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Purpose: Initial auto-adjustment of the window level WL and width WW applied to mammo-
graphic images. The proposed intensity windowing (IW) method is based on the maximization of
the mutual information (MI) between a perceptual decomposition of the original 12-bit sources and
their screen displayed 8-bit version. Besides zoom, color inversion and panning operations, IW is
the most commonly performed task in daily screening and has a direct impact on diagnosis and the
time involved in the process.

Methods: The authors present a human visual system and perception-based algorithm named
GRAIL (Gabor-Relying Adjustment of Image Levels). GRAIL initially measures a mammogram’s
quality based on the MI between the original instance and its Gabor-filtered derivations. From
this point on, the algorithm performs an automatic intensity windowing process that outputs the
WL/WW that best displays each mammogram for screening. GRAIL starts with the default, high
contrast, wide dynamic range 12-bit data, and then maximizes the graphical information presented
in ordinary 8-bit displays. Tests have been carried out with several mammogram databases. They
comprise correlations and an ANOVA analysis with the manual IW levels established by a group of
radiologists. A complete MATLAB implementation of GRAIL is available at https://github.com/
TheAnswerIsFortyTwo/GRAIL.

Results: Auto-leveled images show superior quality both perceptually and objectively compared
to their full intensity range and compared to the application of other common methods like Global
Contrast Stretching (GCS). The correlations between the human-stablished intensity values and the
ones estimated by our method surpass that of GCS. The ANOVA analysis with the upper intensity
thresholds also reveals a similar outcome. GRAIL has also proven to specially perform better with
images that contain micro-calcifications and/or foreign X-ray-opaque elements and with healthy
BI-RADS A-type mammograms. It can also speed up the initial screening time by a mean of 4.5
seconds per image.

Conclusions: A novel methodology is introduced that enables a quality-driven balancing of the
WL/WW of mammographic images. This correction seeks the representation that maximizes the
amount of graphical information contained in each image. The presented technique can contribute
to the diagnosis and the overall efficiency of the breast screening session by suggesting, at the
beginning, an optimal and customized windowing setting for each mammogram.

I. INTRODUCTION

Displaying radiological images, including digital mam-
mograms, with good quality is essential in order to ensure
a good diagnostic experience. The main problem when
visualizing mammograms is that their full intensity range
is usually much wider (normally 12 bits) than the typ-
ical 8 bits that ordinary diagnostic displays can handle
[1]. Recent studies have demonstrated that although a
human observer can perceive up to 900 shades of gray,
most viewing applications only support 256 depth lev-
els [2]. The 2014 Digital Mammography report [3] by the
American Association of Physicists in Medicine (AAPM),
the Society for Imaging Informatics in Medicine, and the
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American College of Radiology (ACR) establishes a min-
imum requirement of 8 bits for diagnostic displays. This
document also claims that relatively few data have been
reported to address possible advantages of higher bit-
depth display devices.

In this context, it is quite common for 8-bit-based vi-
sualization software to select a window of intensity values
(IW) that are linearly mapped to the display range, i.e.,
0-255 levels. This step produces an unavoidable loss of in-
formation. The radiologist then usually performs one or
a series of manual window adjustments by manipulating
the window level and width (WL/WW), or more directly,
the lowest and highest intensity limits. These elemental
and very common operations are reviewed in Section II.
Manual IW manipulation is typically carried out with the
help of specific user interface controls (mouse dragging
events or ad hoc sliders). Recommended WL/WW values
can also be specified by the digital mammography system
used when serializing the data of each image to a DICOM
Service Object Class (SOP) Instance [4]. It is up to the
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Picture Archiving System (PACS) or external DICOM
viewer whether or not to apply these stored contrast set-
tings when each study or image is loaded for screening.
Most viewers usually ignore these window values and just
apply the default ones, which for a 12-bit mammogram
correspond to WL = 2048 and WW = 4096 (equal to
a range of intensities that goes from 0 to 4095). Also,
Global Contrast Stretching (GCS), which is discussed in
Section II, is often the default operation adopted by visu-
alization software packages as a quick contrast enhance-
ment strategy.

Even though IW is a very basic image enhancement
technique during screening, it can represent an impor-
tant step [5] towards achieving a correct diagnosis. In
this scenario, image quality assessment techniques can
play a crucial role in automatically selecting the win-
dowing parameters that achieve the best image contrast
and visualization. However, a characteristic problem in
quality assessment is the subjectivity that is inherent to
the process [6]. For this reason, defining an objective
quality assessment method is essential in order to attain
experiment reproducibility and diagnostic repeatability.
Once this metric is specified, it is then possible to derive
an optimizable cost function. Based on this minimiza-
tion/maximization process, an appropriate IW setting
for an image can be found and automatically assigned
to it when it is first loaded in the radiologist’s screen.
As a side advantage, this pre-adjustment may also con-
tribute to saving time by speeding up the screening and
diagnostic process [7].

With more detail, the proposed IW method consists of
an interplay of the concepts of Mutual Information (MI),
Human Visual System (HVS) and Gabor filtering. We
begin by computing the MI between the Gabor-filtered
representations of both the original and the displayed im-
ages. Then, the WL/WW combination that makes this
set of MI values maximum is iteratively sought. When
the optimal WL/WW is eventually found, it can be ap-
plied to the 8-bit displayed mammogram. This optimized
and contrast-stretched version is finally presented to the
radiologist as a starting point in a conventional screening
session. This method is called GRAIL (Gabor-Relying
Adjustment of Image Levels). To test its suitability and
advantages, a panel of radiologists was asked to manually
and independently seek the best windowing setting for a
set of digital mammograms representing a wide spectrum
of clinical cases. The time taken to perform this adjust-
ment was also measured.

II. MAMMOGRAM CONTRAST

ENHANCEMENT TECHNIQUES

Here we review the most commonly used techniques
related to mammographic image enhancement through
contrast manipulation. As stated in Section I, IW rep-
resents a basic operation that is performed in everyday
breast screening (and in almost all radiological disci-

plines). Its foundations are graphically represented in
Fig. 1 and in the following equation:

j = IW(i, a, b) =











0 ∀ i < a

255× i−a
b−a

∀ a ≤ i ≤ b

255 ∀ b < i

(1)

where i and j account for the intensities of the original
12-bit (I) and the contrast-stretched 8-bit images (Ĩ),
respectively. From Eq. (1), it is easy to derive that a
basic IW operation renders the lowest intensity pixels of
I equal to black (j = 0) and the highest intensity ones
equal to white (j = 255). These intensity thresholds
are determined by the a and b parameters, respectively,
which are usually manually established and modified by
the health professional at the beginning of the screening
session. However, they can also be automatically de-
termined (as proposed in this work) or predefined by a
group of presets (i.e., to highlight certain types of tissues
or densities).

p(Ĩj)
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Ĩ
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Figure 1. Top: histogram and functional representation of a
basic IW operation. As an image histogram, intensities below
and above the a and b thresholds are cumulatively transferred
from the original image I to the 0 and 255 bins in the 8-bit
windowed version Ĩ, respectively. As an intensity transform
function, an intensity value of j in Ĩ is the result of applying
Eq. (1) to an intensity level i in I. Bottom: an example
of a raw mammographic image with low contrast and nar-
row dynamic range and next to it, the result of applying an
appropriate IW operation.

The second most widely used contrast modification ap-
proach is Global Contrast Stretching (GCS). This tech-
nique [8] enhances the image from the luminance informa-
tion of all of the pixels and is governed by the equation:

j = 255× i− imin

imax − imin
(2)

where imin and imax are the minimum and the maximum
pixel intensities of the original image (which will very
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likely correspond to a number close to 0 and 4095, respec-
tively, in a 12-bit mammogram). As with IW, in GCS,
all pixel values are homogeneously and linearly altered
given that a, b, imin and imax are global to the 12-bit
source image. In Section V, we experimentally compare
our proposed GRAIL method with GCS.

Local Range Modification (LRM) is a pseudo-linear
variation of the aforementioned approach [9]. LRM esti-
mates regional maximum and minimum values based on
the interpolation of eight surrounding grid points.

From here, the rest of the available methodologies re-
lated to mammographic image enhancement (for which
there are good reviews in the literature [10, 11]) involve
deeper, more drastic, and non-linear histogram alter-
ations [12]. We summarize the most relevant ones here.

In the weighted local differences approach [13], pixels
related to micro-calcifications show a slightly higher lu-
minance than that of their surrounding neighbors. This
filter automatically gives more weight to rare combina-
tions of gray levels, which often correspond to micro-
calcifications.

Contrast Limited Adaptive Histogram Equalization
(CLAHE) operates on small image tiles rather than on
the entire image [14]. Each tile’s contrast is enhanced
independently so that the histogram of the output re-
gion approximately matches the histogram predefined by
a distribution function. The neighboring tiles are then
combined using bilinear interpolation to eliminate artifi-
cially induced boundaries. Also, in homogeneous areas,
the contrast can be limited to avoid amplifying the noise
that might be present in the image.

Unsharp Masking (UM) subtracts a low-pass filtered
signal from the original image [15]. UM is used to im-
prove the visual quality of images by emphasizing the
high-frequency portions that contain fine details. UM
also amplifies noise and over-enhances the steep edges. A
variation of UM [16], Rational Unsharp Masking (RUM),
uses a rational function operator to replace the high-pass
filter. RUM is intended to enhance the details of images
that contain low and medium sharpness without signifi-
cantly amplifying noise or affecting the steep edges.

Adaptive Neighborhood [17] Contrast Enhancement
(ANCE) first identifies a nearly homogeneous region
surrounding each pixel being processed using a region-
growing procedure. The visual contrast of the region is
then computed by comparing the intensity of the region
with the intensity of its surroundings. The region’s con-
trast is selectively increased by modifying its intensity if
some conditions related to the standard deviation of the
region’s background are met. This approach is applied
sequentially at each pixel in order to enhance the contrast
of all objects and features in the image.

Direct Image Contrast Enhancement (DICE) directly
amplifies the vertical, horizontal, and diagonal sub-band
components at different levels of the wavelet decomposi-
tion. It then reconstructs them to obtain the enhanced
image [18].

Non-Linear Unsharp Masking NLUM [12] integrates

a nonlinear filtering operation with the UM technique.
The resulting image is then normalized and fused with
the original image to get the final enhanced version. This
version is usually sharper than its original.

HVS techniques have also been recently used for mam-
mogram enhancement. HVS relies on the assumption
that human observers pay more attention to details like
structural information. For instance, Zhou et al. [19]
have developed a HVS method based on the second
derivative. A biologically-inspired algorithm [20] for
micro-calcification cluster detection has been proposed
by Lingurau et al. Other common operations applied to
mammograms that use HVS characteristics [12] are gray
tone function, addition, subtraction, scalar and bitmap
multiplication.

Each of the aforementioned methods plays a specific
role in applications related to image filtering and general
image improvement. However, conventional contrast en-
hancement in radiology (including breast screening) still
relies mostly in GCS, tissue type-based presets, and man-
ual window adjustments.

III. METHODS AND MATERIALS

A. Traditional information theory-based image

quality assessment

Some of the earliest methods applied to image quality
determination are the Peak Signal to Noise Ratio (PSNR)
and Mean Square Error (MSE) which have been widely
used in the context of image coding due to their easy
implementation. Another commonly used quality metrics
related to information theory are entropy and MI.

Intuitively, we can consider that a displayed image has
the highest quality when the maximum amount of rel-
evant information from the source image is preserved.
Thus, the concept of entropy [21] naturally emerges.
Shannon borrowed this concept from physics as a mea-
sure of the amount of uncertainty of an information
source. Entropy has been used in many image processing
applications such as spatial registration [22]. In the case
of digital images, entropy is computed as:

H(I) = −
4095
∑

i=0

p(Ii) · log2(p(Ii)) (3)

where p(Ii) is the probability distribution of the pixel
intensities of image I. Eq. (3) measures the sharpness
and shape of the image histogram, which is indirectly
related to the image texture. For instance, images with
large homogeneous areas have a very peaked histogram
(low entropy). On the other hand, images which rich
textures have a lot of contrast and a flatter histogram,
and thus a higher entropy. Although image entropy has
been regularly used for bitmap quality quantification, it
has also been proven to be easily fooled. For instance,
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the entropy of an image can be easily manipulated by
simply adding white noise to it.

Mutual information [23] can also play a role in im-
age quality assessment [24]. MI measures the reciprocal
dependence between two variables. In other words, it
quantifies the information obtained from the first vari-
able through the second one. In mammography screen-
ing, MI has traditionally been used for image registration
[25] and diagnosis through template matching [26, 27].
The MI value between a 12-bit source image and its 8-
bit resampled version can be mathematically expressed
as:

MI(I, Ĩ) = H(I) +H(Ĩ)−H(I, Ĩ) (4)

where H(I) and H(Ĩ) are the correspondent proper en-
tropies of each image representation. The term H(I, Ĩ) is
defined as the joint entropy, which can be estimated with
the 4096×256 bi-dimensional histogram of the intensities
of I and Ĩ:

H(I, Ĩ) = −
4095
∑

i=0

255
∑

j=0

p(Ii ∩ Ĩj) · log2(p(Ii ∩ Ĩj)) (5)

where p(Ii∩Ĩj) = p(Ii) ·p(Ĩj | Ii) is the probability that
corresponding pixels in I and Ĩ have intensities i and j,
respectively. An easy and very common way of under-
standing the relation between these information entities
is by a Venn diagram, which is shown in Fig. 2.

HI(Ĩ)HĨ(I) MI(I, Ĩ) H(Ĩ)H(I)

Figure 2. Venn diagram showing the relation among each
image entropy, conditional entropies H

Ĩ
(I), HI(Ĩ), and MI.

The diagram makes use of the term conditional entropies

HĨ(I) and HI(Ĩ). The conditional entropies reflect the
part of information in one image that cannot be explained
when the other image is known. Following the previous
example, if we add white noise to an image, its entropy
grows because the conditional entropy is higher, but the
MI between the original and the corrupted version re-
mains the same.

Unfortunately, none of the aforementioned methods
can measure by themselves the quality perceived by a
human observer [28]. In contrast, techniques based on
HVS have shown a better performance in image quality
estimation [29, 30]. Even information-based quality as-
sessment methods like entropy and MI assume that the
image pixels are statistically independent (which is ob-
viously a wrong principle) and they do not take into ac-
count how the visual cortex and human perception work.

In order to address this limitation, a new image quality
metric that complements MI with a HVS approach is
proposed in Section III B. This metric, based on Gabor
filters, is significantly more faithful and consistent with
the quality perceived by the human brain.

B. An image quality metric based on mutual

information and Gabor filtering

Gabor filters are an excellent tool for texture analysis
of images. In short, the responses of Gabor filters [31]
correspond to those of single cells in the visual cortex.
These cells extract contours and directional patterns.
Gabor filters are commonly grouped in banks where each
filter captures the image information in the vicinity of a
frequency (fm) and at a specific direction (θn). The out-
put of each filter is then related to the contours of the
image for a given fm and θn. These filters have been ex-
tensively used in texture analysis and object classification
[32] and have recently been proposed for image quality
assessment [33]. They are also conquering a niche [34, 35]
in computer-aided diagnosis (CAD).

Mathematically, a Gabor filter consists of a sinusoidal
wave modulated by a Gaussian envelope. The impulse
response of a complex Gabor filter for an image pixel
x, y is defined as:

Gfm,θn(x, y) = e

(

−x
′2

2σ2

)

· e(2πfmx′
√
−1) (6)

where x′ = x sin θn + y cos θn, fm is the mth spatial fre-
quency, and θn is its nth orientation relative to the x-axis.
In this work, we have initially used N = 6 different values
for θn (0, π/6, π/3, π/2, 2π/3 and 5π/6) and M = 3 different
values for fm (1/8,

√
2/8 and 1/4), although other combina-

tions of these parameters have been tested for the sake of
completeness in Section V. The term σ = 1/(2fm) repre-
sents the spatial deviation for each filter. We generate a
total of 18 complex responses, some of which are shown
in Fig. 3. Each image pixel I(x, y) is then linearly con-
volved to obtain a complex Gabor response (Rfm,θn) with
the expression:

Rfm,θn(x, y) = I(x, y) ∗Gfm,θn(x, y) (7)

After an image has been filtered, the Gabor response
for this same pixel is defined as:

Rfm,θn(x, y) = |Rfm,θn(x, y)| (8)

which corresponds to obtaining the amplitude of Eq. (7).
To assess the quality of a displayed image, we use the

MI between the Gabor decompositions of I and Ĩ. From
here, if we let Rfm,θn and R̃fm,θn be the Gabor responses
of I and Ĩ obtained with Eq. (8), respectively, we can
measure the perceived quality as:

Q(I, Ĩ) =
N
∑

n=1

M
∑

m=1

MI(Rfm,θn , R̃fm,θn) (9)

The value of Q is upper bounded by the entropy of the
input image. Moreover, the pixels are not assumed to



5

R√

2/8,π/6

θn = 0 π/6 π/3 π/2 2π/3 5π/6

1
8

√
2
8

1
4

fm
=

I R1/8,π/3 R1/8,2π/3

R1/2,5π/6R√

1/4,π/3

Figure 3. Top: real response of a sample Gabor filter bank
Re(Gfm,θn) generated with three frequencies (M = 3) and
six orientations (N = 6). Bottom: Gabor features Rfm,θn

for several frequencies (fm) and orientations (θn) applied to
a mammogram, whose original instance I is also shown.

be independent (in contrast to conventional information-
based methodologies, such as those reviewed in Section
IIIA) because the statistical dependencies between pixels
are taken into account by the Gabor filters. Eq. (9) is the
proposed HVS function that will be maximized (as de-
scribed in Section III C) to find the IW limits that assure
the best quality when presenting 12-bit mammograms in
8-bit screening software and hardware.

C. Auto-adjustment of image intensity levels

As mentioned in the introduction, a common visual-
ization problem in radiology is that the dynamic range
of an image (i.e., a mammogram) is much wider than the
dynamic range of current displays. A naive solution to
this problem is to linearly map the minimum and max-
imum image intensity values to the 0-255 interval. This
approach may lead to a low-contrast configuration or a
deficient image visualization.

As a solution to this problem, practitioners usually set
a manual visualization window that is defined by two 12-

bit values a and b so that pixels whose intensity fits within
these thresholds are linearly mapped to the correspon-
dent 8-bit range. Values outside this range are clipped.
The problem with this approach is that it requires hu-
man intervention and it is, therefore, very subjective and
time-consuming. However, using the perceptual image
quality metric related to Gabor filtering proposed in Sec-
tion III B, it is possible to define an objective function
FI(a, b) based on Eq. (9) that can be maximized via a
and b. The optimization of FI(a, b) will in turn assure
the highest MI possible between I and Ĩ.

However, our preliminary experiments showed that
this function has plenty of local maxima, and, for this
reason, it is difficult to find the optimum range using a
gradient-based approach. On the other hand, a thorough
search for the best parameters is computationally very
expensive because it depends quadratically on the image
grayscale depth. Therefore, we have devised GRAIL, a
hierarchical iterative algorithm (Fig. 4) that maximizes
FI(a, b), optimizing the intensity threshold values a and
b until convergence. For each loop iteration (tagged with
the parameter k), we define a grid of low (Ak) and high
search values (Bk). The spacing of this grid is defined by
∆, which starts with a predefined and relatively large
custom size (300, 200, 100, etc.) and is reduced, for
instance, by a tenth in each k iteration (∆/10 ). The
range of search intensities for each k is determined by
the previous values ak−1 and bk−1, which at the begin-
ning (k = 0) are set to imin and imax, respectively. The
algorithm stops when the intensities found in an iteration
are equal to those in the previous one or when it reaches a
predefined iteration limit (K). From the obtained a and
b, we can easily derive WL = 1

2 (b− a) and WW = b− a.

k == K

END

∆ = 300 k = 1 a0 = imin b0 = imax K = 3

ak == ak−1

bk == bk−1

YES

YES

NONO

bk = argmax
b∈Bk−1

FI(ak−1, b) ak = argmax
a∈Ak−1

FI(a, bk−1)

∆ = ∆/10

k = k + 1

Figure 4. Operational diagram of GRAIL, the proposed al-
gorithm that seeks the optimal a and b intensity levels that
maximize the MI between a source 12-bit image (I) and its 8-

bit displayed version (Ĩ). It does so by iteratively optimizing
an objective function FI(a, b) based on Eq. (9).
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D. Test databases used

Here we describe the mammogram databases used in
our research. We were interested in collections that
hosted fully-digital 12-bit images acquired with relative
modern equipment. We were also concerned about in-
corporating and reflecting a broad spectrum of features,
densities, associated health statuses, presence or not of
foreign elements, and different qualities in order to ac-
count for as many clinical scenarios as possible. All these
sets of images are publicly available for research pur-
poses and include the typical examination views: medio-
lateral oblique, craniocaudal, mediolateral and laterome-
dial. We have compiled a comprehensive test set consist-
ing of 159 images. This compilation is big and heteroge-
neous enough for our statistical analysis but its size still
remains adequate for the screening sessions performed
by each of the corresponding human observers (subject
tackled in Section III E).

UPMC breast tomography collection from the
University of Pittsburgh Medical Center (UPMC).
All of the images contain hamartomas, subtle
cancers, lobular carcinomas, cysts, papillomas,
invasive ductal carcinomas, atherosclerotic calcifi-
cations, radial scars, vascular calcifications, benign
ducts, oil cysts and fat necrosis.

Society of Breast Imaging collection or SBI. Its
database contains diagnostic images used during
workshops and annual meetings. They mainly in-
clude calcifications and surgical clips.

Cancer Genome Atlas collection or TCGA Re-
search Network, part of the National Cancer
Institute (part of the National Institute of Health).
Images mainly contain invasive carcinoma.

Integrating the Healthcare Enterprise or IHE. It is
an initiative developed by healthcare professionals
to improve the way computer systems in hospitals
and clinics share information. The image collec-
tion is part of their MESA software package, that
was engineered at the Mallinckrodt Institute of Ra-
diology together with the Healthcare Information
and Management Systems Society (HIMSS) and
the Radiological Society of North America (RSNA).

Cancer Imaging Archive which holds an important
breast diagnosis collection [36]. This compilation
contains cases with high-risk normals, ductal carci-
noma in situ, fibroids, and lobular carcinomas.

Task Group 18 or TG18 from the AAPM. This task
force evaluates the performance of electronic dis-
play devices [37]. For this purpose, they have ef-
ficiently gathered a set of high quality images, in-
cluding not only geometrical and grayscale patterns
but also anatomical ones, such as the two wide dy-
namic range mammograms shown in Fig. 5.

According to the Breast Imaging Reporting and Data
System (BI-RADS) from the ACR [38] and its four cat-
egories of breast density, our collected image set com-
prises: 33 mammograms associated to almost entirely

fatty breasts (BI-RADS A), 36 representing scattered fi-

broglandular densities (BI-RADS B), 55 heterogeneously

dense cases (BI-RADS C), and 35 images identifiable as
extremely dense breasts (BI-RADS D). Also, 29 instances
contain foreign X-ray-opaque elements (i.e., surgical sta-
ples, fiducial markers, etc.) which reveal some sort of sur-
gical intervention. Implants appear in 7 images. Around
half of the mammograms were generated from a cranio-
caudal angle, the rest were obtained with lateral proto-
cols such as mediolateral, oblique or lateromedial. Fi-
nally, 59 images contain high-density elements, including
the aforementioned foreign items, makers, calcifications
and other abnormalities.

E. Comparison with windowing settings

determined by human observers

In order to test the suitability of the proposed win-
dowing mechanism presented in Section III C, we gath-
ered a focus group of ten radiologists. The selection of
the members of this group has allowed us to leverage
more than 120 years of cumulative knowledge and expe-
rience in mammography diagnosis. Each radiologist was
asked to manually establish the IW of the same mam-
mogram dataset presented in Section III D. An intuitive
and simple tool developed in MATLAB presented each
image, one after another. When each image was shown,
the observer was allowed to manually and freely modify
the lowest (a) and highest (b) intensity limits of the im-
age histogram (as shown in Fig. 1). No further diagnosis
steps or reporting phases were required.

During the examination, half of the mammograms
(even images) were already intensity-windowed with the
settings obtained by GRAIL. The other half (odd in-
stances) were shown in their full range (FR), as would
have normally been presented by ordinary screening soft-
ware. This has also allowed us to measure the mean time
spent on the initial IW operation and compare this time
interval between non-contrast-stretched images and the
pre-windowed ones. As stated in Section I, this step (usu-
ally performed through manual mouse gestures) is very
common during radiological examinations and is there-
fore very interesting to measure how our technique can
contribute to reducing mammogram screening time, es-
pecially in setups involving legacy acquisition equipment
and/or 8-bit diagnostic workstations.

This verification experiment involving the participa-
tion of human observers extends our preliminary results
[39]. Specifically, we have correlated the a and b val-
ues (for each image) determined by each member of the
focus group with those derived by GRAIL. A repeated-
measures ANOVA statistical analysis (with SPSS v16)
has also been carried out with the differences between
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the b values derived by each method (GRAIL, GCS and
the full range) and those proposed by each radiologist.
Our null hypothesis (H0) is that the mean value is the
same for these differences (µGRAIL = µGCS = µFR). We
initially perform a multivariate contrast test and then,
after rejecting H0, we carry out a Bonferroni adjustment
[40] for multiple comparisons. The reason for choosing
the maximum intensity thresholds (b) for this analysis is
that they may contribute more to revealing the presence
of injuries, calcifications and surgical elements.

IV. RESULTS

In this section, we summarize the results obtained af-
ter comparing the values reported by GRAIL with the
measurements performed by the panel of radiologists pre-
sented in Section III E.

Before addressing this comparison and as an example,
Fig. 5 shows a specific application of the optimization
process described in this text. It consists on two mam-
mograms (part of the anatomical patterns set from the
TG18 group introduced in Section IIID) whose levels
were automatically windowed with GRAIL. The unan-
imous opinion from the aforementioned focus group is
that these specific stretching examples (as well as the
majority applied to the rest of the images in the mammo-
gram datasets used) proved to show a very good contrast,
sharpness, and brightness.

Figure 5. Mammograms TG18MM2 and TG18MM1. Both
have been windowed with a and b values derived with GRAIL.
They are normally displayed with a starting WL/WW of
2048/4096 (FR), but their intensity range can still be au-
tomatically focused to an optimal one thanks to GRAIL.

Table I shows the correlation of the IW parameters
manually set by the human observers with those obtained
with the proposed methodology (as well as GCS and the
full range). This table also shows the mean time spent
by each expert to adjust the intensity limits for images
that were already pre-windowed with GRAIL and those
that were presented with their full intensity range.

The multivariate contrasts test reveals that µGRAIL 6=
µGCS 6= µFR, with F (2, 1549) = 1920.584 and P >
0.10 and H0 is then rejected. In order to fur-
ther verify that the means are different, we apply a
Greenhouse-Geisser analysis [41]. From this test, we

R
a
d
.

Correlation Time (s)

GRAIL GCS FR
w/ w/o

a b a b a b

1 0.91 0.83 0.73 0.41 0.13 0.23 15 18

2 0.91 0.77 0.79 0.57 0.01 0.29 9 13

3 0.91 0.72 0.74 0.51 0.00 0.12 8 14

4 0.92 0.78 0.75 0.47 0.01 0.26 10 13

5 0.90 0.72 0.74 0.55 0.00 0.30 16 16

6 0.87 0.64 0.81 0.49 0.01 0.26 9 9

7 0.49 0.62 0.42 0.50 0.12 0.32 14 18

8 0.81 0.70 0.84 0.52 0.07 0.27 18 21

9 0.86 0.70 0.78 0.43 0.07 0.20 7 17

10 0.50 0.71 0.34 0.41 0.12 0.19 9 11

Table I. Correlation coefficients between the manually (by
each radiologist) established IW parameters (min a and max
b intensities) and the estimated ones with GRAIL, GCS and
the full range (FR). The table also shows the average time
taken (in seconds) by each human observer in adjusting the
appropriate WL/WW when the image was pre-stretched with
GRAIL (w/) and when not (w/o).

obtain F (1.676, 2598.166) = 2457.491 and P < 0.001,
also rejecting the Mauchly’s sphericity hypothesis [42].
In the Bonferroni pairwise comparison, we derive that:
µGRAIL−µGCS = 601±11 and µGRAIL−µFR = 629±10
(with P < 0.001 for both). Specifically, µGRAIL =
−72± 7, µGCS = −673± 9 and µFR = −701± 8.

Fig. 6-top shows the increase in the mutual informa-
tion obtained with GRAIL relative to that derived with
the application of GCS. We have divided the set of images
into two blocks: those with minor or no presence of mi-
crocalcifications or external Roentgen radiation-opaque
elements, and those with the presence of such high den-
sity elements. Fig. 6-bottom shows a similar information
but this time for the difference in the max intensity level
(b) derived by both methods.

V. DISCUSSION

Proper contrast stretching is a key step during breast
screening. Although recently generated mammograms
have been produced with modern equipment and already
display relatively good intensity histograms, radiologists
and physicians usually need or prefer to further mod-
ify/customize windowing settings. In some other cases,
mammographic images need profound IW adjustments
in order to be of any value to the diagnosis, as the ex-
ample shown in Fig. 1. During the first moments of
examination and before zooming in and out on regions
of interest, radiologists take valuable seconds seeking the
min and max intensity values that maximize the initial
visual and radiological information.

In this paper, we have presented an innovative method
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Figure 6. Top: mutual information difference between the
windowed representations obtained with GRAIL and GCS
for 59 instances with abnormalities (images with calcifications
and/or external X-ray opaque elements) and 59 clean/normal
ones. Bottom: difference in the b intensity threshold deter-
mined by each method and for the same set of images.

(thoroughly reviewed in Section III C) to assess the inten-
sity window that maximizes the visual information when
displaying a mammogram. The proposed technique is in
turn based on Gabor filters and the human visual system.
The mean computing time taken by GRAIL is 12 seconds
for 1 Mpx images on a 2,8 GHz Intel Core i5 computer. In
a more realistic environment, a GRAIL implementation
could run as a parallel background task that previously
seeks the proper IW for each image before being displayed
for screening. This windowing information could either
be calculated and applied to the image in real time (i.e.,
based on the daily radiological work-list) or be stored in a
separate database or in the same DICOM SOP Instance
(as explained in Section I). If the appropriate intensity
thresholds are calculated in advance and are ready to be
applied when each mammogram is loaded, a radiologist
can save valuable seconds of screening time.

As stated in Section III B, in this work Gabor filters
were configured with a specific set of frequencies and
orientations, but we have also experimented with other
arrangements, shown in Table II. For the sake of com-
pleteness, we have run tests with downsized versions
of high-resolution images, fewer iterations, and larger
search grids, obtaining similar outcomes. This fact may
enable the optimization phase (shown in Fig. 4) to run
significantly faster (with very little effect in the perfor-
mance) if less computational demanding configurations
are carefully chosen.

In general, images with outlying calcifications or for-

Different number of frequencies (M) and orientations (N)

∆ = 300
K = 3
s = 1

M 3 5 7

N 4 8 4 8 4 8

c 0.85
0.74

0.89
0.81

0.87
0.74

0.90
0.74

0.85
0.73

0.86
0.72

t 8 16 14 21 22 31

Different image downscale factors (s) in %

∆ = 300
N = 6
M = 3
K = 3

s 90 75 50 33 25 20

c 0.89
0.81

0.91
0.76

0.89
0.72

0.89
0.67

0.88
0.63

0.89
0.62

t 12 11 8 7 6 5

Different search grids (∆) and max iterations (K)

M = 3
N = 6
s = 1

∆ 200 300 400

K 1 3 1 2 1 3

c 0.88
0.74

0.93
0.77

0.90
0.79

0.90
0.79

0.93
0.69

0.86
0.77

t 12 15 8 10 7 9

Table II. Results of the tests with other GRAIL configura-
tions. The c coefficients express the correlation (for the a and
b thresholds, separated by a new line) of the IW values de-
rived by GRAIL (for each test image) with the mean of the
IW settings stablished by the panel of radiologists. Time (t) is
expressed in seconds and accounts for the mean algorithm ex-
ecution time when windowing each of the 159 mammograms.

eign radio-opaque elements have proven to be the ones for
which our approach (compared against GCS) delivers the
best results, calculated with Eq. (2). Fig. 6-top shows,
for instance, how the MI between 12-bit and 8-bit images
(MIGRAIL −MIGCS) increases by 0.05 bits in this type of
scenario (relative to the MI obtained with GCS). The
difference in the b intensity threshold (which, as stated
in Section III E, better accounts for the presence of high
density elements) derived by GRAIL and GCS (Fig. 6-
bottom) is also more significant in the case of abnor-
mal images. Specifically, the presented GRAIL technique
works better when high density corpuscles are present in
the image. One of the main goals of mammogram screen-
ing is the diagnosis of the existence of these calcifications
and other types of high-density corpuscles and abnormal-
ities. In this context, GRAIL represents an important
contribution at the beginning of the examination process
and clearly surpasses in effectiveness other more conven-
tional methods like GCS. Regarding mammograms linked
to healthy breasts, GRAIL performs slightly better than
GCS for BI-RADS A+B than with BI-RADS C+D im-
ages (we obtain a MIGRAIL −MIGCS of 0.03 bits). BI-
RADS A+B mammograms usually have associated more
peaked histograms centered in the range i = 1000 ↔ 2400
and generally have lower contrast, which GRAIL is able
to better enhance over the application of GCS.

Finally, the focus group of radiologists unanimously re-
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ported an out-of-the-box, superior, and balanced visibility
of microcalcifications, breasts margins, and Cooper’s lig-
aments (as well as other criteria defined in the AAPM
TG18 [43] report) in the images that had been automat-
ically windowed with GRAIL. As shown in Table I, we
obtain good correlations between the intensity limits de-
rived by GRAIL and those decided by the members of
the aforementioned panel of experts. These correlations
are superior to using GCS. The ANOVA analysis shows
that there is a significative difference between our method
and GCS, as well as between GRAIL and the application
of the full range, while the discrepancy between radiolo-
gists and each IW method (GRAIL, GCS and FR) is not
statistically relevant.

A complete MATLAB and GNU/Octave-compatible
implementation (including helper subroutines [44]), and
the results of the panel of radiologists are available at
https://github.com/TheAnswerIsFortyTwo/GRAIL.

VI. CONCLUSIONS

Mammographic images usually have wide 12-bit dy-
namic ranges associated to them that have to be adapted
and rescaled for 8-bit displays. During the first moments
of screening, radiologists spend a non-negligible amount
of time performing ordinary contrast stretching adjust-
ments to maximize the presence of all sorts of elements,
from normal soft tissue areas to calcifications and other
abnormal high-density corpuscles. The main novelty of
this research work is the introduction of a new methodol-
ogy (GRAIL) to automatically adjust the limiting inten-

sity levels of mammograms (i.e., their window level and
width). Our method, which is based on the human vi-
sual system and Gabor filtering, establishes an objective
image quality metric and, based on this quantification,
GRAIL is able to automatically seek the best intensity
stretching values by maximizing the mutual information
between the original bitmap sources and their displayed
version. GRAIL surpasses the versatility of other com-
mon windowing techniques like global contrast stretch-
ing, as has been demonstrated in our experiments in-
volving the collaboration with a panel of radiologists and
the results obtained thereof. The proposed approach can
be added to the diagnosis workflow, allowing radiologists
to start screening sessions with better initial window ad-
justments and then keep on modifying them as needed.
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