEP [29] video portraying
disgust. Points represent landmark detection, green lines the estimated eye
gaze vectors, and the blue cube a 3D bounding box of the head.

2.2.3 Fusion Techniques
One of the key uses of multimodality is to fuse cues from two or more modal-
ities to predict a result from a richer source of information. This topic has
been widely studied by many researchers in the field, provoking different fu-
sion technique classifications. Nonetheless, the majority of previous surveys
[59] [7] [18] stick to the following grouping.
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AU Description Example
AU1 Inner brow raiser
AU2 Outer brow raiser
AU4 Brow lowerer
AU5 Upper lid raiser
AU6 Cheek raiser
AU7 Lid tightener
AU9 Nose wrinkler
AU10 Upper lip raiser
AU12 Lip corner puller
AU14 Dimpler
AU15 Lip corner depressor
AU17 Chin raiser
AU20 Lip stretched
AU23 Lip tightener
AU25 Lips part
AU26 Jaw drop
AU45 Blink

Table 2.1: AU examples (adapted from [35], p. 63).

Early Fusion

The easiest andmost common solution lies in concatenating the feature vectors
from each modality and then use them as input data to the predictor [60] [61].
However, there are more elaborate approaches where different algorithms are
applied to discard the least significant features [19] [6].

Using this fusion technique provides some challenges. First, a larger num-
ber of features may lead to a lower accuracy if the training set is not large
enough [62]. Second, there may be time resolution and format incompatibili-
ties between fused signals. Finally, a higher-dimensional space increases the
computational load.
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Late Fusion

This approach inputs the features from each modality into a distinct predictor
and then merges their output into a final result. In this survey [63], Corneanu
et al. grouped the most typical late fusion strategies for emotion recognition
into the following categories (Figure 2.2 presents a practical example of how
these fusion techniques work):

• Maximum rule: selects the maximum of all posterior probabilities.

• Sum rule: sums probabilities from each classifier and then picks the
class with the highest value.

• Product rule: multiplies probabilities between classifiers and then chooses
the class with the largest value.

• Weight criterion: results in a linear combination of the classifiers’ out-
put, where the constants are confidence rates of the predictors.

• Rule-based: selects a dominant modality for each class.

• Model-based: employs a machine-learning algorithm to fuse the output
of the classifiers.

One of the biggest downsides of using this fusion tactic is the informa-
tion loss of cross-modal correlation since using an individual model for each
modality ignores the low-level interaction between modalities [59] [16].

Figure 2.2: Maximum rule late fusion example: Imagine a scenario where in-
formation from two modalities is given to classify four classes (A, B, C, and
D). Since it is a late fusion approach, two different classifiers are trained for
each modality. Thus two prediction vectors are expected to input into the max-
imum rule fusion system. As illustrated in the figure, the system will return
the maximum value per class and select the class with the highest value as the
final decision. Note that the final output could be normalized, so that the total
probability equals one.
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Hybrid Fusion

This solution attempts to bring the best of both fusion techniques by combin-
ing outputs from early fusion with individual unimodal predictors. However,
this approach only makes sense when more than two modalities are utilized.
For example, imagine a scenario in which three modalities are given: audio,
video, and MRI (Magnetic Resonance Imaging) cues. Audio and video fea-
tures could be concatenated and employed to train a classifier (early fusion).
Simultaneously, another predictor could be used for MRI, to finally fuse the
output from both classifiers (late fusion).

2.3 Supervised Learning

2.3.1 Elastic Net Regularization
In regression analysis, the goal is to find a good regression function (Equa-
tion 2.1) that minimizes a predefined loss function, such as the ordinary least
squares (Equation 2.2).

f̂(x) = xT β̂ (2.1)

LOLS(β̂) =
n∑

i=1

(yi − xi
T β̂)2 (2.2)

However, if the values of β̂ are unconstrained, they can grow rapidly and
hence be vulnerable to high variance. To reduce this problem, β̂ coefficients
can be regularized imposing lasso (`1-penalty) or ridge constraints (`2-penalty).
Their loss functions can be expressed as follows:

L`1(β̂) =
n∑

i=1

(yi − xi
T β̂)2 + λ

p∑
j=1

∣∣∣β̂j∣∣∣ (2.3)

L`2(β̂) =
n∑

i=1

(yi − xi
T β̂)2 + λ

p∑
j=1

β̂2
j (2.4)

On the one hand, lasso regression works best when the model contains sev-
eral superfluous variables, creating an easier model to interpret. On the other
hand, ridge regression performs best when most of the variables are useful.
Therefore, it might be easy to choose between both methods when having a
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vast knowledge of variables. Nevertheless, when dealing with a large num-
ber of variables coming from different modalities, this ends up being more
complicated.

The elastic net regularization is a convex combination of both methods
and has demonstrated superiority over the lasso [64]. Just like lasso and ridge
regularization, its loss function (Equation 2.5) starts with least squares and
then adds `1 and `2 penalties together with a ratio-variable that lets you choose
between lasso (α = 1), ridge regularization (α = 0), or a combination of both
(0 < α < 1).

Lenet(β̂) =
n∑

i=1

(yi − xi
T β̂)2 + αλ

p∑
j=1

∣∣∣β̂j∣∣∣+ (1− α)λ
p∑

j=1

β̂2
j (2.5)

2.4 Unsupervised Learning

2.4.1 Determining the Number of Clusters
Determining the number of clusters in a high-dimensional space is a hard task
for humans. For this reason, some researchers have published different statis-
tical techniques to tackle this problem.

CH Index

The CH index metric [65] rests upon two fundamental concepts:

• Between-Group Sum of Squares (BGSS): measures how separated the
groups are from each other.

• Within-Group Sumof Squares (WGSS):measures how strongly grouped
the clusters are.

When talking about BGSS, a greater value is better. But the problem is
that when running a clustering algorithm for a group of different k values, and
plotting theBGSS(k); the between-cluster variation keeps increasing. Some-
thing similar happens when it comes to WGSS. In this case, a lower value is
better, but the within-cluster variation keeps decreasing as k increases. There-
fore, the perfect value of k would be the one that simultaneously achieves a
large BGSS and a small WGSS. That is the core idea of the CH index (Equa-
tion 2.6 and Equation 2.7).
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CH(k) =
BGSS(k)(n− k)
WGSS(k)(k − 1)

(2.6)

where:

k = number of clusters
n = number of instances

k̂ = argmax
k∈{2,...,Kmax}

CH(k) (2.7)

Silhouette Score

The average silhouette width (also known as silhouette score1) might be used
to select a suitable number of clusters [66]. To do so, first, the silhouette co-
efficient has to be calculated for each sample (Equation 2.8). Second, the av-
erage silhouette width is computed (Equation 2.9). Third, these two steps are
repeated for different values of k to obtain sscore(k). Lastly, the number of
clusters is estimated by picking the value of k that has the largest sscore (Equa-
tion 2.10). As indicated by Rousseeuw in [66], the closer to 1 the score is, the
better. By contrast, a value close to−1 usually indicates that multiple samples
have been assigned to the wrong cluster.

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(2.8)

where:

a = mean intra-cluster distance
b = mean nearest-cluster distance

sscore(i) =
1

n

n−1∑
i=0

s(i) (2.9)

k̂ = argmax
k∈{1,...,Kmax}

sscore(k) (2.10)

1Scikit-learn - Silhouette Score: https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.silhouette_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
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2.4.2 Dimensionality Reduction Methods
PCA

Principal Component Analysis (PCA) is a classic linear method for dimension-
ality reduction. This technique tries to transform a set of probably correlated
features into a new set of n < d uncorrelated features (where d is the origi-
nal number of dimensions). To that end, the algorithm iteratively runs until
it finds the n dimensions that achieve maximum variance, creating a new n-
dimensional space. More details on PCA can be found in [67] and [68].

t-SNE

The t-distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear di-
mensionality reduction technique that aims to take a set of points in a high-
dimensional space and transform them into a revelatory two- or three-dimensional
view. The algorithm can be summarized into two stages. First, each pair of
data points in the high-dimensional space is modeled by a probability distribu-
tion. Second, a low-dimensional space that attempts to follow the previously
obtained probability distributions is created. The main tunable parameter of
the method is the perplexity, which in a nutshell, corresponds to the number of
neighbors per data point. Please refer to [69] for a more in-depth explanation
and to [70] for a more distilled idea of how to use and interpret this method.

UMAP

Uniform Manifold Approximation and Projection (UMAP) is a non-linear di-
mensionality reduction technique that aims to create a low dimensional view
of a high dimensional space that preserves relevant structure. Its creators claim
that their algorithm is competitive with t-SNE and arguably maintains more
of the global structure of the data in a more efficient way. The algorithm can
be summarized into two steps. First, a fuzzy set topological representation is
constructed. Second, this low-dimensional representation is optimized to re-
duce its fuzziness by minimizing the cross-entropy. Please refer to [71] for a
mathematical description of the algorithm and to [72] for a reduced version of
how it works.
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Methodology

3.1 Research Method
In order to study the stated research questions, the following quantitative re-
search method was followed. First, audio and video features were extracted
from a set of 1,260 video files and 18 emotions. Second, data was prepared
for further use in a supervised and unsupervised approach. Third, the super-
vised solution evaluated whether multimodal pipelines could defeat unimodal
ones even with a large number of emotions. To this end, the best unimodal
and multimodal pipelines were compared in terms of their test AUC. These
pipelines were composed of classic ML classification algorithms and different
fusion techniques. Fourth, the unsupervised solution was employed to find
meaningful patterns in the multimodal dataset. This approach lay in the use
of a traditional solution, which involved the utilization of two conventional
clustering techniques; and an exploratory solution, which entailed using an
interactive toolkit. These four stages are explained in detail in the following
subsections.

3.2 Method Evaluation
The use of typical metrics in skewed datasets can lead to suboptimal classifi-
cation models and might conduce to deceiving conclusions. The area under
the ROC curve (AUC) [73] is one of the most popular tools used in this type of
scenario [74]. Besides, rank-based metrics, such as AUC, play an important
role in applications where good class separation is needed [75].

The ROC curve is a diagnostic chart that summarizes the behavior of a
model by computing the false positive rate (FPR) and the true positive rate

15
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(TPR) for a set of given scores under distinct thresholds. The FPR and TPR
can be calculated as in Equation 3.1 and Equation 3.2 respectively.

FPR =
FP

FP + TN
(3.1)

TPR =
TP

TP + FN
(3.2)

The AUC provides a summarized version of the ROC curve by just giving
a single score, which makes it perfect for model evaluation. A value of 0.5
corresponds to a no skill classifier, whereas a value of 1.0 translates as an
ideal classifier.

The dataset was randomly split into training (75%) and test (25%) subsets
in a stratified fashion. Furthermore, 5-fold cross-validation was performed
over the training set for hyperparameter tuning, obtaining more reliable per-
formance results, and lastly, selecting between classifiers. The subset was di-
vided into five folds, as k = 5 and k = 10 have been shown empirically to
yield test error rate estimates that do not suffer from extremely high bias nor
from very high variance. [76]. Unfortunately, the dataset was not divided
on a per-subject basis since the ten actors neither portray the same emotions
nor the same number of files per affective state (see Figure 3.1). Hence, it
might be difficult to find a way to split the dataset in a per-subject basis, and
even more complicated to preserve this condition when using k-fold cross-
validation. Consequently, the fact of not using such a division technique may
have resulted in higher classification rates.

Finally, the normalized gain [77] was used to check if the supervised mul-
timodal strategies (early and late fusion) outperform the best unimodal one.
This metric serves to normalize gain scores with regard to how much gain
could have been achieved (Equation 3.3).

g =
AUCmul.

test (%)− AUCuni.
test (%)

100− AUCuni.
test (%)

(3.3)

where:

AUCmul.
test = AUC score over the test dataset for the multimodal solution

AUCuni.
test = AUC score over the test dataset for the best unimodal solution
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Normalized Gain Gain Level
g < 0.30 Low

0.30 ≤ g ≤ 0.70 Medium
0.70 < g High

Table 3.1: Normalized gain and gain level according to [77].

3.3 Environment Setup
This study was mainly run on a MacBook Pro (Retina, 13-inch, Early 2015)
with a 2.7 GHz Intel Core i5 processor, 8 GB 1867 MHz DDR3, Intel Iris
Graphics 6100 1536 MB, APPLE SSD SM0128G drive, and macOS Mo-
jave 10.14.6 as operative system. Regarding the programming environment,
Python 3.7.6 [78], scikit-learn 0.22.1 [79], SciPy 1.4.1 [80], and Matplotlib
3.1.3 [81] were principally used. Besides, openSMILE 2.3.0 [34] and Open-
Face 2.2.0 [35] were installed and used for feature extraction.

3.4 Dataset
The GEMEP (Geneva Multimodal Emotion Portrayals) Master Set [29] con-
tains 1,260 audio and video files where ten professional actors coached by a
professional director perform 18 affective states uttering two different pseudo-
linguistic phoneme sequences or a sustained vowel “aaa”). The dataset in-
cludes the emotions presented in Table 3.2. These emotion IDs will be used
from now on in some of the charts for making them look cleaner. This dataset
was chosen among others because it contains a wider variety of both positive
and negative emotions than other multimodal datasets [82].

As can be seen in Figure 3.1, the data is imbalanced since most of the
portrayed emotions contain 90 files per class, yet others only have 30 records
per class. Moreover, actors have not interpreted all the emotions, and in the
majority of cases, the number of records per actor within each emotion is not
proportionally divided.
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Emotion Emotion ID
Admiration adm
Amusement amu
Anger col
Anxiety (worry) inq
Contempt mep
Despair des
Disgust deg
Interest int
Irritation irr
Joy (elation) joi
Panic (fear) peu
Pleasure (sensual) pla
Pride fie
Relief sou
Sadness tri
Shame hon
Surprise sur
Tenderness att

Table 3.2: Portrayed emotions and their identifiers.

Figure 3.1: Number of files per emotion ID and actor ID.

3.4.1 Video Processing
Feature Extraction

TheOpenFace toolkit was used for feature extraction over the 1,260 video files.
The whole process took around an hour and generated the following outputs
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per file:

• CSV file: contains basic details about the video feature extraction (e.g.,
frame number, timestamp, confidence, and success rates), together with
information about eye gaze, pose, 2D landmark locations, 3D landmark
locations, ridge and non-ridge shape parameters, and AUs.

• Similarity aligned face folder: includes images of the faces detected in
the input video.

• HOG binary file: encloses the histogram of oriented gradients.

• Tracking video: displays landmarks, head pose and eye gaze tracking
(see Figure 2.1).

• Metafile: includes information about the input and output data.

Data Cleaning

From all the above-enumerated outputs, for this thesis, only data from the
CSV file was used. In particular, the columns related to the basic details and
the AUs. The confidence and success rates significantly helped with the data
cleaning process. The first one tells about how reliable the tracking was (value
from zero to one). The latter is used as a flag to inform users of face detec-
tion and successful tracking. Regarding the AUs, OpenFace can return the
intensity, ranging from zero to five, of 17 facial muscle activations (see Table
2.1).

The video feature extraction toolkit returns multiple feature instances per
file (one row per frame). A total number of 76,612 instances during the feature
extraction process were created. As shown in Figure 3.2, the average number
of instances per file is 50. However, there are a few files with around 200 and
others with less than 20.

As illustrated in Figure 3.3 and Figure 3.4, only 0.58% of the instances
were flagged as unsuccessful, and around 10%had a confidence rate lower than
0.98. Taking this into consideration, instances with a success value distinct
from one or a confidence rate lower than 0.98 were dropped. The number of
total instances decreased by 9.94% after the cleaning process and caused the
erasure of an entire file.
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Figure 3.2: Kernel density estimate of the number of video instances per file
with histogram and rug plot. The height of the curve is scaled, so that the total
density is equal to one.

Figure 3.3: Distribution of the success field.

Figure 3.4: Percentage of instances per confidence rate.

Data Preparation

Unlike the video toolkit, the audio software only returns one instance per file.
Therefore, a way to achieve data consistency is needed. To do so, video in-
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stances were grouped by file and averaged column-wise, reducing the entire
dataset to 1,259 observations. Lastly, features values were divided by 5 for
normalization purposes, and training and test subsets were created.

3.4.2 Audio Processing
Feature Extraction

In this part, two main steps were carried out. First, audio tracks were taken
from the database videos by using FFmpeg1. Second, openSMILE was used
to extract two different parameter sets. These two steps took 15 minutes. The
GeMAPS set contains 62 features, while the extended version (eGeMAPS) 88.
More details on the nature of the audio features can be found in Subsection
2.2.1 and in [45].

Data Cleaning

Aswasmentioned in Subsection 3.4.1, after the video data cleaning procedure,
one file was deleted. Hence, the corresponding audio track had to be dropped
from both audio feature sets, reducing that number of instances to 1,259.

Data Preparation

Once features were extracted and data was cleaned, both feature sets were sep-
arated into training and test sets in a stratified fashion. Lastly, all the parame-
ters were normalized by first fitting a min-max scaler to the training sets and
then applying the scales to the training and test sets. Thereby, test instances
were adjusted as in a real-life scenario where new input values are modified
according to the previously fitted scale, ensuring that new samples are always
transformed into a decimal between zero and one.

3.5 Implementation
With the completion of the main data processing phase, the information from
audio and video modalities was ready to be used for carrying out different
solutions. In the following subsections, the implemented supervised and un-
supervised approaches are thoroughly explained.

1FFmpeg software: https://www.ffmpeg.org/

https://www.ffmpeg.org/
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3.5.1 Supervised Learning
This part of the study aims to answer one of the research questions of the the-
sis. In particular, whether multimodal supervised strategies can beat unimodal
ones, even with a large number of emotions. To do so, different multimodal
late and early fusion techniques were evaluated and compared to the best uni-
modal classifier.

The following multimodal pipelines utilize machine learning models such
as Linear Classifiers with Elastic Net regularization, k-NN, Decision Tree, and
Random Forest. The first three were used since they are some of the most
commonly employed methods for emotion recognition (as was previously said
in Subsection 2.2.1), whereas Random Forest was used because it is known as
one of the best out-of-the-box classifiers [83]. Note that from now on, in this
thesis, Linear Classifiers with Elastic Net regularization will be called Elastic
Net classifiers.

Late Fusion

This approach can be summarized into three steps. First, audio and video clas-
sifiers were separately subjected to a modeling and selection process. Second,
different techniques were tested for fusing the outputs of the audio and video
classifiers. Third, the best late fusion pipeline was evaluated over the test set
and compared to the best unimodal classifier. Note that the best unimodal clas-
sifier corresponds to the strongest model (in terms of their validation AUC)
picked in the first step.

Next, a more deep explanation of the above-stated stages is given. The first
step can be split, in turn, into two phases and was repeated for each modality.
First, 5-fold cross-validation was employed for hyperparameter tuning over the
training set. Second, once the best parameters for each classifier (Elastic Net,
k-NN, Decision Tree, and Random Forest) were found, the average validation
AUC was used to choose between types of machine learning classifiers. The
second step followed the same nature as the previous one but evaluating differ-
ent fusion methods, such as the maximum rule, sum rule, product rule, weight
criterion, rule-based, andmodel-based (Elastic Net, k-NN, andDecision Tree).
The last step consisted of comparing the best late fusion pipeline to the best
unimodal classifier in terms of their test AUC and calculating its gain.
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Early Fusion

Before going into detail, this approach can be divided into three steps. First,
audio and video instances were carefully concatenated. Second, different types
of machine learning classifiers were subjected to a modeling and selection
process. Third, the best early fusion pipeline was evaluated over the test set
and compared to the best unimodal classifier.

Now, a more in-depth explanation of the above-stated stages is given. The
first step lay in joining audio and feature instances on the "file_id" field. The
second can be subdivided into two phases. First, 5-fold cross-validation was
used for hyperparameter tuning over the training set. Second, once the best
parameters for each classifier (Elastic Net, k-NN, Decision Tree, and Random
Forest) were obtained, the average validationAUCwas used to choose between
types of machine learning classifiers. Lastly, the latter stage involved compar-
ing the best early fusion pipeline to the best unimodal classifiers in terms of
their test AUC and calculating its gain.

3.5.2 Unsupervised Learning
This part of the thesis investigates the question of whether unsupervised algo-
rithms can reveal any meaningful structures in the multimodal dataset. To that
end, two different approaches were taken. On the one hand, a more traditional
solution, which involved the use of k-Means and Hierarchical Clustering, was
studied. On the other hand, a more exploratory and graphical method, which
included the use of an open-source embedding projector tool, was investigated.
But first, audio (eGeMAPS set) and video features were concatenated, result-
ing in a total dataset of 1,259 instances and 105 dimensions.

Traditional Approach

This solution lay in the use of k-Means and Hierarchical Clustering with and
without dimensionality reduction. Furthermore, two ways of determining the
number of clusters were evaluated. This subsection of the report only covers
the estimation of the number of clusters as well as the dimensionality reduc-
tion process. The clustering results can be found in Subsection 4.2.1. Re-
garding the employed parameters for Hierarchical Clustering, the city-block
distance metric (also known as Manhattan distance) was used due to the high
dimensionality of the dataset [84], and three different distance methods were
evaluated (simple, complete, and weighted). Please refer to [85] for further
information on the nature of the parameters.
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Figure 3.5 presents the obtained CH(k) and sscore(k) for k-Means before
dimensionality reduction was applied. These two estimation methods were
calculated as detailed in Subsection 2.4.1. Table 3.3 indicates that the esti-
mated number of clusters was two for both techniques. On the other side,
Figure 3.6 and Table 3.4 show the same information but for Hierarchical Clus-
tering. In this case, the CH index demonstrated that the best number of clusters
was two for single and complete distance methods, and four for the weighted
one. However, the silhouette score selected two clusters as the best option for
all of them.

(a) CH Index (b) Silhouette Score

Figure 3.5: k-Means (before dimensionality reduction): Number of clusters
estimation by using CH index and silhouette score, where k ∈ {2, ..., 100}.

Method k̂

CH Index 2
Silhouette Score 2

Table 3.3: k-Means (before dimensionality reduction): Number of clusters
estimation results.
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(a) CH Index (b) Silhouette Score

Figure 3.6: Hierarchical Clustering (before dimensionality reduction): Num-
ber of clusters estimation by using CH index and silhouette score, where
k ∈ {2, ..., 100}.

Method Distance Method k̂

CH Index
single 2

complete 2
weighted 4

Silhouette Score
single 2

complete 2
weighted 2

Table 3.4: Hierarchical Clustering (before dimensionality reduction): Number
of clusters estimation results.

Once the clustering without dimensionality reduction was performed, the
dataset was inspected in search of weak and redundant fields. To that end,
three feature reduction techniques were assessed. First, as illustrated in Figure
3.7, PCA revealed that the use of the three strongest singular values would
only have explained 49% of the total variance of the data. Second, the standard
deviation plot showed that there were not fields with zero variation, nor was an
exaggerated drop of the variance present in the dataset (see Figure B.1). Lastly,
the correlation matrix reports that there were some highly correlated features
(see Figure B.2). Taking everything into consideration, the dimensionality of
the multimodal dataset was diminished by dropping those fields that had a
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correlation value greater than 0.9, decreasing the number of dimensions from
105 to 94 (10%). The use of this correlation threshold has been applied in
many studies and has become a rule of thumb [86].

Figure 3.7: Percentage of cumulative variance explained per number of singu-
lar values.

After reducing the number of features, the CH index and silhouette score
methods were used once again to determine the number of clusters. Both tech-
niques were consistently saying that the best number of groups was two for k-
Means and Hierarchical clustering (see Figure 3.8, Table 3.5, Figure 3.9, and
Table 3.6).

(a) CH Index (b) Silhouette Score

Figure 3.8: k-Means (after dimensionality reduction): Number of clusters es-
timation by using CH index and silhouette score, where k ∈ {2, ..., 100}.
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Method k̂

CH Index 2
Silhouette Score 2

Table 3.5: k-Means (after dimensionality reduction): Number of clusters esti-
mation results.

(a) CH Index (b) Silhouette Score

Figure 3.9: Hierarchical Clustering (after dimensionality reduction): Num-
ber of clusters estimation by using CH index and silhouette score, where
k ∈ {2, ..., 100}.

Method Distance Method k̂

CH Index
single 2

complete 2
weighted 2

Silhouette Score
single 2

complete 2
weighted 2

Table 3.6: Hierarchical Clustering (after dimensionality reduction): Number
of clusters estimation results.

Finally, k-Means and Hierarchical clustering were applied according to the
obtained number of clusters. These results can be found in Subsection 4.2.1.
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Additionally, to facilitate the interpretation of the clustering results, the prob-
lem was contemplated in a supervised manner, where the membership of the
instances to the clusters corresponded to the target classes. To that end, a sim-
ple Decision Tree was trained, and the first decision nodes were analyzed.

Exploratory Approach

This solution consisted of using the TensorFlowEmbedding Projector2, a Google
web application for interactive visualization and analysis of high-dimensional
data [87]. This approach comprises two main stages. First, preparing the in-
put data. Second, exploring the dataset. The first stage entailed the conversion
of the non-reduced multimodal dataset into a TSV file, and the creation of a
metadata file, which enclosed information such as the portrayed emotion, va-
lence (positive or negative), actor id, and actor’s sex. Once both files were
loaded into the web application, data was ready for being explored. The sys-
tem offers three different primary methods of dimensionality reduction (PCA,
t-SNE, and UMAP) and can create two- and three-dimensional plots. For each
of these techniques, parameters were tuned until any meaningful patterns were
found. The results obtained can be found in Subsection 4.2.2.

2TensorFlow Embedding Projector: https://projector.tensorflow.org/

https://projector.tensorflow.org/
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Results

4.1 Supervised Learning
This section presents the obtained supervised learning results after following
the implementation steps detailed in Subsection 3.5.1. First, the unimodal
results are expounded. Second, the multimodal results are illustrated and in-
terpreted. Lastly, the best unimodal and multimodal solutions are compared
in terms of their test AUC. Bear in mind that the selection of the models was
always made according to their average validation AUC, and the test AUC was
only used to compare the performance between solutions.

4.1.1 Unimodality
Table 4.1 lists the best audio classifiers after hyperparameter tuning was per-
formed. As can be seen in this table, RF with the eGeMAPS parameter set
outperformed the rest of the models with an average validation AUC of 0.8628.
Furthermore, the table reveals two more things. First, the classifiers were not
suffering from overfitting since the test AUC values were close to their cor-
respondent validation ones on all occasions. Second, those models that used
the eGeMAPS feature set always performed better. For this reason, only the
extended version of the audio parameter set will be analyzed from now on.

29
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Classifier Average AUC (validation) AUC (test)
Elastic Net (eGeMAPS) 0.8391 0.8504
Elastic Net (GeMAPS) 0.8237 0.8339
k-NN (eGeMAPS) 0.8032 0.8264
k-NN (GeMAPS) 0.8026 0.8212
Decision Tree (eGeMAPS) 0.7296 0.7175
Decision Tree (GeMAPS) 0.7141 0.7198
Random Forest (eGeMAPS) 0.8628 0.8944
Random Forest (GeMAPS) 0.8542 0.8770

Table 4.1: Unimodality: Best audio classifiers.

Figure 4.1 presents how the best unimodal audio classifier coped with the
test set. The model performed better than chance for all the emotions, achiev-
ing the highest performance for amusement (amu). However, a large number
of admiration (adm) instances were misclassified as relief (sou). Additionally,
a more in-depth behavioral study of the classifier was conducted by comput-
ing the per-emotion feature contributions over the test set using the TreeInter-
preter1 package (see Figure A.1). It is apparent from this figure that the feature
importances were dependent on the emotions since the most relevant param-
eters varied from one class to another. Furthermore, it is interesting to notice
that the Hammarberg index (the difference between the energy of the highest
spectral peak in the 0-2 kHz range and the one in the 2-5 kHz spectrum) [88]
played a significant role in the classification of tenderness (att) and anger (col)
samples.

1TreeInterpreter: https://github.com/andosa/treeinterpreter

https://github.com/andosa/treeinterpreter


CHAPTER 4. RESULTS 31

Figure 4.1: Unimodality (audio - eGeMAPS): RandomForest normalized con-
fusion matrix (test set).

Table 4.2 encloses the best video classifiers after hyperparameter tuning
was concluded. It is noticeable that RF did a better job than the rest of the
classifiers, reaching an average validation AUC of 0.8323.

Classifier Average AUC (validation) AUC (test)
Elastic Net 0.8070 0.7845
k-NN 0.8046 0.7790
Decision Tree 0.7229 0.6941
Random Forest 0.8323 0.8116

Table 4.2: Unimodality: Best video classifiers.

Regarding its intraclass performance (Figure 4.2), the video classifier strug-
gled to classify some of the emotions, especially interest (int), which was
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mostly wrongly labeled as anxiety (inq) and despair (des). On the other hand,
the model stood out in the prediction of amusement (amu) samples. Delving
into the behavior of the classifier (Figure A.2) it can be seen that, once again,
the importance of the features varied from one class to another. Furthermore,
this figure reveals which AUs played a key part in detecting emotions. For
example, AU6 (cheek raiser), AU10 (upper lip raiser), AU14 (dimpler), AU4
(brow lowerer), and AU12 (lip corner puller) were crucial in the detection of
amusement (amu) portrayals.

Figure 4.2: Unimodality (video): Random Forest normalized confusion ma-
trix (test set).

4.1.2 Multimodality
Late Fusion

Once the best audio and video unimodal classifiers were found, their outputs
were merged by using different fusion techniques (see Table 4.3). This table
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reveals that the product rule outperformed the rest of the methods, achieving
an average validation AUC of 0.9078.

Fusion Technique Average AUC (validation) AUC (test)
Maximum Rule 0.8772 0.8980
Sum Rule 0.8972 0.9140
Product Rule 0.9078 0.9195
Weight Criterion 0.8973 0.9164
Rule-based 0.8671 0.8983
Elastic Net 0.8975 0.9202
k-NN 0.8078 0.8291
Decision Tree 0.6482 0.6460

Table 4.3: Multimodality (late fusion): Best fusion techniques.

The confusion matrix of the best late fusion pipeline (Figure 4.3) shows
that the multimodal classifier performed better than chance for all the classes,
achieving its highest performance for amusement (amu). However, some of
the emotions experienced misclassification. For instance, admiration (adm)
samples were mostly labeled as relief (sou), and shame (hon) as sadness (tri).

Early Fusion

As was described in Subsection 3.5.1, audio (eGeMAPS parameter set) and
video featureswere concatenated and used to train different classificationmeth-
ods. Table 4.4 details the best multimodal classifiers after hyperparameter tun-
ing was performed. This table shows that RF defeated the rest of the models,
scoring an average validation AUC of 0.9057. Moreover, it can be seen that
the classifiers were able to generalize well since their test AUC scores were
close to their validation ones.

Classifier Average AUC (validation) AUC (test)
Elastic Net 0.8823 0.8932
k-NN 0.8374 0.8490
Decision Tree 0.7450 0.7469
Random Forest 0.9057 0.9320

Table 4.4: Multimodality (early fusion): Best fusion classifiers.
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Figure 4.3: Multimodality (late fusion pipeline; product rule): normalized
confusion matrix (test set).

As regards the best early fusion pipeline (Figure 4.4), its intraclass clas-
sification performance was better than random guessing for all the emotions.
Nevertheless, two of them were mostly misclassified, as was the case for ad-
miration (adm) labeled as relief (sou), and shame (hon) predicted as sadness
(tri). Figure A.3 reveals the interaction of audio and video features for the
best early fusion pipeline. For instance, AU6 (cheek raiser), AU12 (lip cor-
ner puller), and shimmer (difference of the peak amplitudes of consecutive
F0 periods [45]) made a significant contribution to classify amusement (amu)
samples, obtaining a correct classification rate of 86% (see Figure 4.4).
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Figure 4.4: Multimodality (early fusion pipeline; RandomForest): normalized
confusion matrix (test set).

4.1.3 General Results
After depicting the obtained results for the audio and video unimodal solutions
and the late and early multimodal pipelines, this set the stage for comparing the
two approaches. Table 4.5 lists and compares them in terms of their test AUC.
The normalized gain was used to evaluate the superiority of the early and late
multimodal pipelines over the best unimodal classifier (audio modality). This
table indicates that both early and late fusion pipelines outperformed the best
unimodal solution with a normalized gain of 0.3561 and 0.2377, respectively.
According to Table 3.1, these values correspond to a medium gain level for
the early fusion approach and a low gain level for the late one. Hence, these
results favorably proved that supervised multimodal strategies outperform uni-
modal ones, even with a more realistic number of emotions. Lastly, Table 4.6
summarizes the total elapsed modeling time per approach. The entire process
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involved the evaluation of nearly 200,000models and took approximately three
days and a half. Please refer to Appendix A.1 for a more detailed version of
elapsed modeling times.

Unimodal Multimodal Normalized Gain
AUC (test) AUC (test) [0,1]

Audio Video Early Late Early Late
0.8944 0.8116 0.9320 0.9195 0.3561 0.2377

Table 4.5: Single modality vs multimodality.

Approach Number of Elapsed Time
Models (dd hh:mm:ss)

Unimodality (audio) 98,704 01 15:58:03
Unimodality (video) 49,352 00 17:07:51
Multimodality (early fusion) 49,352 00 20:39:33
Multimodality (late fusion) 2,254 00 12:37:17
TOTAL 199,662 03 18:22:44

Table 4.6: Supervised learning: Elapsed time.

4.2 Unsupervised Learning
This section encloses the unsupervised learning results after following the two
approaches detailed in Subsection 3.5.2.

4.2.1 Traditional Approach
After determining the best number of clusters, these parameters were used
as input to k-Means and Hierarchical Clustering. Both clustering techniques
were evaluated over the multimodal dataset with and without dimensionality
reduction.

Before Dimensionality Reduction

According to the results in Table 3.3, two was the best number of groups for k-
Means without dimensionality reduction. Figure 4.5 illustrates the percentage
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of files per emotion and cluster. This figure reveals that cluster zero princi-
pally included low-pitch emotions such as tenderness (att), shame (hon), in-
terest (int), contempt (mep), pleasure (pla), relief (sou), and sadness (tri). In
contrast, cluster one mainly contained high-arousal emotions such as amuse-
ment (amu), anger (col), despair (des), joy (joi), and panic (peu). Some of
these findings were in good agreement with what was found after contemplat-
ing the clustering output in a supervised way. As shown in Figure B.3, the
most relevant feature to distinguish between both groups was the “mfcc2”, a
low-level spectral feature. According to the first decision node, those instances
which have an “mfcc2” value greater than 0.685 were classified as cluster zero.
Hence, the blue group was mainly characterized by low-pitch emotions. On
the other hand, the use of complete-linkage hierarchical clustering had a sim-
ilar effect on the dataset. As shown in Figure 4.6, low-pitch and high-arousal
emotions were now part of cluster one and zero, respectively. Unfortunately,
the other distance methods did not bring any significant results since most of
the samples were in the same group.

Figure 4.5: k-Means (k = 2; before dimensionality reduction): Percentage of
files per emotion and cluster.
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Figure 4.6: Hierarchical Clustering (k = 2, complete; before dimensionality
reduction): Percentage of files per emotion and cluster.

After Dimensionality Reduction

The obtained results after performing k-Means over the reduced dataset were
in good agreement with the ones without reduction (see Figure 4.7 and Figure
4.5). The clustering method was able to preserve its behavior even with a
smaller number of features. By contrast, the use of Hierarchical Clustering
did not follow the same pattern (see Figure 4.8 and Figure 4.6). It can be seen
in Figure 4.8 that this time most of the emotions were in cluster zero, except
for panic (peu).

Figure 4.7: k-Means (k = 2; after dimensionality reduction): Percentage of
files per emotion and cluster.
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Figure 4.8: Hierarchical Clustering (k = 2, complete; after dimensionality
reduction): Percentage of files per emotion and cluster.

4.2.2 Exploratory Approach
After preparing the features and metadata files of the non-reduced multimodal
dataset (as was described in Subsection 3.5.2), the data was explored in search
of meaningful patterns. To this end, three different dimensionality reduction
techniques were employed via the TensorFlow embedding projector. The tun-
able parameters were manually adjusted until any interesting patterns were
found. Next, the most significant findings are presented.

PCA

Even though projecting the data into a two-dimensional space reduced the
amount of explained variance to 37.4% (see Figure 3.7), some interesting pat-
terns were detected. It is apparent from Figure 4.9 that the dataset could be
split into two clusters. The left side mainly contained high-arousal emotions,
such as samples of amusement, anger, despair, joy, and panic. On the other
hand, the right side included low-pitch emotions, such as portrayals of tender-
ness, interest, contempt, pleasure, relief, sadness, and shame. These findings
are consistent with what was found by using the traditional approach (see Fig-
ure 4.6).
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Figure 4.9: PCA 2D visualization of the multimodal dataset colored by emo-
tion. Note that 18 non-unique colors were used.

t-SNE

The t-SNE dimensionality reduction techniquewas run until convergence (2,022
iterations) with a perplexity value of 68 and a learning rate of one. After this,
the data points were colored by emotion, valence, actor, and actor’s sex. The
algorithm grouped the data into four main clusters. As can be seen in Figure
4.10, emotions that are characterized by high-arousal were grouped together,
whereas the others were split into three clusters. Figure 4.11 reveals that de-
spite the fact that the data was not clearly divided by valence, positive and
negative emotions tended to be close to each other. Something similar hap-
pened when coloring by actor, emotions portrayed by the same person tended
to be nearby (see Figure 4.12). Finally, Figure 4.13 shows how the actor’s



CHAPTER 4. RESULTS 41

sex played a significant role in clustering the data since the four groups were
mainly composed of either female or male samples.

Figure 4.10: t-SNE 2D visualization of the multimodal dataset colored by
emotion. Note that 18 non-unique colors were used.
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Figure 4.11: t-SNE 2D visualization of the multimodal dataset colored by
valence (positive and negative).

Figure 4.12: t-SNE 2D visualization of the multimodal dataset colored by
actor.
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Figure 4.13: t-SNE 2D visualization of the multimodal dataset colored by
actor’s sex (female and male).

UMAP

The UMAP algorithm was run for 500 epochs (it was not a tunable parameter)
and 30 neighbors. Again, high-arousal and low-pitch emotions were close to
each other (see Figure 4.14). However, positive and negative samples seemed
to be randomly distributed this time (see Figure 4.15). On the other hand, as
shown in Figure 4.16, emotions that were portrayed by the same person kept
being nearby, especially for actor number three (pink dots). Lastly, similarly
to t-SNE, Figure 4.17 reveals how the actor’s sex played a part in the clustering
results.
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Figure 4.14: UMAP 2D visualization of the multimodal dataset colored by
emotion. Note that 18 non-unique colors were used.



CHAPTER 4. RESULTS 45

Figure 4.15: UMAP 2D visualization of the multimodal dataset colored by
valence (positive and negative).

Figure 4.16: UMAP 2D visualization of the multimodal dataset colored by
actor.
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Figure 4.17: UMAP 2D visualization of the multimodal dataset colored by
actor’s sex (female and male).



Chapter 5

Discussion

5.1 Supervised Learning
The above-presented results confirmed that multimodal solutions could out-
perform unimodal ones, even with a large number of emotions. This concurs
well with previous findings in the literature [6] [7] [8]. Additionally, our ex-
periments showed that the gain of the early fusion pipeline to the best uni-
modal solution was significantly higher than the one obtained for the late fu-
sion pipeline. In our opinion, this might be because the early fusion solution
succeeded in exploiting the correlation between features from both modalities.
This idea is in line with what many researchers in the MML field have charac-
terized as one of the best advantages of employing early fusion pipelines [16]
[59].

Regarding the performance of the classifiers, Random Forest beat the rest
of the algorithms on all occasions. However, Elastic Net yielded promising
results in less modeling time due to its reduced number of tunable parame-
ters. Delving into the behavior of the classifiers, we noticed that admiration
samples tended to be misclassified, whereas amusement instances were usu-
ally well classified. These findings are consistent with what was found by
Bänziger et al. [29] since the average accuracy for the human recognition
of admiration and amusement portrayals were one of the lowest and highest
rates, respectively. Although the visual channel is known as the richest source
of information [48], our results were not consistent with this idea since the au-
dio classifiers generally performed better than the video classifiers. This may
have happened because of the following reasons. First, audio signals were
characterized by a larger number of features. Second, the use of average video
features did not represent the visual channel well enough. Third, the exclusive
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use of AUs was putting aside other informative non-verbal indicators, such as
body movements. Fourth, the reliability of the extracted video features was
lower than what we assumed since some videos were suffering from interlac-
ing artifacts (see Figure 5.1a). The first two issues could have been improved
by calculating not only the AUs’ mean but also their standard deviation. The
third one could have been addressed by employing an additional library (e.g.,
OpenPose [89]) to extract body posture descriptors and include them in the
video feature set. The latter could have been mitigated by adding an extra pre-
processing step to convert interlaced video to progressive [90]. However, as
shown in Figure 5.1b, this conversion may produce shadows that could have
also affected the feature extraction process. Having said that, we would like
to stress the importance that calculating feature contributions had in the inter-
pretation of the supervised classifiers. Furthermore, some of the combinations
of AUs per emotion correlated favorably with the ones stated in [53]. Finally,
it remains unknown whether the use of time-series features could have led to
new discoveries.

(a) Interlaced (b) Deinterlaced

Figure 5.1: Example of interlacing artifacts of a GEMEP [29] video portraying
anger. (a) Video frame suffering from interlacing artifacts. (b) Video frame
after converting to progressive video.

5.2 Unsupervised Learning
The use of unsupervised techniques led us to find meaningful structures in
the multimodal dataset. The traditional approach showed that the data could
be divided into two groups and that the patterns we found were consistent
across solutions. For example, one cluster was mainly constituted by low-
pitch emotions, whereas the other one by high arousal portrayals. To estimate
the number of clusters, we used two different clustering validation techniques
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that were in good agreement in most of the cases. We recently read a paper on
this topic where the authors compare eleven internal validation measures in
five different scenarios and demonstrate that the S Dbw index strongly outper-
forms the others [91]. Thus, we will consider the use of this measure in future
investigations. Additionally, we believe we employed an innovative method
to determine the features that the groups were reflecting. Lastly, even though
the exploratory approach had its downsides (e.g., the lack of reproducibility
of the results and the reduced flexibility of the parameters), it let us discover
interesting patterns, such as the role played by the emotion, emotion’s valence,
actor’s ID, and the actor’s sex. Furthermore, the output of PCA was consistent
with what was found in the traditional approach. This approach has offered us
a broader perspective and make us aware of the impact that the actor and ac-
tor’s sex may have had on our results. Hence, future work will concentrate on
finding a way to split the dataset in a per-actor basis and investigate a method
to normalize spectra for anatomical differences in male and female speakers.



Chapter 6

Conclusions

In this thesis, we have investigated a multimodal dataset with a large number
of emotions from two perspectives, breaking with the conventional supervised
study of the so-called basic emotions. On the one hand, our supervised learn-
ing approach has shown that multimodal solutions can outperform unimodal
ones, even with a more realistic number of emotions. Besides, the calcula-
tion of feature contributions has facilitated the interpretation of models. On
the other hand, our unsupervised solution has not only led us to meaningful
patterns but also to an innovative way of understanding the output of cluster-
ing techniques. Moreover, we have critically analyzed our results and gave
possible solutions to our limitations.

The present study has only investigated average time-series features from
acted emotions. Therefore, it remains unknown whether the use of temporal
measurements and spontaneous expressions could lead to new answers. Fu-
ture work will concentrate on the creation of a novel multimodal database.
This will contain a wide variety of acted and spontaneous affective states con-
veyed with different levels of emotional intensity. The dataset will include
behavioral information and images of the brain activity in response to the per-
ception of emotion expressions. Lastly, the database will be utilized together
with some of the methods used in this thesis to study how emotion expressions
are produced and perceived.
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Appendix A

Supervised Learning

A.1 Elapsed Modeling Time

Classifier Number of Elapsed Time
Models (dd hh:mm:ss)

Elastic Net (eGeMAPS) 400 00 00:12:03
Elastic Net (GeMAPS) 400 00 00:10:12
k-NN (eGeMAPS) 7,952 00 04:29:40
k-NN (GeMAPS) 7,952 00 03:04:43
Decision Tree (eGeMAPS) 36,000 00 07:06:47
Decision Tree (GeMAPS) 36,000 00 09:14:40
Random Forest (eGeMAPS) 5,000 00 08:24:41
Random Forest (GeMAPS) 5,000 00 07:15:17
TOTAL 98,704 01 15:58:03

Table A.1: Single modality: Elapsed time audio classifiers.
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Classifier Number of Elapsed Time
Models (dd hh:mm:ss)

Elastic Net 400 00 00:08:33
k-NN 7,952 00 03:10:44
Decision Tree 36,000 00 06:55:41
Random Forest 5,000 00 06:52:53
TOTAL 49,352 00 17:07:51

Table A.2: Single modality: Elapsed time video classifiers.

Classifier Number of Elapsed Time
Models (dd hh:mm:ss)

Elastic Net 400 00 00:12:20
k-NN 7,952 00 03:04:30
Decision Tree 36,000 00 07:56:13
Random Forest 5,000 00 09:26:30
TOTAL 49,352 00 20:39:33

Table A.3: Multimodality (early fusion): Elapsed time fusion techniques.

Fusion Number of Elapsed Time
Technique Models (dd hh:mm:ss)
Maximum Rule 1 -
Sum Rule 1 -
Product Rule 1 -
Weight Criterion 20 00 00:08:39
Rule-based 1 -
Elastic Net 400 00 02:55:24
k-NN 930 00 04:49:45
Decision Tree 900 00 04:43:29
TOTAL 2,254 00 12:37:17

Table A.4: Multimodality (late fusion): Elapsed time fusion techniques.
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A.2 Feature Contributions

Figure A.1: Unimodality (audio - eGeMAPS): Random Forest average feature
contributions per emotion (%).
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Figure A.2: Unimodality (video): Random Forest average feature contribu-
tions per emotion (%).
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Figure A.3: Multimodality (early fusion pipeline; Random Forest): average
feature contributions per emotion (%).



Appendix B

Unsupervised Learning

B.1 Traditional Approach
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Figure B.1: Standard deviation per feature.
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Figure B.2: Correlation matrix before dimensionality reduction. Note that not
all the feature labels could be displayed.
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Figure B.3: Fragment of theDecision Tree used to interpret the clustering. The
model was trained on the output of the k-Means (k = 2; before dimensionality
reduction).
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