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A B S T R A C T   11 

A feeding trial was carried out to assess the effect of partially replacing fish meal (FM) by Black soldier fly pre- 12 
pupae  meal  (HM)  in  diets  for  European  seabass  DICENTRARCHUS  LABRAX  juveniles.  A  FM-based  diet  was  used  as  a 13 
control and three other diets were formulated to include 6.5%, 13%, and 19.5% of HM, replacing 15%, 30% and 45%  of  14 
FM  respectively.  Each diet  was  fed  to  triplicate  groups  of  fish  (initial  weight:  50 g)  for  62 days. 15 

At the end of the trial, there were no differences among groups in growth performance or feed utilization. Plasma 16 
metabolic profiles also remained unaffected, except that plasma cholesterol was reduced with dietary HM inclusion. The 17 
apparent digestibility coefficients (ADC) of protein, lipids, dry matter, organic matter, and energy were generally high, 18 
and not affected by the dietary treatment. The ADC of arginine, histidine, and valine were higher in HM diets when 19 
compared to the control. Amylase and protease activities were not affected by dietary HM, while lipase activity was lower 20 
in HM 6.5 diets than in the control and HM 19.5 diets. 21 

In conclusion, up to 19.5% of HM, corresponding to 22.5% of total dietary protein, may successfully replace FM in 22 
diets for juvenile European seabass, without adverse effects on growth performance, feed utilization or digestibility. 23 

 24 

1. Introduction 25 

Due to the expected increase in human population, the world will require an additional 23 million tons of aquatic food by  26 
2030  to maintain current per capita fish consumption. This must come from aquaculture, as fisheries production has stabilized 27 
over the last decades (FAO, 2016). Most aquacultured fish are produced using aquafeeds, and intensive aquaculture production 28 
of carnivorous fish species employs high quality fish meal (FM) and fish oil as the main dietary ingredients (Oliva-Teles et al., 29 
2015). However, increased demand for aquaculture feeds has led to rapid price increases for these commodities (FAO,  2016). 30 
To overcome these limitations, considerable research efforts are being made to reduce the dependency of aquafeed manufacturers 31 
on FM and fish oil (Glencross  et al., 2007). Nowadays,  a major challenge for aquaculture is to source sustainable supplies of  32 
terrestrial  animal and plant feedstuffs for aquafeed production (Naylor et al., 2009; Oliva- Teles et al., 2015; Tacon et al., 33 
2011). 34 

In the last decades, attention has focused on the use of plant protein-rich feedstuffs in practical diets for carnivorous fish 35 
(Barrows et al.,  2007; Gatlin et al., 2007; Oliva-Teles et al., 2015). However, plant feedstuffs have relatively low protein content, 36 
unbalanced essential amino acid profiles, low palatability, the presence of antinutrients, and competition with other food-feed 37 
industry sectors (Gatlin et al., 2007; Glencross et al., 2007; Krogdahl et al., 2010). This has pressured the search for nutritional 38 
strategies to improve utilization of plant protein- based diets (Gatlin et al., 2007; Magalhães  et al., 2016;  Pérez-Jimenez et al., 39 
2012), as well as for other valuable alternatives to fish meal, such as animal feedstuffs, including slaughterhouse by-products or 40 
insect meals (IM) (Moutinho et al., 2016; Oliva-Teles et al., 2015). 41 

Several reviews on the use of insects as ingredients for aquafeeds are available (e.g., Barroso et al., 2014; Makkar et al., 42 
2014; Sánchez-Muros et al., 2014; van Huis, 2013; van Huis et al., 2013). Compared to conventional animal protein, insects 43 
have several advantages, including being reared on discarded organic by-products with low water  input, high feed conversion 44 
efficiency, emission of low levels of greenhouse gases and ammonia, few animal welfare issues, and low risk of transmitting 45 
zoonotic infections (van Huis et al., 2013). Even though nutrient composition of IM is dependent on taxonomic group, 46 
rearing substrates and technological process, protein content is high (60–80%; 47 

Sánchez-Muros et al., 2014) with a well-balanced essential amino acid profile (Alegbeleye et al., 2012; Barroso et 48 
al., 2014; Henry et al., 2015). Insect lipid content and fatty acid composition can be manipu- lated by rearing conditions 49 
and technological treatments (Barroso et al., 2014). Furthermore, use of defatted IM may avoid some constraints regarding  50 
fatty acid profile, mainly  for marine fish species (Barroso et al., 2014; Henry et al., 2015). Insects are also good sources 51 
of minerals such as potassium, calcium, iron, magnesium, and selenium, and of several vitamins, levels of which depend 52 
on the rearing conditions (Henry et al., 2015). 53 

Among different candidate species to produce IM, pre-pupae H. illucens (HM) is especially interesting, since standard 54 
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mass-rearing techniques for industrial production of high quality product  already exist (Henry et al., 2015; van Huis et al., 55 
2013). HM has an average protein content of 55% DM, a well-balanced essential  amino  acid  profile, and circa 35% DM fat, 56 
which may be reduced to 9 to 5% by defattening processes (Bußler et al., 2016). Moreover, if fish-offal or other omega-3 57 
polyunsaturated fatty acid (PUFA) rich sources are included in the diet, larval omega-PUFA content will increase, making it 58 
more  suitable  for  carnivorous  fish  and  marine  fish  diets  (St-Hilaire et al., 2007). 59 

Although HM is considered to have a nutritional value close to that of  FM,  replacement  of  FM  by  HM  in  aquafeeds  60 
has  not  yet  been  as successful   as   hoped   (Henry   et   al.,   2015).   Maximum   dietary   FM replacement  level  has  ranged  61 
from  6  to  25%,  depending  of  the  fish species  (Henry  et  al.,  2015),  with  highest  levels  being  attained  for rainbow 62 
trout, Oncorhynchus mykiss (Sealey et al., 2011). High inclusion levels  of  HM  reduce  growth  performance  of  channel  63 
catfish,  ICTALURUS PUNCTATUS,  rainbow  trout,  and  turbot,  PSETTA  MAXIMA  (Kroeckel  et  al., 2012;  Newton  et  al.,  2004;  St-64 
Hilaire  et  al.,  2007).  In  salmon,  SALMO SALAR,  dietary  supplementation   with  lysine  and  methionine  allowed dietary  65 
HM level up to a maximum of 25% (Lock et al., 2016). 66 

Until  now,  IM  has  been  evaluated  as  a  feed  ingredient  mainly  for freshwater species; the only studies available for 67 
marine fish are those of Kroeckel et al. (2012) for turbot and of Karapanagiotidis et al. (2014) with  gilthead  sea  bream  68 
SPARUS  AURATA.  As  insects  represent  a  part  of most  freshwater  species'  natural  food,  they  may  be  more  prone  to  use IM. 69 
Insect utilization by marine fish may be problematic mainly related to  chitin  digestibility,  palatability  (Kroeckel  et  al.,  70 
2012),  or  perhaps taurine  availability (El-Sayed, 2014). 71 

Thus, this study aimed to evaluate the effect of dietary replacement of FM by HM on growth performance, plasma 72 
metabolic profile, feed utilization, apparent digestibility, and digestive enzyme activities of European seabass juveniles. 73 

 74 

2. Materials and methods 75 

2.1. EXPERIMENTAL diets 76 

Four   experimental   diets   were   formulated   to   be   isoproteic   and isolipidic.  A  FM-based  diet  was  used  as  a  77 
control  and  3  other  diets were formulated to include 6.5%, 13%, and 19.5% of IM - black soldier fly (HERMETIA  illucens) 78 
pre-pupae  meal  (HM)  - replacing  15%,  30%  and 45% of FM. HM was supplied by Hermetia Deutschland GmbH & Co 79 
KG, Baruth/Mark,   Germany.   Diets   were   supplemented   with   dicalcium phosphate   to   avoid   phosphorus   imbalance   80 
and   chromic   oxide   was incorporated  as inert digestibility marker. All dietary ingredients were finely ground before mixing 81 
and dry pelleted in a laboratory pellet mill (California  Pellet  Mill,  Crawfordsville,  IN,  USA),  through  a  3 mm  die. Pellets  82 
were  dried  in  an  oven  at  55 °C  for  24 h  and  then  stored  at−20 °C until use. Proximate analysis and dietary composition 83 
are presented in Table 1, and amino acid composition of the HM and of experimental diets are presented in Table 2. 84 

2.2. Feeding TRIAL 85 

The study was directed by accredited scientists (following FELASA category C recommendations) and conducted per the 86 
European Union Directive (2010/63/EU) on the protection of animals for scientific purposes. 87 

The  feeding  trial  was  performed  at  the  Marine  Zoological  Station, University   of   Porto,   with   European   seabass   88 
(DICENTRARCHUS   LABRAX) juveniles   provided   by   MARESA   (Mariscos   de   Estero   S.A.,   Finca   El Tambujal, Apdo de 89 
correo 82, Ayamonte, HUELVA). 90 

The experimental system consisted of a thermo-regulated recircula- tion water system equipped with twelve fiberglass 91 
tanks of 60 L water capacity, with a feces settling column connected to the outlet of each tank. Both tanks  and  settling  columns  92 
were  designed  according  Cho  et al. (1982). During the trial, water-flow per tank was about 4.5 L min−1; temperature 93 
averaged 25  ±  1 °C; salinity 36‰; dissolved oxygen was maintained above 8 mg L−1 and nitrogenous compounds were  94 
kept  below  0.02 mg−1.  Photoperiod  was  controlled  to  12 h  light as 12 h dark. 95 

Fish were acclimatized to the experimental conditions for 15 days. Then, 12 homogenous groups of 10 fish with 96 
an initial body weight of 50 g were established in each tank. Experimental diets were randomly allocated in triplicate 97 
and fish were fed by hand, twice a day (at 9:00 and 16:00), 6 days a week, until visual apparent satiation. Utmost care 98 
was taken to avoid feed waste and to assure that all feed supplied was consumed. Five days after trial start, feces were 99 
collected daily for 20 days; 30 min after the afternoon meal, tanks, pipes, and settling columns were thoroughly cleaned. 100 
Feces accumulated in each settling column were collected daily before the morning meal, centrifuged at 3000 ×g, pooled 101 
for each tank and stored at −20 °C until analysis. At the end of the trial, fish were bulk weighed following 1 day of 102 
feed deprivation. 103 

Apparent digestibility coefficients (ADC) of dry and organic matter, protein, amino acids, lipids and energy of the 104 
experimental diets were calculated as follows: 105 

 106 

2.3. CHEMICAL ANALYSIS 107 
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Chemical analyses of ingredients, diets, and feces were conducted as follows: dry matter, by drying the samples at 108 
105 °C until constant weight; ash, by incineration in a muffle furnace at 450 °C for 16 h; protein (N × 6.25) by the Kjeldahl 109 
method following acid digestion, using Kjeltec digestion and distillation units (Tecator Systems, Höganäs, Sweden; models 110 
1015 and 1026, respectively); gross energy by direct combustion of samples in an adiabatic bomb calorimeter (PARR 111 
Instruments, Moline, IL, USA; PARR model 1261); lipids in ingredients and diets, by extraction with petroleum ether 112 
using a Soxtec system (Tecator Systems, Höganäs, Sweden; extraction unit model 1043 and service unit model 1046); 113 
lipids in feces according to Folch et al. (1957); chromic oxide by acid digestion according to Furukawa and Tsukahara 114 
(1966). 115 

Amino acid analysis was undertaken as described in Banuelos- Vargas et al. (2014). Briefly, samples were 116 
hydrolyzed for 23 h with 6 N hydrochloric acid at 110 °C under nitrogen atmosphere and derivatized with 117 
phenylisothiocyanate (PITC; Pierce) reagent before separation by high performance liquid chromatography (HPLC) in a 118 
Waters Reversed- Phase Amino Acid Analysis System (Waters auto sample model 717 plus; Waters binary pump model 119 
1525; Waters dual absorbance detector model 2487), equipped with a PicoTag column. External standards (Pierce 120 
NC10180) were prepared along with the samples, and norleucine was used as an internal standard to detect any losses due to 121 
sample processing. Chromatographic peaks were identified, inte- grated, and quantified with the Waters Breeze software package 122 
by comparing to known amino acid standards. 123 

 124 

2.4. Blood SAMPLING AND intestine 125 

 126 

At the end of the trial, fish continued to be fed for 3 more days and the intestine was sampled from 3 fish per tank. 127 
To ensure that the intestines were full at sampling time, fish were continuously fed as recommended by Krogdahl and 128 
Bakke-McKellep (2005), to avoid bias due to fasting effects. Blood samples were collected from the caudal artery-vein 129 
complex using heparinized syringes. Blood was immediately centrifuged and the plasma and intestinal sections were frozen 130 
at −80 °C until analysis. Then, fish were euthanized with a sharp blow  to the head and immediately eviscerated in an ice-131 
cold tray. The digestive tract was separated from adipose and the intestine divided into anterior and posterior sections. 132 
Posterior intestine was distin- guished from the anterior intestine by the increased diameter, darker mucosa and annular 133 
rings. The anterior intestine was the portion directly after stomach and included pyloric caeca. 134 

 135 

2.5. Digestive enzyme ACTIVITIES 136 

 137 

For enzymatic activity measurement, each intestinal section was homogenized with ice-cold buffer (100 mM Tris–138 
HCl, 0.1 mM EDTA, pH 7.8),   centrifuged   (30,000 ×g;   30 min;   4 °C)   and   the   resultant supernatant collected and 139 
stored at −80 °C until analysis. All enzyme activities were determined using a PowerWavex microplate scanning 140 
spectrophotometer (Bio-Tek Instruments, USA). 141 

Total proteolytic activity was measured by the casein hydrolysis method according to Walter (1984) and adapted 142 
by Hidalgo et al. (1999). The enzymatic determination was made using 0.1 M Tris HCl at pH 8, which is the optimum pH 143 
for physiological protease activity in seabass (Alliot et al., 1974). The reaction mixture, containing casein (1% w/v; 0.125 144 
mL), buffer (0.125 mL) and homogenate supernatant (0.05 ml), was incubated for 1 h at 37 °C and stopped by adding 0.3 145 
ml trichloroacetic acid (8% w/v) solution. After being kept for 1 h at 2 °C, samples  were  centrifuged  (1800 ×g  for  10 146 
min)  and  the  absorbance read at 280 nm. A tyrosine solution was used to establish a calibration curve.  One  unit  of  147 
enzyme  activity  was  defined  as  the  amount of enzyme needed to catalyze the formation of 1.0 μmol of tyrosine per 148 
min. 149 

α-Amylase (EC 3.2.1.1) activity was determined with a commercial kit (ref. 41201, Spinreact, Girona, Spain) with 150 
modification; the rate of product formation (2-chloro-4-nitrophenol) was quantified at 405 nm. Lipase (EC 3.1.1.3) activity 151 
was determined using a commercial kit (ref. 1001275, Spinreact, Girona, Spain) with modification; 1-2-O-dilauryl-rac-152 
glycero-3-glutaric acid-60-methylresorufin-ester was used as sub- strate, and the  formation  rate  of  methylresorufin  was  153 
followed  at  580 nm. 154 

Total soluble protein was determined according to Bradford (1976), using bovine serum albumin solution as standard. 155 

Enzyme activity was expressed as specific activity; one unit (U) of activity was defined as μmol of product generated per 156 
minute. 157 

 158 

2.6. PLASMA METABOLITES 159 

Commercial kits from Spinreact, S.A (Girona, Spain) were used for plasma glucose (Kit, cod. 1001191), total proteins  160 
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(Kit,  cod.  201001291), triglycerides  (Kit,  cod.1001312)  and   cholesterol   (Kit, cod. 1001090), determination after validation 161 
for use with marine fish species (Peres et al., 2013, 2014). All measurements were taken using a PowerWavex microplate 162 
scanning spectrophotometer (Bio-Tek Instru- ments, USA). 163 

 164 

3. Results 165 

Fish promptly accepted the experimental diets and during  the trial  no mortality occurred. Growth performance, feed 166 
intake, and feed efficiency were not affected by diet composition (Table 3). Protein efficiency ratio of fish fed diet HM19.5 was 167 
lower than that of fish fed the control diet (HM0). Plasma metabolite levels were similar among diets, except for 168 
cholesterol, which was lower in fish fed diet HM19 169 

versus controls.appparent  digestibility  coefficients  (ADC)  of  dry  and organic matter, protein, lipids and energy were 170 
high and unaffected by diet composition (Table 4). No differences were observed in the ADC of  amino acids. However, 171 
compared to the control, diet HM19.5 had a which was lower in fish fed the HM6.5 diets versus the control and HM19.5 172 
diets. Independent of diet, amylase and lipase activities were higher in the posterior intestine, while no differences 173 
between intestinal portions were observed for protease activity. 174 

 175 

Discussion 176 

Results of the growth trial indicate that HM can be included at least up to 19.5% in diets for European seabass 177 
juveniles, replacing 45% of   FM, without negative effects on growth performance. The fish promptly consumed all diets 178 
and no differences on voluntary feed intake were observed, indicating that HM was palatable for seabass. Feed efficiency 179 
was also unaffected by dietary composition. Similar results have been reported for other species of fish (Karapanagiotidis 180 
et al., 2014; Lock et al., 2016; Sealey et al., 2011). However, reduced feed intake and feed efficiency with increasing 181 
dietary HM incorporation has also observed in other studies (Gasco et al., 2016; Kroeckel et al., 2012). Protein efficiency 182 
ratio decreased with increasing HM dietary incorporation. As the ADC of protein was not affected by diet composition, 183 
this suggests a reduced efficiency of metabolic protein utilization. 184 

Essential amino acid (EAA) patterns of the order Diptera are similar 185 

to  that  of  FM  (Henry  et  al.,  2015),  which  is  considered  as  the  protein with  the  best  EAA  profile  for  fish  186 
(Oliva-Teles  et  al.,  2015).  Accord- ingly, the EAA composition of HM used in this study appear adequate, with no 187 
limiting amino acid for European seabass (Kaushik, 1998; Peres and   Oliva-Teles,   2006,   2007),   even   though   lysine   188 
and   methionine content of the H19.5 diet was lower than the other diets. Nevertheless, the   few   studies   that   have   189 
published   the   protein   content   and   EAA composition of HM present some important differences (Makkar et al., 190 
2014;  St-Hilaire  et  al.,  2007;  Sealey  et  al.,  2011;).  This  may  reflect differences in EAA composition between 191 
Hermetia illucens from different sources,  different  larval/pupae  stages  employed,  feeding,  rearing  con- ditions,  and  192 
other  factors,  such  as  the  method  of  processing  IM.  For instance, the HM used in the present study was defatted 193 
and had a crude protein  content  of 55.8%  and  a crude  lipid content  of 5.5%,  while the average  non-defatted  HM  194 
has  a  crude  protein  content  of  42.1%  and  a crude lipid content  of 26.0%  (Makkar  et al., 2014).  Accordingly,  195 
prior to use, the composition of each batch of HM meal should be analyzed to confirm its actual composition. 196 

Almost all insect meals are considered low in lysine and tryptophan for fish and, except for HM, also limiting in 197 
threonine and  sulphur-  amino acids (Makkar et al., 2014). The HM used  in the present study   had lysine and methionine 198 
content very close to the estimated require- ments for European seabass. Consequently, EAA composition of all diets 199 
met requirements for the species, except for a slightly low value for lysine in diet HM19.5. Thus, if higher levels of FM 200 
replacement by HM   are considered, dietary supplementation with lysine and methionine should be considered. 201 

The taurine content of HM used in this study (0.8mg/kg) was also considerably lower than the value reported by  202 
McCusker et  al. (2014).  In both cases, this is a very low value, indicating that HM is not a good source of taurine. Thus, 203 
diet supplementation with taurine should also  be considered when using HM, as taurine is required for European seabass 204 
fed low-FM diets (Kanashiro et al., 2014). 205 

The potential  of HM as an  alternative  protein  source for  aquafeeds has already been evaluated in other species. 206 
Soldier fly larvae fed alone or  in  combination  (50:50)  with  high  or  low  (45%  or  30%)  protein commercial diets 207 
did not affect growth performance of channel catfish and  tilapia  (Oreochromis  aureus)  (Bondari  and  Sheppard,  1987).  208 
Also, dietary  replacement  of  25%  FM  by  HM  did  not  affect  yellow  catfish (Pelteobagrus fulvidraco) growth 209 
(Zhang et al., 2014a). In rainbow trout it was shown that growth performance was unaffected with the dietary inclusion  210 
of 25%  HM,  but it was  depressed with  a dietary  inclusion  of 50%  (St-Hilaire  et  al., 2007).  In  gilthead  seabream  211 
juveniles,  HM may replace     up     to     30%     FM     without     affecting     fish     performance (Karapanagiotidis  et  212 
al.,  2014),  while  in  turbot,  growth  performance was  negatively  affected  at  all  dietary  HM  inclusion  levels  213 
(Kroeckel et al., 2012). 214 
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Maximum replacement level of FM by HM is, however, dependent of HM quality. Sealey et al. (2011) observed 215 
that 50% FM could be successfully replaced by fish offal-enriched HM in diets for rainbow trout, whereas replacement 216 
by normal HM negatively affected fish growth. Also, of two types of HM tested for Atlantic salmon, only one allowed 217 
total FM replacement of the diets without affecting fish performance (Lock et al., 2016). 218 

Besides  HM  tested  in  this  study,  the  mealworm  beetle,  Tenebrio molitor,   was   also   studied   as   alternative   219 
insect   protein   source   for European  seabass.  While  for  European  seabass  it  was  shown  that  it could  replace  up  220 
to  25%  FM  (Gasco  et  al.,  2016)  for  African  catfish (Clarias  gariepinus)  and  catla-rohu  hybrid  (Catla × Labeo  221 
rohita) a  FM replacement level of 30–40% was achieved (Nandeesha et al., 1988; Ng et al., 2001). 222 

The profile of plasma metabolites observed herein were within reference values determined for European seabass 223 
(Peres et al., 2014) and, except for cholesterol, remained unaffected by dietary composi- tion. Cholesterolemia was, 224 
however, reduced by the inclusion of 19.5% HM in the diet. This effect may be due to the presence of chitin in HM 225 
(approximately 8.7% DM; Diener et al., 2009) as chitin contains high levels of chitosan, which was shown to have 226 
cholesterol-lowering properties in fish (Chen et al., 2014; Shiau and Yu, 1999). Chitosan has been reported to interfere 227 
with cholesterol absorption by binding with lipid (cholesterol) micelles, inhibiting their absorption, and increasing bile 228 
acid excretion (Khoushab and Yamabhai, 2010). Dietary chitin may also impair digestibility of other nutrients. Even 229 
though chitinase activity was detected in some fish species, chitinolytic action seems to be limited for most fish (Abro 230 
et al., 2014; Kroeckel et al., 2012; Krogdahl et al., 2005; Lindsay et al., 1984). Therefore, chitin mainly contributes to 231 
increased bulk, reduced feces retention time, and reduced enzyme accessibility to substrates (Zhang et al., 2014b). 232 

Nonetheless, the ADC of the diets in the present study was high and not affected by dietary incorporation of HM. 233 
The ADC of protein, lipids, and dry matter of the diets used in the present study were very like those observed in another 234 
study with European seabass using meal- worm beetle meal incorporated at circa 25% (ADC DM: 80%; ADC CP: 92%; 235 
ADC CL: 97%; Gasco et al., 2016). This seems to indicate that insect meals are well digested by seabass. These in vivo 236 
ADC data are considerably higher than the in vitro crude protein digestibility determined for H. illucens and T. molitor 237 
determined by Marono et al. (2015), which ranged from 65.8 to 68.7%. This indicates that the in vitro method may not 238 
be adequate for estimating the ADC of protein for fish (Gomes et al., 1998; Moyano et al., 2015). Digestibility of HM 239 
was also determined for turbot, showing low/moderate digestibility for organic matter, crude protein, crude lipid, and 240 
gross energy (Kroeckel et al., 2012). 241 

This is the first study in fish evaluating the amino acid digestibility of HM containing diets. Overall, amino acid 242 
digestibility was high and independent of dietary HM inclusion, except for arginine and histidine, which increased. The 243 
high ADC of arginine is particularly interesting, as it shows that HM, besides being a good source of arginine, has a high 244 
bioavailability for this EAA, which is usually one of the first limiting essential amino acids in plant feedstuffs. 245 

Total protease activity was higher than amylase and lipase  activ- ities, as has been observed previously with 246 
seabass (Magalhães et al., 2015). Even though amylase, lipase, and proteases are secreted into the anterior section of the 247 
intestine, and therefore their activity is expected to be higher in that portion of the intestine, this was not the case in the 248 
present or other studies (Magalhães et al., 2015; Pérez-Jiménez et al., 2009). Digestive enzyme activities and digesta 249 
transit time along the gastrointestinal tract may be affected by diet composition (Castro et al., 2013, 2015; Pérez-Jiménez 250 
et al., 2009), and our results also seem to indicate a drag of secreted enzymes to the posterior intestine  rather than an 251 
increased activity of these enzymes in this intestinal portion. 252 

The fatty acid profile of HM usually has lower LC-PUFA than FM (Barroso et al., 2014) and it is known that fish 253 
lipase has higher affinity for LC-PUFA glycerides (Bakke et al., 2011). Thus, the HM fatty acid profile may modulate 254 
lipase activity and affect the ADC of lipids. In the present study, even though there were some small differences in lipase 255 
activity among diets, no differences in ADC of lipids was observed. 256 

In conclusion, this study indicates that up to 19.5% of black soldier fly   (Hermetia   illucens)   pre-pupae   meal   257 
(corresponding   to   22.5%   of dietary protein), may successfully replace 45% FM in diets for juveniles of  European  258 
seabass,  without  any  adverse  effect  on  growth  perfor- mance,  feed  utilization,  apparent  digestibility  coefficients  259 
or  digestive enzyme  activity.  Further  research  testing  higher  dietary  HM  inclusion levels, as well as detailed 260 
economic analysis of its incorporation in the diets, are needed to better evaluate the potential of HM inclusion rates in 261 
commercial aquafeeds. 262 
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