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Calculation of the best basal-bolus combination for
postprandial glucose control in insulin pump therapy

A. Revert, R. Calm, J. Veh́ı, J. Bondia*

Abstract—Intensive insulin therapy in type 1 dia-
betes is based on the well-established practice of ad-
justing basal and bolus insulin independently. Basal
insulin delivery is designed to optimize glucose con-
centrations between meals and overnight, while bolus
insulin delivery is designed to optimize postprandial
glucose concentrations. However, this strategy shows
some limitations in the postprandial glucose control,
especially for meals with high carbohydrate content.
Strategies based on coordinating basal and bolus insulin
in the postprandial period help in overcoming these
limitations. An algorithm, based on mathematically
guaranteed techniques (interval analysis), is presented
in this work. It determines, given the current glycemic
state of the patient and the meal to be ingested, a basal-
bolus combination that will yield a tight postpran-
dial glycemic control according to the International
Diabetes Federation guidelines. For a given meal, the
algorithm reveals which bolus administration mode
will enable a good postprandial performance: standard,
square-wave, dual-wave or temporal basal decrement.
The algorithm is validated through an in silico study
using the 30 subjects in the educational version of the
FDA-accepted UVa simulator.

Index Terms—type 1 diabetes, insulin pump ther-
apy, postprandial glucose control, interval analysis, set
inversion, optimal experiment design.

I. Introduction

IN the 1990s, the Diabetes Control and Complications
Trial [1] showed that any improvement in the glucose

control as measured by the level of HbA1c, leads to a
reduction of the risk to suffer chronic complications asso-
ciated with diabetes. For this reason, euglycemia has been
established as the control objective for patients with type
1 diabetes mellitus, except if some contraindication exists.
This is accomplished through the use of exogenous insulin,
promoting the transport and storage of blood glucose into
the cell and thus decreasing blood glucose concentration.

Intensive insulin therapy is based on the administration
of basal and bolus insulin. Basal insulin delivery is de-
signed to optimize glucose concentrations between meals
and overnight, while bolus insulin delivery is designed to
counteract the hyperglycemia occurring after meals.
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de Automática e Informática Industrial, Universidad Politécnica de
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In the case of multiple daily injections, this is imple-
mented with the use of long-acting insulin analogues for
basal insulin, expected to produce a flat profile of plasma
insulin concentration along the day, and rapid-acting in-
sulin formulations for bolus insulin, expected to have a fast
onset of action to overcome postprandial hyperglycemia.
In the case of continuous subcutaneous insulin infusion,
the same rapid-acting insulin is used for both basal and
bolus. In this case, insulin pumps allow for the application
of smart insulin infusion profiles. Currently, basal infusion
rates are programmed with time-varying profiles over a
24-hour period, in order to account for circadian varia-
tions of patient’s insulin sensitivity and activity. Bolus
insulin infusion can be delivered via different profiles as
well (standard, extended/square wave, combination/dual
wave) to deal with different meal compositions or other
circumstances such as stress and/or exercise [2].

In [3] it was shown that standard therapies that consider
only bolus insulin to control postprandial glucose can not
be enough to fulfill the International Diabetes Federation
(IDF) guidelines (no hypoglycemia and two-hour post-
prandial glucose below 140 mg/dL) [4]. Taking advantage
of the possibilities that insulin pumps provide, the smart
prandial insulin profiles can be utilized to overcome the
limitations of the standard therapies, as demonstrated in
[3].

In this work, an algorithm based on mathematically
guaranteed techniques (interval analysis) to calculate the
best prandial basal-bolus combination leading to a tight
postprandial glucose control is presented. In particular, a
set inversion problem is posed to determine, for a given
meal, which prandial insulin administration mode and
dose will yield a good postprandial performance, according
to the patient’s model. Section II reviews the main theoret-
ical concepts related to interval analysis and set inversion,
presenting the Set Inversion Via Interval Analysis (SIVIA)
algorithm and the definitions needed to understand it.
The new methodology for prandial insulin determination
is introduced in Section III. Section IV presents an optimal
experiment design procedure for patient’s model identifi-
cation. Finally, Section V presents an in silico validation
using the FDA-accepted UVa simulator [5].

II. Interval analysis and set inversion

Interval analysis arose in the context of numerical anal-
ysis and the study of propagation of computational errors
in finite number systems [6], [7]: if real numbers are sub-
stituted by compact subsets of the digital scale (intervals)
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which contain it, and real operators by interval operators,
computations will lead to intervals that contain the actual
solution, whose width is a measure of the approximation
error. It is precisely this property of inclusion of the actual
solution that makes interval analysis and methods derived
very interesting when a mathematical guarantee is desired.

Inclusion functions are thus one of the fundamental tools
in interval analysis.

In the following, [x] will denote a real interval, and x, x
are its left and right endpoints. Interval vectors, or boxes,
will be denoted in boldface, [x]. The set of all real intervals
will be denoted by Iℝ and the set of n-dimensional boxes
as Iℝn.

A formal definition follows.

Definition II.1 Given a function f : ℝn → ℝm, the
interval function [f ] : Iℝn → Iℝm is an inclusion function
for f if for any box [x] = [x,x] ∈ Iℝn

[f ]([x]) ⊇ [ min
x∈[x]

f(x),max
x∈[x]

f(x)].

The simplest way to get an inclusion function for f is
replacing the real variable x with an interval variable [x]
and the real arithmetic operations with corresponding in-
terval operations. The result [f] is called a natural inclusion
function of f [6]. However, this may yield significant over-
estimation when multiple instances of a variable appear
in the expression to evaluate (multiincidences problem).
Other inclusion functions have been studied to reduce this
problem like centered forms or Taylor expansion forms.
See for instance [6]–[9] for more details on this topic.

Currently, interval analysis is a mature technology that
has been successfully applied in fields aside numerical anal-
ysis such as robotics, control, computer graphics, economy,
global optimization, and fault detection, among others [9].

An important application of interval analysis is the
solution of set inversion problems. Let X ⊆ ℝn and
Y ⊆ ℝm be an input and output space, respectively.
Given a set Y ⊆ Y and a map f : X → Y, the set
X := {x ∈ X | f(x) ∈ Y} is sought. The set Y is
usually defined through constraints on the output space.
The SIVIA algorithm [9] makes use of a branch-and-
bound technique together with interval analysis to get an
approximation of the solution set X . This approximation
is done in terms of subpavings (collection of boxes of the
appropriate dimension with non-overlapping interiors). An
inner and outer subpaving, which will be denoted as [X ]i
and [X ]o respectively, are built so that [X ]i ⊆ X ⊆ [X ]o.
Hence, it is guaranteed that [X ]i will contain only solutions
while the complementary set of [X ]o, denoted as [X ]o, will
contain only non-solutions (see Fig. 1).

Some previous definitions follow before presenting the
SIVIA algorithm.

Definition II.2 The width of a box [x] = [x,x] ∈ Iℝn is
w([x]) := maxi∈{1,...,n}(xi − xi).

Definition II.3 The midpoint of a box [x] = [x,x] ∈ Iℝn
is m([x]) := (x + x)/2.

Fig. 1. Plot that illustrates the concept of inner and outer subpaving.
The dark rectangles represent the inner subpaving and guarantee the
fulfillment of the constraints. The outer subpaving is made up of both
the dark and the light rectangles. Its complementary set (in white)
is guaranteed to contain only non-solutions that violate some of the
constraints. Results in the boundary (light rectangles) are unknown
a priori.

Definition II.4 The left and right children of a box [x] =
[x,x] ∈ Iℝn are

L([x]) := [x1, x1]× · · · × [xj ,m([xj ])]× · · · × [xn, xn]
R([x]) := [x1, x1]× · · · × [m([xj ]), xj ]× · · · × [xn, xn]

where j is the first component of [x] with maximum width,
that is, j = min{i | w([xi]) = w([x])}.

Algorithm II.1 (SIVIA, [9]) Let X be the solution set
sought and [X ]i and [X ]o be two subpavings corresponding
to inner and outer approximations of X as defined above.
Let [t] : Iℝn → IB be a test interval function from the set
of n-dimensional interval vectors (box in the input space)
to the set of interval booleans, IB = {0, 1, [0, 1]} (where
0 stands for false, 1 for true and [0, 1] for indeterminate).
Finally, let [x] ∈ Iℝn be an initial box in the input space and
ε be a positive precision factor that can be chosen arbitrarily
low. The SIVIA algorithm is as follows:

SIVIA(in: [t],[x],ε, out: [X ]i,[X ]o)
if [t]([x]) = 0, return;
if [t]([x]) = 1,
then {[X ]i := [X ]i ∪ [x]; [X ]o := [X ]o ∪ [x]; return; };

if w([x]) < ε,

then {[X ]o := [X ]o ∪ [x]; return;};
SIVIA([t],L([x]),ε,[X ]i,[X ]o);
SIVIA([t],R([x]),ε,[X ]i,[X ]o);

The inner subpaving will thus consist of the boxes
classified as true, while the outer subpaving contains the
true and indeterminate boxes (of width smaller than the
tolerance defined). Not small enough indeterminate boxes
will be splitted in two subboxes by the midpoint of its
largest dimension and the procedure repeated.

III. Set-Inversion-Based prandial insulin
delivery

With a proper instantiation of the input and output
spaces, X and Y, and the test interval function [t], SIVIA
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Fig. 2. Output of an interval simulation. Upper and lower envelopes
include all possible glucose responses for the input box.

can be used to gain insight on the different dosage strate-
gies that can be applied depending on the patient and
the nature of the meal and to select the best basal-bolus
combination that will yield a good postprandial control.

For this purpose, the following set inversion problem is
posed:

The input space X corresponds to the bolus insulin dose,
the modified basal insulin infusion at meal time and the
time of restoration of basal to its baseline value.

For a given box in the input space, [x], and a set of
constraints C on postprandial glycemia, the test function
[t]([x]) will determine whether: (1) all the insulin therapies
contained in [x] fulfill the constraints C (True case); (2)
none of the insulin therapies contained in [x] fulfill the
constraints C (False case); (3) some of the therapies in [x]
fulfill the constraints, while others do not (Indeterminate
case).

The constraints C are defined here following the IDF
guidelines for postmeal control [4]: non-hypoglycemia and
two-hour postprandial glucose value below 140 mg/dL, in a
five-hour time horizon. The hypoglycemic threshold is not
explicitly defined in the guidelines. A value of 70 mg/dL is
adopted here. Additionally, two extra constraints are de-
fined: five-hour postprandial glucose value above 90 mg/dL
and a maximum glucose slope of 0.05 mg/dL/min starting
four hours after the meal. These additional constraints are
included to minimize both the risk of hypoglycemia after
the first five hours and late undesirable glucose rebounds.

Finally, a patient’s model is used to predict postprandial
glycemia, G, that is compared against the above con-
straints. An interval simulation of the model is carried out
using Modal Interval Analysis [10]. This allows to obtain
tight bounds of the envelopes enclosing the collection of
postprandial glucose profiles originated from the set of
therapies in [x]. For a given time t, [G](t) will thus be
an interval (see Fig. 2). A time step of 1 minute is used in
the simulation.

Remark that the above additional constraints are im-
posed on the model predictions, which may be inaccurate
after a few hours compared to the real patient behavior.
Values were tuned accounting for this mismatch in the case
of the model used here.

The test interval function, [t]([x]) is thus defined as:

Fig. 3. Plot that represents a 3D (basal, bolus and time) feasible set
with its corresponding basal-bolus 2D projection.

True: (∀tk ∈ [0, 300] [G](tk) ≥ 70)∧
(∀tk ∈ [120, 300] [G](tk) ≤ 140)∧
[G](300) ≥ 90)∧
(∀tk ∈ [240, 300] [G](tk+1)−[G](tk)

tk+1−tk ≤ 0.05)

False: (∃tk ∈ [0, 300] [G](tk) < 70)∨
(∃tk ∈ [120, 300] [G](tk) > 140)∨
([G](300) < 90)∨
(∃tk ∈ [240, 300] [G](tk+1)−[G](tk)

tk+1−tk > 0.05)

Indet.: otherwise

where tk is a discrete time instant. Remark that
the above inequalities correspond to interval inequalities
([x, x] ≤ α⇔ x ≤ α, [x, x] ≥ α⇔ x ≥ α, α ∈ ℝ).

The kind of inner subpavings that are obtained after the
application of the algorithm is shown in Fig. 3 (left). The
subpaving consists of 3D feasible boxes, where these three
dimensions correspond to the bolus dose, the postprandial
basal dose and time of restoration of basal to baseline.
The 2D basal-bolus projection (Fig. 3 right) contains
information on the different basal-bolus combinations that
will lead to a good performance for a particular patient and
meal. In this way, combinations in the inner subpaving
are guaranteed (with a proper selection of the time of
restoration of basal to baseline) to yield a glucose profile
that fulfills the defined constraints. On the contrary, com-
binations outside the outer subpaving will violate some
constraint (see Fig. 4). If the outer subpaving is empty,
there is no solution to the problem unless the constraints
are relaxed.

The projected basal-bolus space can be divided into
regions corresponding to different bolus administration
modes present in current insulin pumps, plus a new one
called here temporal basal decrement (see Fig. 5). This is
especially important since it allows the automatic selection
of the best administration mode. So far this is done based
on the physician’s heuristics. To ease interpretability, a
normalization is done with respect to the patient’s nominal
basal and standard bolus from its insulin-to-carbohydrate
ratio (I:C). The point (1,1) corresponds thus to the stan-
dard therapy.

Fig. 5 shows a situation where all the different bolus
administration modes (standard bolus, square bolus, dual-
wave bolus and temporal basal decrement) will result in
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Fig. 4. Plot that shows the glucose response for a basal-bolus combi-
nation inside the inner subpaving (dotted line) and for a combination
outside the outer subpaving (solid line). The glucose response has
been represented for times of restoration from 30 to 300 min demon-
strating that for combinations in the inner subpaving always exists
at least one solution, selecting the appropriate time of restoration of
basal from the feasible set, that fulfills the constraints whereas, for
combinations outside the outer subpaving is impossible to obtain a
proper glucose control.

Fig. 5. Normalized feasible set that shows all the possible bolus
administration modes. Therapies with nominal basal correspond to a
standard strategy, therapies with an increment in basal postprandial
dosage result in a dual-wave or square-wave strategy whereas ther-
apies with less postprandial basal than baseline are called here as
temporal basal decrement mode. The corresponding insulin infusion
profiles are depicted for each region.

a good glucose response, fulfilling the IDF guidelines of
postmeal control. Depending on the patient and on the
grams of carbohydrates of the meal, the number of bolus
modes fulfilling the constraints may be reduced.

The procedure used to select a specific point (basal-
bolus combination) from all the possible ones is done
as follows. The 2D basal-bolus subpaving is divided into
two smaller subpavings (when possible) corresponding to
a positive and negative basal deviation from nominal.
The first one will correspond to a bolus mode currently
available in insulin pumps (standard/square/dual-wave).
The second one will correspond to a new administration
mode, found to be the only solution for big sized meals (see
Section V). The optimal point of each of these new sub-
pavings is selected to be the geometric centroid obtained
by the expression:

x̂ = Σim([xi])Ai
ΣiAi

(1)

where m([xi]) and Ai are the centroids (midpoints) and
areas, respectively, of the different subpaving boxes.

Once the 2D basal-bolus optimal point for each therapy
has been selected, time of restoration of basal to baseline
is chosen as the mean point of the interval of time that
fulfills the constraints for this basal-bolus optimum (third
dimension of the subpaving in Fig. 3).

IV. Patient’s model identification

A critical issue in the above methodology is the iden-
tification of the patient’s model. Due to the fact that
clinical experiments are expensive and difficult to carry
out, they have to be designed meticulously in order to
obtain results that provide as much information as possible
for the posterior parameter estimation process.

Optimal experiment design (OED) consists in identi-
fying the proper experiment setup (selection of inputs
to excite the process) that delivers experimental data
allowing parameter estimation with minimal uncertainty.
In this manner, OED helps in improving the a posteriori
identification of the parameters, minimizing also problems
of bad conditioning in their estimation [11], [12].

The first step in OED consists in selecting the param-
eters describing the experimental setup. The parameters
considered here are:

• ingested carbohydrates,
• bolus insulin dosage, and
• time instant of bolus insulin infusion (before or after

the meal).

The duration of each experiment (meal) is five hours and
the number of measurements is fixed and determined by
the frequency of the continuous glucose sensor (usually 5
minutes). Each experiment will be carried out on different
days, approximately at the same time every day. In this
case the experiments will take place at lunch time.

Bound constraints on the parameters are included to
avoid impractical results. So, the grams of carbohydrates
are limited to values between 50−100gr (corresponding to
an acceptable range for the lunch) while the bolus insulin
dosage must remain in the range ±20% the patient’s
standard bolus for that meal. Infusion time for bolus
insulin is limited from 30 minutes before the intake to 30
minutes after it. In addition, extra constraints are added
to avoid hypoglycemia (< 70 mg/dL) or extremely high
hyperglycemia (> 300 mg/dL).

In order to reproduce a situation as real as possible
during the in silico validation, a model structurally dif-
ferent from the one used by the UVa simulator is consid-
ered in this work, forcing model mismatch. The Hovorka
model has been selected for this purpose [13]. A priori
identifiable parameters reported in [13] will be considered
for identification, with the exception of F01 (non-insulin-
dependent glucose flux) that is replaced with tmax,G (time
to maximum carbohydrate absorption) so as to include at
least one parameter related to the meal intake (see [13] for
the model details). Moreover Q2(0) (initial mass of glucose
in the non-accessible compartment) is also included as an
additional parameter to be identified (see Table II). The
values of the parameters used are mean parameters with
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Fig. 6. Value of the D-optimality criterion against different number
of meals for the three groups of patients.

the body weight set to the mean body weight of the adults,
adolescents and children that will be used in the in silico
validation. An insulin sensitivity proportionality factor is
applied and fixed to 0.5, 0.6 and 0.7 respectively. Nominal
basal is taken as the basal infusion normalizing glucose
around 100 mg/dL. I:C is estimated through simulations
and fixed to 1:14, 1:19 and 1:25 for adults adolescents and
children.

The optimality criterion used in this work is D-
optimality, corresponding to the maximization of the de-
terminant of the Fisher Information Matrix [11]. Fig. 6
shows the evolution of this criterion for the three groups
of patients with respect to the number of days (number
of lunches) used for identification. It can be observed that
the improvement in the criterion resulting from adding a
new day decreases progressively. So, a compromise solution
between the time needed to identify and the a posteriori
identifiability of the model has been selected. Therefore,
data obtained from four different lunches will be used in
the identification process.

Table I shows the OED results obtained for adults,
adolescents and children. In general, it can be inferred
from the OED that the best results in identification will be
obtained by alternating the time of administration of the
bolus insulin with respect to meal time, always distancing
the administration as much as possible from the meal.
Moreover, both carbohydrate grams and deviation from
nominal I:C must be selected from the extreme values.
That is, big or small meals will be better for identification
than medium size meals. In the same way, the glucose
response has to be excited as much as possible delivering
bolus the further from nominal the better, but always
within control limits to not decompensate the patient in
excess. This fact can be clearly observed in the adults
group whereas in adolescents and children, due to their
higher insulin sensitivity, the possible violation of the
bound constraints reduces the freedom in the selection of
the experiment parameters.

A posteriori identifiability analysis of the model with
the results obtained from Table I, proves that the seven
to-be-identified parameters have a coefficient of variation
below 10%, fact that guarantees their identifiability.

The identification results obtained for one representative

Fig. 7. Four-meal identification following the OED results. The solid
line represents the glucose profile of the virtual patient whereas the
dotted line represents the profile simulated by the identified model.

adult patient from the UVa simulator are shown in Fig. 7.
The coefficient of determination, R2, is 86% which assures
a good identification quality.

V. Results and validation

The UVa simulator is used for an in silico validation
of the methodology here presented. This simulator, widely
described in [5], was accepted by the US Food and Drug
Administration (FDA) as a substitute to animal trials in
the preclinical testing of closed-loop control strategies in
January, 2008.

The simulator provides a set of virtual subjects based
on real individual data, a simulated sensor that replicates
the typical errors of continuous glucose monitoring and a
simulated insulin pump. In the educational version of the
simulator 30 virtual subjects are available, including 10
children, 10 adolescents and 10 adults.

In this work, these 30 virtual patients are used. Patients’
models are identified following the results obtained in Sec-
tion IV. Basal baseline is taken as the basal infusion nor-
malizing glucose around 100 mg/dL. I:C ratio is obtained
from the questionnaire available for each patient in the
UVa simulator. Table II shows the average estimation of
the parameters identified together with their coefficient of
variation (inter-patient variability) for each of the groups
of patients considered (adults, adolescents and children).

Once the model is obtained, the normalized 2D basal-
bolus projections are computed for meals in the range 40-
140 grams of carbohydrates and initial normoglycemia.
Fig. 8 shows the results obtained for the same virtual
patient as in Section IV.

The most remarkable issue extracted from Fig. 8 is that
for low carbohydrate content meals (< 80 gr), different
possible strategies lead to a good glucose control whereas
as the carbohydrate content increases, the set of possible
solutions is reduced, as expected. For big sized meals (>
100 gr), only a temporal basal decrement strategy with
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TABLE I
Proper four meals experiment setup according to the OED

ADULTS ADOLESCENTS CHILDREN

Meal 1 Meal 2 Meal 3 Meal 4 Meal 1 Meal 2 Meal 3 Meal 4 Meal 1 Meal 2 Meal 3 Meal 4

cho(gr) 50 100 50 100 100 50 90 100 100 70 50 100

4(I : C) 20% 20% 20% -20% -20% 20% 0% 20% 20% 17% 20% -10%

time (min) -30 -30 30 -30 -30 -30 0 -30 -30 0 -30 -30

TABLE II
Model parameters estimation

tmax, I tmax, G SfIT SfID SfIE EGP0 Q2(0)

ADULTS
Mean 60.85 61.17 0.0049 0.0034 0.0015 0.0137 47.55

CV 0.27 0.23 0.98 1.13 2.20 0.35 0.37

ADOLESCENTS
Mean 53.39 59.45 0.0045 0.00873 0.0010 0,01590 20.84

CV 0.47 0.29 1.43 1.25 2.26 0.30 0.27

CHILDREN
Mean 59.19 53.07 0.0203 0.0074 0.0160 0.0175 18.41

CV 0.42 0.48 1.55 0.90 1.73 0.31 0.81

Fig. 8. 2D basal-bolus projection of normalized feasible sets for a
meal of 40 to 140 grams of carbohydrates and initial normoglycemia.
The vertical line stands for the standard strategy with basal equal
to its baseline value.

an increment in the bolus dosage with respect to nominal
(“a superbolus therapy” [14], [15]) can yield to a good
postprandial control. Similar behavior can be observed
in the rest of the patients being, the temporal basal
decrement strategy the only strategy that provides good
results for big sized meals. Occasionally, for a particular
meal and patient, the feasible set could be empty, in which
case the upper constraint will be relaxed in steps of 20
mg/dL to a maximum of 300 mg/dL.

In order to check the results obtained in Fig. 8, an inter-
mediate sized meal (60 gr) and a big sized meal (120 gr)
are selected to compare the glucose response applying the
basal-bolus insulin combinations given by the algorithm
for each possible bolus administration mode with the
response using the standard therapy (see Fig. 9). For the
60 gr meal any of the three possible therapies (standard,

dual-wave and temporal basal decrement) yields a good
performance whereas for the 120 gr meal, the basal-bolus
combination given by the algorithm using a temporal basal
decrement strategy improves significantly the performance
of the standard therapy, incapable of fulfilling the IDF
guideless for postprandial control. In this case, both strate-
gies could produce a very mild hypoglycemia seven hours
after the meal 1. However, this is not at all critical.

Moreover, to compare the basal-bolus combination
strategy presented here with the standard bolus strategy in
the entire population, the control-variability grid analysis
tool (CVGA) is used [16]. This tool provides a measure
of the extreme glucose excursions observed using different
therapies. Fig. 10 shows the shape of a CVGA plot,
where the different zones correspond to different degrees of
variability (see [16] for more details). The CVGA has been
used to compare the glucose profile using the standard
bolus strategy with the profile obtained with the temporal
basal decrement bolus strategy in the three groups of
virtual patients and both for small-intermediate sized
meals (40, 60 and 80 gr) and big sized meals (100, 120
and 140 gr) in a seven-hour time horizon.

The dual-wave strategy results have been omitted be-
cause previous experiments showed that in many cases this
strategy is not applicable (see Fig 8). For adolescents and
children, the range of big sized meals has been reduced
to 100-120 grams of carbohydrates, because, in general,
the feasible set of prandial insulin infusions was empty for
bigger sized meals. Additionally, the virtual child number 8
was eliminated from the study because again the feasible
set was empty for meals higher than 60 g even relaxing
constraints.

To improve the interpretability and due to the disper-
sion and quantity of the data, the results obtained by
the CVGA are presented as histograms, the bars corre-
sponding to the percentage of points falling in each of the

1There is no consensus about the hypoglycemic threshold. Some
clinicians use a value of 60 mg/dL. Here, a more restrictive value of
70 mg/dL was used.



7

Fig. 9. Comparison among the postprandial glucose profiles applying
different therapies for 60 and 120 gr meals. The subpavings corre-
sponding to each bolus administration mode are represented (when
existing) separately. The specific basal-bolus combination selected
for each strategy is showed in the subpavings as a thick dot. Finally,
the glucose response using the basal-bolus combinations given by
the algorithm and the standard therapy are plotted. The solid line
corresponds to the standard therapy, computed from the I:C ratio
given by the UVa simulator, whereas the dotted line and the dotted-
dashed line represent the temporal basal decrement (TBD) and the
dual-wave therapy respectively. The horizontal lines represent the
IDF constraints.

zones. Fig. 11 presents the results obtained by showing
the percentage of points falling in A, B, A+B, C, D and
E zones.

It can be extracted from the figure that in every case
the percentage of points falling in the A+B zone using the
temporal basal decrement strategy is higher than in the
case of the standard bolus strategy increasing, in most
cases, also the number of points falling in the A zone.
In this way, for meals lower than 100 gr the percentage
of points falling in the A+B zone is higher than 70%
for the three groups of patients, falling, in the case of
the adults, 60% in the A zone, compared to 10% for the
standard therapy. For big sized meals and specially for
adolescents and children, this percentage decreases but,
nevertheless, it doubles the percentage obtained with the
standard therapy. Moreover, this strategy is also capable
of decreasing the percentage of points falling in zone E
(erroneous control).

It is worth pointing out that no information about the
composition of the meals is available. So, in this in silico
validation the composition of the meals has been taken
into account implicitly during the model identification. In
case of having information about the glucose response of
the patients for different composition meals, an individual
identification of the the gastrointestinal part of the model
for each type of meal should be carried out. In this
manner, depending on the composition of a given meal,
one or another model should be used. The rest of the
methodology would not experience any changes.

Fig. 10. Example of the CVGA grid appearance. Points falling in
zone A represent an accurate control whereas zone B corresponds to
benign control deviation. Zones C and D correspond to an overcor-
rection in the first case and a failure in the control in the second case,
of hypo or hypoglycemia depending on whether the points fall in the
lower or the upper zones respectively . Finally points falling in zone
E represent an erroneous control.

Fig. 11. Histograms showing the number of points falling in each of
the CVGA zones. The dark bars represent the results with the stan-
dard bolus administration mode whereas the light bars correspond
to the temporal basal decrement strategy. A seven-hour time horizon
has been used.

VI. Conclusion

In this contribution, an algorithm for calculating the
most appropriate combination of basal and bolus insulin
for a good postmeal glucose control is thoroughly pre-
sented. Set inversion methods based on interval analysis
are applied to determine, for a given meal, which bolus
administration mode will yield a glucose response fulfilling
the IDF guidelines of postprandial control.

The theoretical basis of the algorithm are detailed, and
an in silico validation with the adults, adolescents and
children in the UVa simulator is presented, demonstrating
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robustness with respect to the patient model. Generally,
for intermediate-size meals, either a dual-wave bolus or a
temporal basal decrement is suitable. However, for higher
meals, only temporal basal decrement can yield a good
postprandial control. Clinical trials to evaluate the efficacy
of the algorithm in vivo are currently ongoing.

It is proved that for high meals, the current standard
therapy consisting of a bolus insulin on top of basal for
controlling glucose after a meal, is not enough for assuring
a good glucose performance. Alternative, coordinating
basal and bolus insulin can improve significantly this
performance.
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