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Abstract This paper addresses the problem of selecting cash management models
under different operating conditions from a multiobjective perspective considering
not only cost but also risk. A number of models have been proposed to optimize
corporate cash management policies. The impact on model performance of differ-
ent operating conditions becomes an important issue. Here, we provide a range
of visual and quantitative tools imported from Receiver Operating Characteris-
tic (ROC) analysis. More precisely, we show the utility of ROC analysis from a
triple perspective as a tool for: (i) showing model performance; (ii) choosing mod-
els; and (iii) assessing the impact of operating conditions on model performance.
We illustrate the selection of cash management models by means of a numerical
example.

Keywords Cash management models - ROC analysis - multiobjective - operating
condition.

1 Introduction

A Receiver Operating Characteristic (ROC) curve is a useful graphical tool for
classification models that illustrates its performance Metz (1978); Bradley (1997);
Flach (2003); Fawcett (2006). One of the basic ideas behind ROC analysis is the
study of the impact of operating conditions on model performance. Traditional
ROC analysis was initially restricted to classification. However, a broader perspec-
tive was adopted in Drummond and Holte (2000, 2006); Elkan (2001); Herndndez-
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Orallo et al. (2013), by following a cost-sensitive approach to analyze the eco-
nomic implications of the operating conditions by means of ROC cost curves. In
a particularly interesting attempt to cross borders, an extension of ROC analy-
sis to regression models was proposed by Bi and Bennett (2003); Torgo (2005);
Hernandez-Orallo (2013).

On the other hand, cash flow management focuses on finding the balance be-
tween cash holdings and short-term investments. Cash managers make daily deci-
sions about the firm optimal cash level for operational and precautionary purposes
(Ross et al., 2002). In order to deal with this problem, a number of cash manage-
ment models have been proposed to control cash balances based on a set of levels
or bounds. A comprehensive review of models, from the first proposals to the most
recent contributions can be found in Gregory (1976); Srinivasan and Kim (1986);
da Costa Moraes et al. (2015).

Multiple-criteria decision-making in economics and finance has rapidly evolved
during the last decades (Ballestero and Romero, 1998; Doumpos and Zopounidis,
2007; Steuer et al., 2007; Garcia-Bernabeu et al., 2016). Cost and risk are desired
but conflicting objectives in cash management as suggested by Salas-Molina et al.
(2016). Assuming that idle balances have an opportunity cost, a decrease in cash
balances results in cost reductions but, at the same time, the risk of an overdraft
penalty is increased. Holding and shortage costs are usually asymmetric, e.g.,
0.01% versus 30%, in daily rate of the final cash balance. Then, without considering
any other costs, having a zero balance would be optimal in terms of cost but
suboptimal in terms of risk, since eventual negative cash balances may produce
unexpected penalty costs.

The tradeoff between cost and risk for different models and operating condi-
tions is at the core of decision support systems for cash managers. However, little
work has been done in the comparison and selection of models from a multiobjec-
tive perspective. In this work, we argue that the evaluation of the total loss in a
period of time, in terms of cost and risk, for any particular operating condition is
a necessary management tool. Moreover, by adopting a double perspective, quan-
titative and graphical, the understanding of cash management models and their
performance is enhanced. To this end, ROC analysis seems to be a promising tool
also for cash management. In this paper, we rely on ROC analysis to achieve fur-
ther insight on cash management through: (i) a graphical tool; (ii) a set of useful
metrics; (iii) performance evaluation; and (iv) for a number of different operating
conditions.

The main point of this paper is to show that graphical tools derived from ROC
analysis can enhance the understanding and the decision-making process of cash
managers in their purpose of selecting the best cash management model. Since
there is no such a model that is the best for any context, this selection also implies
the answer to the question of under what circumstances or operating conditions a
model is better than another. From that, we focus on the following goals under a
multiobjective viewpoint:

1. Showing models in the Cost-Risk space.
2. Choosing models according to risk preferences.
3. Deriving loss curves for different operating conditions.

This paper is organized around the objectives above. In Section 2, we provide
some useful background about the model proposed by Stone (1972) that we later
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use in the numerical examples and a recent formulation of the multiobjective cash
management problem. Section 3 introduces a graphical representation to visualize
the performance of cash management models in a bidimensional Cost-Risk space.
Section 4 proposes techniques for choosing models in the Cost-Risk space. Section 5
presents a procedure to draw loss curves for different operating conditions. We
illustrate the previous techniques and procedures with different examples. Finally,
several concluding remarks will be given in Section 6.

2 Background

In this section, we provide useful background on the cash management problem
(CMP) and a recent multiobjective formulation of the problem described in Salas-
Molina et al. (2016). We first present the model proposed by Stone (1972) to
control cash using forecasts as the main input that we later use in a numerical
example. The reason to focus on the Stone model is double: firstly, by accepting
forecasts as its main input, the Stone model performance is affected by an im-
portant operating condition such as the predictive accuracy; secondly, within a
framework of selection, alternative Stone models can be considered by varying a
single parameter which is the forecasting horizon.

2.1 The Stone cash management model

A number of cash management models have been proposed to control cash balances
based on a set of levels or bounds da Costa Moraes et al. (2015); Gregory (1976);
Srinivasan and Kim (1986). In these models, the cash balance is allowed to wander
around between bounds and when one of them is reached, a transaction z; € R
is made at day ¢ to restore the balance to a target level. This transaction x; is
given by the particular characteristics of the chosen model and goes to/comes from
an alternative short-term investment, such as treasury bills or other marketable
securities.

To this end, Stone (1972) proposed the use of forecasts in cash management.
To the best of our knowledge, it was the first time that the concept of cash flow
forecasting appeared as a key input to any cash management model. The author
focused on the generally attempted tasks performed by cash managers in practice.
They usually look ahead to incorporate data from their cash forecasts. For instance,
consider a firm with a current balance of 12, a target of 8 and an upper bound
of 10. An automatic return model would require a transaction of -4 to restore the
balance to 8, but if the cash manager expected additional outflows of 3 in the next
3 days, the balance would have been close to target without any transaction. From
these tasks, Stone derived the idea of including forecasts in his model to reduce
transactions by smoothing cash flows.

By considering cash flow forecasts for the next k& days, this procedure aims
to minimize cost through reducing unnecessary transactions and smoothing cash
flows. It is assumed that the current cash balance, by, before making any transac-
tion decision, is known and that a forecast of the net cash flow, f;, that will occur
on each day ¢ over the next k days is available. Note that k is a sub-period within
a time horizon of T' days, i.e, k < T. Then, the expected level of cash balances k
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days from now is the sum of the current level of cash balances and the sum of k
daily net cash flows. This can be expressed as:

bo + Sk (1)

k
bevk =bo+ ) fi
t=1

where the sum of net predicted cash flows over the next k days is denoted by Sj.

Next, a number of simple rules are proposed to return to a desired target cash
balance, z, based on two sets of control limits as shown in Figure 1. One set is
defined by hj and hg as the upper and lower control limits for initially considering
transactions. The other set is defined by h; —d; and hg+ o as the upper and lower
limits that determine if a transaction will actually be made. The set of rules are
summarized as follows:

1. If the current cash balance by, before making any decision, is inside of the
control limits defined by h; and hg, no action is taken.

2. If the control limits h1 and hg are exceeded, the forecasts over the next k days
is considered to decide whether a transaction should be made.

(a) If the expected cash balance in the next k days, I3t+k exceed the control
limits defined by h1 — &1 and hg + do, a transaction z; is made to return the
expected cash balance to the target level z in k days.

(b) No action taken otherwise.

35

30

Cash balance

] _I Ry

101

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time

Fig. 1 Cash balance derived from the Stone model with k = 3 from the example in Table 1

According to these rules, when a transaction is made, the model returns the
expected level of balances to the target level in k& days rather than immediately
returning the current balance to the target. Furthermore, the actual cash balance
is the target plus the net cumulative forecast error. Summarizing, this procedure
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to obtain the transaction z; to perform on day t can be mathematically expressed
as follows:
z — by, if bo > h1 and byyy > h1 — 61,
Ty = 0, if h() < bo < hq (2)
z— i)t_,_k, if bp < hg and Et+k < ho + do.

An additional rule can be followed to make decisions at the beginning or at the
end of the day, when the actual cash flow f; is already known. From the following
state transition law:

bt =bi—1+xt + fi (3)

when the decision is made at the beginning of the day, then by = b;—1 holds and
the current day forecast is included in the sum of forecast for the next k days.
On the contrary, when the decision is made at the end of the day, bp = bs—1 + f¢
holds instead and the sum of forecasts cover the next k days. An example of the
operation of this model presented in Stone (1972), when decisions are made at the
end of the day, is summarized in Table 1.

Table 1 Comparison of the Stone 3-day look-ahead with no-day look-ahead procedure from
Stone (1972) with f; = cash flow forecast; fi = actual cash flow; e; = forecasting error; z¢ =
control action; and by = cash balance. Initial cash balance bg = 20

Time  Forecast and actual flow 3-day look-ahead No-day look-ahead

k=3 k=20
t fi ft et Tt bt Tt by
1 1 1 0 0 21 0 21
2 2 1 1 0 22 0 22
3 3 6 -3 0 28 -8 20
4 -1 -1 0 0 27 0 19
5 -2 -3 1 0 24 0 16
6 -3 -3 0 0 21 7 20
7 -8 -9 1 0 12 9 20
8 5 6 -1 0 18 0 26
9 6 4 2 0 22 -10 20
10 4 6 -2 0 11 0 26
11 5 3 2 -17 14 -9 20
12 4 4 0 0 18 0 24
13 0 1 -1 0 19 0 25
14 2 -1 3 0 18 0 24
15 -3 -2 -1 0 16 0 22
16 -1 2 -3 0 18 0 24

For illustrative purposes, let us consider this example in more detail. The target
balance is z = 20, the control limits are h; = 27, and hp = 13; and 61 = Jo = 2,
all figures in millions of euros. Since decisions are made at the end of the day,
from a starting cash balance of 20, we add the actual cash flow, fi = 1, to obtain
balance before decision bg = 21. Since the current balance is below h1 = 27, no
further action is taken. Consider now day ¢t = 10, with balance before decision by =
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2246 = 28, which is above h1 = 27. Add the sum of predictions $3 = 5+4—0 =9,
to obtain the expected cash balance within 3 days, b1z = 28 +9 = 37, which is
above h; — 01 = 25. Then, we proceed to restore the balance to target z = 20 by
transferring x19 = 20 — 37 = —17.

Stone claimed the utility of his model in comparison to a no-day look-ahead
procedure by computing both the number and the total volume of transactions.
In the example, it is clear that there are more transactions in the no-day look-
ahead model than in the 3-day look-ahead model. Moreover, there is a greater
total volume of transactions in the former than in the latter. However, it is not
clear if this model would be useful for any value of k or if the predictive accuracy
of forecasts would impact the performance of the procedure. This analysis can be
done from a multiobjective perspective through the following formulation.

2.2 Formulation of the multiobjective cash management problem (MOCMP)

The MOCMP is characterized by its particular cost structure as follows. Any
ordering transaction into a cash account may have a cost, which may include a
fixed part (yd) and a variable part (y;"). On the other hand, a return transaction
from a cash account may also have a cost with fixed part (7, ) and a variable
part (77 ). Furthermore, at the end of the day, a holding cost v per money unit
is charged if a positive cash balance occurs, or a penalty cost u per money unit
is charged if a negative cash balance occurs. According to this cost structure, a
general, daily loss function is defined as follows:

c(xy) = I'(we) + H(be) (4)

where z; is the transaction made at day t, b; is the cash balance at the end of day
t, I'(z¢) is a transfer cost function, and H(b;) stands for a holding/shortage cost
function. The transfer cost function I'(z:) is defined as:

Yo — 71 @ if xp <0,
I'(z) =140 ifx =0, (5)
v A @ if x> 0.

Additionally, we express the holding/shortage cost function as:

—u - by ifbt<0;u>0,
v-by if by > 0;v > 0.

(o) = { (6)

For instance, consider an initial cash balance b1 = 22, a transaction given by
a model zy = —8, and an actual net cash flow f; = 6, all amounts in millions of euro.
Assume also transaction costs given by v, = ’Yo+ =50 €, and v; = 'ﬁ = 0.01%
per money unit. Consider a holding cost of v = 0.05% per money unit. Then, the
final cash balance is given by b, = 22 — 8 + 6 = 20 according to equation (3),
the transaction cost is I'(z;) = 850 €, and the holding cost is H(b:) = 10000 €.
Consequently, the total cost for day ¢t is c(z¢) = 10850 €.

Under this cost structure, the ultimate goal of the MOCMP defined in Salas-
Molina et al. (2016) is to find the policy X = (z1,...,2¢,...,z7), with z: € R,
te N, and 1 < ¢ < T for a given planning horizon T € N. To this end, we can
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measure the expected cost C(m,T) for a model m and a planning horizon T by
the average daily cost:

1 <& 1 <&
Clm.T) = =3 elo) = &S0 G0) + H (b)) @
t=1 t=1

and the expected risk R(m,T) either by the standard deviation or the upper
semideviation of the daily cost. A common criticism made on the use of the stan-
dard deviation as a measure of risk is that it equally considers both positive and
negative deviations. In this paper, we consider the upper semideviation to focus
only on deviations above the mean:

R(m, T) = (£ (max{e(z) ~ C(m,1),0)*)) 2 (8)

where E is the common expectation operator. By computing both the expected
cost and risk of alternative models, we are in a position to locate models in the
Cost-Risk space.

3 Showing models in the Cost-Risk space

Under the MOCMP framework, cash management models are evaluated in terms of
cost and risk. The tradeoff between cost and risk for different models and operating
conditions is a critical issue in the cash management decision-making process. In
this paper, we define the Cost-Risk (CR) space as the graphical representation
of cost in the horizontal axis and risk in the vertical axis. A point in the CR
space shows the combined cost and risk performance of any particular model when
applied to a cash flow data set F' = (f1,..., fny) with N € N real observations. The
basic idea of the CR space is to show model asymmetry or bias (if any) towards
cost and risk for any particular model. Thus, the particular location of a CR point
provides useful information about a model for comparison and selection purposes.

Definition 1 Given a cash management model m and a particular set of model
parameters p, a p-model, denoted by my, is an instance of model m with parameters
determined by the elements of the vector of parameters p € R".

For instance, if we use m to refer to all Stone cash management models and
define p as the tuple (k,z, hi,ho,d1,00) = (3,20,27,13,2,2), mp is an instance
model of the Stone type defined by the set of parameters p. In what follows, we
refer to Stone p-models as models unless stated otherwise.

Furthermore, we use the term operating condition to refer to any factor that
may influence the performance of a model such as the cost scenario and the predic-
tive accuracy of the forecasts used in the Stone model. Following Hernandez-Orallo
et al. (2014, 2013), we refer to the set of all relevant operating conditions as a con-
text that can be expressed as a set of n parameters o = (aq, ..., an). It is important
to separate the notion of operating condition from the parameters of the model.
The operating condition is somehow given to the decision-maker either internally
(e.g., risk preferences), or externally, (e.g., cost scenarios). On the other hand, the
parameters of the model, such as the look-ahead period or the control limits used,
are adjustable by the decision-maker and represent the decision variables that need
to be appropriately selected. Within this framework, we define:
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Definition 2 A loss function is any function £ : Y x Y — R which compares
elements in some output domain Y.

Typical examples of this output domain Y within the context of cash man-
agement are the cost and the risk of a cash management model computed, for
instance, by means of equations (7) and (8).

Definition 3 Given a p-model mp, a context « and a cash flow data set F' € RN,
a pn-model is the p-model which minimizes some loss function £(mp,a) when
applied to F' in context a.

We are then facing an optimization problem in which the goal of the cash
manager is to find the pj-model, i.e., the p-model with best performance for a
given context. To this end, we can compare models by computing cost and risk
over a given planning horizon. Since the ideal model is the one with zero cost-zero
risk, one possible way to determine the best model is computing the distance to the
ideal point (0, 0). For normalization purposes, we use a baseline model mg, defined
as a no-transaction policy with z; = 0 for all ¢ € T. Thus, we finally compute the
cost and risk for alternative models in the CR space using equations (7) and (8),
and through the following cost and risk indexes:

Bs(m, T) = %. (10)

By representing points (01,02) for different models as shown in Figure 2 (a),
we can derive three useful insights: (i) we can compare their relative performance
by computing distances to the ideal point (0,0); (ii) we can determine if the model
is non-trivial by observing if its CR coordinates are within the unit square; and
(iii) we can conclude if the model is biased towards cost or risk by observing
if the model is either over or under the increasing diagonal. For instance, from
Figure 2(a) one can infer that model my is better than ms because is closer to
the ideal point. Note also that any model located out of the unit square performs
worse than the baseline in terms of cost, risk or both.

Moreover, model m; is located in the upper left region meaning that it is able
to reduce cost in a higher proportion than risk with respect to the baseline my.
We say then that model m; is biased towards risk from the ideal point perspective
since it is more risky than costly, i.e., 01(m1,T) < 62(m1,T). On the other hand,
model m2 is located in the lower right region of the CR space delimited by the
increasing diagonal. This particular location shows that, in comparison to the
baseline model mg, model ma reduces cost in a lower proportion than risk. We
say then that model ms is biased towards cost from the ideal point perspective
since it is more costly than risky, i.e., 81(m2,T) > 62(m2,T). Models located in
the increasing diagonal are equally costly than risky.

An important concept derived from the representation of particular models in
the CR space is the notion of hybrid models (Hernédndez-Orallo et al., 2013). Given
any two models, we can construct a hybrid model as a linear combination of the
control actions derived from both models. This concept is graphically illustrated in
Figure 2 (a) by means of the dashed line passing through m1 and ms. Each point
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in this line represents the expected CR performance of a hybrid model constructed
as a linear combination of models with coefficients adding up to one.

In addition, when comparing alternative cash management models in the CR
space, the concepts of Pareto optimality and convexity of the Pareto front pro-
vide further insights. By adding a number of alternative models to the Cost-
Risk space from Figure 2 (a), we can build the Pareto front in which no model
can reduce the level of cost (risk) without increasing the level of risk (cost) as
shown in Figure 2 (b). More formally, any model m characterized by the point
(01(m,T),02(m,T)) belonging to a non-empty feasible region S € R? is called
Pareto optimal (Ballestero and Romero, 1998; Miettinen, 2012) if there does not
exist any other feasible point that can achieve the same or better performance for
all the criteria while being strictly better for at least one criterion.

1.0 . . . . 1.0
p
0.8 R 0.8
L]
0.6} f o6l *
L]
~ ~
< < °
0.4 o My 0.4 .
RS .
Se .
N L]
0.2| N R 0.2} .
~ L3
<
L]
e My .
L]
0.0 ! ! ! ! 0.0 ! ! ! hd ® o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0, 0,

Fig. 2 (a) Two models in the normalized Cost-Risk space; (b) Pareto front of alternative
models in the normalized Cost-Risk space

The Pareto front provides valuable information about alternative cash man-
agement models. Besides bias towards either cost or risk, the concept of convexity
of the Pareto front is crucial to ensure that there is a trade-off between criteria in
order to find an optimal solution among feasible alternatives. This trade-off mea-
sures the amount of achievement of one criterion that must be sacrificed in order
to gain a unitary increase in the other criterion (Ballestero and Romero, 1998).
Furthermore, a number of distances to the ideal point (0,0) can be computed to
determine which model is best in terms of both cost and risk.

However, in the search for the best model, cash managers’ preferences for
cost and risk are not equal. A risky cash manager may accept a higher risks to
achieve the same cost reduction than a conservative one. Next section considers
risk preferences in the CR space to enhance the selection process.
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4 Choosing models according to risk preferences

We mentioned in Section 3 that the normalized CR space allows comparisons of
alternative cash management models in terms of cost and risk. The increasing
diagonal divides the CR space into two regions: the upper-left half or risky region,
and the bottom-right half or the conservative region. A neutral cash manager, i.e.,
with no bias for cost and risk, would choose models with similar values of cost and
risk indexes or, equivalently, models close to the diagonal, where 6; = 0.

Recall that one model in the CR space dominates another either if it is no
worse in terms of both cost and risk and it is strictly better either in cost or
risk. All models are dominated by the model with the lowest risk from the cost
perspective. Likewise, from the risk perspective, all models are dominated by the
model with the lowest cost. From that, all non-dominated models form the Pareto
front, i.e., the set of feasible alternatives for cash managers to choose according to
their particular preferences.

Once models are presented in the CR space, cash managers have to choose
the best compromise model that minimizes total loss in terms of cost and risk.
Compromise programming (Zeleny, 1982; Yu, 1985; Ballestero and Romero, 1998)
can then be used to solve the problem by minimizing the distance to the ideal
point (0,0), usually unfeasible. Moreover, when considering particular risk prefer-
ences defined by w, the following family of weighted distance functions allows to
determine the proximity of any particular point (61, 62) to the ideal one:

Ly(m, ) = [wh O (1 — W) 03} H (11)

where h € NT is the parameter defining the family of distance functions and weight
w € [0,1] denotes the particular risk preferences of the cash manager. Note that
L1 is the Manhattan distance; L3 is the Euclidean distance, and L is the Cheby-
shev distance. Only these cases are likely to be used in practice for interpreta-
tion and computational reasons (Ballestero, 2007; Ringuest, 2012). Computations
with Manhattan distances are simpler and tend to produce solutions located fur-
ther from the diagonal. On the other hand, Euclidean distances tend to produce
more balanced solutions but with more computational burden due to non-linearity
(Ballestero, 2007).

The concept of isometric curves in the CR space can be derived from the
distance to the ideal, as combinations of 61 and 62, that have equal performance
and, thus, may represent models that cash managers are indifferent among. Risk
preferences are then considered through the use of parameter w. Since we are
dealing with a loss function to be minimized, the higher the value of w, the riskier
the cash manager. From that, two families of CR isometrics can be considered by
varying a parameter d for Manhattan (h = 1) and Euclidean distances (h = 2).
For Manhattan distances, the total loss for a particular point can be graphically
calculated as the sum of the distance to the y-axis and the distance to the x-axis.
An interesting characterization of the solution for Manhattan distances can be
found in Herndndez-Orallo et al. (2013).

In what follows, we aim to characterize the solution to the problem when
dealing with Euclidean distances. For h = 2, the total loss for a particular point
can be graphically calculated as the sum of the squared distance to the y-axis, i.e.,
cost when risk is zero, and the squared distance to the x-axis, i.e., risk when cost
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is zero. Then, a family of isometric curves can be defined by varying a parameter
d so that the following expression holds:

w? 07 4+ (1 —w)? .03 =d°. (12)

This equation leads to consider isometric circles and ellipses as a tool to select
among alternative cash management models as shown in Figure 3.

Definition 4 Given a loss function L2 and a context a, neutral cash management
isometrics are represented by circles since w = (1 — w), risky isometrics are rep-
resented by ellipses since w > (1 — w) and conservative isometrics are represented
by ellipses since w < (1 — w).

£®

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(91 ‘91

Fig. 3 (a) Isometrics for neutral cash managers; (b) Isometrics for risky/conservative cash
managers

Neutral cash managers may consider a number of circles with increasing radius
such as £ and £ in Figure 3(a). The model on the circle with minimum radius
is the optimal model. Similarly, risky cash managers may consider a number of
ellipses such as £ in Figure 3(b) with vertical semiaxis larger than its horizontal
semiaxis due to w > (1 — w). Finally, conservative cash managers may consider a
number of ellipses such as £ in Figure 3(b) with vertical semiaxis smaller than
its horizontal semiaxis due to w < (1 —w). Then, the model on the ellipse with
minimum horizontal/vertical semiaxis is the optimal model.

5 Deriving loss curves from operating conditions

In the previous sections, we showed different cash management models in the CR
space and we also provided a tool to choose among them according to the particular
risk preferences of cash managers. However, chances are that context changes may
impact the performance of models. Therefore, cash managers may be interested in
determining which model is best for a given range of operating conditions. In this
section, we propose a method to derive loss curves that can be useful to assess the
impact of operating conditions in the performance of cash management models.
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Here, loss means the combined cost-risk performance computed using equation
(11) according to the particular preferences of cash managers.

Recall from Section 3 that the term operating condition refers to any factor
that may influence the performance of a model. A typical example of an operating
condition when deploying models using forecasts as a key input is the prediction
error. Let us assume that cash managers can produce forecasts with a given fore-
casting error € with respect to a trivial forecast f that is computed for a data set
of N forecasts as follows:

o Sic(fe = fo)?
Zé\;1(?_ ft)2

where ft is the prediction at time ¢, f; is the real observation at the time ¢, and f
is the arithmetic mean of the real observations used to obtain predictions fi. Note
that the closer ¢ is to zero, the better the predictive accuracy. On the contrary, if
e is close to one, the performance is similar to the mean as a naive forecast. Values
greater than one show that the forecaster has no predictive ability.

Assume now that we want to obtain the best model for a range of prediction
errors of particular interest for a hypothetical cash manager. To this end, we rely
on a number of simulations. More precisely, our experimental design is based on
multiple replicates of random cash balance paths under a Monte Carlo framework
(Glasserman, 2003). These paths are obtained from a known initial cash balance
and T independent draws from a real cash flow probability density function (pdf),
whose cumulative sum determines a particular cash balance evolution. Whether
this pdf is derived from a real data set or selected from one of the usual pdfs in
financial problems, such as the Gaussian distribution, is at the discretion of the
practitioner. Here, since we are provided with a real cash flow data set, we use
an empirical pdf obtained from 1000 real cash flow observations from a Spanish
industrial company.

For the sole purpose of this example, assume that our hypothetical cash man-
ager knows, from the characteristics of the company cash flows, that the set of con-
trol limits that best worked in the past are {ho, do, 2,91, h1} = {2.5,0.4,5.0,0.4, 7.5},
all figures in millions of euros. In addition, our cash manager may produce cash
flow predictions with an average prediction error in the range of ¢ = [0, 1] in terms
of normalized squared error from equation (13).

On the other hand, the current cost structure is determined by fyg' =50 €,
Y =50 €, 'ﬁ' =0.1%, and v; = 0.01%, of the transaction volume. Assume also
a holding cost v = 10% per annum, and a daily penalty cost u = 30%. Hence, in
this example we set a = (g, fyar o »71T,v,u) as the particular context of interest
in which alternative models are going to be analyzed. In this context, there is
only one variable operating condition, namely, the prediction error . Since this
operating condition may present one or more different levels, we can express it
as a tuple of d levels, a; = {l;1,...,l;iq), .8, € = (0,0.25,0.50,0.75,1), or as a
continuous interval, a; = [@min, ¥maz], €.8., € = [0.5,1].

Summarizing, the final goal is to derive a loss curve that shows the impact in
equation (11) of the change of any variable operating condition in context a. For
simplicity, we also set h = 1 and consider a neutral cash manager with w = 0.5,
within a planning horizon of T' = 30 days. Then, we proceed following the steps
detailed in Algorithm 1.

(13)
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Algorithm 1: Algorithm to build context loss curves

1 Inputs: Model m; context «; cash flow data set F'; planning horizon T
number of replicates r;

2 Output: Context loss curve Ly, (m, ) ;

3 Define a baseline model mg;

4 for each possible combination «; in o do

5 for each replicate do

6 Generate a random cash balance path form F;

7 Compute C(mo,T) and R(mo,T);

8 Compute C(m,T) and R(m,T);

9 Compute Lp(m, o;);

10 end
11 Estimate and plot expected values for each L, (m, a;);
12 end

Since the only variable operating condition is the prediction error, by varying
¢ in the range [0,1], we are implicitly comparing different contexts. Then, we
consider eleven possible prediction errors in steps of 0.1 from perfect prediction
(e = 0) to a naive prediction (¢ = 1). For each value of e, we generated 100 random
cash balance paths of 30 days, equivalent to more than twelve working years and
computed both the cost and risk using equation (7) and (8) for alternative Stone
models and also for a trivial model mg consisting in taking no control action.
These random experiments lead to an estimation of the expected loss of alternative
Stone models for each possible prediction error. More precisely, we consider five
alternative Stone cash management models for prediction horizons between k =
0 and & = 4 days. Note that no prediction is used in the case of k = 0. The
comparative loss for models with ¥ = 0 and k = 1 for the whole range of possible
prediction errors is shown in Figure 4(a). The rest of models are not presented due
to poorer performance.

Implicitly, by comparing models using predictions (k > 1) to another model
using no prediction (k = 0), we are testing the ability of the Stone model to
produce better results for a range of prediction errors. Our example results show
that the 1-day look-ahead Stone model produced slightly better results for low
predictions errors but rapidly increased the expected loss in comparison to the
no-look ahead model. From that, unless our hypothetical cash manager is able
to consistently produce forecasts with error below 0.2, the deployment of a 1-day
Stone model is not recommended.

Since no model is the best model for the whole possible range of operating
conditions, cash managers can rely on loss curves to select the best models for any
particular context. Thus, the resulting loss curve depicted in 4(b) shows the min-
imum loss that can be achieved after selecting the best model for each prediction
error. The first two point belong to the Stone model with ¥ = 1 and the remaining
to the no-look-ahead procedure. Note also that in the example we only compare
Stone models varying the parameter k and for different predictions errors. In the
search for more robust models, our method can be extended for all available cash
management models and a wide range of operating conditions such as alternative
cost scenarios.
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Fig. 4 (a) Loss curve for two alternative models and different prediction errors; (b) Expected
loss after selecting the best model for each prediction error

6 Concluding remarks

This paper demonstrates that ROC analysis can be adapted to enhance the un-
derstanding of the multiobjective cash management problem. More precisely, we
present three procedures for: (i) showing models in the Cost-Risk space; (ii) choos-
ing models according to the risk preferences of cash managers; (iii) deriving loss
curves for different operating conditions. These procedures allow cash managers
to answer a number of important questions such as:

1. What is the performance of a model in terms of cost and risk?
2. What model is best according to cash managers risk preferences?
3. Under what circumstances a model is better than another?

All the previous questions are answered through the procedures presented here
from a double perspective: quantitative and graphical. The essence of ROC analysis
is then respected. Although the graphical analysis is limited to one, at most two
operating conditions, the quantitative analysis can be generalized to any number
of operating conditions.

A new interesting research line may be derived from loss curves for multiple
operating conditions by considering multidimensional techniques such as factorial
analysis. Further research would also be needed to assess under what circumstances
an operating condition is more important than another.
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